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ABSTRACT. — We construct global exotic solutions of the conformal scalar curvature equation
Au+ [n(n — 2)/4Ku®+2/=2 = 0 in R", with K (x) approaching 1 near infinity in order as
close to the critical exponent as possible.
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RESUME. — Nous construisons des solutions globales exotiques de I'équation courbure scalair
conformeAu + [n(n — 2)/41Ku"t?/=2 = 0 dansR”, avecK (x) — 1 quand|x| — oo
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1. Introduction

We consider a special class of positive solutions of the conformal scalar curvature
eqguation

-2 n
n(n )KuL

Au+ =2 =0 inR". (1.1)

Here A is the standard Laplacian dR" equipped with Euclidean metrig,, K a
smooth function ofR”, andn > 3 an integer. The solutions we construct breach a rather
natural lower bound and have peculiar asymptotic property.

Eg. (1.1) is studied extensively by many authors in connection with the prescribed
scalar curvature problem on a Riemannian manifold in general an@”cand S” in
particular (onS?, the Nirenberg problem; cf. [1,3-5,9,12,14,15,17,20,21,23,24,26] and
the references within). As in the case of the Yamabe problem, recent studies indicate th:
the case whel is strictly positive affords many interesting and subtle developments.

Assume thak is bounded between two positive constant®inAn important feature
of Eg. (1.1) is the asymptotic behavior @x) for large |x| (cf. [2,5-8,10,12,16,18,19,
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22]). Itis simpler to classify with the help of the Kelvin transformation:
X
y=rp and wo) = yFeG/ Iy forx, y e R\ (0). (1.2)

From (1.2),w satisfies the equation

nn—2)
4

Aw(y) + K(»)wi2(y) =0 foryeR"\ {0}, (1.3)

whereK (y) := K (y/|y|?) for y 0 (see, for instance, [18] (andu) is said to have

fast decay ifw has a removable singularity at the origin. Otherwise, it is called a singular
solution. In order to have reasonable control on the geometric and analytic behavior o
singular solutions, it is crucial to obtain the upper boundlow decay

w(y) < Cily|"?72 asy—0, ie., u(x)<Cix|""7?/% for|x|>1, (1.4)

where(; is a positive constant. The question on slow decay is discussed in depth in [2
5-8,16,18,19,22] (cf. also [27]; note that our definition of slow decay is slightly different
from the one in [5] and [8]). Guided by the case whéris equal to a positive constant
outside a compact subset®f (see [2,16]), it is natural to ask whether a singular positive
solutionu with slow decay also satisfies the lower bound

w(y) = Coly| " 22 asy—0, ie., ulx) >Cox|""22 for|x|>1, (1.5)

where C, is a positive constant. If the lower bound holds, then the conformal metric
u?"=2g, on R" is complete and has bounded (sectional) curvature [8]. The radial
Pohozaev number is an essential invariant in the study of equation (1.1) and is givel

by
P := Rlim / x - VK(x)}uzn/("_z)(x) dx, (1.6)

B, (R)

provided the limit exists. Hers,(R) is the open ball with center at the origin and radius
equal toR > 0. The following result is shown by Chen and Lin in [6] and [8], mindful
of the slightly different notations we use.

THEOREM 1.7 (Chen-Lin). -Letu be a positive smooth solution of Hd.1). Assume
thatlim .. K (x) exists and is positive, and there exist positive constaptén — 2) /2
and C such that

CHx|7D < IVK(x)| < Clx|~ ™Y forall x| > 1.

Thenu has slow decay ané (1) exists and is non-positive. has fast decay if and only
if P(u) =0 (the Kazdan—Warner conditipnFurthermore, ifu is a singular solution,
then we also have the lower boundx) > C;|x|~"~?/2 for all |x| > 1 and for some
positive constant,.
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More generally, under the condition that |im,. K (x) exists and is positive, and
VK| is bounded inR”", for a positive smooth solution of Eq. (1.1) with slow decay,
we show in [10] (cf. also [5,8]) thaP (1) < 0 if P(u) exists. MoreoverpP (u) =0 if and
only if

I‘irp inf [x|®=2/2y(x) = 0. (1.8)

In the latter case, the assumption Kris not strong enough to allow us to deduce that
has fast decay.

