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ABSTRACT. – We establish rigorous lower bounds on the speed of traveling fronts and on
the bulk burning rate in reaction-diffusion equation with passive advection. The non-linearity is
assumed to be of either KPP or ignition type. We consider two main classes of flows. Percolating
flows, which are characterized by the presence of long tubes of streamlines mixing hot and cold
material, lead to strong speed-up of burning which is linear in the amplitude of the flow,U . On
the other hand the cellular flows, which have closed streamlines, are shown to produce weaker
increase in reaction. For such flows we get a lower bound which grows asU1/5 for a large
amplitude of the flow.

RÉSUMÉ. – Nous établissons rigoureusement une estimation inférieure de la vitesse de
propagation de fronts et du taux global de combustion pour des équations de réaction-
diffusion avec convection donnée. La non-linéarité est de type KPP ou de type “ignition”.
Nous considérons deux principales classes d’écoulements. Les écoulements de percolation,
caractérisés par la présence de longs tubes de lignes de courant mélangeant des régions chaudes
et froides, entraînent une accélération importante du taux de combustion, linéaire en fonction de
l’intensitéU de l’écoulement. D’autre part, les écoulements circulaires, avec lignes de champs
fermées, conduisent à une augmentation plus faible du taux de réaction. Pour de tels écoulements,
nous obtenons une estimation inférieure qui croît commeU1/5 pour des écoulements de grande
amplitude. 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Propagation of thin fronts in moving fluids arises in many situations in physics and
engineering. Consider a mixture of reactants interacting in a region that may have a
rather complicated spatial structure but is thin across. The reaction front moves towards
the unburned reactants leaving behind the burned ones. When the reactants are mixed
by an ambient fluid then the burning rate may be enhanced. The physical reason for
this observed speed-up is believed to be that fluid advection tends to increase the area
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available for reaction. Many important engineering applications of combustion operate
in the presence of turbulent advection, and therefore the influence of advection on
burning has been studied extensively by physicists, engineers and mathematicians. In the
physical literature one can find a number of models and approaches that yield different
predictions – relations between the turbulent intensity and the burning rate [8,19,20,34].
These results are usually obtained using heuristic models and physical reasoning. For a
recent review of some of the physics literature we refer to [27,29].

The lack of agreement between different physical models makes rigorous results, even
for simplified mathematical models, particularly valuable and useful. A well-established
mathematical model that describes a chemical reaction in a fluid is a system of two
equations for concentrationC and temperatureT of the form

Tt + u · ∇T = κ�T + v2
0

κ
g(T )C, (1.1)

Ct + u · ∇C = κ

Le
�C − v2

0

κ
g(T )C.

For exposition purposes, all consideration in this paper will be carried out in two spacial
dimensions, but our methods extend to an arbitrary dimension in a straightforward
way. Eqs. (1.1) are coupled to the reactive Euler equations for the advection velocity
u(x, y, t). Two assumptions are usually made to simplify the problem: first, constant
density approximation [8] that allows to decouple the Euler equations from the system
(1.1). Then one may consideru(x, y, t) as a prescribed quantity that does not depend
on T andC. Furthermore, it is often assumed that Le= 1, or, equivalently, thermal and
material diffusivities are equal. These two assumptions allow to reduce the above system
to a single scalar equation for the temperatureT :

∂T

∂t
+ u(x, y, t) · ∇T = κ�T + v2

0

κ
f (T ) (1.2)

with f (T )= g(T )(1− T ), provided thatC(x, y,0) = 1− T (x, y,0). We will consider
the problem (1.2) in a strip�=Rx × [0,H ]y with boundary conditions inx:

T (x, y, t)→ 1 asx→−∞, T (x, y, t)→ 0 asx→+∞ (1.3)

and either Neumann
∂T

∂y
(x,0, t)= ∂T

∂y
(x,H, t)= 0, (1.4)

or periodic

T (x, y, t)= T (x, y +H, t) (1.5)

boundary conditions iny. Furthermore, we assume that the initial dataT0(x, y) for (1.2)
satisfies the bounds

T0(x, y)= 1−O
(
eλx
)

for x < 0, T0(x, y)=O
(
e−λx
)

for x > 0, (1.6)

|∇T0| =O
(
e−λ|x

)
for someλ > 0. (1.7)
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We adopt fairly general assumptions onf , requiring only thatf (T ) is not equal
identically to zero, and

f (0)= f (1)= 0, f (T )� 0 for T ∈ (0,1), f ∈C1[0,1]. (1.8)

Two types of reaction ratesf (T ) are distinguished in this class. The KPP-type reactions
satisfy

f (0)= f (1)= 0, f (T ) > 0 for T ∈ (0,1). (1.9)

An additional requirementf ′(0) =maxT ∈[0,1] f (T )/T is often made. We do not make
such requirement in this paper, and call the class described by (1.9) general KPP. Our
interpretation of KPP includes an important Arrhenius-type non-linearity,

f (T )= C(1− T )e−A/T ,

that is believed to be an appropriate model for many chemical reactions in the context of
reaction-diffusion models. We also consider the ignition non-linearities with

f (T )= 0 for T ∈ [0, θ0] and T = 1, f (T ) > 0 for T ∈ (θ0,1). (1.10)

By our assumptions on the nonlinearity (1.8), we can findθ4 > θ1, andf0, ζ > 0 such
that

f (θ) > f0 for θ ∈ (θ1− ζ, θ4+ ζ ). (1.11)

The values of the constantsf0, ζ andθ1,4 are the only information on the nonlinearity
f (T ) that shows up in our bounds on the burning rate.

