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ABSTRACT. — We establish rigorous lower bounds on the speed of traveling fronts and on
the bulk burning rate in reaction-diffusion equation with passive advection. The non-linearity is
assumed to be of either KPP or ignition type. We consider two main classes of flows. Percolatin
flows, which are characterized by the presence of long tubes of streamlines mixing hot and col
material, lead to strong speed-up of burning which is linear in the amplitude of thelflo@n
the other hand the cellular flows, which have closed streamlines, are shown to produce weak
increase in reaction. For such flows we get a lower bound which grows!&sfor a large

amplitude of the flow.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous établissons rigoureusement une estimation inférieure de la vitesse de
propagation de fronts et du taux global de combustion pour des équations de réactior
diffusion avec convection donnée. La non-linéarité est de type KPP ou de type “ignition”.
Nous considérons deux principales classes d'écoulements. Les écoulements de percolatic
caractérisés par la présence de longs tubes de lignes de courant mélangeant des régions chal
et froides, entrainent une accélération importante du taux de combustion, linéaire en fonction d
l'intensité U de I'écoulement. D'autre part, les écoulements circulaires, avec lignes de champ:s
fermées, conduisent a une augmentation plus faible du taux de réaction. Pour de tels écoulemer
nous obtenons une estimation inférieure qui croit corbit€ pour des écoulements de grande
amplitude 0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Propagation of thin fronts in moving fluids arises in many situations in physics and
engineering. Consider a mixture of reactants interacting in a region that may have
rather complicated spatial structure but is thin across. The reaction front moves toward
the unburned reactants leaving behind the burned ones. When the reactants are mix
by an ambient fluid then the burning rate may be enhanced. The physical reason fc
this observed speed-up is believed to be that fluid advection tends to increase the ar
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available for reaction. Many important engineering applications of combustion operate
in the presence of turbulent advection, and therefore the influence of advection or
burning has been studied extensively by physicists, engineers and mathematicians. In tl
physical literature one can find a number of models and approaches that yield differen
predictions — relations between the turbulent intensity and the burning rate [8,19,20,34]
These results are usually obtained using heuristic models and physical reasoning. For
recent review of some of the physics literature we refer to [27,29].

The lack of agreement between different physical models makes rigorous results, eve
for simplified mathematical models, particularly valuable and useful. A well-established
mathematical model that describes a chemical reaction in a fluid is a system of twc
equations for concentratiofi and temperaturé& of the form

2
T, +u-VT =« AT + 2Lg(T)C, (1.1)
K

p 02

For exposition purposes, all consideration in this paper will be carried out in two spacial
dimensions, but our methods extend to an arbitrary dimension in a straightforwarc
way. Egs. (1.1) are coupled to the reactive Euler equations for the advection velocity
u(x,y,t). Two assumptions are usually made to simplify the problem: first, constant
density approximation [8] that allows to decouple the Euler equations from the systern
(1.1). Then one may considaKx, y, ) as a prescribed quantity that does not depend
onT andC. Furthermore, it is often assumed that+d, or, equivalently, thermal and
material diffusivities are equal. These two assumptions allow to reduce the above systel
to a single scalar equation for the temperatfire

aT v3

¥+u(x,y,t)~VT:KAT+;f(T) (1.2)

with f(T) =g(T)(1— T), provided thatC(x, y,0) =1 — T (x, y, 0). We will consider
the problem (1.2) in a stri@ =R, x [0, H], with boundary conditions in:

T(x,y,t)—>1 asx — —oo, T(x,y,t)— 0 asx— +oo (1.3)
and either Neumann
oT oT
—(x,0,1) = —(x, H,1) =0, (1.4)
ay ay
or periodic

Tx,y,t)=T(x,y+H,1) (1.5)

boundary conditions ip. Furthermore, we assume that the initial d&éx, y) for (1.2)
satisfies the bounds

To(x,y) =1—0(e") forx <0, To(x,y)=0(e™) forx >0, (1.6)
|VTo| =O(e™*") for somer > 0. (1.7)
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We adopt fairly general assumptions gf requiring only thatf(7) is not equal
identically to zero, and

fO)=f@1)=0, f(I)>0 forTe(0,1), fecClo1]. (1.8)
Two types of reaction rate(T) are distinguished in this class. The KPP-type reactions
satisfy
fO=f1)=0, f(T)>0 forT e(0,1). 1.9

An additional requiremenf”’(0) = maxy¢jo.1) f(7)/ T is often made. We do not make
such requirement in this paper, and call the class described by (1.9) general KPP. O
interpretation of KPP includes an important Arrhenius-type non-linearity,

fM=ca-ner,

that is believed to be an appropriate model for many chemical reactions in the context c
reaction-diffusion models. We also consider the ignition non-linearities with

f(T)=0 forTe[0,6p] and T=1 f(T)>0 forT e (6, 1). (1.10)

By our assumptions on the nonlinearity (1.8), we can find- 6,, and f,, ¢ > 0 such
that

fO)> fo for0e(01—¢,04+0). (1.11)

The values of the constans, ¢ and6; 4 are the only information on the nonlinearity
f(T) that shows up in our bounds on the burning rate.

We assume that advectiarix, y) € C1(RQ) is time independent, has mean zero in the
x-direction:

H
/ul(x,y) dy=0 (1.12)
0

and is incompressible:
V-u=0. (1.13)

The mathematical literature on the scalar reaction-diffusion equation (1.2) is enormous
far from giving an exhaustive overview, we mention several papers directly related to
our work. First rigorous results about traveling waves for Eq. (1.2) go back to classical
works of Kolmogorov, Petrovskii and Piskunov [23] and Fisher [13], which considered

the caser = 0 in one dimension for the KPP nonlinearity. Recently Eq. (1.2) withO,

and in particular the effect of advection, became a subject of intense research. Berestyc
and Nirenberg [6,7], and Berestycki, Larrouturou and Lions [4] initiated the studies of
the existence of traveling waves for Eq. (1.2) of the form

T(x,y,t)=T(x —ct,y), (1.149)
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for shear flows of the form = (u(y), 0). Their stability was studied in [5,25,30], while
in further works [3,31,32] stability and existence of traveling waves were established for
the wider class of periodic flows. In this case, the traveling fronts have the form

Tx,y,t)=U(x —ct,x,y)

and are periodic in the last two variables. These and other results were recently reviewe
in [33], and we refer the reader to this paper for a detailed exposition of the subject. Until
very recently, there were no rigorous results on the physically interesting question of the
speed of traveling waves. First such results have been established in [9] for percolatin
flows, and in [1] and [18] for the shear flows. Numerical studies of the propagation of
fronts wore performed for a shear flow in [21] with k€1, and for cellular flows in [22].

Another major direction of research has been homogenization approach. The homog
enization regime — 0, when the front width goes to zero, was extensively studied for
KPP-type nonlinearity and for advection velocity that is periodic and varies either on the
integral or diffusive scale by Freidlin [14—16]. Recently Majda and Souganidis derived
an effective Hamilton—Jacobi equation in the limit> O for the case of advection ve-
locity varying on a smalk-dependent scale that is larger or comparable to that of the
front width [24]. This effective equation is still difficult to analyze, and analytical pre-
dictions have been derived only for the shear flows. Numeric experiments exploring the
results of [24] have been carried out in [10,11,26].

Very recently, Hamel [17] and Heinze, Stevens and Papanicolaou [18] proposec
an elegant variational approach to the estimates of the speed of traveling waves i
the presence of periodic advection. However, to the best of our knowledge nontrivial
lower bounds using this method were obtained so far only for shear flows in the
homogenization regime or for small advection, where they provide precise bounds fol
the small speed-up of the front [18].

The key question we wish to address in this paper is: what characteristics of the
ambient fluid flow are responsible for burning rate enhancement? The question neec
first to be made precise, because the reaction region may be complicated and, in gener
may move with an ill-defined velocity, when traveling fronts do not exist. To measure
the speed of burning in such situations, the bulk burning rate

dx dy
H

V(r)z/n(x,y,o (1.15)
Q

and its time average

1 t
<V>t:?O/V(S)dS

have been recently introduced in [9]. Note that for traveling fronts of the form (1.14)

we haveV (t) = ¢, but the notion of bulk burning rate makes sense in much more

general situations when traveling fronts of the above form may not exist, and bulk
burning rate serves as a natural generalization of the front speed. We have obtaine
in [9] lower bounds for(V), when f(T) is a concave function of the KPP type. The
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bounds are linear in the magnitude of the advecting veladity y) provided that there
exist tubes of streamlines that connect —oo and x = +o0, satisfying some mild
additional technical assumptions. We say then that the flow is percolating. In particulal
these bounds hold for shear flows of the fagndy), 0).

In this paper we consider much more general reaction rat@ that are either
of the ignition or general KPP type, and establish similar lower bound¥/foy for
percolating flows that are periodic in space. The bound is linear in the magnitude of
and deteriorates as the scale of oscillationg bécomes comparable to the laminar front
width [ = k/vo. It is easy to show [9] that for any € C*, the burning rate V), satisfies
linear in||u|l upper bound (for initial data as in (1.6) and (1.7)). Therefore, shear (and,
more generally, percolating) flows are as effective as possible in speeding up combustio
in terms of the power ofu||» in the large intensity regime. In particular, we establish
the following lower bound for the bulk burning rate in a shear flow.

THEOREM 1. —Let Tp(x, y) be an arbitrary initial data satisfyind1.6) and (1.7),
and let T'(x, y, t) satisfy (1.2) with either the Neumani(l.4) or periodic boundary
conditions(1.5). Let alsou(x, y) = (u(y), 0) in (1.2). Then both for KPP and ignition
non-linearities we have

cjthj

/ |u<y>|%>, (1.16)

cj—hj

. 1\t
lim (v), > C<U0+Z(l+ h_,->
J

where the constanf’ depends only on the reaction functighand ! = k/vy. Here the
intervalsl; =[c; —hj,c; + h;] € (0, H) are any intervals such that

l[4]loc, j

> SIS lullec, s ”M“oo,j:SIupl”(y)l- (1.17)

J
We do not requir¢J; I; = [0, H].

The choice of intervald; is up to us, and should be made to maximize the lower
bound. See Fig. 1 for an illustration.

As a corollary, the bound (1.16) holds for the speedf a traveling front of the
from (1.14). Our bound behaves correctly in the homogenization regime wHen
has the formu(y) = év(y/s) and provides a bound that is linear in the magnitude
of advection, in agreement with [9,18], where homogenization limit was studied. We
also prove the analog of Theorem 1 for general percolating flows (see Theorem 5 ir
Section 3).

