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ABSTRACT. – We construct global exotic solutions of the conformal scalar curvature equation
�u + [n(n − 2)/4]Ku(n+2)/(n−2) = 0 in R

n, with K(x) approaching 1 near infinity in order as
close to the critical exponent as possible.
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RÉSUMÉ. – Nous construisons des solutions globales exotiques de l’équation courbure scalaire
conforme�u + [n(n − 2)/4]Ku(n+2)/(n−2) = 0 dansR

n, avecK(x) → 1 quand|x| → ∞
.

1. Introduction

We consider a special class of positive solutions of the conformal scalar curvature
equation

�u+ n(n− 2)

4
Ku

n+2
n−2 = 0 in R

n. (1.1)

Here� is the standard Laplacian onRn equipped with Euclidean metricgo, K a
smooth function onRn, andn� 3 an integer. The solutions we construct breach a rather
natural lower bound and have peculiar asymptotic property.

Eq. (1.1) is studied extensively by many authors in connection with the prescribed
scalar curvature problem on a Riemannian manifold in general and onR

n and Sn in
particular (onS2, the Nirenberg problem; cf. [1,3–5,9,12,14,15,17,20,21,23,24,26] and
the references within). As in the case of the Yamabe problem, recent studies indicate that
the case whenK is strictly positive affords many interesting and subtle developments.

Assume thatK is bounded between two positive constants inR
n. An important feature

of Eq. (1.1) is the asymptotic behavior ofu(x) for large |x| (cf. [2,5–8,10,12,16,18,19,
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22]). It is simpler to classify with the help of the Kelvin transformation:

y = x

|x|2 and w(y) := |y|2−nu(y/|y|2) for x, y ∈ R
n \ {0}. (1.2)

From (1.2),w satisfies the equation

�w(y)+ n(n− 2)

4
K̄(y)w

n+2
n−2 (y) = 0 for y ∈ R

n \ {0}, (1.3)

whereK̄(y) := K(y/|y|2) for y �= 0 (see, for instance, [18]).w (andu) is said to have
fast decay ifw has a removable singularity at the origin. Otherwise, it is called a singular
solution. In order to have reasonable control on the geometric and analytic behavior of
singular solutions, it is crucial to obtain the upper bound orslow decay

w(y) �C1|y|−(n−2)/2 asy → 0, i.e., u(x) � C1|x|−(n−2)/2 for |x| � 1, (1.4)

whereC1 is a positive constant. The question on slow decay is discussed in depth in [2,
5–8,16,18,19,22] (cf. also [27]; note that our definition of slow decay is slightly different
from the one in [5] and [8]). Guided by the case whenK is equal to a positive constant
outside a compact subset ofR

n (see [2,16]), it is natural to ask whether a singular positive
solutionu with slow decay also satisfies the lower bound

w(y) �C2|y|−(n−2)/2 asy → 0, i.e., u(x) � C2|x|−(n−2)/2 for |x| � 1, (1.5)

whereC2 is a positive constant. If the lower bound holds, then the conformal metric
u4/(n−2)go on R

n is complete and has bounded (sectional) curvature [8]. The radial
Pohozaev number is an essential invariant in the study of equation (1.1) and is given
by

P(u) := lim
R→∞

∫
Bo(R)

[
x · ∇K(x)

]
u2n/(n−2)(x)dx, (1.6)

provided the limit exists. HereBo(R) is the open ball with center at the origin and radius
equal toR > 0. The following result is shown by Chen and Lin in [6] and [8], mindful
of the slightly different notations we use.

THEOREM 1.7 (Chen-Lin). –Letu be a positive smooth solution of Eq.(1.1). Assume
that lim |x|→∞K(x) exists and is positive, and there exist positive constantsl � (n−2)/2
andC such that

C−1|x|−(l+1) � |∇K(x)| � C|x|−(l+1) for all |x| � 1.

