Ann. I. H. Poincaré - AN 18, 3 (2001) 297-307

© 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved S0294-1449(01)00067-1/FLA

EXOTIC SOLUTIONS OF THE CONFORMAL SCALAR CURVATURE EQUATION IN \mathbb{R}^n

Man Chun LEUNG

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore Received 13 January 2000

ABSTRACT. – We construct global exotic solutions of the conformal scalar curvature equation $\Delta u + [n(n-2)/4]Ku^{(n+2)/(n-2)} = 0$ in \mathbb{R}^n , with K(x) approaching 1 near infinity in order as close to the critical exponent as possible.

© 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Keywords: Conformal scalar curvature equation; Gluing solutions; Positive scalar curvature *AMS classification:* Primary 35J60; Secondary 58J05

RÉSUMÉ. – Nous construisons des solutions globales exotiques de l'équation courbure scalaire conforme $\Delta u + [n(n-2)/4]Ku^{(n+2)/(n-2)} = 0$ dans \mathbb{R}^n , avec $K(x) \to 1$ quand $|x| \to \infty$ © 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

We consider a special class of positive solutions of the conformal scalar curvature equation

$$\Delta u + \frac{n(n-2)}{4} K u^{\frac{n+2}{n-2}} = 0 \quad \text{in } \mathbb{R}^n.$$
(1.1)

Here Δ is the standard Laplacian on \mathbb{R}^n equipped with Euclidean metric g_o , K a smooth function on \mathbb{R}^n , and $n \ge 3$ an integer. The solutions we construct breach a rather natural lower bound and have peculiar asymptotic property.

Eq. (1.1) is studied extensively by many authors in connection with the prescribed scalar curvature problem on a Riemannian manifold in general and on \mathbb{R}^n and S^n in particular (on S^2 , the Nirenberg problem; cf. [1,3–5,9,12,14,15,17,20,21,23,24,26] and the references within). As in the case of the Yamabe problem, recent studies indicate that the case when *K* is strictly positive affords many interesting and subtle developments.

Assume that *K* is bounded between two positive constants in \mathbb{R}^n . An important feature of Eq. (1.1) is the asymptotic behavior of u(x) for large |x| (cf. [2,5–8,10,12,16,18,19,

E-mail address: matlmc@math.nus.edu.sg (M.C. Leung).

22]). It is simpler to classify with the help of the Kelvin transformation:

$$y = \frac{x}{|x|^2}$$
 and $w(y) := |y|^{2-n} u(y/|y|^2)$ for $x, y \in \mathbb{R}^n \setminus \{0\}$. (1.2)

From (1.2), w satisfies the equation

$$\Delta w(y) + \frac{n(n-2)}{4} \bar{K}(y) w^{\frac{n+2}{n-2}}(y) = 0 \quad \text{for } y \in \mathbb{R}^n \setminus \{0\},$$
(1.3)

where $\bar{K}(y) := K(y/|y|^2)$ for $y \neq 0$ (see, for instance, [18]). w (and u) is said to have fast decay if w has a removable singularity at the origin. Otherwise, it is called a singular solution. In order to have reasonable control on the geometric and analytic behavior of singular solutions, it is crucial to obtain the upper bound or *slow decay*

$$w(y) \leq C_1 |y|^{-(n-2)/2}$$
 as $y \to 0$, i.e., $u(x) \leq C_1 |x|^{-(n-2)/2}$ for $|x| \gg 1$, (1.4)

where C_1 is a positive constant. The question on slow decay is discussed in depth in [2, 5–8,16,18,19,22] (cf. also [27]; note that our definition of slow decay is slightly different from the one in [5] and [8]). Guided by the case when *K* is equal to a positive constant outside a compact subset of \mathbb{R}^n (see [2,16]), it is natural to ask whether a singular positive solution *u* with slow decay also satisfies the lower bound

$$w(y) \ge C_2 |y|^{-(n-2)/2}$$
 as $y \to 0$, i.e., $u(x) \ge C_2 |x|^{-(n-2)/2}$ for $|x| \gg 1$, (1.5)

where C_2 is a positive constant. If the lower bound holds, then the conformal metric $u^{4/(n-2)}g_o$ on \mathbb{R}^n is complete and has bounded (sectional) curvature [8]. The radial Pohozaev number is an essential invariant in the study of equation (1.1) and is given by

$$P(u) := \lim_{R \to \infty} \int_{B_o(R)} \left[x \cdot \nabla K(x) \right] u^{2n/(n-2)}(x) \,\mathrm{d}x, \tag{1.6}$$

provided the limit exists. Here $B_o(R)$ is the open ball with center at the origin and radius equal to R > 0. The following result is shown by Chen and Lin in [6] and [8], mindful of the slightly different notations we use.