We assume that advectionu(x, y) ∈ C1(�) is time independent, has mean zero in the
x-direction:

H∫
0

u1(x, y)dy = 0 (1.12)

and is incompressible:

∇ · u= 0. (1.13)

The mathematical literature on the scalar reaction-diffusion equation (1.2) is enormous;
far from giving an exhaustive overview, we mention several papers directly related to
our work. First rigorous results about traveling waves for Eq. (1.2) go back to classical
works of Kolmogorov, Petrovskii and Piskunov [23] and Fisher [13], which considered
the caseu= 0 in one dimension for the KPP nonlinearity. Recently Eq. (1.2) withu �= 0,
and in particular the effect of advection, became a subject of intense research. Berestycki
and Nirenberg [6,7], and Berestycki, Larrouturou and Lions [4] initiated the studies of
the existence of traveling waves for Eq. (1.2) of the form

T (x, y, t)= T (x − ct, y), (1.14)
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for shear flows of the formu= (u(y),0). Their stability was studied in [5,25,30], while
in further works [3,31,32] stability and existence of traveling waves were established for
the wider class of periodic flows. In this case, the traveling fronts have the form

T (x, y, t)=U(x − ct, x, y)

and are periodic in the last two variables. These and other results were recently reviewed
in [33], and we refer the reader to this paper for a detailed exposition of the subject. Until
very recently, there were no rigorous results on the physically interesting question of the
speed of traveling waves. First such results have been established in [9] for percolating
flows, and in [1] and [18] for the shear flows. Numerical studies of the propagation of
fronts wore performed for a shear flow in [21] with Le�= 1, and for cellular flows in [22].

Another major direction of research has been homogenization approach. The homog-
enization regimeκ→ 0, when the front width goes to zero, was extensively studied for
KPP-type nonlinearity and for advection velocity that is periodic and varies either on the
integral or diffusive scale by Freidlin [14–16]. Recently Majda and Souganidis derived
an effective Hamilton–Jacobi equation in the limitκ→ 0 for the case of advection ve-
locity varying on a smallκ-dependent scale that is larger or comparable to that of the
front width [24]. This effective equation is still difficult to analyze, and analytical pre-
dictions have been derived only for the shear flows. Numeric experiments exploring the
results of [24] have been carried out in [10,11,26].

Very recently, Hamel [17] and Heinze, Stevens and Papanicolaou [18] proposed
an elegant variational approach to the estimates of the speed of traveling waves in
the presence of periodic advection. However, to the best of our knowledge nontrivial
lower bounds using this method were obtained so far only for shear flows in the
homogenization regime or for small advection, where they provide precise bounds for
the small speed-up of the front [18].

The key question we wish to address in this paper is: what characteristics of the
ambient fluid flow are responsible for burning rate enhancement? The question needs
first to be made precise, because the reaction region may be complicated and, in general,
may move with an ill-defined velocity, when traveling fronts do not exist. To measure
the speed of burning in such situations, the bulk burning rate

V (t)=
∫
�

Tt(x, y, t)
dx dy

H
(1.15)

and its time average

〈V 〉t = 1

t

t∫
0

V (s)ds

have been recently introduced in [9]. Note that for traveling fronts of the form (1.14)
we haveV (t) = c, but the notion of bulk burning rate makes sense in much more
general situations when traveling fronts of the above form may not exist, and bulk
burning rate serves as a natural generalization of the front speed. We have obtained
in [9] lower bounds for〈V 〉t whenf (T ) is a concave function of the KPP type. The
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bounds are linear in the magnitude of the advecting velocityu(x, y) provided that there
exist tubes of streamlines that connectx = −∞ and x = +∞, satisfying some mild
additional technical assumptions. We say then that the flow is percolating. In particular
these bounds hold for shear flows of the form(u(y),0).

In this paper we consider much more general reaction ratesf (T ) that are either
of the ignition or general KPP type, and establish similar lower bounds forV (t) for
percolating flows that are periodic in space. The bound is linear in the magnitude ofu

and deteriorates as the scale of oscillations ofu becomes comparable to the laminar front
width l = κ/v0. It is easy to show [9] that for anyu ∈C1, the burning rate〈V 〉t satisfies
linear in‖u‖∞ upper bound (for initial data as in (1.6) and (1.7)). Therefore, shear (and,
more generally, percolating) flows are as effective as possible in speeding up combustion
in terms of the power of‖u‖∞ in the large intensity regime. In particular, we establish
the following lower bound for the bulk burning rate in a shear flow.

THEOREM 1. –Let T0(x, y) be an arbitrary initial data satisfying(1.6) and (1.7),
and let T (x, y, t) satisfy (1.2) with either the Neumann(1.4) or periodic boundary
conditions(1.5). Let alsou(x, y) = (u(y),0) in (1.2). Then both for KPP and ignition
non-linearities we have

lim
t→∞〈V 〉t � C

(
v0+

∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(y)| dy

H

)
, (1.16)

where the constantC depends only on the reaction functionf and l = k/v0. Here the
intervalsIj = [cj − hj , cj + hj ] ∈ (0,H) are any intervals such that

‖u‖∞,j

2
� |u(y)|� ‖u‖∞,j , ‖u‖∞,j = sup

Ij

|u(y)|. (1.17)

We do not require
⋃
j Ij = [0,H ].

The choice of intervalsIj is up to us, and should be made to maximize the lower
bound. See Fig. 1 for an illustration.

As a corollary, the bound (1.16) holds for the speedc of a traveling front of the
from (1.14). Our bound behaves correctly in the homogenization regime whenu(y)

has the formu(y) = A
ε
v(y/ε) and provides a bound that is linear in the magnitudeA

of advection, in agreement with [9,18], where homogenization limit was studied. We
also prove the analog of Theorem 1 for general percolating flows (see Theorem 5 in
Section 3).

Another main result of this work concerns cellular flows with closed streamlines.
Roughly speaking, in terms of their burning enhancement properties, such flows can be
thought of as “the worst” class of flows, opposing “the best” percolating flows. One can
expect the burning enhancement to be significantly weaker for cellular flows because of
the numerous diffusive interfaces which prevent hot and cold regions from mixing fast.
Cellular flows pose mathematically more challenging problem because of these diffusive
interfaces; we will see that the estimates for percolating flows will form only a fraction
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Fig. 1. The structure of the shear flow.

of the argument we will need in the cellular case. We consider a particular example of a
cellular flow

u(x, y)=UH

(
∂ψ

∂y
,−∂ψ

∂x

)
, ψ(x, y)= sin

(
x

H

)
sin
(
y

H

)
. (1.18)

See Fig. 2 for an illustration of streamlines in a single cell. Then under the assumptions
of a large Peclet number and thin laminar front width:

Pe= UH

κ
� 1,

l

H
� 1, l = κ

v0
(1.19)

we get the following result.