DEFINITION 1.9. —We call a singular positive solutianof Eq. (1.1)with slow decay
anexotic solutionf (1.8) holds foru. That is, wecannotfind a positive constarnt, such
that u(x) > Cy|x|~"=2/2 for all |x| > 1.

Then it is necessary tha@t(u) = 0 if P(u) exists. Exotic solutions are rather peculiar
because fromP(1x) = 0 one would expect: to have fast decay. Instead, they decay
slowly and the conformal metrig* =2 g, remains to be complete, but the (sectional)
curvature is unbounded [8]. Theorem 1.7 leads to the observation that there are no exot
solutions if| VK| decays to zero near infinity fast enough.

(Local) Exotic solutions are first found by Chen and Lin in [8]. By a scaling and the
Kelvin transform, we may consider the equation

n+2
=2

Au+ Kun=2 =0 inB,(1)\{0}. (1.10)
Assume thai is radial and non-increasing i, 1], and is given by
Kr)=1—Ar' + R(r) (1.11)

for r > O close to zero. Herg > 0 and O< [ < (n —2)/2 are constants, amki(r) = o(r')
andR'(r) = o(r'~1) for r > 0 close to zero. Given a positive numberlet u(r, ) be
the unique solution of the initial value problem

{ W' (r) + =20 (r) + K (r)us2 (r) =0,
u(@ =a and u'(0)=0.

Chen and Lin [8] show elegantly that there exists a sequenee co such thatu(r, «;)
converges to an (local) exot@?-solution of Eq. (1.10) inB, (1) \ {0}. Subsequently, Lin

[22] obtains characterizations of exotic solutions in terms of the asymptotic expansior
of K near the origin.

The exponentn — 2)/2 is found to be critical. Fafr> (n — 2)/2, Theorem 1.7 shows
that there are no exotic solutions of Eq. (1.1). In this paper we construct global exotic
solutions of Eqg. (1.1) iR". As described above, in [8], an abstract existence argument
is used to show the existence of (local) exotic solutions. Our construction is explicit by
gluing the Delaunay—Fowler-type solutions. Given any positive nurdibee show that
there is an exotic solution of Eq. (1.1) witk — 1] < 2 in R”. Moreover, with regard to
the critical exponentn — 2)/2, we show that, given any positive functigrr) defined
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for r > 1 such that

r"=2/24(r) is non-decreasing for>> 1 and lim r=220 (1) = 00, (1.12)

(for example,p(r) = r~"=2/2In(Inr) for r > 1), we construct an exotic solution of
Eq. (1.1) with

|K (x) — 1] < Cap(lx]) forall |x| > 1, (1.13)

whereC3 is a positive constant. The analytic property of exotic solutions resides in a
neighborhood of infinity, or, by the Kelvin transformation, on a neighborhood of the
origin. Our emphasis on the whol" reflects the geometric viewpoint of conformal
deformations of Euclidean spac®”, g,). We follow the convention of using, C,

C’, Cy,... to denote positive constants, whose actual values may differ from section
to section.

2. Delaunay—Fowler-type solutions

Introduce polar coordinatgs, 6) in R”, wherer = |x| andd = x/|x| for x € R"\ {0}.
Lett =Inr forr > 0 and

v(t,0) =r"22y(r,0) forr>0andd e S"1. (2.1)
By the above transformation, Eq. (1.1) can be re-written as

92 —2)2 —-2) -
I a2 =D e

n+2 .
2 =0 inRxS"1L 2.2
012 4 4 * 2.2

Here A, is the Laplacian on the standard unit spher®&irand K (z, ) := K (x), where
|x| =€ andx/|x| = 6. For the cas&k =1 in R x $"~1, consider radial solutions of
(2.2) and the ODE

p: —2) .
—(”4)u ”(”4 )i _0 inR. (2.3)