Another main result of this work concerns cellular flows with closed streamlines.
Roughly speaking, in terms of their burning enhancement properties, such flows can b
thought of as “the worst” class of flows, opposing “the best” percolating flows. One can
expect the burning enhancement to be significantly weaker for cellular flows because c
the numerous diffusive interfaces which prevent hot and cold regions from mixing fast.
Cellular flows pose mathematically more challenging problem because of these diffusive
interfaces; we will see that the estimates for percolating flows will form only a fraction
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Fig. 1. The structure of the shear flow.

of the argument we will need in the cellular case. We consider a particular example of
cellular flow

(9 XNy
u(x,y)-UH(a,—a) 1//(x,y)—S|n<H>Sln<H>. (1.18)

See Fig. 2 for an illustration of streamlines in a single cell. Then under the assumption:
of a large Peclet number and thin laminar front width:

_UH

Pe=— >1, <1, Il=— (1.19)

[
K H Vo
we get the following result.

THEOREM 2. —Let Tp(x, y) be an arbitrary initial data satisfyind1.6) and (1.7),
and let7 (x, y, t) satisfy(1.2) with the either the Neuman(i.4) or periodic boundary
conditions (1.5). Let alsou(x, y) in (1.2) be given by(1.18) and assum€1.19) is
satisfied. Then both for KPP and ignition non-linearities we have

<C1,/2+C2>Uo, if 7. <1y,
lim (v), > u

t—>00 T. 1/5
(Cl(—c> +C2)v0, if . > 1,.

u

(1.20)

Here 7. = «/v3 is the chemical reaction time angl = H/U is the turnover time. The
constants in the inequalities depend only on the reacjfiormore particularly on the
constantsfy, ¢, and6, — 6, that appear in(1.11)
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Fig. 2. Streamlines of a cellular flopH = 7).

To the best of our knowledge this is the first rigorous bound on the traveling front
speed in a cellular flow. Note that the change of behavior of our bound depending
on the ratior. /7, is physically natural since for, <« . the front folds onto itself
inside the period cell, which diminishes the affect of advection. The lower bound of
Theorem 2 displays square root dependence on the flow inteiisitytil U reaches a
critical value determined by a conditiap= t,. After that, the lower bound behaves like
U5, Recently, Audoly, Berestycki and Pomeau [1] gave an heuristic argument which
proposes that the speed of the traveling front for cellular flows should sc#lé/an
the largeU limit, which may indicate that our lower bound is not far off from the sharp
bound.

One of the fundamental mathematical difficulties we deal with in this paper may be
roughly described as follows. We will be able to bound the burning rate from below by
integrals over the domain of reaction tegfi7") and of the square of the gradig®t7 |2
It turns out that in order to obtain a lower bound Wrin terms ofu, it will be necessary
to bound the integral of the higher derivative Laplacian term in terms of integrals of
f(T) and|VT|?. One can expect to do this using parabolic regularity, but the constants
in such a priori estimates typically depend snand this dependence turns out to be
too crude to get interesting results. We tackle this difficulty by taking advantage of the
fact that what we need to estimate is the integral of Laplacian, not of the absolute valus
of Laplacian, and employ an appropriate averaging procedure to reduce derivatives. W
hope that this idea will be useful in other related contexts in PDE estimates.

The paper is organized as follows. We prove Theorem 1 in Section 2, as well as som
other results for shear flows. The analogous results for the percolating flows are prove
in Section 3. We present our main results for the cellular flows, in particular implying
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Theorem 2, in Section 4. Sections 6, 7 and 8 contain some intermediate estimates in tt
proof of Theorem 2. We put these estimates together to finish the proof in Section 9.

2. Shear flows and general nonlinearities

We first consider (1.2) in a shear, or unidirectional, flay), 0), which is a particular
example of a percolating flow. The proofs are somewhat less technical in this case an
allow us to introduce some of the ideas used in the general case. Eq. (1.2) in a shear flo
becomes

2
T w2 L eat + % 5y, 2.1)
at ax K
T(.X, ) O) = TO(.X, }’)

The advection is assumed to be mean-zero:
H
/u(y) dy=0. (2.2)
0

We impose an additional assumption

T
— >0. 2.3
o (2.3)

This condition is satisfied for all times provided that initially we have

8T0 l)g
kAT —uly) 5=+ -~/ (To) >0, (2.4)

as follows from the maximum principle (see, e.g., [28]). Therefore (2.3) is not a
constraint on the dynamics but rather on the initial data. We note that (2.3) is true for
traveling fronts of the forn¥ (x — ct, y) both for general KPP and ignition nonlinearity
[4,7]. We assume the usual boundary conditions (1.3) at the left and right ends of the
strip 2 and either Neumann (1.4) or periodic (1.5) boundary conditions=a0, H. We

also require that the initial dat&(x, y) satisfies (1.6) and (1.7). These conditions are
preserved by evolution (see e.g. [9]) if the advecting velogity) € C[0, H], that is,

we have for each > O:

1-T(x,y, 1) <C@)E™ forx <0, T(x,y,1)<C@eE™ forx>0, (2.5)
VT (x,y, )| < C(t)e !

provided that (1.6) and (1.7) hold initially.

Let I; = (c; — hj,c; + h;) C [0, H] be a collection of intervals satisfying (1.17).
In particular u(y) does not change sign on the intervdls We do not require that
U; I; = [0, H]. Then the bulk burning rat& (¢) defined by (1.15) obeys a lower bound
described by the following theorem, which is the first main result of this section.
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THEOREM 3. -Let T'(x, y,t) be a solution of(2.1) with the boundary conditions
(1.3)and either(1.4) or (1.5). Let the initial dataZy(x, y) satisfy(2.4), (1.6) and (1.7).
Furthermore, assume that(y) € C1(0, H) has mean zerg2.2) and the nonlinearity
f(T) satisfieq1.8). Then there exists a constafit> 0 that depends oif (T') but not on
To(x, y) or u(y), such that for any collection of intervals that satisfieg1.17)we have

cjth

V() > C<vo+Z(1+ i>_l / j|u<y)|ﬂ> (2.6)
: n, H

cj—hj

with I =« /vo.

Remark 1. — The lower bound (2.6) does not deteriorate when oscillationgyin
become faster in space as long as its amplitude grows according to

il :o(i>_
Vo hj

This agrees well with the homogenization limit(y) = %u(y/s) considered in [9] and
[18], that produces speed-up of the front of ordgwg). This is also an improvement
of the analogous lower bound féf(z) for the convex KPP case obtained in [9], where
(I/ h;)? appeared in the factor.

2. The regularity assumption an(y) is used only to guarantee preservation of the
boundary conditions (1.7) that allows us to integrate by parts in the proof. None of our
bounds depend on the size of derivatives Of).

It has been shown in [4,7] both in the case of ignition non-linearity (1.10), and for
the general KPP nonlinearity (1.9) that there exist traveling front solutions of (2.1) of
the formT(x, y,t) = U(x — ct,y). The speed = ¢, is uniquely determined by the
nonlinearity f (T) and advectiom(y) in the ignition case, while traveling front solutions
exist for ¢ > ¢, for some minimal speed, in the KPP case. The functioti (s, y) is
monotonically decreasing in the variable= x — ¢t in both cases, so that (2.3) holds.
Theorem 3 implies the following estimate on the speeds of the traveling fronts.

COROLLARY 1.—-LetT(x — ct, y) be a traveling front solution of2.1) with f(T)
being either of the ignition nonlinearity tygé.10) or of the KPP typg1.9). Then there
exists a constanf’ > 0 that depends on the functigfibut not onu(y) such that

cj+h;
N dy
>C| v+ (1+—> |()|—>. 2.7
¢ <Uo Ej h; /‘uy i (2.7)

cj=hj

Corollary 1 follows immediately from Theorem 3 since we hawe) = ¢ for
T(x,y,t) =U(x — ct,y) due to the boundary conditiong(s, y) - 1 ass — —oo,
U(s,y) — 0 ass — +o0o. Corollary 1 and the stability results for traveling fronts [30,
32] imply Theorem 1 for general initial data. We prove now Theorem 1 assuming the
result of Corollary 1.
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Proof of Theorem 1. €onsider first ignition non-linearity. In this case we will show
that

lim (V) =c,,

t—0o0

wherec, is the unique speed of the traveling front. Then (1.16) will follow from (2.7). It
was shown in [32] that for the initial data satisfying (1.6) (actually just tending to 1 and
0 at the two ends) there exist functiofis;(¢) such that

| ()] =0(r), ast— oo,
and functiongy; (¢, x) that satisfy the linearized problem

0q;
o7 Ag;

such that
U(x — et +81(1), y) — qa(x, ,1)
ST, x,y) SU(x —cut — &), y) +qalx, v, 1). (2.8)

Here U (x — c,t, y) is the traveling wave solution of (2.1). The initial dajax, y, 0)
may be chosen if.t N L>°(Q). Then we have for any > c,:

17 dudy cbx dy
<V>f—;0/dz/ = Ttdxdy——Q/ 2 TGy, ) = Tot, )]

CcT

H H
d
dx/ Y A=To) — A—-T)] + / /ﬁy T(x,y,7) — To(x, y)]
0 0

1
T H
0

ék\o

00 H
1 d
+;/dx/ﬁy[T(x,y, 7) — To(x, y)]
cT 0

H H
C
<?+ - / o/ﬁy (x —&(n),y) + / o/ﬁy G2(x +cut, y, 1)

CcT

3

<—+c
T

and hence limsup, . (V). < c¢,. Similarly one may show that limipf, (V). > ¢’ for
anyc’ < c,, which shows that (1.16) holds.

In the KPP case, the estimates of the sort (2.8) are not yet available. However thi
bound (1.16) can be shown by reduction to the ignition non-linearity case. Indeed, giver
KPP type reactiory, consider ignition type reactiofy = x» f < f, say by cuttingf off
in a small neighborhood near zero 1< 6. The constan€ in (2.6) does not depend on
6 for 6 small enough as will be seen from the proof of Theorem 3.71Land T, satisfy
equations with reactiong and f, respectively with the same initial dafg(x, y). Then
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Z =T — T, satisfies

2 2
Zi+u-VZ—kAZ= —O(f(T) fo(Tp)) = %(f(T) — [ (Ty)).

It follows from the maximum principle that i (x, 0) > 0 thenZ(x, t) > 0. Hence for
the same initial data, the burning rate for the KPP reacfiaa not smaller than for the
ignition non-linearity f,:
dxd
(VIT]), = T/ STy, 0) = To(x, )]

dxdy T VIT,
— | = [T 3.0 = Tox, )] = (VITol):.

This implies the validity of the lower bound (1.16) in the KPP case.

=

We now turn to the proof of Theorem 3. The proof follows the general ideas of [9]
with significant modifications required singeis not of concave KPP class. Our starting
point is the following observation.

LEMMA 1. —Under assumptions of Theorehwe have
d
V()=-=2 /f T(x,y, r)) >/</|VT(x v, 1)P—= (2.9)

Proof. —Equality in (2.9) is obtained simply by integrating (2.1) oerusing the
boundary conditions (1.3) and (1.4) or (1.5), and mean-zero condition (2.2) on advection
To get the inequality we multiply (2.1) by and integrate ovef to get

[

This implies (2.9) sincd; >0and 0K T <1. O

+K/|VT(x y,t>|2 /Tf(T)— V).