THEOREM 2. –Let T0(x, y) be an arbitrary initial data satisfying(1.6) and (1.7),
and letT (x, y, t) satisfy(1.2) with the either the Neumann(1.4) or periodic boundary
conditions (1.5). Let alsou(x, y) in (1.2) be given by(1.18), and assume(1.19) is
satisfied. Then both for KPP and ignition non-linearities we have

lim
t→∞〈V 〉t �




(
C1

√
τc

τu
+C2

)
v0, if τc � τu,(

C1

(
τc

τu

)1/5

+C2

)
v0, if τc � τu.

(1.20)

Here τc = κ/v2
0 is the chemical reaction time andτu =H/U is the turnover time. The

constants in the inequalities depend only on the reactionf , more particularly on the
constantsf0, ζ , andθ4− θ1 that appear in(1.11).
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Fig. 2. Streamlines of a cellular flow(H = π).

To the best of our knowledge this is the first rigorous bound on the traveling front
speed in a cellular flow. Note that the change of behavior of our bound depending
on the ratioτc/τu is physically natural since forτu � τc the front folds onto itself
inside the period cell, which diminishes the affect of advection. The lower bound of
Theorem 2 displays square root dependence on the flow intensityU until U reaches a
critical value determined by a conditionτc = τu. After that, the lower bound behaves like
U1/5. Recently, Audoly, Berestycki and Pomeau [1] gave an heuristic argument which
proposes that the speed of the traveling front for cellular flows should scale asU1/4 in
the largeU limit, which may indicate that our lower bound is not far off from the sharp
bound.

One of the fundamental mathematical difficulties we deal with in this paper may be
roughly described as follows. We will be able to bound the burning rate from below by
integrals over the domain of reaction termf (T ) and of the square of the gradient|∇T |2.
It turns out that in order to obtain a lower bound onV in terms ofu, it will be necessary
to bound the integral of the higher derivative Laplacian term in terms of integrals of
f (T ) and|∇T |2. One can expect to do this using parabolic regularity, but the constants
in such a priori estimates typically depend onu, and this dependence turns out to be
too crude to get interesting results. We tackle this difficulty by taking advantage of the
fact that what we need to estimate is the integral of Laplacian, not of the absolute value
of Laplacian, and employ an appropriate averaging procedure to reduce derivatives. We
hope that this idea will be useful in other related contexts in PDE estimates.

The paper is organized as follows. We prove Theorem 1 in Section 2, as well as some
other results for shear flows. The analogous results for the percolating flows are proved
in Section 3. We present our main results for the cellular flows, in particular implying
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Theorem 2, in Section 4. Sections 6, 7 and 8 contain some intermediate estimates in the
proof of Theorem 2. We put these estimates together to finish the proof in Section 9.

2. Shear flows and general nonlinearities

We first consider (1.2) in a shear, or unidirectional, flow(u(y),0), which is a particular
example of a percolating flow. The proofs are somewhat less technical in this case and
allow us to introduce some of the ideas used in the general case. Eq. (1.2) in a shear flow
becomes

∂T

∂t
+ u(y)

∂T

∂x
= κ�T + v2

0

κ
f (T ), (2.1)

T (x, y,0)= T0(x, y).

The advection is assumed to be mean-zero:

H∫
0

u(y)dy = 0. (2.2)

We impose an additional assumption

∂T

∂t
� 0. (2.3)

This condition is satisfied for all times provided that initially we have

κ�T0− u(y)
∂T0

∂x
+ v2

0

κ
f (T0)� 0, (2.4)

as follows from the maximum principle (see, e.g., [28]). Therefore (2.3) is not a
constraint on the dynamics but rather on the initial data. We note that (2.3) is true for
traveling fronts of the formT (x − ct, y) both for general KPP and ignition nonlinearity
[4,7]. We assume the usual boundary conditions (1.3) at the left and right ends of the
strip� and either Neumann (1.4) or periodic (1.5) boundary conditions aty = 0,H . We
also require that the initial dataT0(x, y) satisfies (1.6) and (1.7). These conditions are
preserved by evolution (see e.g. [9]) if the advecting velocityu(y) ∈ C1[0,H ], that is,
we have for eacht > 0:

1− T (x, y, t)� C(t)eλx for x < 0, T (x, y, t) �C(t)eλx for x > 0, (2.5)

|∇T (x, y, t)|� C(t)e−λ|x|

provided that (1.6) and (1.7) hold initially.
Let Ij = (cj − hj , cj + hj) ⊂ [0,H ] be a collection of intervals satisfying (1.17).

In particular u(y) does not change sign on the intervalsIj . We do not require that⋃
j Ij = [0,H ]. Then the bulk burning rateV (t) defined by (1.15) obeys a lower bound

described by the following theorem, which is the first main result of this section.
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THEOREM 3. –Let T (x, y, t) be a solution of(2.1) with the boundary conditions
(1.3) and either(1.4) or (1.5). Let the initial dataT0(x, y) satisfy(2.4), (1.6) and (1.7).
Furthermore, assume thatu(y) ∈ C1(0,H) has mean zero(2.2) and the nonlinearity
f (T ) satisfies(1.8). Then there exists a constantC > 0 that depends onf (T ) but not on
T0(x, y) or u(y), such that for any collection of intervalsIj that satisfies(1.17)we have

V (t)� C

(
v0+

∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(y)| dy

H

)
(2.6)

with l = κ/v0.

Remark1. – The lower bound (2.6) does not deteriorate when oscillations inu(y)

become faster in space as long as its amplitude grows according to

‖u‖∞,j

v0
=O
(
l

hj

)
.