Thenu has slow decay andP(u) exists and is non-positive.u has fast decay if and only
if P(u) = 0 (the Kazdan–Warner condition). Furthermore, ifu is a singular solution,
then we also have the lower boundu(x) � C2|x|−(n−2)/2 for all |x| � 1 and for some
positive constantC2.
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More generally, under the condition that lim|x|→∞K(x) exists and is positive, and
|∇K| is bounded inRn, for a positive smooth solutionu of Eq. (1.1) with slow decay,
we show in [10] (cf. also [5,8]) thatP(u) � 0 if P(u) exists. Moreover,P(u) = 0 if and
only if

lim inf|x|→∞ |x|(n−2)/2u(x) = 0. (1.8)

In the latter case, the assumption onK is not strong enough to allow us to deduce thatu

has fast decay.

DEFINITION 1.9. –We call a singular positive solutionu of Eq. (1.1)with slow decay
anexotic solutionif (1.8)holds foru. That is, wecannotfind a positive constantC2 such
thatu(x) �C2|x|−(n−2)/2 for all |x| � 1.

Then it is necessary thatP(u) = 0 if P(u) exists. Exotic solutions are rather peculiar
because fromP(u) = 0 one would expectu to have fast decay. Instead, they decay
slowly and the conformal metricu4/(n−2)go remains to be complete, but the (sectional)
curvature is unbounded [8]. Theorem 1.7 leads to the observation that there are no exotic
solutions if|∇K| decays to zero near infinity fast enough.

(Local) Exotic solutions are first found by Chen and Lin in [8]. By a scaling and the
Kelvin transform, we may consider the equation

�u+ K̄u
n+2
n−2 = 0 in Bo(1) \ {0}. (1.10)

Assume thatK̄ is radial and non-increasing in(0,1], and is given by

K̄(r) = 1−Arl +R(r) (1.11)

for r > 0 close to zero. HereA> 0 and 0< l < (n−2)/2 are constants, andR(r) = o(rl)
andR′(r) = o(rl−1) for r > 0 close to zero. Given a positive numberα, let u(r,α) be
the unique solution of the initial value problem

{
u′′(r)+ n−1

r
u′(r)+ K̄(r)u

n+2
n−2 (r) = 0,

u(0) = α and u′(0) = 0.

Chen and Lin [8] show elegantly that there exists a sequenceαi → ∞ such thatu(r,αi)

converges to an (local) exoticC2-solution of Eq. (1.10) inBo(1)\ {0}. Subsequently, Lin
[22] obtains characterizations of exotic solutions in terms of the asymptotic expansion
of K̄ near the origin.

The exponent(n− 2)/2 is found to be critical. Forl � (n− 2)/2, Theorem 1.7 shows
that there are no exotic solutions of Eq. (1.1). In this paper we construct global exotic
solutions of Eq. (1.1) inRn. As described above, in [8], an abstract existence argument
is used to show the existence of (local) exotic solutions. Our construction is explicit by
gluing the Delaunay–Fowler-type solutions. Given any positive numberδ, we show that
there is an exotic solution of Eq. (1.1) with|K − 1| � δ2 in R

n. Moreover, with regard to
the critical exponent(n− 2)/2, we show that, given any positive functionϕ(r) defined
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for r � 1 such that

r(n−2)/2ϕ(r) is non-decreasing forr � 1 and lim
r→∞ r(n−2)/2ϕ(r) = ∞, (1.12)

(for example,ϕ(r) = r−(n−2)/2 ln(ln r) for r � 1), we construct an exotic solution of
Eq. (1.1) with

|K(x) − 1| � C3ϕ(|x|) for all |x| � 1, (1.13)

whereC3 is a positive constant. The analytic property of exotic solutions resides in a
neighborhood of infinity, or, by the Kelvin transformation, on a neighborhood of the
origin. Our emphasis on the wholeRn reflects the geometric viewpoint of conformal
deformations of Euclidean space(Rn, go). We follow the convention of usingc, C,
C ′, C1, . . . to denote positive constants, whose actual values may differ from section
to section.