As a warm-up, we now prove a simple and general proposition, which already
provides a glimpse of some of the ideas which we will use to obtain more sophisticatec
results. Namely, we show that for any divergence-free velagity y) satisfying mild
regularity conditions (it doesot have to be a shear flow), and solutirsatisfying (2.3),
the burning rate is bounded below Byy.

PrROPOSITION 1. —LetT (x, y, t) be a solution of1.2)with the boundary conditions
(1.3)and either(1.4)or (1.5). Assume thai(x, y) € C1([0, H] x R) satisfieg1.12)and
(1.13) and that non-linearityf (T) satisfies(1.8). Let the initial dataZy(x, y) satisfy
(2.4), (1.6)and(1.7). Then there exists a constafit depending only on the parameters
¢ and fy, such that

V(t) = C(¢, fo)vo
with the constantg and f, defined in(1.11)
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Proof. —The proof is similar to the proof of Lemma 2 in [9]. We can finguch that

H
3
/|VT<x,y>|2dx< E//WT(x,y/)Fdxdyc
0 R

R

and

/fT(xy) %/H/fT(xy)dxdy
R

Then we can find; < x, such thatT (x1,y) =04+ ¢, T(x2,y) =61 — ¢, T(x,y) €
[01— ¢, 044 ¢]if x1 < x < xp (See (1.11) for the definition @k 4). Then
04— 01+ 2¢

|x2 — xq]

/|VT<x,y)|2dx >
R

and

[ £(re)dr = fobez =il
R
Therefore we have

/7|VT|2dxdy//f<T)dxdy CfiPcH
0

Hence we obtain

/ K|VT 2+ 20 f(T) > Cfy?tvo.
/]| |5
0

Then Proposition 1 follows from Lemma 1.0

We now return to the shear flows. To obtain more precise bounds involving advection
velocity u(y), we will bound from below in terms af(y) either the integral off (T') or
the L?-norm of [VT|, and use Lemma 1. The general plan in [9] was to integrate over all
axis inx, obtaining an equation with an explicit temagy) in it. We were able to bound
the rest of the terms from above by a combinatiorf ¢f(T) and [ |V T |2 after averaging
in y andr to control 7, and AT.

An additional twist we need here is to reduce our consideration to the region in space
where the reaction actually takes place. In the case of ignition non-linearity, there is nc
reaction for sufficiently low temperatures. Similarly, for the Arrhenius type non-linearity,
reaction is very weak neaf = 0. On the technical side, restriction of consideration
to some finite time dependent domaih with T in appropriate range will mandate
additional averaging in to control all terms by[ (7)) and [ |VT|?. We will identify a
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region D in x such that on one hand the temperature has a certain drop over this regiol
and on the other for every € D there is some < /; such that reaction is bounded away
from zero at the poingx, y). This will provide us with two alternatives for eaghe D:
either reaction is uniformly bounded away from zero for thatr temperature drops by
a certain amount on the intervalx I;. In the first casq, f(T)dy will have to be large
and in the secongf, |T,|2dy will be bounded from below Then we will integrate (2.1)
overx e D ata fixed timer. That wil relateu (y) to some terms involving (¢) and AT.

We will additionally average both im andy, which will bring AT into a form that can
be bound by a combination of integrals 67') and|V T|?. That will be possible since
these have to be large dn as explained above. Finally we will use Lemma 1 to finish
the proof.

In order to define the regio® where much of the reaction takes place let us fix
04 > 03 > 0, > 61, Whereb,, 6, are as in (1.11). Lef; be an interval on which (1.17)
holds withu(y) > O (the case of ; whereu(y) < 0 is similar). We fix times > 0 and
choose two pointsy andx;:

xo=Iinf{x: for anyx’ > x there existy € I; such thatl'(x', y, 1) < 6a},
x1 =sup{x: x > xo and for anyx’ € (xo, x) there existy € I;
such thatl' (x', y, 1) > 61}.

In other words, for any € [xo, x1] = D there existy € I; such thall'(x, y, t) € [61, 64],
and hencef (T (x, y)) > fo. Note thatxg is well-defined and finite sinc& (x, y, ) —
0,1 asx — oo uniformly in x because of (2.5). The definition &f implies that

T(xo,y) =26, forally (2.10)
and thusx; is well-defined. Moreover,
T(x1,y) <6, forally. (2.11)

In preparation for multiple averaging wnthat will be performed to controA7 let us
introduce the functiorG (4, &):

G(h,S):{l_%’ €l <h
0, &> h,
that corresponds to the following averagingyin
hj  cj+s cj+h;
= / & [ pmdv="[ Gy —cppdy (212)

C,—(S (,,'—h
for a test functiorp(y). The two integrations when applied £0T" are required to get rid
of derivatives ofT". Observe that the functio@ (&, £) has the following properties

0<G(h &) <1, G(h,é))% forge[—%,%} (2.13)
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We note that (2.10) and (2.11) imply that at the two ends of the intgryak,] we have
cjth

/ dyG(h;.y — cpu()T (x0. y) > 6aF;.

cj—hj

cjth;
dyG(h;,y —cju(y)T (x1,y) <O1F;
cj=hj
with
cjthj
Fi= [ dyGih.y—cpu.
cj=hj

In preparation for averaging in, we choose)g andn; so that

cjthj

no=i?f{§>02 / dyG(h,-,y—cj)u(y)T(xO+S,y)=93Fj},
cj=hj
cjth;j

U1=i?f{§>05 dyG(hj,y—Cj)M(y)T(Xl—S,J’)=92Fj}-
cj—h;

We remark thatig < xg + 170 < x1 — 11 < x1. Now we are ready to average (2.1). Given
a € (0, ng) andp € (0, n1) we integrate (2.1) ix € (xo + «, x; — B) and iny according
to (2.12):

x1—B  cjthj x1—p  cjthj
/dx / dyG(hj,y—cj)T,—K/dx / dyGhj,y —cj)Tyy
xota  cj—h; xote  cj—hj
cjthj
s [ dyGhy - ep[Tutro+a,y) = Tulxa = B, )]
cj=hj
cj+h;
> [ @Gy —epum)[Teot+ay) ~T@ -y (214)
cj—h;j

We dropped the integral of (T') on the right side which resulted in the inequality in
(2.14). The reason that our averagingsciand y are different is that while the width
h; is a prescribed quantity, we have no a priori control aygandn;. Therefore our
bounds may not involve them, and we employ different estimates when averaging in
First we estimate the integral @f, on the left side of (2.14).

LEMMA 2.—There exists a universal constatit> 0 such that the following estimate
holds for every € [xg, x1]
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cj+h;

[ dyGihyy—epTyty)

cj—hj
cj+h; cj+h;

<Cfo‘1/2¢‘vi [ /dyf T(x,y)) +« / dy VT 2(x, y)] (2.15)
cj—h; cj—h;j

Proof. —We use (2.12) to rewrite the left side of (2.15) for a fixed [xo, x1] as

cjthj
/ dyG(hj,y cj)Ty,
cj=hj
1 2
_ ;|T(c; +h)=2T(c;)+T(c; —hy|< h—ij[T](x) (2.16)
J

with §;[T](x) = sup,c;, T(x,y) —infyc;, T(x,y). Note that because of our choice of
xo andxy, given anyx € (xo, x1), we may findy’ such thatT (x, y’) € [61, 64]. Then we
may find y, y» such that for any € [y, yo] we haveT (x, y) € (61 — £,04 + ¢), and,
moreover,

T (x, y2) — T (x, y1)| =min(g, §;[T1(x)). (2.17)

Then (1.11) implies that

cjthj

/ F(T(x,y))dy > folys — yil.

cj=hj

Applying the Cauchy—Schwartz inequality we also obtain

cjthj T ) - T( )|2
X, — T(x,
/|VT<x,y>|2dy>' (x. y2 it
h |y2 — y1l
cj—nj

Multiplying these two inequalities we obtain

cjthj cjthj
[ rramer [ vre ey
cj=hj cj=hj

fl/z
>V fo| T(x, y2) — T (x, y1)| =

2T(Cj) +T(Cj —hj)‘

because of (2.16) and (2.17), and sigce 1/2. Then (2.15) follows. O
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Furthermore, because of our choice @, 7, we have for anyx € [0, no] and
B € (0, 1)

cjth;j
/ dyG(hj,y —cpjuM[T(xo+a,y) = T(x1— B, y)] = 63— 62)F;.  (2.18)

cj—h;

We use (2.15), (2.18) and positivity @f to rewrite (2.14) as

x1—f  cjth;

2
/ dx / dy{T,—i—L{KIVTIZ+ Ef(T(x,y))” (2.19)
voh K
xXo+o Cj—hj
cjthj
tu / dy Gy — ) [To(o+ o y) — To(xs — B y)] = (03 — O F.
cj—hj

In order to deal with the integral term on the second line that invoewe average
(2.19) ina € (0, no) andB € (0, ny):

o om
1
—/da/dﬂ
non1 3
to get
X1 cj+h; . U2
C/dx / dy{T,—l——[KIVleﬁ——Of(T(x,y))”
voh K
X0 Cj—hj
cjthj
K
o | @y Gy = epIT (ot o) = T o, )]
cj—hj
cj+h;
K
+E / dyG(hj,y —c)[T(x1—n1,y) —T(x1, y)] > (3 —62)F;.  (2.20)
cj—h;j

We bound now the term involvingy in (2.20) as follows.

LEMMA 3. —-There exists a universal constafit> 0 such that
cjth;
K
- [ dvGahi,y=epITGo+ 10, 3) — Txo, )]
0

cj—hj

cjthj x0+10
gcx(m—eg)—z/ dy / dx [VT2. 2.21)

cj—h;j X0
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Proof. —The proof of this estimate is based on two observations. First, we have

cjthj

1 2h;
= [ ayGlhy.y - [T o+ 10, 1) = T, )] | < =2
No Mo
cj—h;
because of (2.13). Second, we have
cjthj  xotno n
/ @7/idHVTF>Cw¢—%fJu (2.22)
Mo
cj=hj *o

This bound is established as follows. Recall that because of our choigera have

cjth;j
/ dyu()G(hj,y —c;)[T(x0,y) — T (xo+ 10, y)] = (6a — 63)F;. (2.23)

cj—h;

Furthermore, recall thalu||«, /2 < [u(y)| < llullo,; On the intervakc; —hj, c; +h;)
and thus (2.23) implies that

cjth;j
(64— 0) F;
| Gy = e)[T 0.3 = To-t mo. )] > =)
00, ]

cj—hj

> C(64— 63)h;.