"

In connection with the study of surfaces of revolution of constant curvature by Delaunay
[11] and a class of semilinear differential equations by Fowler [13], positive smooth
solutions of Eq. (2.3) are known as Delaunay—Fowler-type solutions. We refer to [16,24
25] for basic properties of the solutions. Eq. (2.3) is autonomous and the Hamiltonian
energy

(n—2)°
4

is constant along solutions of (2.3). For a positive smooth solutiofy(2.3), H is a non-

positive constant in the intervgd-[(n — 2) /n]"/?(n — 2) /2, 0] (see [16]). By shifting the

parameter, we may normalize the solution so that

H@w,v)=@)%—- [v2 — v?/(1=2)] (2.4)

v(0) = r;ﬂ%xv(t). (2.5)
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Let v, be a positive solution of Eq. (2.3) witH = 0. Under the normalization, we have

v,(1) = (coshr)®™™/2 fort e R. (2.6)
We note that, by the transformation in (2.1),corresponds to

2 (n—2)/2
MO(X) = (m) forx e R , (27)
which is a solution of Eq. (1.1) whek =1 in R". In particular,u, is smooth near
0, which corresponds te — —oo for v,. The other extreme is wheH = —[(n —

2)/n]"?(n — 2)/2, and the corresponding solutianis a constant function given by
v(t) =[(n —2)/n]"2/*fort € R.
ForH e (—[(n —2)/n]"?(n — 2)/2, 0), the solution can be indexed by the parameter
& = min,cg v(¢), which is called theneck-sizeof the solution, or the Fowler parameter.
We haves € (0, [(n — 2)/n]"~2/4) and
(n —2)?

H=H() = — [e2/ (=2 g2, (2.8)

Denote the normalized positive solution by, where O< ¢ < [(n — 2)/n]®~2/4 It is
known thatv, is periodic with periodl,. Moreover, we always have [16]

e<v () <v,(0) <1 forreR. (2.9)
The following result is essentially proved in [24] (cf. also [16]).

LEMMA 2.10.7,, the period ofv,, is monotone i for ¢ € (0, [(n — 2)/n]"~2/%). We
haveT, — 27 /+/n — 2ase — [(n—2)/n]"~?/*andT, — oo ase — O*. Furthermore,
there exists a positive constafit independent on, such that

4 4
———In(Ce) < T. < ———In(C™e) ase— 0. (2.11)
n—2 n—2

It is also known thav, converges uniformly in compact subsetsfofo the constant
solution ase — [(n — 2)/n]"~2/4, and tov,(t) = (coshr)?/? ase — 0F [16]. For
applications in Section 3 , we study the order of the latter convergence in more detail
As H is constant along solutions, we have

— 22 _ 72
H (v, U;) _ _ (n 42) (82 _ 82”/(11—2)) — _% [052(0) _ Uan/(n—2)(0)}

for e € (0, [(n — 2)/n]"=2/%). Thus we obtain

4H
(n—2)?
As v.(0) > ¢ whene — 0T, it follows from (2.12) thatv,(0) - 1 and ¢— O".
Furthermore,

V2(0)[1— oY 2(0)] = £2(1— Y0 2) = —

(2.12)

1—v¥@=2(0) = O(e?).
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We have
(n—2)/4

ve(0) = [1+ O(&?)] =1+0(¢?) ase— 0", (2.13)
Hence there exists a positive const@htwhich depends on only, such that
|v.(0) — 1| < C,e? for e > 0 small (2.14)

We use the following well-known inequalities a number of times; they can be derived by
simple integration methods. For positive constangmde > 1, we have

|x* —y*|<Clx —y| for0O<x,y<c, (2.15)
whereC = C(a, ¢) is a positive constant; moreover, fér> 0,
A+2=1+0(z) asz— 0. (2.16)