THEOREM 1.7 (Chen-Lin). – Let u be a positive smooth solution of Eq. (1.1). Assume that $\lim_{|x|\to\infty} K(x)$ exists and is positive, and there exist positive constants $l \ge (n-2)/2$ and C such that

$$C^{-1}|x|^{-(l+1)} \leq |\nabla K(x)| \leq C|x|^{-(l+1)}$$
 for all $|x| \gg 1$.

Then u has slow decay and P(u) exists and is non-positive. u has fast decay if and only if P(u) = 0 (the Kazdan–Warner condition). Furthermore, if u is a singular solution, then we also have the lower bound $u(x) \ge C_2 |x|^{-(n-2)/2}$ for all $|x| \gg 1$ and for some positive constant C_2 .

298

More generally, under the condition that $\lim_{|x|\to\infty} K(x)$ exists and is positive, and $|\nabla K|$ is bounded in \mathbb{R}^n , for a positive smooth solution u of Eq. (1.1) with slow decay, we show in [10] (cf. also [5,8]) that $P(u) \leq 0$ if P(u) exists. Moreover, P(u) = 0 if and only if

$$\liminf_{|x| \to \infty} |x|^{(n-2)/2} u(x) = 0.$$
(1.8)

In the latter case, the assumption on K is not strong enough to allow us to deduce that u has fast decay.

DEFINITION 1.9. – We call a singular positive solution u of Eq. (1.1) with slow decay an exotic solution if (1.8) holds for u. That is, we cannot find a positive constant C_2 such that $u(x) \ge C_2 |x|^{-(n-2)/2}$ for all $|x| \gg 1$.

Then it is necessary that P(u) = 0 if P(u) exists. Exotic solutions are rather peculiar because from P(u) = 0 one would expect u to have fast decay. Instead, they decay slowly and the conformal metric $u^{4/(n-2)}g_o$ remains to be complete, but the (sectional) curvature is unbounded [8]. Theorem 1.7 leads to the observation that there are no exotic solutions if $|\nabla K|$ decays to zero near infinity fast enough.

(Local) Exotic solutions are first found by Chen and Lin in [8]. By a scaling and the Kelvin transform, we may consider the equation

$$\Delta u + \bar{K} u^{\frac{n+2}{n-2}} = 0 \quad \text{in } B_o(1) \setminus \{0\}.$$
 (1.10)

Assume that \bar{K} is radial and non-increasing in (0, 1], and is given by

$$\bar{K}(r) = 1 - Ar^{l} + R(r)$$
(1.11)

for r > 0 close to zero. Here A > 0 and 0 < l < (n-2)/2 are constants, and $R(r) = o(r^l)$ and $R'(r) = o(r^{l-1})$ for r > 0 close to zero. Given a positive number α , let $u(r, \alpha)$ be the unique solution of the initial value problem

$$\begin{cases} u''(r) + \frac{n-1}{r}u'(r) + \bar{K}(r)u^{\frac{n+2}{n-2}}(r) = 0, \\ u(0) = \alpha \quad \text{and} \quad u'(0) = 0. \end{cases}$$

Chen and Lin [8] show elegantly that there exists a sequence $\alpha_i \to \infty$ such that $u(r, \alpha_i)$ converges to an (local) exotic C^2 -solution of Eq. (1.10) in $B_o(1) \setminus \{0\}$. Subsequently, Lin [22] obtains characterizations of exotic solutions in terms of the asymptotic expansion of \overline{K} near the origin.

The exponent (n-2)/2 is found to be critical. For $l \ge (n-2)/2$, Theorem 1.7 shows that there are no exotic solutions of Eq. (1.1). In this paper we construct global exotic solutions of Eq. (1.1) in \mathbb{R}^n . As described above, in [8], an abstract existence argument is used to show the existence of (local) exotic solutions. Our construction is explicit by gluing the Delaunay–Fowler-type solutions. Given any positive number δ , we show that there is an exotic solution of Eq. (1.1) with $|K - 1| \le \delta^2$ in \mathbb{R}^n . Moreover, with regard to the critical exponent (n - 2)/2, we show that, given any positive function $\varphi(r)$ defined for $r \gg 1$ such that

$$r^{(n-2)/2}\varphi(r)$$
 is non-decreasing for $r \gg 1$ and $\lim_{r \to \infty} r^{(n-2)/2}\varphi(r) = \infty$, (1.12)