Then we obtain using the Cauchy—Schwartz inequality:

cjth; 1/2
C<94—93)hj<< / dyGZ<hj,y—c,-)>
¢j=hj
cj+h; 1/2
X /d)’|T(X0»)’)—T(X0+770»)’)|2)
cj—hj
cjthj xo+10 2, 172
<Ch§/2< J /dxmx,y))
cj=hj *o
¢jthj  xot+no 2, 1/2

<Ch}/2<no/ dy / dx T2(x, y)
cj—h; X

0

)

A bound similar to (2.21) holds for the integral involving in (2.20). We use these
two estimates in (2.20) to get

and (2.22) follows. O
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cj+h; cjth;j x1
/dx / dy[m—[mvn + % (e ||+« [ @ [arvre
hj cj—hj X0
cj+h;
2CFJ->C/ / dy |lu(y)|. (2.24)
cj=h;j

A similar estimate holds also for the intervdls on whichu(y) < 0. The only difference
would be that at the first step of obtaining the analog of (2.14) one has to drop the integre
involving T; and not that off (T'). The rest of the estimates still hold. We use Lemma 1
in (2.24) to get after summation over all intervdls

cj+h;

_1 j d
V() > cZ(1+ ) JRE

cj—h;j

with I = «/vg. Finally, we can always add, to the right hand side by Proposition 1.
This finishes the proof of Theorem 3.

3. Percolating flows

We now consider equation

2

T, +u(x,y) - VT =k AT + 22 £(T), (3.1)
K

T(x,y,0)=To(x,y),

in a more general class of flows, which we call “percolating”. By this we mean that there
exist tubes of streamlines of the advecting velocity, y), which connectx = —oo

and x = +oo in either direction, as depicted on Fig. 3. We assume that the flow has
zero mean (1.12) and hence such tubes of streamlines will go in both directions. Mor:
precisely, let us assume that there exist regiD;-‘TsandD,‘, Jj=1,...,N,suchthateach

of them is bounded by the streamlinesugk, y), and the projection of each streamline

of u(x, y), contained in eitherD;r or D}, onto thex-axis covers the whole real line
(these projections need not be one-to-one, however). We dendie. ltlye union of all

D7 respectively.

We will further assume that the velociiy(x, y) is periodic in space. Then it is known
[3,31,32] that for ignition nonlinearity (1.10) there exist periodic traveling fronts. They
have the fornT" (x —ct, x, y) and are periodic in the last two variables and monotonically
decreasing in the first one. These solutions satisfy our main condition

aT
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=
CSI—

Fig. 3. Streamlines ai(x, y).

Our results may be generalized in a straightforward manner to non-periodic percolating
flows as long as initial data satisfies (3.2):

2
K ATo+ 2 F(Ty) —u-VTp > 0. (3.3)
K

However, we restrict our attention to periodi¢x, y) to simplify the presentation.
We assume that the streamlineslbrjt are sufficiently regular, so that inside each

D;—L there exists a one-to-or@ change of coordinates:, y) — (p, &), such thatp is
constant on the streamlines, whilés an orthogonal coordinate fpr(with a slight abuse
of notation we shall use the same notati@n &) in all Dji, although these coordinates

may not be defined globally). Moreover; V& > 0 in D]JF, whileu - V& < 0in eachD; .
The variablep varies in the intervalc; — h7, cj + k7], while & varies in(—oo, )
in the setD;-—L. See Fig. 4 for a sketch of coordinatés, £). The square of the length
element inside each si.blji is given by

de? + dy? = EZ(p, §) dp® + E5(p. £) dE°.
We assume that the functio#s , are bounded from below:

C < E1a2(p,§) (3.4)

uniformly on all Dji. Moreover, the function

Ex(p, §)

= 3.5
E1(p,§) (3:5)

w(p,§)=
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]

P,

prPfE 2h
Py

Fig. 4. Curvilinear coordinate®, &).

satisfies the following bounds:

ow

C .
o on D7, respectively
J
(3.6)
with th being the absolute value of the difference of the valuep an the two
components of the boundaB;Dji (recall thatDji are bounded by two streamlines of
u(x, y)). Finally we assume that the flux densityu does not oscillate too much on the

+.
setD¥:

< w(p, 8) < C, ‘

dw
5 8_('0’%-) <
0

| Exil )
L S Ei(p O)lu(p. )| < | Eaull, TOT (x,) € D,
|Ewloc; = SUp |Ex(p,E)u(p.)|- (3.7)

(0.§)eD}

Note thatE1(p, &)|u(p, &) is independent of. In particular if

1 ow Wy
ux,y)=UHV-V=UH|—,——
ay ox

with |[VW¥| < C/H we may choosep = HW(x, y) so that E; = ﬁ. Then we
have E;|u| = U, so that (3.7) holds automatically and (3.4) also holdsHer Other
conditions on the streamlines may be also easily restated in terms of the stream functic
W(x,y).

We do not make any assumptions on the behavior of the streamlings,of) outside
the regionsD, andD_. In particular, there may be pockets of still fluid, streamlines may
be closed, etc. (see Fig. 3).

Then we have the following theorem.

THEOREM 4. —Let T (x, y,t) be a solution of(3.1) with the boundary conditions
(1.3)and (1.4) or (1.5), with the initial dataTy(x, y) satisfying(3.3), and nonlinearity
f(T) satisfying(1.8). Let each of the set®; be of the formD} = {p € [c; — h},
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cj + h;l}. Then under the assumptiof8.4) and (3.6) on the streamlines of the flow
u(x,y) € CY(), we have

cj+h;

1 -1
V() 2C<00+Z(l+;) [ .1, s>—> (3.8)
D* J ci—h;
J J J
for all ¢+ > 0. Herel =k /vg and the constan€ in (3.8) depends only on the function
f(T) and the constants appearing (8.4) and (3.6).

Note that the integrals on the right side of (3.8) give fluxes ©f, y) through the
tubes of the streamlines. As in the shear case the pre-felctet/ i ;) ~* agrees with the
homogenization limit [9,18].

Recall that traveling fronts for periodic flows have the form

Tx,y,t)=U(x —ct,x,y) (3.9)

with the functionU (s, x, y) being periodic in the last two variables. It was shown in
[3,31,32] that in the ignition nonlinearity case (1.10) such traveling fronts exist and
their speedc, is unique. Their existence for the KPP nonlinearities (1.9) was shown
recently in [3] withe > ¢,, ¢, being the minimal traveling front speed. The following
analog of Corollary 1 holds for percolating flows, which we formulate separately for the
convenience of the reader.

COROLLARY 2.—Let f(T) be either of the ignition nonlinearity typ@..10) or of
the KPP typg1.9). Let alsoU (x — ct, x, y) be a traveling wave-type solution (8.1),
periodic in the second two variables. Then there exists a constant0 that depends
only on the function f and on the constants appearin(gid) and (3.6) such that

¢>C <UO+Z(1+ )l/ u(p. £)|Ex(p. s>—>

cj—h;

Proof. —Corollary 2 follows from Theorem 4 as follows. Lét(x — ct,x,y) be a
periodic traveling front solution of (3.1) such that

UG, x+L,y)=U(s,x,y)

and lett = L/c. Then we have

17 1 dx dy
;/V(t)dt—;/dt/(—cUs(x—ct,x,y)) I
0 0 @

L
1 , , dx dy
—;O/dt /[—US(X—t,x,y)] i

Q
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E/Ldt//{ U=t x.y) = U — '3, )| T
T x—t,x,y x—tx )| —
0 Q
L
=t Wy
0 Q
¢ [ dxdy
=c+ —/ [U(xx+L y-=Ux,x,y)] =c. O
Q

Remark— We note that Corollary 2 implies a lower bound on the effective diffusivity
[2] in the homogenization regime. Recall that solutions of the advection-diffusion
equation (3.1) withf (T') = 0, and with advection of the forma(x, y) = %v(f, f) with
v(x, y) periodic, converge as— 0 to the solutionl” of the homogenized problem

aT |, 9°T _
EZKijaxiaxj’ T(xvy90):T0(xvy)9 (x13x2):(xvy)-

The effective diffusivityk* is a complicated functional of advectidiiv(y). Explicit
bounds onc* in terms of the magnitud& of advection are easy to obtain in the shear
case, whemn* may be found explicitly, and effective diffusivity in the direction of the
flow «*,_ ~ U2. Using results of [18] one may deduce from Corollary 2 that this bound
applies also to periodic percolating flows, despite the fact that no explicit expression fol
x* is known in this case.

Corollary 2 and the stability results of [32] imply the analog of Theorem 1.

THEOREM 5. —Let the initial dataTy(x, y) for Eq. (3.1) satisfy the decay t6, 1
conditions(1.6)and (1.7). Then both for KPP and ignition non-linearities we have

cj+h;

/ (. )| Exlp, s>—>

cj=hj

-1

lim (V), <U0+Z(1+ )

where constan€ depends only on the non-linearity f and on the constants appearing in
(3.4)and(3.6).

Now we turn to the proof of Theorem 4. The proof is a modification of the proof of
Theorem 3. We will again utilize Lemma 1 as well as averaging along the streamlines o
u(x, y) in order to bound the arising averages/Aof’ in terms of integrals off (T') and
|VT 2. The additional technical difficulties are due to the fact that two natural geometries
of the problem — streamlines for the advective term and Euclidean coordinates fol
Laplacian — are in harmony in the case of shear flows, but at odds in the case of mor
general percolating flows. Moreover, while in the case of shear flows we gave the proo
that we felt was simplest, here we will use the approach which is slightly more involved;
however, itis better adapted for the application to cellular flows in the following sections.

Let us consider a regioriD;-L ={(p,&): pelcj—hj,c;+ h;l} with u - V& > 0.
Introduce notationk;(p) = G(hj, p — c;)E1(p,&)|u(p, &)|(k; does not depend of
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by incompressibility of«(x, y)) and, similarly to the shear case,

¢jthj
F;j = / ki(p)dp.
¢j=hj
We can findt; > &y such that
cj+h; cj+hj
| k0T 0do=0F. [ KT .ad=6F,
¢j=hj ¢j=hj

and for eveng € [&, £1] we have

cjthj
0 < [ KT8 dp < 0aF.

cj—hj

Let us denote b)f)f the region bounded by the curves=c; £ h; and& = &, £. This
region depends on time, but we will suppress this dependence in notation. Theorem
will follow from the following

THEOREM 6. —Let T'(x, y,t) be a solution of(3.1) with the boundary conditions
(2.3)and (1.4) or (1.5), with the initial dataTy(x, y) satisfying(3.3), and nonlinearity
f(T) satisfying(1.8). Then under the assumptio(&4)and (3.6) on the streamlines of
the flowu(x, y) € CX(Q2), we have for every time

2 -1
/(T L RlVTI + %f(T)) dedy > C (¢, fo) (1+ %) (64 — 61)°F,

Dt
J

with the constants, f, and6; 4 defined by(1.11)

Remark— A similar lower bound on the integral ov@rjr is easier to obtain, and also
suffices to prove Theorem 4. We chose, however, to formulate Theorem 6 in this stronge
version since this is what we will need when dealing with cellular flows.