This agrees well with the homogenization limituε(y)= 1
ε
u(y/ε) considered in [9] and

[18], that produces speed-up of the front of order O(v0). This is also an improvement
of the analogous lower bound forV (t) for the convex KPP case obtained in [9], where
(l/hj)

2 appeared in the factor.
2. The regularity assumption onu(y) is used only to guarantee preservation of the

boundary conditions (1.7) that allows us to integrate by parts in the proof. None of our
bounds depend on the size of derivatives ofu(y).

It has been shown in [4,7] both in the case of ignition non-linearity (1.10), and for
the general KPP nonlinearity (1.9) that there exist traveling front solutions of (2.1) of
the form T (x, y, t) = U(x − ct, y). The speedc = c∗ is uniquely determined by the
nonlinearityf (T ) and advectionu(y) in the ignition case, while traveling front solutions
exist for c � cu for some minimal speedcu in the KPP case. The functionU(s, y) is
monotonically decreasing in the variables = x − ct in both cases, so that (2.3) holds.
Theorem 3 implies the following estimate on the speeds of the traveling fronts.

COROLLARY 1. –Let T (x − ct, y) be a traveling front solution of(2.1) with f (T )

being either of the ignition nonlinearity type(1.10), or of the KPP type(1.9). Then there
exists a constantC > 0 that depends on the functionf but not onu(y) such that

c � C

(
v0+

∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(y)| dy

H

)
. (2.7)

Corollary 1 follows immediately from Theorem 3 since we haveV (t) = c for
T (x, y, t) = U(x − ct, y) due to the boundary conditionsU(s, y)→ 1 ass→−∞,
U(s, y)→ 0 ass→+∞. Corollary 1 and the stability results for traveling fronts [30,
32] imply Theorem 1 for general initial data. We prove now Theorem 1 assuming the
result of Corollary 1.
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Proof of Theorem 1. –Consider first ignition non-linearity. In this case we will show
that

lim
t→∞〈V 〉t = c∗,

wherec∗ is the unique speed of the traveling front. Then (1.16) will follow from (2.7). It
was shown in [32] that for the initial data satisfying (1.6) (actually just tending to 1 and
0 at the two ends) there exist functionsξ1,2(t) such that

|ξi(t)| = o(t), ast→∞,

and functionsqi(t, x) that satisfy the linearized problem

∂qi

∂t
+ u(y)

∂qi

∂x
=�qi

such that

U
(
x − c∗t + ξ1(t), y

)− q1(x, y, t)

� T (t, x, y)�U
(
x − c∗t − ξ2(t), y

)+ q2(x, y, t). (2.8)

HereU(x − c∗t, y) is the traveling wave solution of (2.1). The initial dataqi(x, y,0)
may be chosen inL1∩L∞(�). Then we have for anyc > c∗:

〈V 〉τ = 1

τ

τ∫
0

dt
∫
�

dx dy

H
Tt dx dy = 1

τ

∫
�

dx dy

H

[
T (x, y, τ)− T0(x, y)

]

= 1

τ

0∫
−∞

dx

H∫
0

dy

H

[
(1− T0)− (1− T )

]+ 1

τ

cτ∫
0

dx

H∫
0

dy

H

[
T (x, y, τ)− T0(x, y)

]

+ 1

τ

∞∫
cτ

dx

H∫
0

dy

H

[
T (x, y, τ)− T0(x, y)

]

� C

τ
+ c+ 1

τ

∞∫
(c−c∗)τ

dx

H∫
0

dy

H
U
(
x − ξ2(t), y

)+ 1

τ

∞∫
cτ

dx

H∫
0

dy

H
q2(x + c∗t, y, t)

� C ′

τ
+ c

and hence lim supτ→∞〈V 〉τ � c∗. Similarly one may show that lim infτ→∞〈V 〉τ � c′ for
anyc′ < c∗, which shows that (1.16) holds.

In the KPP case, the estimates of the sort (2.8) are not yet available. However the
bound (1.16) can be shown by reduction to the ignition non-linearity case. Indeed, given
KPP type reactionf , consider ignition type reactionfθ = χθf � f , say by cuttingf off
in a small neighborhood near zero forT � θ . The constantC in (2.6) does not depend on
θ for θ small enough as will be seen from the proof of Theorem 3. LetT andTθ satisfy
equations with reactionsf andfθ respectively with the same initial dataT0(x, y). Then
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Z = T − Tθ satisfies

Zt + u · ∇Z − κ�Z = r2
0

κ

(
f (T )− fθ(Tθ)

)
� v2

0

κ

(
f (T )− f (Tθ)

)
.

It follows from the maximum principle that ifZ(x,0) � 0 thenZ(x, t) � 0. Hence for
the same initial data, the burning rate for the KPP reactionf is not smaller than for the
ignition non-linearityfθ :

〈V [T ]〉t = 1

τ

∫
dx dy

H

[
T (x, y, t)− T0(x, y)

]
� 1

τ

∫
dx dy

H

[
Tθ(x, y, t)− T0(x, y)

]= 〈V [Tθ ]〉t .
This implies the validity of the lower bound (1.16) in the KPP case.✷

We now turn to the proof of Theorem 3. The proof follows the general ideas of [9]
with significant modifications required sincef is not of concave KPP class. Our starting
point is the following observation.

LEMMA 1. –Under assumptions of Theorem3 we have

V (t)= v2
0

κ

∫
�

f
(
T (x, y, t)

) dx dy

H
� κ

∫
�

|∇T (x, y, t)|2 dx dy

H
. (2.9)

Proof. –Equality in (2.9) is obtained simply by integrating (2.1) over� using the
boundary conditions (1.3) and (1.4) or (1.5), and mean-zero condition (2.2) on advection.
To get the inequality we multiply (2.1) byT and integrate over� to get

∫
�

T Tt
dx dy

H
+ κ

∫
�

|∇T (x, y, t)|2 dx dy

H
= v2

0

κ

∫
�

Tf (T )
dx dy

H
� V (t).