(for example, $\varphi(r) = r^{-(n-2)/2} \ln(\ln r)$ for $r \gg 1$), we construct an exotic solution of Eq. (1.1) with

$$|K(x) - 1| \leqslant C_3 \varphi(|x|) \quad \text{for all } |x| \gg 1, \tag{1.13}$$

where C_3 is a positive constant. The analytic property of exotic solutions resides in a neighborhood of infinity, or, by the Kelvin transformation, on a neighborhood of the origin. Our emphasis on the whole \mathbb{R}^n reflects the geometric viewpoint of conformal deformations of Euclidean space (\mathbb{R}^n, g_o) . We follow the convention of using c, C, C', C_1, \ldots to denote positive constants, whose actual values may differ from section to section.

2. Delaunay–Fowler-type solutions

Introduce polar coordinates (r, θ) in \mathbb{R}^n , where r = |x| and $\theta = x/|x|$ for $x \in \mathbb{R}^n \setminus \{0\}$. Let $t = \ln r$ for r > 0 and

$$v(t,\theta) = r^{(n-2)/2}u(r,\theta) \quad \text{for } r > 0 \text{ and } \theta \in S^{n-1}.$$
(2.1)

By the above transformation, Eq. (1.1) can be re-written as

$$\frac{\partial^2 v}{\partial t^2} + \Delta_\theta v - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} \tilde{K} v^{\frac{n+2}{n-2}} = 0 \quad \text{in } \mathbb{R} \times S^{n-1}.$$
(2.2)

Here Δ_{θ} is the Laplacian on the standard unit sphere in \mathbb{R}^n and $\tilde{K}(t, \theta) := K(x)$, where $|x| = e^t$ and $x/|x| = \theta$. For the case $\tilde{K} \equiv 1$ in $\mathbb{R} \times S^{n-1}$, consider radial solutions v of (2.2) and the ODE

$$v'' - \frac{(n-2)^2}{4}v + \frac{n(n-2)}{4}v^{\frac{n+2}{n-2}} = 0 \quad \text{in } \mathbb{R}.$$
 (2.3)

In connection with the study of surfaces of revolution of constant curvature by Delaunay [11] and a class of semilinear differential equations by Fowler [13], positive smooth solutions of Eq. (2.3) are known as Delaunay–Fowler-type solutions. We refer to [16,24, 25] for basic properties of the solutions. Eq. (2.3) is autonomous and the Hamiltonian energy

$$H(v, v') = (v')^{2} - \frac{(n-2)^{2}}{4} \left[v^{2} - v^{2n/(n-2)} \right]$$
(2.4)

is constant along solutions of (2.3). For a positive smooth solution v of (2.3), H is a nonpositive constant in the interval $\left[-\left[(n-2)/n\right]^{n/2}(n-2)/2, 0\right]$ (see [16]). By shifting the parameter, we may normalize the solution so that

$$v(0) = \max_{t \in \mathbb{R}} v(t).$$
(2.5)

Let v_o be a positive solution of Eq. (2.3) with H = 0. Under the normalization, we have

$$v_o(t) = (\cosh t)^{(2-n)/2} \quad \text{for } t \in \mathbb{R}.$$
(2.6)

We note that, by the transformation in (2.1), v_o corresponds to

$$u_o(x) = \left(\frac{2}{1+|x|^2}\right)^{(n-2)/2} \quad \text{for } x \in \mathbb{R}^n,$$
(2.7)

which is a solution of Eq. (1.1) when $K \equiv 1$ in \mathbb{R}^n . In particular, u_o is smooth near 0, which corresponds to $s \to -\infty$ for v_o . The other extreme is when $H = -[(n - 2)/n]^{n/2}(n - 2)/2$, and the corresponding solution v is a constant function given by $v(t) = [(n - 2)/n]^{(n-2)/4}$ for $t \in \mathbb{R}$.