Proof. —Let 63 = 64 — (64 — 61)/3, andb, = 61 + (64 — 61)/3. Then we may choose
no andny similarly to the shear case, namely

cjthj

nozigf {n >0 / dok;(p)T (p, &0+ 1) =03F,-},
¢j=hj
cjth;j

771=i|2f{77>05 dpkj(P)T(,O,Sl—TZ)=92Fj}-

cj—h;
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We choosex € (0, ng) and 8 € (0, ny), integrate (3.1) oveE € (o + a, 11 — B) and
average irnp with the kernelG to get

cj+h;
/ s / dp Glhj, p — ) ErEoT, (3.10)
&ota cj—hj

&-8  cjthj

~« [ d [ dpGlhyp—c)EEAT, +Ty)]
Eota cj—h;
cjthj
> /kj<p)[T<p,so+a)—T(p,sl—ﬂ)}dp
cj—hj

1
> 5(94 — 0D F;.

In (3.10), we dropped the term involving(T') on the right-hand side, as we did in the
shear case. We now look at the term involving the Laplacian:

&1—B cjthj
/ds / doG(h;. p — ¢ Ex(p, E)Ea(p. ) [Tur(p. &) + Ty (p. £)]
sot+a cj—h;j

hj g-p  cjtd

1
== [ @ [ & [ doEp. 0. Tuu(p &)+ Ty (0.6)].
0

Let us denoteD;,z the region bounded by coordinate curyes- ¢; &6 andé =&, +
a, & =& — B. Using Green’s formula, we rewrite the last two integrations for fixed

sH-p it

/ d / dp Ex(p. 6)Ex(p, &) [Tex (0. &) + Ty (0. )]
&ot+a cj—8
oT
=//Adedy= / s
Dsqp 0Dsap
£&1—-B 5T
-/ s[w<c,+as> (c;+8,8) w(c,-—a,s)a—@j—a,s)}
Eoto p
Cj+t3
+/6 {w (0.1 B) s(" - B) — 0 Np. kot a) g<p §o+06)}

(3.11)

We used the definition (3.5) of the functian(p, §) = E2(p, §)/E1(p, &) in the last step.
The average of the term on the first line in (3.11) is estimated by the following lemma,
an analog of Lemma 2.
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LEMMA 4. -—There exists a constadt > 0 such that we have for afl € [&, &1]

hj

K oT
h, 0/d8 {w(c,+8 £)— (c,+8 &) — w(cj—S,é)%(cj—S,S)H
cjth;j cj+h;
<Cfo‘1/2§‘lvfh l / dpE1Eaf (T) + i / dp E1Eo|VT2|,  (3.12)
cj—h;j

where the constar® depends only on constants in the bou(®@l§) and (3.4).

Proof. —We will show that

Jj 9T
/d8w(q+8,$)%(cj +8,‘§)‘
0

cj+h; c,+h

/ dp T2(p, s>+— / dp £ (T (o, 5))1 (3.13)

X
Vo

12
CCf e l

forall &£ € [&p, £1]. A similar estimate holds for the second term on the left side of (3.12).
By definition of&, and&; for everyé e [£o, £1] there existsg € (¢; — hj, c; + hj) such
thatT (po, &) € [01, 04]. Then givere € [&, £1] we have two possibilities. First, assume
thatT € (61— ¢,04+¢) forall p € (c; — hj, c; + h;). Then we have for such

cjthj cjt+h;

[ aor@werzch [ dote.e.

which implies that

/déw(c-—i—cS S)a—T(c-—i-S &)

/ J ’ ap J ’
cjthj /2 ,cjth; 1/2

<< / dpw2<p,s)> ( / def(mé))

cj+h;

<C _1/2</ do f(T(p, é))

C —1/2 cj+h;
f [ /de(p £)+ —

1/2 ,cj+h;

( | do . s>)

cj+h;

/ do £ (T (p. s))l

1/2

2

The other case for a glveg'n is that the temperatur@(p,g) drops out of the range
(01 — ¢,04 + ¢) for some p. Then we may findo’ € (c; — h,c; + hj) such that



334 A. KISELEV, L. RYZHIK / Ann. |. H. Poincaré — AN 18 (2001) 309-358
T(p',&)=61—¢ orT(p',&) =064+ ¢, and, moreover] € (01 — ¢, 04+ ¢) for all p
betweeno’ andpg. Then we haveT (o', £) — T (po, £)| = ¢ and hence

cjthj cjthj

(/ dpf(T(p,S))>l/2</

¢j

¢? vz 1/2
> ( p folﬂ-pol) >0y
|o" — pol

Then the estimate (3.13) also holds in that case since

1/2
do TZ(p, é))

J 8T
/daw(c,- F005 (e +8.6) <C
0

for all £, as can be seen from integrating by partgiand using (3.6). Since < 1/2
(3.13) holds in both cases.O

In order to bring the term in the second line of (3.11) into a form convenient for
analysis we average (3.11) w and 8. Let us consider an estimate on the second
summand after averaging éinover [0, no]; the other summand is treated similarly.

LEMMA 5. —There exists a constaxt, depending only on constants in bour{d@st)
and(3.6), such that

no C,+5
- /dsfda/dpw (0. &0+ ) é%<p ot @)
0 CJ—(S

<C {f0_1/2(94 — )7t min((94 —61), {)_lﬁ
J

/dxdy{ F(T( ) +6IVT y>|}

+ (64— 01) "% /dx dy|VT (x, y)|2} (3.14)
D}
Proof. —We have to estimate the following expression

hJ ) CJ+(3

- dS/da/dpw (0. 60+ a0) g<p ot o)

cj— -5

1 hj CJ+5
= ds [ do[w (0, & +10)T(p, &0+ n0) — @ *(p, &) T (0, &0)]

0 Cj—(3
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cj+é

- da/da/d

cj—8

(3.15)

The first term in (3.15) is evidently bounded by

hj cj+é 5

/ 1 -l Chj
ds / o [0 .o+ 10T (0.0 +10) —0 ™ (0. £0T (0. £0)]| < — 2. (3.16)

cj—8

770

Furthermore, we claim that

_ 2y
/dxdy|VT(x,y)|2> C6a=09)%; (3.17)
1o

J

This is shown exactly as the estimate (2.22) in the proof of Lemma 3 for the shear case
given the assumption (3.6) en We combine (3.16) and (3.17) to obtain

hj CJ+5

/ ds / dp [0, &0+ 10T (p. 0+ n0) — L0 £0) T (0. £0)]

<COa—09h; [ ey VT (x )P (3.18)
~j
Next we estimate the second term in (3.15):

1 hj  gtno ¢+
/ 5

— (3.19)
1o

cj—8

because of (3.6). Notice that ifp < &, then Lemma 5 follows directly from (3.17).
Hence we can assumg > / ;. The following final lemma allows us to finish the proof
of Lemma 5.

LEMMA 6.—Assume thatjg > h;. Then there exists a constaqt, which depends
only on the constants in boung3.6) and (3.4), such that

/ f(T)dxdy / IVT P dx dy > Cfo(6s — 62)*(min((6s — 62), §/2))2h5
DT H
J J
Remark — This lemma is much easier to prove wilj’ instead ofD7, basically the
argument of Proposition 1 applies. The simpler version is also sufficient for the proof of
Theorem 4, but we need this stronger version for the proof of Theorem 6.
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Proof. —Let us denotesS| the Lebesgue measure of a measurable séle know that

cjthj

/kumuwfw—nmanmzwrwnﬂ

cj=h;
Consider two sets
S1=1{p|T(p,80) — T(p,&1) < (04— 61)/2}, So=lc; —hj,cj+h;]\S1.
Then
/kj(p)(T(p, £0) = T(p, 1)) do < (64— 01 F;/2,
81

and hence

/E@XN%@—TW&»®>wrﬂMWZ
$2

SinceT (p, &) — T(p, &) < 1, andk;(p)/F; < 2h]71 by the properties o6 and (3.7)
we must havesS,| > (64 — 61)h; /4. Choosepg € S> such that

&1
3
JﬂaﬂTwma)éﬁgjfﬂﬁmdy
0 DT

and

&
3 c
d T2(po. )g—/Tzd d g—/ VT 2dx dy.
j/  T200.6) < (g [ T2dpde <o [ VT Pary
) D,.+ D,.+

with C depending only on the constants in (3.6). Sipgez S,, we haveT (pg, &) —
T (po, £1) = (04 — 61)/2. Assume first that there existse [&g, £1] where T (pg, &) €
[61—¢ /2,644 ¢/2]. Then we can findp < & < &3 < & such that for every € [&;, &3],

T(po, &) €61 —¢,604+¢], and
T (po, &2) — T (o, &3) = min((6s — 61)/2.¢/2).

Therefore,
&
[ rmyds > potes— g
o

while

& . 2
/ngdé > (min((64 — 61)/2,¢/2)) '
2 &3—&
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Combining these estimates and the definitiopgfwe find

[ rrdsay [IVTEdcdy > Co(min((0s - 60)/2.¢/2) 152l
DF o)
J J
which proves the lemma in this case.

The other case we have to consider is that for exegy[&g, £1], T (0o, ) ¢ [61 —
£/2,04+ ¢/2]. Then we will be able to find a poiit € [&g, £1] SO that there is a drop in
temperature along the curge= const. Assuméd (po, £) > 04 + ¢ /2 for all &, the other
case being similar. By mean value theorem, we also have that for &wef$p, &1] there
existsp; such thatT' (pq, &) € [61, 64], and sOT (p1, £) < 64. Similarly to the above, we
can findé such that

cjth;j
~ 3
/ do f(T(p,&)) < <—/f(T)dxdy
o &1 | mo J,
and
cj+h; 3
2 2

/h do T2(p. &) < _SO[Tpdpdg /T dp d < /lVTl dr dy.