This implies (2.9) sinceTt � 0 and 0� T � 1. ✷
As a warm-up, we now prove a simple and general proposition, which already

provides a glimpse of some of the ideas which we will use to obtain more sophisticated
results. Namely, we show that for any divergence-free velocityu(x, y) satisfying mild
regularity conditions (it doesnothave to be a shear flow), and solutionT satisfying (2.3),
the burning rate is bounded below byCv0.

PROPOSITION 1. –LetT (x, y, t) be a solution of(1.2)with the boundary conditions
(1.3)and either(1.4)or (1.5). Assume thatu(x, y) ∈C1([0,H ]×R) satisfies(1.12)and
(1.13), and that non-linearityf (T ) satisfies(1.8). Let the initial dataT0(x, y) satisfy
(2.4), (1.6)and(1.7). Then there exists a constantC, depending only on the parameters
ζ andf0, such that

V (t)� C(ζ, f0)v0

with the constantsζ andf0 defined in(1.11).
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Proof. –The proof is similar to the proof of Lemma 2 in [9]. We can findy such that

∫
R

|∇T (x, y)|2 dx � 3

H

H∫
0

∫
R

|∇T (x, y′)|2 dx dy′,

and

∫
R

f
(
T (x, y)

)
dx � 3

H

H∫
0

∫
R

f
(
T (x, y′)

)
dx dy′.

Then we can findx1 � x2 such thatT (x1, y) = θ4 + ζ , T (x2, y) = θ1 − ζ , T (x, y) ∈
[θ1− ζ, θ4+ ζ ] if x1 � x � x2 (see (1.11) for the definition ofθ1,4). Then

∫
R

|∇T (x, y)|2 dx � θ4− θ1+ 2ζ

|x2− x1|

and ∫
R

f
(
T (x, y)

)
dx � f0|x2− x1|.

Therefore we have√√√√√∫
R

H∫
0

|∇T |2 dx dy
∫
R

H∫
0

f (T )dx dy � Cf
1/2
0 ζH.

Hence we obtain

∫
R

H∫
0

[
κ|∇T |2+ v2

0

κ
f (T )

]
dx dy

H
� Cf

1/2
0 ζv0.

Then Proposition 1 follows from Lemma 1.✷
We now return to the shear flows. To obtain more precise bounds involving advection

velocity u(y), we will bound from below in terms ofu(y) either the integral off (T ) or
theL2-norm of|∇T |, and use Lemma 1. The general plan in [9] was to integrate over all
axis inx, obtaining an equation with an explicit termu(y) in it. We were able to bound
the rest of the terms from above by a combination of

∫
f (T ) and

∫ |∇T |2 after averaging
in y andt to controlTt and�T .

An additional twist we need here is to reduce our consideration to the region in space
where the reaction actually takes place. In the case of ignition non-linearity, there is no
reaction for sufficiently low temperatures. Similarly, for the Arrhenius type non-linearity,
reaction is very weak nearT = 0. On the technical side, restriction of consideration
to some finite time dependent domainD with T in appropriate range will mandate
additional averaging inx to control all terms by

∫
f (T ) and

∫ |∇T |2. We will identify a
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regionD in x such that on one hand the temperature has a certain drop over this region
and on the other for everyx ∈D there is somey ∈ Ij such that reaction is bounded away
from zero at the point(x, y). This will provide us with two alternatives for eachx ∈D:
either reaction is uniformly bounded away from zero for thatx or temperature drops by
a certain amount on the intervalx× Ij . In the first case

∫
Ij
f (T )dy will have to be large

and in the second
∫
Ij
|Ty |2 dy will be bounded from below. Then we will integrate (2.1)

overx ∈D at a fixed timet . That will relateu(y) to some terms involvingV (t) and�T .
We will additionally average both inx andy, which will bring�T into a form that can
be bound by a combination of integrals off (T ) and|∇T |2. That will be possible since
these have to be large onD as explained above. Finally we will use Lemma 1 to finish
the proof.

In order to define the regionD where much of the reaction takes place let us fix
θ4 > θ3 > θ2 > θ1, whereθ4, θ1 are as in (1.11). LetIj be an interval on which (1.17)
holds withu(y) > 0 (the case ofIj whereu(y) < 0 is similar). We fix timet > 0 and
choose two pointsx0 andx1:

x0= inf
{
x: for anyx′ > x there existsy ∈ Ij such thatT (x′, y, t)� θ4

}
,

x1= sup
{
x: x > x0 and for anyx′ ∈ (x0, x) there existsy ∈ Ij

such thatT (x′, y, t)� θ1
}
.

In other words, for anyx ∈ [x0, x1] =D there existsy ∈ Ij such thatT (x, y, t) ∈ [θ1, θ4],
and hencef (T (x, y)) � f0. Note thatx0 is well-defined and finite sinceT (x, y, t)→
0,1 asx→±∞ uniformly in x because of (2.5). The definition ofx0 implies that

T (x0, y)� θ4 for all y (2.10)

and thusx1 is well-defined. Moreover,

T (x1, y)� θ1 for all y. (2.11)

In preparation for multiple averaging iny that will be performed to control�T let us
introduce the functionG(h, ξ):

G(h, ξ)=

1− |ξ |

h
, |ξ |� h,

0, |ξ |> h,

that corresponds to the following averaging iny:

1

hj

hj∫
0

dδ

cj+δ∫
cj−δ

p(y)dy =
cj+hj∫

cj−hj
G(hj , y − cj )p(y)dy (2.12)

for a test functionp(y). The two integrations when applied to�T are required to get rid
of derivatives ofT . Observe that the functionG(h, ξ) has the following properties

0 �G(h, ξ)� 1, G(h, ξ)� 1

2
for ξ ∈

[
−h

2
,
h

2

]
. (2.13)
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We note that (2.10) and (2.11) imply that at the two ends of the interval[x0, x1] we have

cj+hj∫
cj−hj

dy G(hj , y − cj )u(y)T (x0, y)� θ4Fj ,

cj+hj∫
cj−hj

dy G(hj , y − cj )u(y)T (x1, y)� θ1Fj

with

Fj =
cj+hj∫

cj−hj
dy G(hj , y − cj )u(y).