For $H \in (-[(n-2)/n]^{n/2}(n-2)/2, 0)$, the solution can be indexed by the parameter $\varepsilon = \min_{t \in \mathbb{R}} v(t)$, which is called the *neck-size* of the solution, or the Fowler parameter. We have $\varepsilon \in (0, [(n-2)/n]^{(n-2)/4})$ and

$$H = H(\varepsilon) = \frac{(n-2)^2}{4} \left[\varepsilon^{2n/(n-2)} - \varepsilon^2 \right].$$
 (2.8)

Denote the normalized positive solution by v_{ε} , where $0 < \varepsilon < [(n-2)/n]^{(n-2)/4}$. It is known that v_{ε} is periodic with period T_{ε} . Moreover, we always have [16]

$$\varepsilon \leq v_{\varepsilon}(t) \leq v_{\varepsilon}(0) < 1 \quad \text{for } t \in \mathbb{R}.$$
 (2.9)

The following result is essentially proved in [24] (cf. also [16]).

LEMMA 2.10. T_{ε} , the period of v_{ε} , is monotone in ε for $\varepsilon \in (0, [(n-2)/n]^{(n-2)/4})$. We have $T_{\varepsilon} \to 2\pi/\sqrt{n-2}$ as $\varepsilon \to [(n-2)/n]^{(n-2)/4}$ and $T_{\varepsilon} \to \infty$ as $\varepsilon \to 0^+$. Furthermore, there exists a positive constant C, independent on ε , such that

$$-\frac{4}{n-2}\ln(C\varepsilon) \leqslant T_{\varepsilon} \leqslant -\frac{4}{n-2}\ln(C^{-1}\varepsilon) \quad as \ \varepsilon \to 0^+.$$
(2.11)

It is also known that v_{ε} converges uniformly in compact subsets of \mathbb{R} to the constant solution as $\varepsilon \to [(n-2)/n]^{(n-2)/4}$, and to $v_o(t) = (\cosh t)^{(2-n)/2}$ as $\varepsilon \to 0^+$ [16]. For applications in Section 3, we study the order of the latter convergence in more detail. As *H* is constant along solutions, we have

$$H(v_{\varepsilon}, v_{\varepsilon}') = -\frac{(n-2)^2}{4} \left(\varepsilon^2 - \varepsilon^{2n/(n-2)} \right) = -\frac{(n-2)^2}{4} \left[v_{\varepsilon}^2(0) - v_{\varepsilon}^{2n/(n-2)}(0) \right]$$

for $\varepsilon \in (0, [(n-2)/n]^{(n-2)/4})$. Thus we obtain

$$v_{\varepsilon}^{2}(0)\left[1-v_{\varepsilon}^{4/(n-2)}(0)\right] = \varepsilon^{2}\left(1-\varepsilon^{4/(n-2)}\right) = -\frac{4H}{(n-2)^{2}}.$$
(2.12)

As $v_{\varepsilon}(0) > \varepsilon$ when $\varepsilon \to 0^+$, it follows from (2.12) that $v_{\varepsilon}(0) \to 1$ and $\varepsilon \to 0^+$. Furthermore,

$$1 - v_{\varepsilon}^{4/(n-2)}(0) = \mathcal{O}(\varepsilon^2).$$

We have

$$v_{\varepsilon}(0) = \left[1 + \mathcal{O}(\varepsilon^2)\right]^{(n-2)/4} = 1 + \mathcal{O}(\varepsilon^2) \quad \text{as } \varepsilon \to 0^+.$$
(2.13)

Hence there exists a positive constant C_n which depends on n only, such that

$$|v_{\varepsilon}(0) - 1| \leq C_n \varepsilon^2 \quad \text{for } \varepsilon > 0 \text{ small.}$$
 (2.14)

We use the following well-known inequalities a number of times; they can be derived by simple integration methods. For positive constants *c* and $\alpha \ge 1$, we have

$$|x^{\alpha} - y^{\alpha}| \leq C|x - y| \quad \text{for } 0 \leq x, y \leq c,$$
 (2.15)

where $C = C(\alpha, c)$ is a positive constant; moreover, for $\beta > 0$,

$$(1+z)^{\beta} = 1 + O(|z|) \text{ as } z \to 0.$$
 (2.16)