J
An argument identical to the one we used in the previous case establishes that

cjth;j

[ 1 @do= fotoi- o),
cjoh;
while
cj/Jrthzd .t
o r p/4(,01—,02)

for somec; +h; > p1 > p2 > ¢; — h;. This implies that

[ rrdeay [1vTiEdedy > Croctnd > Choci.
by b
Thus Lemma 6 is proven.O
Lemma 6 and the assumptions (3.4) and (3.6) imply that

/ dxdy[%f(THUiowﬂ} Y204 — 6y min((6s — 01)/2, ¢ /2),

J
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Therefore we deduce from (3.19) that

hj go+no  ¢j+o ‘

/da/dg/d

cj—8

noh

_ . _ 1
< CfsM(0a— 1) min((0a — 61)/2, £ /2) 1@
J

2
« / i dy [”—Of(T) ¥ K|VT|2} . (3.20)
K
Then (3.15), (3.18) and (3.20) imply Lemma 50

Averaging of (3.11) ing € [0, b;] produces terms similar to the left side of (3.14),
which are bounded by the same quantity. Now we put together our estimai@ﬁ, omat
is, Egs. (3.10) and (3.11), and Lemmas 4 and 5:

/dxdyG(hj,p )T,+c—1f‘”2 . /dxdy[ (T)+K|VT|}

+ Cf_l/2(94 — )7t min((64 — 61), g)_l

K U% 2
dxdy|— f(T)+«|VT]|
vohj K
DT
J
+C(94—91)_2/c/ dx dy|VT > = C (04— 61) F;.
J

Therefore we obtain

(H_)/dxdy[m F(D)+K|VTR| > C(&. fo)0a— 00)°F;

Uo j
cjthj
> C(¢. fo) (0a— 61)° / Ex(p. ©)lu(p. £)| ck,
cj—h;j

which proves Theorem 6.0
The estimate on the region®; with u - V& < 0 is similar. The only essential
difference is that in inequality (3.10) we drop the term involvifigbut keep the one
with £(T), which does not make any difference in the final result. Then Theorem 4
follows after summation over aﬂ)]i from Lemma 1 and Proposition 1.0
4. Cdlular flows: Themain result

Now we consider (1.2) in a cellular flow:

2
T, +u-VT = AT + 2 £(T), 4.1)
K
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that is, flow with closed streamlines, and establish a lower bound for the burning rate
For simplicity, we limit our consideration to one typical representative class of cellular
flows, given by the stream function

V(x, y) :UHsin%sin% (4.2)

on the strip(—oo, 00) x [0, 7 H] (for convenience from now o will be the width of
the strip divided byr). The flowu(x, y) is given by

X y X .y
,y) =UV*y(x,y)=U|(sin= cos—, — cos— sin— ). 4.3
u(x. ) Y(x.y) ( > cos2 —cos™ H) (4.3)

The streamlines inside a period cell are depicted on Fig. 2. The results we prove can k
extended in a direct way to the periodic cellular flows of more general form.
We will further assume that the Peclet number is larger than one:

H
pe= 2" 51 (4.4)
K

and the size of the cell is larger than the laminar front width:

<1 =X, (4.5)

H Vo

Conditions (4.4) and (4.5) are natural for flows of large amplitude and for thin fronts.
Moreover, our results may be easily adapted to the other regimes, where (4.4) and (4.!
are violated. We introduce also the turnover tipeand the chemical reaction timg

H K
==, Tc=—3.
0

o > (4.6)

It turns out that the ratia, /. is the crucial parameter for burning in the cellular flows.
Finally we assume tha (x, y, t) satisfies the usual boundary conditions and that

oT
a. » Yyt 20
oy Ko 1)

As we noted previously, this condition is satisfied as long as it holds initially.

THEOREM 7.—Let T'(x, y,t) be a solution of(2.1) with the boundary conditions
(1.3) and either(1.4) or (1.5), and the cellular flow given bf4.3). Let the initial data
To(x, y) satisfy(2.4), (1.6)and(1.7), and let the non-linearityf (T') be of either ignition
or general KPP type. Furthermore, assume ttvad) and (4.5) hold. Then we have for

any timet
Ci /= +C2)ve,  ifz. <1y,
(Cl(;—f‘) + Co)vo, if . =1,
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The constants in the inequalities depend only on the reacfiomore particularly on
constantsfy, ¢, andé, — 6, that appear in(1.11)

Remark— As we noted above, in order to avoid excessive details, we chose not
to formulate Theorem 7 in the exhaustive form which goes through all possible
relationships between parameters (laxgémit, small H limit, small vg limit). The
reader will find it not difficult to extend the results we prove to the above mentioned
regimes. Theorem 7 is formulated here for the range of parameters that appears to |
physically reasonable for most problems of interest.

Furthermore, we have the following corollary.

COROLLARY 3.-—Let f(T) be of ignition nonlinearity typ€l.10) or of the KPP type
(1.9)and letc be the speed of a traveling wave-type solutitx, y, 1) = U (x —ct, x, y)
of (4.1), periodic in the second two variables. Then there exist const@s- 0 which
depend only on the functiofi and on the constants appearing (8.4) and (3.6) such

that
S (Cl :—:+C2>Uo, if 7,
cz>
(CL(Z)"* + Co)vo, f 2

Corollary 3 follows from Theorem 7 since the traveling front profil€s, x, y) is
monotonically decreasing in (see [31] for the ignition case, and [3] for KPP). Then
Theorem 2 follows immediately from Corollary 3, results of [31] and the argument we
gave in the proof of Theorem 1.

The proof of Theorem 7 is a boundary layer argument that proceeds, roughly, ac
follows. The temperature drops from one on the left to zero on the right. We will watch
the temperature in the layers of widthformed by streamlines near the boundary of
the cells. The drop of temperature in these layers may occur inside the cells or ove
the diffusive interfaces. The first estimate, which we call advective, shows how much
the cell must contribute to the bulk burning rate if a certain drop of the temperature
(in the rangef6,, 6,4]) takes place along the streamlines inside the cell. It is reasonable
to expect that the drop over the cell will be small when advection is strong since it
mixes the fluid inside the cell quickly: in an analytic form this intuition will translate
into a large lower bound for the burning rate if the temperature drop is significant. The
second estimate, which we call diffusive, gives a lower bound for the burning rate given
certain drop of the temperature between the two cells. We do expect the temperatur
to drop on the boundaries, and hence the lower bound is only effective if we choose
in an appropriate way, sufficiently small. Finally, we prove the reaction estimate, which
takes into account the total area of the region over which the temperature drops. The:s
estimates will be brought together to establish the lower bound for the bulk burning rate
using an appropriate optimization argument.

5. Céllular flows: regularity of the streamlines

Ouir first objective is to define appropriate curvilinear coordinates on the cells, and tc
show that these coordinates satisfy certain technical assumptions that we will need. Tf
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natural choice of the coordinate which is constant on the streamlines, is

= v y) — Hsinsin. (5.1)

p(x,y) U 75y

We have certain freedom in the definition of the orthogonal coordifa#dong the
streamlines:

VE=QVip, (5.2)

whereQ is some function which should satisfy

Vo-VQ=—-0Ap. (5.3)
It is easy to compute that
§ €x
3p = X,0x + Y0y = 7an - 7ay,
whereJ = p,&, — p,&, = —Q|Vp|%. Hence
9,=——=Vp-V,
" | Vpl?
and so we have from (5.3)
] A
b0 _ Q% (5.4)
ap Vol

We will chooseQ so thatQ(H/2, &) = 1; Eq. (5.4) then allows us to defin@ in the
regionH > p > 0O:
LVIURINEA

0(p,6) =€ Jnemrniz®. (5.5)

We have the following auxiliary
LEMMA 7.—Inthe regionH /2 > p > 0we have the following bound for the function

0:
0<e'< Q.6 <e
Proof. —Consider formula (5.5). We have
7.[2

Ap = —?p(x, y),

and

X .y X y
Vol? = cos= sin— sin— cos—
Md ( H H)’*( H)
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in the regionp < H/2. Hence in the regio{ /2 > p > 0.

|Apl
v <1
Therefore, by (5.5), we have €< Q < e in this region. O

Recall our notation
dx? +dy? = EZdp? + E3dE%, w=—".

The next proposition summarizes some of the properties of the coordifatesin a
region of interest to us.

PrRoOPOSITION 2. —For the cellular flow defined b{¢#.3)and coordinateg, & defined
by (5.1), (5.2), and(5.5), the following bounds hold in the regidt/2 > o > O:

E12(p,§) =2 C, (5.7)
0<C'>w(p &) <C, (5.8)
‘—(M)‘ <CH™, (5.9)

ap

dw -1
’E(p,g)lgczq |log(p/H)|.

Proof. —Direct computation gives thdi; =1/|Vp|, E; =1/0Q|Vp|. Then Lemma 7
and the fact thatVp| < 1 imply (5.7). It follows from the definition ob thatw =1/0Q,
and hence Lemma 7 implies (5.9). Next,

’80) 1 |Ap]
ol QIVpl2 " H’

proving (5.10). Finally,

80)_ 2
P&l  QH?

P

1
/ h8§<|v lz)dh’
H/2 p

Notice that

Py P
85 :x§ax —|—y58y = Q|V)p|28x — lexp|2ay.

A straightforward computation using (5.5) and (5.6) leads to

’8“)<C /dh <CH Ylog(p/H)|. O
oE \HH/2 h 9o
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6. Cdlular flows: Advective estimate

Let us introduce some notation. Within the cell, we will normalizby letting it be
zero in the negative direction of theaxis (assuming that the origin has been placed in
the center of the cell). We will denote Wy the value of in the positive direction of
thex axis. In every cell, we will consider a tube of streamlines boundegd byh and
o = 3h; h will be always assumed to be less thdri6. We set

k(p) =G(h, p—2n)E1(p, &)u(p, §)I.

The fact thatk(p) does not depend of is a direct corollary of incompressibility of
the flow. Moreover, with our definition op for the cellular flow, we havé(p) =
UG(h, p — 2h). We also denote

3h
F:/k(p) dp.
h

As a corollary of Proposition 2, in the strip< p < 3k we have all conditions o
andw that have been necessary for the percolating flow estimates. In particular, we hav

0
] |l < crlog(o/ )| < Ch 7, 6.1)

3
sinceh < p < H. We first state an estimate very similar to Theorem 6.

THEOREM 8. —Assume that within one cdll, there exist two values, &; such that
for somesg, s1 € [01, 64], 5o > 51, We have

3h 3h
/ k(o) T (0, &) dp = soF . / k(o) T (0, &) dp = 51 F,
h h

3h
51F < / k(o) T (0, &) dp < soF  for & € [£0, £1].
h

Let D be the region bounded by the curyes-h, p = 3h, £ =&, and& = &;. Then

2 -1
/ (T +eIVTP + %f(T)) dedy > C (¢, fo) (1+ %) (so—s)%F.  (6.2)
D

The constanC in (6.2) depends only on parametegsand f; of the reactionf, that
appear in(1.11) and on the constants in the bounds of Proposifion

Proof. —The proof is exactly the same as for Theorem 6 for percolating flows. We
need only to replace, with sq, 64 with so, and set; =2h,h; =h. O
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The estimate (6.2) works well if there is a significant change of the temperature alonc
the streamlines within the cell. But it has a serious flaw if the temperature drops gradually

and there is little change of temperature inside any cell. The faggers;)3 on the right

hand side of the estimate makes it rather inefficient. Our next goal is to derive an estimat
which has linear dependence on the temperature drop when the drop is small. Our ma

measurement tool for the temperature within the cell will be the following average

1 &o+A 3h
<T>so=mé /A s h/ k(o) (. £) dp.

We will normally takeA so that the region of averaging incovers about half of the

width of the strip whergo = 0 or&y; = L, henceA ~ H. Our measure of the temperature

change along the cell will be the difference between such averages for diffgrent

THEOREM 9. —Assume that for al§ in a given cell we have

3h
1
= h/k(p)T(p, &) dp € [61, 64].