In preparation for averaging inx, we chooseη0 andη1 so that

η0= inf
ξ

{
ξ > 0:

cj+hj∫
cj−hj

dyG(hj , y − cj )u(y)T (x0+ ξ, y)= θ3Fj

}
,

η1= inf
ξ

{
ξ > 0:

cj+hj∫
cj−hj

dyG(hj , y − cj )u(y)T (x1− ξ, y)= θ2Fj

}
.

We remark thatx0 < x0+ η0 < x1− η1 < x1. Now we are ready to average (2.1). Given
α ∈ (0, η0) andβ ∈ (0, η1) we integrate (2.1) inx ∈ (x0+ α,x1− β) and iny according
to (2.12):

x1−β∫
x0+α

dx

cj+hj∫
cj−hj

dy G(hj , y − cj )Tt − κ

x1−β∫
x0+α

dx

cj+hj∫
cj−hj

dyG(hj , y − cj )Tyy

+ κ

cj+hj∫
cj−hj

dyG(hj , y − cj )
[
Tx(x0+ α,y)− Tx(x1− β,y)

]

�
cj+hj∫

cj−hj
dy G(hj , y − cj )u(y)

[
T (x0+ α,y)− T (x1− β,y)

]
. (2.14)

We dropped the integral off (T ) on the right side which resulted in the inequality in
(2.14). The reason that our averagings inx andy are different is that while the width
hj is a prescribed quantity, we have no a priori control overη0 andη1. Therefore our
bounds may not involve them, and we employ different estimates when averaging inx.
First we estimate the integral ofTyy on the left side of (2.14).

LEMMA 2. –There exists a universal constantC > 0 such that the following estimate
holds for everyx ∈ [x0, x1]
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∣∣∣∣∣κ
cj+hj∫

cj−hj
dy G(hj , y − cj )Tyy(x, y)

∣∣∣∣∣

�Cf
−1/2
0 ζ−1 κ

v0hj

[
v2

0

κ

cj+hj∫
cj−hj

dy f
(
T (x, y)

)+ κ

cj+hj∫
cj−hj

dy |∇T |2(x, y)
]
. (2.15)

Proof. –We use (2.12) to rewrite the left side of (2.15) for a fixedx ∈ [x0, x1] as

∣∣∣∣∣
cj+hj∫

cj−hj
dyG(hj , y − cj )Tyy

∣∣∣∣∣
= 1

hj

∣∣T (cj + hj)− 2T (cj )+ T (cj − hj)
∣∣� 2

hj
δj [T ](x) (2.16)

with δj [T ](x) = supy∈Ij T (x, y) − infy∈Ij T (x, y). Note that because of our choice of
x0 andx1, given anyx ∈ (x0, x1), we may findy′ such thatT (x, y′) ∈ [θ1, θ4]. Then we
may findy1, y2 such that for anyy ∈ [y1, y2] we haveT (x, y) ∈ (θ1− ζ, θ4+ ζ ), and,
moreover,

∣∣T (x, y2)− T (x, y1)
∣∣=min

(
ζ, δj [T ](x)). (2.17)

Then (1.11) implies that

cj+hj∫
cj−hj

f
(
T (x, y)

)
dy � f0|y2− y1|.

Applying the Cauchy–Schwartz inequality we also obtain

cj+hj∫
cj−hj

|∇T (x, y)|2 dy � |T (x, y2)− T (x, y1)|2
|y2− y1| .

Multiplying these two inequalities we obtain

√√√√√√
cj+hj∫

cj−hj
f
(
T (x, y)

)
dy

cj+hj∫
cj−hj

∣∣∇T (x, y)∣∣2 dy

�
√
f0
∣∣T (x, y2)− T (x, y1)

∣∣� f
1/2
0 ζ

4

∣∣T (cj + hj)− 2T (cj )+ T (cj − hj)
∣∣

because of (2.16) and (2.17), and sinceζ < 1/2. Then (2.15) follows. ✷
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Furthermore, because of our choice ofη0, η1, we have for anyα ∈ [0, η0] and
β ∈ (0, η1)

cj+hj∫
cj−hj

dy G(hj , y − cj )u(y)
[
T (x0+ α,y)− T (x1− β,y)

]
� (θ3− θ2)Fj . (2.18)

We use (2.15), (2.18) and positivity ofTt to rewrite (2.14) as

C

x1−β∫
x0+α

dx

cj+hj∫
cj−hj

dy
[
Tt + κ

v0hj

[
κ|∇T |2+ v2

0

κ
f
(
T (x, y)

)]]
(2.19)

+ κ

cj+hj∫
cj−hj

dy G(hj , y − cj )
[
Tx(x0+ α,y)− Tx(x1− β,y)

]
� (θ3− θ2)Fj .

In order to deal with the integral term on the second line that involvesTx we average
(2.19) inα ∈ (0, η0) andβ ∈ (0, η1):

1

η0η1

η0∫
0

dα

η1∫
0

dβ

to get

C

x1∫
x0

dx

cj+hj∫
cj−hj

dy
[
Tt + κ

v0hj

[
κ|∇T |2+ v2

0

κ
f
(
T (x, y)

)]]

+ κ

η0

cj+hj∫
cj−hj

dy G(hj , y − cj )
[
T (x0+ η0, y)− T (x0, y)

]

+ κ

η1

cj+hj∫
cj−hj

dy G(hj , y − cj )
[
T (x1− η1, y)− T (x1, y)

]
� (θ3− θ2)Fj . (2.20)

We bound now the term involvingη0 in (2.20) as follows.