With v_o given by (2.6), it follows from (2.9) and (2.15) that

$$\left| v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t) \right| \leq c_{n} |v_{\varepsilon}(t) - v_{o}(t)|,$$
(2.17)

where c_n is a positive constant depending on *n* only. Using Eq. (2.3) we have

$$\begin{aligned} \left| v_{\varepsilon}''(t) - v_{o}''(t) \right| &\leq \frac{(n-2)^{2}}{4} |v_{\varepsilon}(t) - v_{o}(t)| + \frac{n(n-2)}{4} |v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t)| \\ &\leq \left[\frac{(n-2)^{2}}{4} + \frac{n(n-2)}{4} c_{n} \right] |v_{\varepsilon}(t) - v_{o}(t)| \\ &= \bar{C}_{n} |v_{\varepsilon}(t) - v_{o}(t)|, \end{aligned}$$
(2.18)

where \bar{C}_n is the positive constant defined in the formula. We claim that

$$\left|v_{\varepsilon}''(t) - v_{o}''(t)\right| \leq 2C_{n}\bar{C}_{n}\varepsilon^{2} \quad \text{for } t \in [0, \rho],$$
(2.19)

where $\rho := 1/(2C_n\bar{C}_n)$. Here C_n and C'_n are the positive constants in (2.14) and (2.18), respectively. Without loss of generality, we may assume that $\rho < C_n$. By (2.14) and (2.18), the bound holds on a neighborhood of 0. Suppose that it holds on $[0, \sigma]$ for some positive number σ less than ρ . As $v'_{\varepsilon}(0) = v'_{\alpha}(0) = 0$, we have

$$\left|v_{\varepsilon}'(t)-v_{o}'(t)\right| \leq 2C_{n}\bar{C}_{n}\varepsilon^{2}\sigma \leq \varepsilon^{2} \quad \text{for } t \in [0,\sigma].$$

Hence

$$\left|v_{\varepsilon}(t) - v_{o}(t)\right| \leq (C_{n} + \sigma)\varepsilon^{2} < 2C_{n}\varepsilon^{2} \quad \text{for } t \in [0, \sigma].$$
(2.20)

By (2.18) we have

$$\left|v_{\varepsilon}''(\sigma)-v_{o}''(\sigma)\right|<2C_{n}\bar{C}_{n}\varepsilon^{2}.$$

Using an connectedness argument, we obtain (2.19) as claimed. A similar bound holds in $[-\rho, 0]$. Upon integration we obtain the following lemma.

302

LEMMA 2.21. – Let v_{ε} and v_o be the solutions of Eq. (2.3) discussed above. There exists positive constants ρ and C_o which depend on n but not on (small enough positive) ε , such that

$$|v_{\varepsilon}(t) - v_{o}(t)| \leq C_{o}\varepsilon^{2}, \quad |v_{\varepsilon}'(t) - v_{o}'(t)| \leq C_{o}\varepsilon^{2} \quad and \quad v_{\varepsilon}(t) \geq 1/2$$
 (2.22)

for $t \in [-\rho, \rho]$ and $\varepsilon > 0$ close to 0.

3. Gluing solutions

We follow the notations used in Section 2 and consider (2.1) and Eq. (2.2). Slow decay for a positive smooth solution u of equation (1.1) corresponds to $v(s, \theta) \leq C$ for $s \gg 1$, $\theta \in S^{n-1}$ and a positive constant C. Moreover, u is an (global) exotic solution if and only if there exists a sequence $\{(s_i, \theta_i)\} \subset \mathbb{R} \times S^{n-1}$ such that $\lim_{i\to\infty} s_i = \infty$ and $\lim_{i\to\infty} v(s_i, \theta_i) = 0$, and, when the variable t is changed into r via $t = \ln r$, u is smooth across the origin. Let ϕ_1 be a smooth function on \mathbb{R} such that $0 \leq \phi \leq 1$ in \mathbb{R} and

$$\phi_1(t) = \begin{cases} 1 & \text{for } t \leq -\rho \\ 0 & \text{for } t \geq \rho. \end{cases}$$

We also require that

$$|\phi_1'(t)| \leq 2/\rho \quad \text{and} \quad |\phi_1''(t)| \leq 2/\rho^2 \quad \text{for } t \in (-\rho, \rho).$$
(3.1)

Let $\phi_2 = 1 - \phi_1$ in \mathbb{R} . Define

$$v = \phi_1 v_o + \phi_2 v_\varepsilon \quad \text{in } \mathbb{R}, \tag{3.2}$$

where $\varepsilon > 0$ is close to zero. It follows that

$$-v''(t) + \frac{(n-2)^2}{4}v(t) = \frac{n(n-2)}{4} \left[\phi_1 v_o^{\frac{n+2}{n-2}}(t) + \phi_2 v_{\varepsilon}^{\frac{n+2}{n-2}}(t)\right] + \phi_1'(t) \left[v_{\varepsilon}'(t) - v_o'(t)\right] + \phi_1''(t) \left[v_{\varepsilon}(t) - v_o(t)\right]$$
(3.3)