2. Delaunay–Fowler-type solutions

Introduce polar coordinates(r, θ) in R
n, wherer = |x| andθ = x/|x| for x ∈ R

n \ {0}.
Let t = ln r for r > 0 and

v(t, θ) = r(n−2)/2u(r, θ) for r > 0 andθ ∈ Sn−1. (2.1)

By the above transformation, Eq. (1.1) can be re-written as

∂2v

∂t2
+�θv − (n− 2)2

4
v + n(n− 2)

4
K̃v

n+2
n−2 = 0 in R × Sn−1. (2.2)

Here�θ is the Laplacian on the standard unit sphere inR
n andK̃(t, θ) := K(x), where

|x| = et andx/|x| = θ . For the caseK̃ ≡ 1 in R× Sn−1, consider radial solutionsv of
(2.2) and the ODE

v′′ − (n− 2)2

4
v + n(n− 2)

4
v

n+2
n−2 = 0 in R. (2.3)

In connection with the study of surfaces of revolution of constant curvature by Delaunay
[11] and a class of semilinear differential equations by Fowler [13], positive smooth
solutions of Eq. (2.3) are known as Delaunay–Fowler-type solutions. We refer to [16,24,
25] for basic properties of the solutions. Eq. (2.3) is autonomous and the Hamiltonian
energy

H(v, v′) = (v′)2 − (n− 2)2

4

[
v2 − v2n/(n−2)] (2.4)

is constant along solutions of (2.3). For a positive smooth solutionv of (2.3),H is a non-
positive constant in the interval[−[(n− 2)/n]n/2(n− 2)/2,0] (see [16]). By shifting the
parameter, we may normalize the solution so that

v(0) = max
t∈R

v(t). (2.5)
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Let vo be a positive solution of Eq. (2.3) withH = 0. Under the normalization, we have

vo(t) = (cosht)(2−n)/2 for t ∈ R. (2.6)

We note that, by the transformation in (2.1),vo corresponds to

uo(x) =
(

2

1+ |x|2
)(n−2)/2

for x ∈ R
n, (2.7)

which is a solution of Eq. (1.1) whenK ≡ 1 in R
n. In particular,uo is smooth near

0, which corresponds tos → −∞ for vo. The other extreme is whenH = −[(n −
2)/n]n/2(n − 2)/2, and the corresponding solutionv is a constant function given by
v(t) = [(n− 2)/n](n−2)/4 for t ∈ R.

ForH ∈ (−[(n− 2)/n]n/2(n− 2)/2,0), the solution can be indexed by the parameter
ε = mint∈R v(t), which is called theneck-sizeof the solution, or the Fowler parameter.
We haveε ∈ (0, [(n− 2)/n](n−2)/4) and

H = H(ε)= (n− 2)2

4

[
ε2n/(n−2) − ε2]. (2.8)

Denote the normalized positive solution byvε, where 0< ε < [(n − 2)/n](n−2)/4. It is
known thatvε is periodic with periodTε. Moreover, we always have [16]

ε � vε(t) � vε(0) < 1 for t ∈ R. (2.9)

The following result is essentially proved in [24] (cf. also [16]).

LEMMA 2.10.Tε, the period ofvε, is monotone inε for ε ∈ (0, [(n−2)/n](n−2)/4). We
haveTε → 2π/

√
n− 2 asε → [(n−2)/n](n−2)/4 andTε → ∞ asε → 0+. Furthermore,

there exists a positive constantC, independent onε, such that

− 4

n− 2
ln(Cε) � Tε � − 4

n− 2
ln
(
C−1ε

)
asε → 0+. (2.11)

It is also known thatvε converges uniformly in compact subsets ofR to the constant
solution asε → [(n − 2)/n](n−2)/4, and tovo(t) = (cosht)(2−n)/2 asε → 0+ [16]. For
applications in Section 3 , we study the order of the latter convergence in more detail.
As H is constant along solutions, we have