With v, given by (2.6), it follows from (2.9) and (2.15) that

W2 () =i ()] < enlve(®) = v (D, (2.17)

n+2
n

wherec, is a positive constant depending @only. Using Eqg. (2.3) we have

—_ 722 _
/) — o] < =2 0o (6) = woy] + R =2

n—22 nn-—
<
4 + 4
= Cplve (1) — v, (1)1, (2.18)
whereC, is the positive constant defined in the formula. We claim that

n+

= 2
vE2 (1) —vs P (1)

2
)Cn ‘Us(t) - Uo(t)‘

lv!(t) — v(1)] < 2C,C,e? fort el0, pl, (2.19)

wherep :=1/(2C,C,). HereC, andC/, are the positive constants in (2.14) and (2.18),
respectively. Without loss of generality, we may assume thatC,. By (2.14) and
(2.18), the bound holds on a neighborhood of 0. Suppose that it holis @hfor some
positive number less tharnp. As v, (0) = v, (0) =0, we have

lul(t) — v, (1)| < 2C,C e%0 < &* forte[0, 0]

Hence
e (1) — V()| < (C, +0)e? <2C,e* fort €[0,0]. (2.20)
By (2.18) we have
[/ (0) —v)(0)| < 2C,C,&°.

Using an connectedness argument, we obtain (2.19) as claimed. A similar bound hold
in [—p, 0]. Upon integration we obtain the following lemma.
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LEMMA 2.21. —Letwv, and v, be the solutions of E(2.3) discussed above. There
exists positive constangsand C,, which depend on but not on(small enough positiye
&, such that

[ve (1) — v, (1)| < Coe?, V(1) — v, (1) < C,e? and v, () >1/2 (2.22)

forr e [—p, p] ande > 0O close to0.

3. Gluing solutions

We follow the notations used in Section 2 and consider (2.1) and Eq. (2.2). Slow
decay for a positive smooth solutianof equation (1.1) corresponds s, 6) < C for
s> 1, 0 € §" ! and a positive constard. Moreover,u is an (global) exotic solution if
and only if there exists a sequengg;, 6;)} C R x §"~1 such that lim_, ., s; = co and
lim;_ - v(s;, 6;) =0, and, when the variableis changed int@ viar =Inr, u is smooth
across the origin. Lep; be a smooth function oR such that 6< ¢ < 1lin R and

_J1 fort < —p,
¢1(t)_{0 fors > p.

We also require that
1)1 <2/p and |p{(1)] <2/p> forte(—p,p). (3.1)
Letg, =1 — ¢, in R. Define
V=, + Pov, INR, (3.2)
wheree > 0 is close to zero. It follows that
(n — )2 n(n—2) nt2 e[ /
v(t) = 7 [¢ (t) + $ove 7 ()] + ¢1.(0) [V, (1) — v, (1)]
+ @7 (1) [ve (1) — v, ()] (3.3)

—U//(t) +

for t € R. We also have

nt2 +2

S(0)vi 2 (1) + dalt)v} Sao
— DO (1) + da (Vi 2 (1) + (1) [uE 2 (1) — v 2 ()]

+ +

= [$1(D)0 (1) + da(t)vo (D] 2 + (1) [v] “( }

= {v(®) + ¢2(1) [V, (1) — vg(t)]}" n ¢z(t)[ (t) _— (t)]
fort € [—p, p]. We obtain

-1
H ”(z)+(” 2 u()H”(”4 2)1)%2()} —1‘
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$a(t) &
< Hl+ B o) - ni]} - 1‘

+ _Z_—g(t){¢2(t) Ug:ll%z (t) - U:n%z (t)‘

nn—2) v
+ 11O, (1) = v, (0] + 161 (D) [0 () = vo(1)] } (3.4)

for t € [—p, p]. It follows from Lemma 2.21, (2.16), (2.17), (3.1) and (3.4) that
satisfies the equation

"

_ 92 _ )
_ 42) U+n(n4 Z)Kvn_tgzo inR, (3.5)

whereK is a smooth function of® such that

_ 92 _ , 11
(n 42) v(t)} [”(”4 Z)Ufl_tz(t)} —1‘<c182 (3.6)

|K(t) =1 = ’ [—v“(t) +
fort € [—p, p], andK =1 inR\ [—p, p]. Here(C; is a positive constant that depends
onn only, so far ag > 0 is close to zero.