Then for any&g, &1 we have forA > h

E1+A 3n 2
/ /(T LIV + %f(T))ElEzds dp
§o—A h
l -1
> C(fo.0) (1+ E) (T)ey — (el F. (6.3)

whereC depends only orfy, ¢ and constants in the bounds of Propositi&n

Proof. —We will consider the case whet&):, > (T)¢,, the other case being similar.
Let us integrate

2
T, +u-VT — kAT = 22 £(T)
K

in x and y over the region wheré varies fromé; to &;, where&; € [Eg — A, & + A,
&3€ (61— A, &1+ A), andp takes values betweenand 34 with kernelG (k, p — 2h).
We obtain

&3 3h &3 3n

/ds/dpG(h,p—zh)ElEﬂxp,s)—x/ds/dme,p—zh)ElEzAT
&2 h & h
3h
> / dok(p) (T (p.&2) — T(p. £3)). (6.4)
h

As usual, our goal is to control the Laplacian term. Rewrite it in a familiar form
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h &3
K oT oT

oT oT
+2h/; dp |:£w_1(‘§39 :0) - gw_l(%éa Io):l } (65)

We carry out two more averagings in (6.4)

&o+A £14+A
/ dé> / dé3

§o—A §—-A

1
4A?

to be able to estimate the second part of the Laplacian term (6.5). Let us start by
estimating the first expression in square brackets, more precisely,

h &3 3T
f/ds/dg—w(g,zhH)
h ap
0 &2

(the other part is estimated similarly). Notice that by the assumption of the theorem for
everyé¢ there existe (depending or§) such thatl' (p, &) € [61, 64]. The estimate of this
term now follows step by step the estimate of the same term in the proof of Theorem 6
We get that for everg € [§g — A, &1 + A],

h aT 3h 2
D,
5/d5 O (€, 2h+5) < Cf—l/zc—li/[x|VT|2+ Y #(T)| E1E2dp.  (6.6)
h / ap voh / K

The integrations i, 3 simply average out, they are not needed for this term.

Let us now consider the estimate of the second expression in square brackets in (6.5
more particularly the first summand (the second one is estimated in the same way
Averaging in&, simply disappears since there is no dependence on this variable, and wi
are left with

h 2h+8 £1+A 9T
x T
ZhA/ch/ dp / s S0 6. )
0 2n-5  &H-A

The following lemma is the crucial step in the proof.
LEMMA 8. —Under conditions of Theore®we have

h 2h+$ &+A
K

oT 4
ﬂ/dS / do / d§3gw (&3, p)
0 2n-8 g-A

2
_ K 1]
<Cfy 1/24‘1}1—1}0 / {KWTF + ff(T) dx dy, (6.7)
D
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where the constant’ depends only on the bounds in Propositibhn
Proof. —Integrating by parts and using (6.1), we find that

(1+ %) (6.8)

§1+A

/ s —w Y& p)| <

and therefore

h 2h+8 £1+A

/ / dp / dss—w Y&, p)| <

2h—

h
—+1) <Ck. .
2hA (A—i-) Ck (6.9)

We have to consider several cases.

Option 1 There existsog such that for alk € [£; — A, &1 + A], we haveT (pq, &) ¢
[61 — ¢ /2,64 + ¢/2]. By mean value theorem, for evegy there also existg:(£) such
that T'(p1, &) € [61, 64]. Then for everys we can findpz > p, such that|T (o2, £) —
T (p3, &) =¢/2, and for every € [p2, p3], T (0, &) € [61 — £ /2,64 + ¢ /2]. Therefore,
as we have seen before, for evérg [£; — A, &1 + A] we have

3n 12 , 3 1/2 12
( [ Ti) ( [ f(T)> >t
h h

Hence, using Cauchy—Schwartz and integrating,iwe get

3n &1+A o gfl/z
/d / dSElEz(KIVTI + 0 f(T)> S
h E1—A

From this inequality and (6.9) our lemma follows sinée> h.

Option 2 For everyp, there existg, such thatl (p, &4) € [01 — ¢ /2, 04+ ¢ /2]. Here
we have to consider two distinct setsmfFirst, assume thal (p, &) € [61 — £, 04+ ]
for all £. Denote the set of all sughby S;. For p € S; we have

&1+A &1+A

/ F(T)dE > Co / 0 p. £) k.
&1—

and so
51+A8T £1+A 12 , &+A 1/2
T 4 ~1/2 2
E/ Fo | <ch (JAf(T)ds) (é/ATé ds)

§1+A 2
< Cfy vt / [KIVT|2+%f(T)}E1E2dS- (6.10)
§1—A
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The second case is that there exis{s [£7 — A, & + A] such thatT (p, &) ¢ [61 —
£, 04+ ¢]. Denote the set of all sughby S,. Forp € S,, we can findts and&g such that

In this case, similarly to the above reasoning, we have

&1+A £14+A

[ oo [ rie.sescin,

§&1—A £1—A

and so
£14+A
-1/2,-1. -1 2, Y6
fo ¢ g / k|VT|“+ — f(T)| E1E>dé > C.
K
§1—A
Then (6.8) implies that fop € S, we have

A &+A 2

_ v
<c(1+ﬁ> o et [ [K|VT|2+;°f(T> E1Ea .
§1—-A

£1+A
' 9T

/ dé3 gw_l(&, 0)
§1—-A

(6.11)
Combining the two estimates (6.10) and (6.11), and taking into accountithak, we
obtain the result of Lemma 8.0

Now we can finish the proof of Theorem 9. Taking into account (6.6) and (6.7) we see
that

E1+A 3h
/ dg/dpc;(h,p—zh)ElEﬂ;(p,s)
go—A h
E1+A 3h
-1/2,-1 K 2., Y
e i S [ [ apmafvrr ey
UOhS A ! K
J

1 &o+A E1+A 3h
> / dz; / d&/dpk(p)(T(p,sz)—np,ss)),
&0—A &1—-A h
and this implies
E14+A 3n

2 ! -1
/ /(T VTP + %f(T))ElEzds dp > C(fo. 0) (1+ E) (T)ey — (T, |-
&—A h

O

7. Cdlular flows: Diffusive estimate

Our goal in this section is to estimate the burning rate from below in terms of the jump
of the temperature across the interface separating two cells. We will only consider thi:
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estimate in the context of the particular cellular flow we are studying, though it can be
easily extended to a more general situation. Consider two neighboring cells, which we
denoteC,_; andC,. We will look at two regionsD,,_1 C C,_; andD,, C C,, which are
symmetric under reflection with respect to the line separating the cells (see Fig. 5). Th
region Dy, is bounded by the curvgs=h, p = 3h, & = — A, andé = A. For simplicity,

we choosep andé coordinates in cell’,_; so thatp changes from-3k to —h andé

from —A to A on D,,_; (see the figure). Notice that this is different from the choice
of coordinates we employed locally in each cell in the previous section; in terms of the
old coordinatesD,, 1 C C,_1 is bounded by the curves=h, p =3h, £E =L — A,

& =L+ A . With the new choice of coordinates, we denotelpyhe part o€, _1 U C,
bounded by the curves = —3h, p = 3h, £ = — A, andé = A. We also denote, in the
extension of notation of the previous section,

(T)ar1 = 2AF / T(p. £)k(p) d dp. (7.1)
Dy,_1
(T =5 / T(p.£)k(p) & dp (7.2)

(k(p) is defined in a natural way &$— ) whenp < 0).

THEOREM 10. —There exist constant§; , depending only on the constants in the
bounds of Propositio2, such that

CikH 2
K/|VT|2dxdy > 2 (120 — (1)) (7.3)
I
for A=C,H.
p=h

=A

p=3h

D

A 2 D2nel

C

Fig. 5. The region®,,.
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Proof. —Notice that
A —3h

/d£</k(p)T(p £)dp — /k(p)T(p s)dp>‘

—A

<%/d&/k<p)dp/\g—z(y,s>]dy

<) (] [l w) <cqm( frvmian)

Comparing the quantity we estimated with the deflnltlons (7.1) and (7.2), we see tha
(7.3) follows. O

2AF

8. Cdlular flows: Reactive estimate

It is worthy to note that the diffusive estimate we proved in the last section is quadratic
in the drop of the temperature over the interface. With the estimates we currently have w
could not prove any lower bound for the burning rate, since the temperature could sta
constant inside the cells (so that advective estimate does not give us anything) and drc
in extremely small increments over the diffusive interfaces. There is no lower bound
for such scenario because of the quadratic dependence. But in this case, the regi
whereT € [61, 64] would be very large, and hence we can hope to get a lower bound
on [ f(T). The following theorem is a rigorous expression of the above idea. We are
mostly interested in the cagé > « /vg but include the cas#l < «x/vg for completeness.

THEOREM 11. —Assume that in a given cdll,,

1 3h
= [T0.5dp <0100
h
for every&. Then

2 v3 . Hug
/|:K|VT| +?f(T)}dxdy}C(fo,g)vonln(l, T) (8.1)

Cn

Proof. —The proof uses an argument we already used several times when proving
advective estimate. Consider a regiorCijnbounded by the curves=h andp = H/2.
By mean value theorem, for evefy there existsog € [k, 3h] whereT (po, &) € [01, 64].
All ¢ fall into two cases. In the first cas&(p, &) € [61 — £, 04+ ¢] for everyp in the
regionp € [k, H/2]. Then

H/2

v2
- / F(T(p.8)dp

K
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In the second case, there also exigte [, H/2] suchthall (p1, &) ¢ [01—,04+¢]. In
this case we can fing,, p3 such thalT (p2, £) — T (03, £)| = ¢, and for every between

02 and p3, we haveT (p, &) € [61 — ¢, 64 + ¢]. In this case, by the usual argument, we
have

H/2 H/2 H/2

1/2 2
M2 < (/f(T)dp/IVledp> <%/[K|VT|2+%f<T> dp.
0
h h h

It is easy to show following Lemma 7 and Proposition 2 that the length of the interval of
integration int, 2L, satisfies 2 > C H, whereC is some universal constant. Integrating
overé&, we then get the result of the theorent

9. Cdlular flows: Putting it together

Now we have all necessary estimates to establish the lower bound on burning rate i
the case of cellular flows. We begin with an auxiliary computation. Its goal is to choose
the right value ofz depending on other physical parameters fixed in the problem. The
argument below may not be completely rigorous; we will fill in the gaps in the actual
proof. Consider the sequence of averages (7.1), (7.2) introduced in Section 7 devoted
the diffusive estimate:

oo AT 20, AT ) 2041, AT ) 20041)5 (T ) 20435 - - -

wheren varies from—oo to co. The values of the averages tend to lnass —oo and

to 0 asn — oco. Assume that (for sufficiently largl) the change is gradual, and there
exists a number of consecutive numberghere all averages lie in the intervah, 6,].
Moreover, assume that in all cells corresponding to these valuesnd have

3h
1
fh/k(p)T(p,é)dp € [0, 04]

for all £, so that the reactive and linear advective estimates may be applied in these cell
It does not concern us here thiahas to be chosen yet; as we mentioned above, this is an
auxiliary computation and the rigorous argument will appear in the proof. Let us denote

STn,a = |(T>2n+l - <T>2n|
the change of the averages controlled by the advective estimate, and
8T.a = UT)2m+1) — (T )ont1l

the drop of the temperature controlled by diffusive estimate. We alstiset 67, , +
8T,.. which we call the total drop overth cell. Then we have, according to the advective
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estimate (6.3),

dx dy ‘un
/<Tt+K|VT| +— f(T)> i C(fo,§)<l+—h> - Tna: (9.1)

n

where the constanf’ depends only onfy, ¢ and fixed constants associated with the
geometry of streamlines of the flow. According to the diffusive estimate (7.3), we also
have

(K|VT|2 + 2 f(T)) >C 8T2 (9.2)
CpUCp11

Also for everyC, from the region we consider, we have by the reactive estimate (8.1)
that

/ (K|VT| + 2 f(T)) b C<fo,c)vomm(1 —)=C<fo,c>vo 9.3)

Ca

under the assumptiol{vg/k > 1 (see (4.5)). Fix some cell’,, and introduce a
parameter & a, < 1 such that

48T, = 8T, g, (L—ay)8T, =T, ..