LEMMA 3. –There exists a universal constantC > 0 such that∣∣∣∣∣ κη0

cj+hj∫
cj−hj

dyG(hj , y − cj )
[
T (x0+ η0, y)− T (x0, y)

]∣∣∣∣∣

� Cκ(θ4− θ3)
−2

cj+hj∫
cj−hj

dy

x0+η0∫
x0

dx |∇T |2. (2.21)
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Proof. –The proof of this estimate is based on two observations. First, we have

∣∣∣∣∣ 1

η0

cj+hj∫
cj−hj

dy G(hj , y − cj )
[
T (x0+ η0, y)− T (x0, y)

]∣∣∣∣∣� 2hj
η0

because of (2.13). Second, we have

cj+hj∫
cj−hj

dy

x0+η0∫
x0

dx |∇T |2 � C(θ4− θ3)
2hj

η0
. (2.22)

This bound is established as follows. Recall that because of our choice ofη0 we have

cj+hj∫
cj−hj

dy u(y)G(hj , y − cj )
[
T (x0, y)− T (x0+ η0, y)

]
� (θ4− θ3)Fj . (2.23)

Furthermore, recall that‖u‖∞,j /2 � |u(y)|� ‖u‖∞,j on the interval(cj − hj , cj + hj)

and thus (2.23) implies that

cj+hj∫
cj−hj

dyG(hj , y − cj )
∣∣T (x0, y)− T (x0+ η0, y)

∣∣� (θ4− θ3)Fj

‖u‖∞,j

� C(θ4− θ3)hj .

Then we obtain using the Cauchy–Schwartz inequality:

C(θ4− θ3)hj �
( cj+hj∫

cj−hj
dy G2(hj , y − cj )

)1/2

×
( cj+hj∫

cj−hj
dy
∣∣T (x0, y)− T (x0+ η0, y)

∣∣2)1/2

�Ch
1/2
j

( cj+hj∫
cj−hj

dy

∣∣∣∣∣
x0+η0∫
x0

dx Tx(x, y)

∣∣∣∣∣
2)1/2

�Ch
1/2
j

(
η0

cj+hj∫
cj−hj

dy

x0+η0∫
x0

dx T 2
x (x, y)

∣∣∣∣∣
2)1/2

and (2.22) follows. ✷
A bound similar to (2.21) holds for the integral involvingη1 in (2.20). We use these

two estimates in (2.20) to get
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x1∫
x0

dx

cj+hj∫
cj−hj

dy
[
Tt + κ

v0hj

[
κ|∇T |2+ v2

0

κ
f
(
T (x, y)

)]]+ κ

cj+hj∫
cj−hj

dy

x1∫
x0

dx |∇T |2

� CFj � C ′
cj+hj∫

cj−hj
dy |u(y)|. (2.24)

A similar estimate holds also for the intervalsIj , on whichu(y) < 0. The only difference
would be that at the first step of obtaining the analog of (2.14) one has to drop the integral
involving Tt and not that off (T ). The rest of the estimates still hold. We use Lemma 1
in (2.24) to get after summation over all intervalsIj :

V (t)�C
∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(y)| dy

H
,

with l = κ/v0. Finally, we can always addv0 to the right hand side by Proposition 1.
This finishes the proof of Theorem 3.

3. Percolating flows

We now consider equation

Tt + u(x, y) · ∇T = κ�T + v2
0

κ
f (T ), (3.1)

T (x, y,0)= T0(x, y),

in a more general class of flows, which we call “percolating”. By this we mean that there
exist tubes of streamlines of the advecting velocityu(x, y), which connectx = −∞
and x = +∞ in either direction, as depicted on Fig. 3. We assume that the flow has
zero mean (1.12) and hence such tubes of streamlines will go in both directions. More
precisely, let us assume that there exist regionsD+j andD−J , j = 1, . . . ,N , such that each
of them is bounded by the streamlines ofu(x, y), and the projection of each streamline
of u(x, y), contained in eitherD+j or D−j , onto thex-axis covers the whole real line
(these projections need not be one-to-one, however). We denote byD± the union of all
D±j respectively.

We will further assume that the velocityu(x, y) is periodic in space. Then it is known
[3,31,32] that for ignition nonlinearity (1.10) there exist periodic traveling fronts. They
have the formT (x−ct, x, y) and are periodic in the last two variables and monotonically
decreasing in the first one. These solutions satisfy our main condition

∂T

∂t
(x, y, t) � 0. (3.2)
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Fig. 3. Streamlines ofu(x, y).

Our results may be generalized in a straightforward manner to non-periodic percolating
flows as long as initial data satisfies (3.2):

κ�T0+ v2
0

κ
f (T0)− u · ∇T0 � 0. (3.3)

However, we restrict our attention to periodicu(x, y) to simplify the presentation.
We assume that the streamlines inD±j are sufficiently regular, so that inside each

D±j there exists a one-to-oneC2 change of coordinates(x, y)→ (ρ, ξ), such thatρ is
constant on the streamlines, whileξ is an orthogonal coordinate forρ (with a slight abuse
of notation we shall use the same notation(ρ, ξ) in all D±j , although these coordinates
may not be defined globally). Moreover,u ·∇ξ > 0 in D+j , whileu ·∇ξ < 0 in eachD−j .
The variableρ varies in the interval[c±j − h±j , c

±
j + h±j ], while ξ varies in(−∞,∞)

in the setD±j . See Fig. 4 for a sketch of coordinates(ρ, ξ). The square of the length
element inside each setD±j is given by

dx2+ dy2=E2
1(ρ, ξ)dρ2+E2

2(ρ, ξ)dξ2.