H(vε, v
′
ε) = −(n− 2)2

4

(
ε2 − ε2n/(n−2))= −(n− 2)2

4

[
v2
ε (0)− v2n/(n−2)

ε (0)
]

for ε ∈ (0, [(n− 2)/n](n−2)/4). Thus we obtain

v2
ε (0)

[
1− v4/(n−2)

ε (0)
]= ε2(1− ε4/(n−2))= − 4H

(n− 2)2
. (2.12)

As vε(0) > ε when ε → 0+, it follows from (2.12) thatvε(0) → 1 and ε→ 0+.
Furthermore,

1− v4/(n−2)
ε (0) = O

(
ε2).
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We have

vε(0) = [
1+ O

(
ε2)](n−2)/4 = 1+ O

(
ε2) asε → 0+. (2.13)

Hence there exists a positive constantCn which depends onn only, such that

|vε(0)− 1| �Cnε
2 for ε > 0 small. (2.14)

We use the following well-known inequalities a number of times; they can be derived by
simple integration methods. For positive constantsc andα � 1, we have

∣∣xα − yα
∣∣� C|x − y| for 0� x, y � c, (2.15)

whereC = C(α, c) is a positive constant; moreover, forβ > 0,

(1+ z)β = 1+ O(|z|) asz → 0. (2.16)

With vo given by (2.6), it follows from (2.9) and (2.15) that

∣∣v n+2
n−2
ε (t)− v

n+2
n−2
o (t)

∣∣� cn|vε(t)− vo(t)|, (2.17)

wherecn is a positive constant depending onn only. Using Eq. (2.3) we have

∣∣v′′
ε (t)− v′′

o (t)
∣∣� (n− 2)2

4
|vε(t)− vo(t)| + n(n− 2)

4

∣∣v n+2
n−2
ε (t)− v

n+2
n−2
o (t)

∣∣
�
[
(n− 2)2

4
+ n(n− 2)

4
cn

]∣∣vε(t)− vo(t)
∣∣

= C̄n|vε(t)− vo(t)|, (2.18)

whereC̄n is the positive constant defined in the formula. We claim that

∣∣v′′
ε (t)− v′′

o (t)
∣∣� 2CnC̄nε

2 for t ∈ [0, ρ], (2.19)

whereρ := 1/(2CnC̄n). HereCn andC ′
n are the positive constants in (2.14) and (2.18),

respectively. Without loss of generality, we may assume thatρ < Cn. By (2.14) and
(2.18), the bound holds on a neighborhood of 0. Suppose that it holds on[0, σ ] for some
positive numberσ less thanρ. As v′

ε(0) = v′
o(0) = 0, we have

∣∣v′
ε(t)− v′

o(t)
∣∣� 2CnC̄nε

2σ � ε2 for t ∈ [0, σ ].
Hence ∣∣vε(t)− vo(t)

∣∣� (Cn + σ )ε2 < 2Cnε
2 for t ∈ [0, σ ]. (2.20)

By (2.18) we have ∣∣v′′
ε (σ )− v′′

o (σ )
∣∣< 2CnC̄nε

2.

Using an connectedness argument, we obtain (2.19) as claimed. A similar bound holds
in [−ρ,0]. Upon integration we obtain the following lemma.
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LEMMA 2.21. –Let vε and vo be the solutions of Eq.(2.3) discussed above. There
exists positive constantsρ andCo which depend onn but not on(small enough positive)
ε, such that

∣∣vε(t)− vo(t)
∣∣�Coε

2,
∣∣v′

ε(t)− v′
o(t)

∣∣� Coε
2 and vε(t) � 1/2 (2.22)

for t ∈ [−ρ,ρ] andε > 0 close to0.