According to (9.1), (9.2), and (9.3), we have
dxd
</<|VT|2+ f(T)) Y

CyUCy41

K _1Uh Ka?
>Cl(1+ —) —8T,(1—a,) + —28T? ) 9.4
K +voh> p o)+ "“0} ®-4)

Over our sequence of cells, the value of temperature averages falls by a fixed amour
64 — 01. We are going to assume that this fall is gradual, and consider the lower bounc
on the contribution of the cell§,, andC,; to the total burning rate normalized by the
temperature fallof 7,, over the cellC,. Namely, denote

dxd
V, = / (n +K|VT 24 -2 f(T)) Y,
CpUCy41
then the burning rat& satisfies
1
= = Va.
2>
Eqg. (9.4) may be rewritten as
-1
K Uh
VozCl|14+— —1—aq, 6T,. 9.5
[(Jrvoh) H( aHh (ST (9:5)
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Moreover,

> 8T, > 64— 61,

where summation is taken over the set of cells where all estimates apply. In the lowe
bound (9.5)a, and|8T,| are out of our control, but we may choos®ptimally. Hence
if we denote

B(Kv Vo, Ua H)
-1 2
. K Uh Kay; Vo
- ogwgg/s{ogangTbgaTn<2< (1+ vo—h) ?(1 — )+ h O+ ﬁ) }’
then

V =2 CB(k,vo, U, H)(04— 61).
Therefore our goal is to fin@(«, vo, U, H). The minimum ins7,, is achieved when
. 1 h
6T, = m|n(2, — vL).
a, K
Let us consider two different regimes.

(1) If k/voh < 1 then the minimum is achieved f67,, > 1 and

B.vo.U.H)>C max { min (Y"1 )+K“3+
Ka UOa ’ = Oghgf]/3 Ogangl H aﬂ h UO ’

whereC is a universal constant. Chookeut of the conditionVh/H =« / h, so that

kH
h=\—. 9.6
Vo (9.6)
Then evidently
kU |1,
Tu

with t. andz, defined in (4.6). Given (9.6), conditiotyvph < 1 translates into

1 /«U =,
—y/—=—<«1
Vo H Ty
For this computation to apply, we also need to ensure/tkatH /6, that is,

== < 1/6,
UH

so that is in the acceptable range. This is a condition on the Peclet number. All our
bounds will remain valid if replace the choice loby Ch with C in some fixed range;
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we just have to adjust the universal constants. Therefore, for presentation purposes v
will henceforth require the condition (4.4)

UH
Pe=/—2>1
K

(2) If 15 > 1 then, sincé T, = min(2, éw/"%’“), we have that

B, vo, U, H) = 0<h<alil(/6 oglglg(a”)
where
Uh?v 2Ka2 ) 1 /v h
T d—a)+ = 2 4 <5y
gla,) = 2
Uh
(1 an)+2a1/ a, > — ”vo
Note that
. (UR? 2k a?
max min ( vo(l I @>
0<h<H/60<Ka, <1\ kH h 2
s A3
> C((UvoH )" +v0):cm<(—‘> +1>,
Ty

since we can choosefrom Uh?vy/(k H) = k / h, which gives

h= ("ZH ) ” (9.7)

uvg

Also

. Uh2vo UOK 3 _1\1/5 T 15
max min H( a) + 2a, e >C(UvikH™)""=Cuvo( — |

0<h<H/30<a,<1 K Ty

since we can choosefrom Uh?vy/(x H) = \/vok /1, which gives

h= <K3H2>1/5. (9.8)

U2v0

Therefore,

N N
max min > Cvpmin = 1), (= )
0<h<H/30<an<1g(a”) "o {<<ru) * ) (m) }

Notice thatr,. /7, > 1 in the regime we consider, sineg/z, is also equal tax /voh)®
with & chosen according to (9.7) di/voh)®? with & chosen according to (9.8).
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Therefore, we get that the second regime is characterized by
w_1 kU
Ty Vo H

ST
B(k,vo, U, H) > Cvo(—°> :

Tu

and in this case

The choice of: is given by (9.8). In this regime, we also need to assume that
K3 1/5
——— <1/6
( U2H3U0) /
so thath is in the acceptable range. This, up to a constant, is a condition
— < P¢
H

which is satisfied provided (4.5) and (4.4) hold.
Now we are finally ready to give a proof of Theorem 7.

Proof. —Given the parametess, vo, H andU, defineh according to

1 [eH

h= %T,IngL (9.9)
1/k3H?2 1/5

==Y . >l 9.10
- ( U2vo> T/t (9.10)

These choices ensure thatl H/6 provided that (4.4), (4.5) are satisfied. Consider the
smallest integer numbet, such that(T); < 64 — (64 — 61)/10 for alli > m;. We need
to consider several options. The first is taken care of by

LEMMA 9.—If (T),, < 64 — (04 — 61)/5 then the bounds of Theorei hold.
Moreover, the same is true if for some m + 1, we have(T),,,, (T),,+1 € [61, 64] and

KT )ms1 — (T)ml| = (02 — 61)/10.

Proof. —Let us consider the case WhefE),,, < 64 — (64 — 61)/5, the other case is
similar. If m1 = 2n is even, notice that by definition ofy, (T),_1 > 64— (64— 61)/10.
Then by the diffusive estimate (7.3) we obtain

vty s e -0

= 3 n = h 4 1) -
In the case where. /7, < 1 putting ink given by (9.9) gives exactly the bound (4.7) of
Theorem 7, modula,vg. But by Proposition 1, we can always addy to the lower

bound onV'. In the case where./t, > 1, putting ink given by (9.10) gives the lower
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bound C (k?U?H ~2v9)Y/® = Cvo(z./7,)%°, which is even better than the bound (4.7)
(modulowvy). Hence, Theorem 7 also holds.

If m; =2n+ 1 is odd, then by definition ofiy, (T)2, > 64 — (64 — 61)/10. Thus
temperature falls inside the cell,, and we may use advective estimate of Theorem 8.
We can findg, &; in the cellC,, such that

3h 3h
1 04— 61 1 04 — 01
fh/kw)T(p,so)dp—w— 2 fh/kw)T(p,sl)dp—w— =,
and
17 01— 0 0,—0
4 — VU1 4 — U1
fh/kw)T(p,S)dpe{m— o 2

for every& betweenty andé;. By the advective estimate (6.2), we get

1 P Uh
V>V, >C(, 1+ — 04 — 01)° —.
V> C fo)( +v0h> 06

Direct substitution of the expression (9.9) or (9.10)/Aatepending on the value of/t,

and comparison of the above bound with (4.7) gives the conclusion of Theorem 7. The
proof of the second statement of this lemma is parallel to the above argunient.

Lemma 9 proves Theorem 7 unless there exists a sequefice., m, (of length at
least 8, in fact) such that for eveny; < m < mo.

04— 0 04— 0
4 1’94_ 4— 01

Tm 9 k)
(T)m € |61+ 10 10

and form=myq,...,my—1

04 — 61
Tm - Tm < .
(T Ymt1 = AT )ml 10

Therefore there exists a sequence of at least three (or more) consecutive cel
Cp. ..., Cy, such that and

3 3
(T)2p, = 04— E(04 —01), (T)2np+1 <01+ E(94 —01), (9.11)
and

04— 0 04— 0
SRR TG B (9.12)

Ty, _
(T € 64— =75 10
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for everym such that 2; < m < 2n, + 1. Assume that there exists a cel), with
ny1 < n < np where we can findgg so that

3h
/ k(o) T (0, £0) dp ¢ (61, 6a].
h

By (9.12) and mean value theorem we can also §inidh this cell such that

3h

O,—0 6,—0
/k(p)T(p,sl>dpe[91+ SAELC A Y
h

10 10

Therefore, the advective estimate (6.2) can be applied in this cell, giving

1
K _o3Un
vn>C<c,fo)(1+voh) 0= 0~

Hence, similarly to the proof of Lemma 9. Theorem 7 holds in this case. The only
case left to consider is the case where for evary n < n,, for every¢ inacellC,,, we
have

3h
/ k()T (p. €) dp € [64, 6a].
h

In this case the second advective estimate (6.3), as well as reactive estimate (8.1) apr
in every cellC, such that:; < n,. Recall the notation

(l - an)(STn = 8Tn,a = |(T>2n+1 - <T>2n|a
anaTn = 5Tn,d = |<T>2(n+1) - <T>2n+l|-
Following the computation we performed at the beginning of this section we get

-1

v=1isy, >C§:K(l+ « ) YR )+ S a2oT, + 8T‘1)8T} (9.13)
Z = n 2 — —@—a,)+-ao0l,+v . (9.
6,5 = wh) H T 0% n
Consider the case whete/t, > 1 (the other case is similar but simpler). Putting the
expression fok from (9.10) into (9.13), we get

ny . 1/5 . 2/5
Vv>Cy ({v()(—C) (1—a,) + vo(—“) a?s8T, + vofSTn_l}(STn).

u Tu

Since by (9.11)y 772, 8T, > 2(64 — 61)/5, we have

A\ Y5 .\ 2/5
V > Cug —‘> 1-a,)+ (—) a,chTn—i—cSTn_l} (9.14)

min
0<a, <1,0<87, <2 T, T,
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It remains to show that the expression in square brackets in (9.14) is always greate
or equal toCvo(z./1,)Y° (Wwe can always add’vg later to the lower bound fo¥ by
Proposition 1). lfa, < 1/2, the first term in the sum gives exactly the estimate we need
(no matter what is the value @f7;, < 1). Hence it remains to consider the case where
a, > 1/2. In this case the sum of the second and third term in the square brackets i
greater than or equal to

.\ 2/5 2\ Y5
Cvo((—c> ST, + 3T,;1> > CU()(—C)
Ty Ty

and this finishes the proof of Theorem 70
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