for $t \in \mathbb{R}$. We also have

$$\begin{split} \phi_{1}(t)v_{o}^{\frac{n+2}{n-2}}(t) &+ \phi_{2}(t)v_{\varepsilon}^{\frac{n+2}{n-2}}(t) \\ &= \phi_{1}(t)v_{o}^{\frac{n+2}{n-2}}(t) + \phi_{2}(t)v_{o}^{\frac{n+2}{n-2}}(t) + \phi_{2}(t)\left[v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t)\right] \\ &= \left[\phi_{1}(t)v_{o}(t) + \phi_{2}(t)v_{o}(t)\right]^{\frac{n+2}{n-2}} + \phi_{2}(t)\left[v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t)\right] \\ &= \left\{v(t) + \phi_{2}(t)\left[v_{o}(t) - v_{\varepsilon}(t)\right]\right\}^{\frac{n+2}{n-2}} + \phi_{2}(t)\left[v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t)\right] \end{split}$$

for $t \in [-\rho, \rho]$. We obtain

$$\left[-v''(t) + \frac{(n-2)^2}{4}v(t)\right] \left[\frac{n(n-2)}{4}v^{\frac{n+2}{n-2}}(t)\right]^{-1} - 1$$

M.C. LEUNG / Ann. I. H. Poincaré - AN 18 (2001) 297-307

$$\leq \left| \left\{ 1 + \frac{\phi_{2}(t)}{v(t)} \left[v_{o}(t) - v_{\varepsilon}(t) \right] \right\}^{\frac{n+2}{n-2}} - 1 \right|$$

+ $\frac{4}{n(n-2)} v^{-\frac{n+2}{n-2}}(t) \left\{ \phi_{2}(t) \left| v_{\varepsilon}^{\frac{n+2}{n-2}}(t) - v_{o}^{\frac{n+2}{n-2}}(t) \right|$
+ $|\phi_{1}'(t)| \left| v_{\varepsilon}'(t) - v_{o}'(t) \right| + |\phi_{1}''(t)| \left[v_{\varepsilon}(t) - v_{o}(t) \right] \right\}$ (3.4)

for $t \in [-\rho, \rho]$. It follows from Lemma 2.21, (2.16), (2.17), (3.1) and (3.4) that v satisfies the equation

$$v'' - \frac{(n-2)^2}{4}v + \frac{n(n-2)}{4}Kv^{\frac{n+2}{n-2}} = 0 \quad \text{in } \mathbb{R},$$
(3.5)

where *K* is a smooth function on \mathbb{R} such that

$$|K(t) - 1| = \left| \left[-v''(t) + \frac{(n-2)^2}{4}v(t) \right] \left[\frac{n(n-2)}{4}v^{\frac{n+2}{n-2}}(t) \right]^{-1} - 1 \right| \le C_1 \varepsilon^2$$
(3.6)

for $t \in [-\rho, \rho]$, and $K \equiv 1$ in $\mathbb{R} \setminus [-\rho, \rho]$. Here C_1 is a positive constant that depends on *n* only, so far as $\varepsilon > 0$ is close to zero.

Let $\{\varepsilon_i\}$ be a decreasing sequence of small positive numbers such that $\lim_{i\to\infty} \varepsilon_i = 0$. Denote the period of v_{ε_i} by T_{ε_i} for i = 1, 2, ... With ε_1 small enough, we may assume that $T_{\varepsilon_1} \gg \rho$. We construct a positive smooth function by first gluing v_o and v_{ε_1} on $[-\rho, \rho]$ as described above and call the resulting positive smooth function v_1 . Note that $v_1 = v_{\varepsilon_1}$ in $\mathbb{R}^+ \setminus (0, \rho)$. As $v_{\varepsilon_1}(t + T_{\varepsilon_1}) = v_{\varepsilon_1}(t)$ for $t \in \mathbb{R}$ and v_{ε_1} and v_{ε_2} are close to v_o near $[-\rho, \rho]$, we let

$$\tilde{v}_{\varepsilon_2}(t) = v_{\varepsilon_2}(t - T_{\varepsilon_1}) \quad \text{for } t \in \mathbb{R},$$

and glue $\tilde{v}_{\varepsilon_2}$ and v_1 (that is, v_{ε_1}) on $[T_{\varepsilon_1} - \rho, T_{\varepsilon_1} + \rho]$ in a process similar to the one described above. Call the resulting function v_2 . We continue to glue the solutions on the intervals