3. Gluing solutions

We follow the notations used in Section 2 and consider (2.1) and Eq. (2.2). Slow
decay for a positive smooth solutionu of equation (1.1) corresponds tov(s, θ) � C for
s � 1, θ ∈ Sn−1 and a positive constantC. Moreover,u is an (global) exotic solution if
and only if there exists a sequence{(si, θi)} ⊂ R × Sn−1 such that limi→∞ si = ∞ and
limi→∞ v(si, θi) = 0, and, when the variablet is changed intor via t = ln r , u is smooth
across the origin. Letφ1 be a smooth function onR such that 0� φ � 1 in R and

φ1(t) =
{

1 for t � −ρ,
0 for t � ρ.

We also require that

|φ′
1(t)| � 2/ρ and |φ′′

1(t)| � 2/ρ2 for t ∈ (−ρ,ρ). (3.1)

Let φ2 = 1− φ1 in R. Define

v = φ1vo + φ2vε in R, (3.2)

whereε > 0 is close to zero. It follows that

−v′′(t)+ (n− 2)2

4
v(t)= n(n− 2)

4

[
φ1v

n+2
n−2
o (t)+ φ2v

n+2
n−2
ε (t)

]+ φ′
1(t)

[
v′
ε(t)− v′

o(t)
]

+ φ′′
1(t)

[
vε(t)− vo(t)

]
(3.3)

for t ∈ R. We also have

φ1(t)v
n+2
n−2
o (t)+ φ2(t)v

n+2
n−2
ε (t)

= φ1(t)v
n+2
n−2
o (t)+ φ2(t)v

n+2
n−2
o (t)+ φ2(t)

[
v

n+2
n−2
ε (t)− v

n+2
n−2
o (t)

]
= [

φ1(t)vo(t)+ φ2(t)vo(t)
] n+2
n−2 + φ2(t)

[
v

n+2
n−2
ε (t)− v

n+2
n−2
o (t)

]
= {

v(t)+ φ2(t)
[
vo(t)− vε(t)

]} n+2
n−2 + φ2(t)

[
v

n+2
n−2
ε (t)− v

n+2
n−2
o (t)

]
for t ∈ [−ρ,ρ]. We obtain∣∣∣∣

[
−v′′(t)+ (n− 2)2

4
v(t)

][
n(n− 2)

4
v

n+2
n−2 (t)

]−1

− 1
∣∣∣∣
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�
∣∣∣∣
{

1+ φ2(t)

v(t)

[
vo(t)− vε(t)

]} n+2
n−2 − 1

∣∣∣∣
+ 4

n(n− 2)
v− n+2

n−2 (t)
{
φ2(t)

∣∣v n+2
n−2
ε (t)− v

n+2
n−2
o (t)

∣∣
+ |φ′

1(t)|
∣∣v′

ε(t)− v′
o(t)

∣∣+ |φ′′
1(t)|

[
vε(t)− vo(t)

]}
(3.4)

for t ∈ [−ρ,ρ]. It follows from Lemma 2.21, (2.16), (2.17), (3.1) and (3.4) thatv

satisfies the equation

v′′ − (n− 2)2

4
v + n(n− 2)

4
Kv

n+2
n−2 = 0 in R, (3.5)

whereK is a smooth function onR such that

|K(t)− 1| =
∣∣∣∣
[
−v′′(t)+ (n− 2)2

4
v(t)

][
n(n− 2)

4
v

n+2
n−2 (t)

]−1

− 1
∣∣∣∣�C1ε

2 (3.6)

for t ∈ [−ρ,ρ], andK ≡ 1 in R \ [−ρ,ρ]. HereC1 is a positive constant that depends
onn only, so far asε > 0 is close to zero.