Let {¢;} be a decreasing sequence of small positive numbers such thatlisn= 0.
Denote the period of,, by T, fori =1,2,... With &1 small enough, we may assume
that 7., > p. We construct a positive smooth function by first gluingand v,, on
[—p, p] as described above and call the resulting positive smooth funcfiddote that
v1 =V, INRTN\ (O, p). AS v, (r + Ty,) = v, (¢) for t € R andv,, andv,, are close ta,
near[—p, p], we let

Vg, (t) = v, (t — T,,) forteR,

and gluev,, andv; (that is,v,,) on [T, — p, T, + p] in a process similar to the one
described above. Call the resulting functign We continue to glue the solutions on the
intervals

i

ZTsk—p,ZTsﬁp],...
k=1

k=1

[T51+T82_IO’T51+T52+I0]=~~~a

by vey, ..., 0,4, -.., respectively, after shifting appropriately. In particular, in the
(i + Dth step, let

i—-1 i
Ue, () = v, (t -> T5k> and ¥,,,(t) = v, (t -> T5k> fort e R,
k=1 k=1

and glued,, ., with 3., on the interval > _; T., — p, >k_1 Tx, + p]. Finally we obtain a
positive smooth functiom on R which satisfies the equation

_2)2 2 .
v”—(”4)v+”(”4 ) ki3 -0 inR (3.7)
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for some smooth functiok such that
|K(t) — 1| < Cpe2 fort eR, (3.8)

whereC, is a positive constant depending @mnly. We may choose; > 0 as small as
we like. We also have

v(Z T, — T81/2> =v(T,;/2)=¢—0 and
k=1

v <Z T5k> — 1" asi — oo. (3.9
k=1

As v(t) = v,(t) for t < —p, by (2.6) and (2.7), the corresponding solutiomelated to
v by (2.1) is smooth across the origin. Thusorresponds to an exotic solutienof
Eqg. (1.1) through (2.1).

Given a positive functiorp(r) defined forr >> 1 which satisfies (1.12), lef(¢) =
@(€). It follows that v is defined forr > 1 and

e" 212y (1) (3.10)
is non-decreasing far>> 1 and unbounded from above. Let
@ (t) =In[e" 22y )] fort> 1 (3.11)

We have lim_, ., @ (t) = co. Choose a decreasing sequence of numfagysuch that;
is small enough and the corresponding periddsf v, satisfy the relation

n—25=

T.)>
w (Ty,) >

T, fori=23,.... (3.12)
k=1

By gluing the solutions,, v,;, i =1,2,..., as described above, we obtain a positive
smooth functiorv which satisfies Eq. (3.7) for a smooth functi& Suppose that

i i
t¢[=p. pIUIT, —p. Ty +p]U- - U lZTsk =) Ty +p|U -
k=1 k=1
thenK (t) = 1. Suppose that
for somei € N.

te [ZTE,{—p,ZTE,{ﬁ—p
k=1 k=1

According to the construction above and Lemma 2.10, we have

-2
K (1) — 1] < Ca® < c4exp(—”TTsi)
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n—2
=Cy exp(—TTE,. —o(t)+ w(t))

<Cs eXp< — n—;2 > Tsk> (677212 (1)] < C4 eXp(n—gzp) v (1),
k=1

where C3 and C4 are positive constants that depend mronly. Hence we obtain
[K() — 1] < Csyr () for > 1 and for a positive constar@s. The corresponding
solutionu is an exotic solution of Eqg. (1.1) which satisfies (1.13). We note i@
in this case is not monotonic for large
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