$$[T_{\varepsilon_1}+T_{\varepsilon_2}-\rho,T_{\varepsilon_1}+T_{\varepsilon_2}+\rho],\ldots,\left[\sum_{k=1}^i T_{\varepsilon_k}-\rho,\sum_{k=1}^i T_{\varepsilon_k}+\rho\right],\ldots$$

by $v_{\varepsilon_3}, \ldots, v_{\varepsilon_{i+1}}, \ldots$, respectively, after shifting appropriately. In particular, in the (i+1)th step, let

$$\tilde{v}_{\varepsilon_i}(t) = v_{\varepsilon_i}\left(t - \sum_{k=1}^{i-1} T_{\varepsilon_k}\right) \quad \text{and} \quad \tilde{v}_{\varepsilon_{i+1}}(t) = v_{\varepsilon_{i+1}}\left(t - \sum_{k=1}^{i} T_{\varepsilon_k}\right) \quad \text{for } t \in \mathbb{R},$$

and glue $\tilde{v}_{\varepsilon_{i+1}}$ with $\tilde{v}_{\varepsilon_i}$ on the interval $[\sum_{k=1}^{i} T_{\varepsilon_k} - \rho, \sum_{k=1}^{i} T_{\varepsilon_k} + \rho]$. Finally we obtain a positive smooth function v on \mathbb{R} which satisfies the equation

$$v'' - \frac{(n-2)^2}{4}v + \frac{n(n-2)}{4}Kv^{\frac{n+2}{n-2}} = 0 \quad \text{in } \mathbb{R}$$
(3.7)

304

for some smooth function K such that

$$|K(t) - 1| \leqslant C_2 \varepsilon_1^2 \quad \text{for } t \in \mathbb{R},$$
(3.8)

where C_2 is a positive constant depending on *n* only. We may choose $\varepsilon_1 > 0$ as small as we like. We also have

$$v\left(\sum_{k=1}^{i} T_{\varepsilon_{k}} - T_{\varepsilon_{i}}/2\right) = v_{i}(T_{\varepsilon_{i}}/2) = \varepsilon_{i} \to 0 \quad \text{and}$$
$$v\left(\sum_{k=1}^{i} T_{\varepsilon_{k}}\right) \to 1^{-} \quad \text{as } i \to \infty.$$
(3.9)

As $v(t) = v_o(t)$ for $t \leq -\rho$, by (2.6) and (2.7), the corresponding solution *u* related to *v* by (2.1) is smooth across the origin. Thus *v* corresponds to an exotic solution *u* of Eq. (1.1) through (2.1).

Given a positive function $\varphi(r)$ defined for $r \gg 1$ which satisfies (1.12), let $\psi(t) = \varphi(e^t)$. It follows that ψ is defined for $t \gg 1$ and

$$e^{(n-2)t/2}\psi(t)$$
 (3.10)

is non-decreasing for $t \gg 1$ and unbounded from above. Let

$$\varpi(t) = \ln\left[e^{(n-2)t/2}\psi(t)\right] \quad \text{for } t \gg 1.$$
(3.11)

We have $\lim_{t\to\infty} \varpi(t) = \infty$. Choose a decreasing sequence of numbers $\{\varepsilon_i\}$ such that ε_1 is small enough and the corresponding periods T_{ε_i} of v_{ε_i} satisfy the relation

$$\varpi(T_{\varepsilon_i}) \ge \frac{n-2}{2} \sum_{k=1}^{i-1} T_{\varepsilon_k} \quad \text{for } i = 2, 3, \dots$$
(3.12)

By gluing the solutions v_o , v_{ε_i} , i = 1, 2, ..., as described above, we obtain a positive smooth function v which satisfies Eq. (3.7) for a smooth function K. Suppose that

$$t \notin [-\rho, \rho] \cup [T_{\varepsilon_1} - \rho, T_{\varepsilon_1} + \rho] \cup \cdots \cup \left[\sum_{k=1}^{i} T_{\varepsilon_k} - \rho, \sum_{k=1}^{i} T_{\varepsilon_k} + \rho\right] \cup \cdots,$$

then K(t) = 1. Suppose that

$$t \in \left[\sum_{k=1}^{i} T_{\varepsilon_k} - \rho, \sum_{k=1}^{i} T_{\varepsilon_k} + \rho\right] \text{ for some } i \in \mathbb{N}.$$