Let {εi} be a decreasing sequence of small positive numbers such that limi→∞ εi = 0.
Denote the period ofvεi by Tεi for i = 1,2, . . . With ε1 small enough, we may assume
that Tε1 � ρ. We construct a positive smooth function by first gluingvo and vε1 on
[−ρ,ρ] as described above and call the resulting positive smooth functionv1. Note that
v1 = vε1 in R

+ \ (0, ρ). As vε1(t + Tε1) = vε1(t) for t ∈ R andvε1 andvε2 are close tovo
near[−ρ,ρ], we let

ṽε2(t) = vε2(t − Tε1) for t ∈ R,

and glueṽε2 andv1 (that is,vε1) on [Tε1 − ρ,Tε1 + ρ] in a process similar to the one
described above. Call the resulting functionv2. We continue to glue the solutions on the
intervals

[Tε1 + Tε2 − ρ,Tε1 + Tε2 + ρ], . . . ,
[

i∑
k=1

Tεk − ρ,

i∑
k=1

Tεk + ρ

]
, . . .

by vε3, . . . , vεi+1, . . . , respectively, after shifting appropriately. In particular, in the
(i + 1)th step, let

ṽεi (t) = vεi

(
t −

i−1∑
k=1

Tεk

)
and ṽεi+1(t) = vεi+1

(
t −

i∑
k=1

Tεk

)
for t ∈ R,

and glueṽεi+1 with ṽεi on the interval[∑i
k=1Tεk − ρ,

∑i
k=1Tεk + ρ]. Finally we obtain a

positive smooth functionv on R which satisfies the equation

v′′ − (n− 2)2

4
v + n(n− 2)

4
Kv

n+2
n−2 = 0 in R (3.7)
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for some smooth functionK such that

|K(t)− 1| � C2ε
2
1 for t ∈ R, (3.8)

whereC2 is a positive constant depending onn only. We may chooseε1 > 0 as small as
we like. We also have

v

(
i∑

k=1

Tεk − Tεi /2

)
= vi(Tεi /2) = εi → 0 and

v

(
i∑

k=1

Tεk

)
→ 1− asi → ∞. (3.9)

As v(t) = vo(t) for t � −ρ, by (2.6) and (2.7), the corresponding solutionu related to
v by (2.1) is smooth across the origin. Thusv corresponds to an exotic solutionu of
Eq. (1.1) through (2.1).

Given a positive functionϕ(r) defined forr � 1 which satisfies (1.12), letψ(t) =
ϕ(et ). It follows thatψ is defined fort � 1 and

e(n−2)t/2ψ(t) (3.10)

is non-decreasing fort � 1 and unbounded from above. Let

.(t) = ln
[
e(n−2)t/2ψ(t)

]
for t � 1. (3.11)

We have limt→∞.(t) = ∞. Choose a decreasing sequence of numbers{εi} such thatε1

is small enough and the corresponding periodsTεi of vεi satisfy the relation

.(Tεi )� n− 2

2

i−1∑
k=1

Tεk for i = 2,3, . . . . (3.12)

By gluing the solutionsvo, vεi , i = 1,2, . . . , as described above, we obtain a positive
smooth functionv which satisfies Eq. (3.7) for a smooth functionK . Suppose that

t /∈ [−ρ,ρ] ∪ [Tε1 − ρ,Tε1 + ρ] ∪ · · · ∪
[

i∑
k=1

Tεk − ρ,

i∑
k=1

Tεk + ρ

]
∪ · · ·,

thenK(t) = 1. Suppose that

t ∈
[

i∑
k=1

Tεk − ρ,

i∑
k=1

Tεk + ρ

]
for somei ∈ N.

According to the construction above and Lemma 2.10, we have

|K(t)− 1| �C3εi
2 � C4 exp

(
−n− 2

2
Tεi

)
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=C4 exp
(

−n− 2

2
Tεi −.(t)+.(t)

)

�C3 exp

(
− n− 2

2

i∑
k=1

Tεk

)[
e(n−2)t/2ψ(t)

]
� C4 exp

(
n− 2

2
ρ

)
ψ(t),

where C3 and C4 are positive constants that depend onn only. Hence we obtain
|K(t) − 1| � C5ψ(t) for t � 1 and for a positive constantC5. The corresponding
solutionu is an exotic solution of Eq. (1.1) which satisfies (1.13). We note thatK(t)

in this case is not monotonic for larget .
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