According to the construction above and Lemma 2.10, we have

$$|K(t) - 1| \leq C_3 \varepsilon_i^2 \leq C_4 \exp\left(-\frac{n-2}{2}T_{\varepsilon_i}\right)$$

$$= C_4 \exp\left(-\frac{n-2}{2}T_{\varepsilon_i} - \varpi(t) + \varpi(t)\right)$$
$$\leqslant C_3 \exp\left(-\frac{n-2}{2}\sum_{k=1}^i T_{\varepsilon_k}\right) \left[e^{(n-2)t/2}\psi(t)\right] \leqslant C_4 \exp\left(\frac{n-2}{2}\rho\right)\psi(t)$$

where C_3 and C_4 are positive constants that depend on *n* only. Hence we obtain $|K(t) - 1| \leq C_5 \psi(t)$ for $t \gg 1$ and for a positive constant C_5 . The corresponding solution *u* is an exotic solution of Eq. (1.1) which satisfies (1.13). We note that K(t) in this case is not monotonic for large *t*.

REFERENCES

- [1] Bahri A., Coron J., The scalar-curvature problem on standard three-dimensional sphere, J. Func. Anal. 95 (1991) 106–172.
- [2] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271– 297.
- [3] Chang K.-C., Liu J.-Q., On Nirenberg's problem, Internat. J. Math. 4 (1993) 35-58.
- [4] Chang S.-Y., Yang P., A perturbation result in prescribing scalar curvature on Sⁿ, Duke Math. J. 64 (1991) 27–69.
- [5] Chen C.-C., Lin C.-S., On compactness and completeness of conformal metrics in \mathbb{R}^N , Asian J. Math. 1 (1997) 549–559.
- [6] Chen C.-C., Lin C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997) 971–1019.
- [7] Chen C.-C., Lin C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes. II, J. Differential Geom. 49 (1998) 115–178.
- [8] Chen C.-C., Lin C.-S., On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann. 313 (1999) 229–245.
- [9] Chen W.-X., Li C.-M., A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math. 48 (1995) 657–667.
- [10] Cheung K.-L., Leung M.-C., Asymptotic behavior of positive solutions of the equation $\Delta u + K u^{(n+2)/(n-2)} = 0$ in \mathbb{R}^n and positive scalar curvature, in: Discrete Contin. Dynam. Systems, Added Volume, Proceedings of the International Conference on Dynamical Systems and Differential Equations, 2001, pp. 109–120.
- [11] Delaunay C., Sur la surface de revolution dont la courbure moyenne est constante, J. de Mathématiques 6 (1841) 309–320.
- [12] Ding W.-Y., Ni W.-M., On the elliptic equation $\Delta u + K u^{(n+2)/(n-2)} = 0$ and related topics, Duke Math. J. 52 (1985) 485–506.
- [13] Fowler R., Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser. 2 (1931) 259–288.
- [14] Gidas B., Ni W.-M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209–243.
- [15] Gidas B., Ni W.-M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York, 1981, pp. 369–402.
- [16] Korevaar N., Mazzeo R., Pacard F., Schoen R., Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999) 233–272.

- [17] Leung M.-C., Conformal scalar curvature equations on complete manifolds, Comm. Partial Differential Equations 20 (1995) 367–417.
- [18] Leung M.-C., Asymptotic behavior of positive solutions of the equation $\Delta_g u + K u^p = 0$ in a complete Riemannian manifold and positive scalar curvature, Comm. Partial Differential Equations 24 (1999) 425–462.
- [19] Leung M.-C., Growth estimates on positive solutions of the equation $\Delta u + K u^{(n+2)/(n-2)} = 0$ in \mathbb{R}^n , Canad. Math. Bull., to appear.
- [20] Li Y.-Y., Prescribing scalar curvature on S^n and related problems, part I, J. Differential Equations 120 (1995) 319–410.
- [21] Li Y.-Y., Prescribing scalar curvature on S^n and related problems, part II: existence and compactness, Comm. Pure Appl. Math. 49 (1996) 541–597.
- [22] Lin C.-S., Estimates of the conformal scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000) 611–646.
- [23] Loewner C., Nirenberg L., Partial differential equations invariant under conformal or projective transformations, in: Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 245–272.
- [24] Mazzeo R., Pacard F., Constant scalar curvature metrics with isolated singularities, Duke Math. J. 99 (1999) 353–418.
- [25] Mazzeo R., Pollack D., Uhlenbeck K., Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 (1996) 303–344.
- [26] Schoen R., The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988) 317–392.
- [27] Taliaferro S., On the growth of superharmonic functions near an isolated singularity, I., J. Differential Equations 158 (1999) 28–47.