We assume that the functionsE1,2 are bounded from below:

C−1 �E1,2(ρ, ξ) (3.4)

uniformly on allD±j . Moreover, the function

ω(ρ, ξ)= E2(ρ, ξ)

E1(ρ, ξ)
(3.5)
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Fig. 4. Curvilinear coordinates(ρ, ξ).

satisfies the following bounds:

C−1 � |ω(ρ, ξ)|� C,

∣∣∣∣∂ω∂ξ (ρ, ξ)
∣∣∣∣,
∣∣∣∣∂ω∂ρ (ρ, ξ)

∣∣∣∣� C

h±j
onD±j , respectively,

(3.6)
with 2h±j being the absolute value of the difference of the values ofρ on the two
components of the boundary∂D±j (recall thatD±j are bounded by two streamlines of
u(x, y)). Finally we assume that the flux densityE1u does not oscillate too much on the
setD±j :

‖E1u‖∞,j

2
�E1(ρ, θ)|u(ρ, θ)|� ‖E1u‖∞,j for (x, y) ∈D±j ,

‖E1u‖∞,j = sup
(ρ,ξ)∈D±

j

∣∣E1(ρ, ξ)u(ρ, ξ)
∣∣. (3.7)

Note thatE1(ρ, ξ)|u(ρ, ξ) is independent ofξ . In particular if

u(x, y)=UH∇⊥; =UH

(
∂;

∂y
,− ;

∂x

)

with |∇;| � C/H we may chooseρ = H;(x, y) so thatE1 = 1
H |∇;| . Then we

haveE1|u| = U , so that (3.7) holds automatically and (3.4) also holds forE1. Other
conditions on the streamlines may be also easily restated in terms of the stream function
;(x, y).

We do not make any assumptions on the behavior of the streamlines ofu(x, y) outside
the regionsD+ andD−. In particular, there may be pockets of still fluid, streamlines may
be closed, etc. (see Fig. 3).

Then we have the following theorem.

THEOREM 4. –Let T (x, y, t) be a solution of(3.1) with the boundary conditions
(1.3) and (1.4) or (1.5), with the initial dataT0(x, y) satisfying(3.3), and nonlinearity
f (T ) satisfying (1.8). Let each of the setsD±j be of the formD±j = {ρ ∈ [cj − hj ,
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cj + hj ]}. Then under the assumptions(3.4) and (3.6) on the streamlines of the flow
u(x, y) ∈ C1(�), we have

V (t)�C

(
v0+

∑
D±
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(ρ, ξ)|E1(ρ, ξ)

dρ

H

)
(3.8)

for all t > 0. Here l = κ/v0 and the constantC in (3.8) depends only on the function
f (T ) and the constants appearing in(3.4)and (3.6).

Note that the integrals on the right side of (3.8) give fluxes ofu(x, y) through the
tubes of the streamlines. As in the shear case the pre-factor(1+ l/hj )

−1 agrees with the
homogenization limit [9,18].

Recall that traveling fronts for periodic flows have the form

T (x, y, t)=U(x − ct, x, y) (3.9)

with the functionU(s, x, y) being periodic in the last two variables. It was shown in
[3,31,32] that in the ignition nonlinearity case (1.10) such traveling fronts exist and
their speedc∗ is unique. Their existence for the KPP nonlinearities (1.9) was shown
recently in [3] withc � cu, cu being the minimal traveling front speed. The following
analog of Corollary 1 holds for percolating flows, which we formulate separately for the
convenience of the reader.

COROLLARY 2. –Let f (T ) be either of the ignition nonlinearity type(1.10), or of
the KPP type(1.9). Let alsoU(x − ct, x, y) be a traveling wave-type solution of(3.1),
periodic in the second two variables. Then there exists a constantC > 0 that depends
only on the function f and on the constants appearing in(3.4)and(3.6)such that

c � C

(
v0+

∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(ρ, ξ)|E1(ρ, ξ)

dρ

H

)
.

Proof. –Corollary 2 follows from Theorem 4 as follows. LetU(x − ct, x, y) be a
periodic traveling front solution of (3.1) such that

U(s, x +L,y)=U(s, x, y)

and letτ = L/c. Then we have

1

τ

τ∫
0

V (t)dt = 1

τ

τ∫
0

dt
∫
�

(−cUs(x − ct, x, y)
) dx dy

H

= 1

τ

L∫
0

dt ′
∫
�

[−Us(x − t ′, x, y)
] dx dy

H



330 A. KISELEV, L. RYZHIK / Ann. I. H. Poincaré – AN 18 (2001) 309–358

=− c

L

L∫
0

dt ′
∫
�

[
d

dx
U(x − t ′, x, y)−Ux(x − t ′, x, y)

]
dx dy

H

= c+ c

L

L∫
0

dt ′
∫
�

Ux(x − t ′, x, y)
dx dy

H

= c+ c

L

∫
�

dx dy

H

[
U(x, x +L,y)−U(x, x, y)

]= c. ✷
Remark. – We note that Corollary 2 implies a lower bound on the effective diffusivity

[2] in the homogenization regime. Recall that solutions of the advection-diffusion
equation (3.1) withf (T )= 0, and with advection of the formu(x, y) = U

ε
v(x

ε
,
y

ε
) with

v(x, y) periodic, converge asε→ 0 to the solutionT̄ of the homogenized problem

∂T̄

∂t
= κ∗ij

∂2T̄

∂xi∂xj
, T̄ (x, y,0)= T0(x, y), (x1, x2)= (x, y).

The effective diffusivityk∗ is a complicated functional of advectionUv(y). Explicit
bounds onκ∗ in terms of the magnitudeU of advection are easy to obtain in the shear
case, whenκ∗ may be found explicitly, and effective diffusivity in the direction of the
flow κ∗xx ∼ U2. Using results of [18] one may deduce from Corollary 2 that this bound
applies also to periodic percolating flows, despite the fact that no explicit expression for
κ∗ is known in this case.

Corollary 2 and the stability results of [32] imply the analog of Theorem 1.

THEOREM 5. –Let the initial dataT0(x, y) for Eq. (3.1) satisfy the decay to0,1
conditions(1.6)and(1.7). Then both for KPP and ignition non-linearities we have

lim
t→∞〈V 〉t � C

(
v0+

∑
j

(
1+ l

hj

)−1
cj+hj∫

cj−hj
|u(ρ, ξ)|E1(ρ, ξ)

dρ

H

)
,

where constantC depends only on the non-linearity f and on the constants appearing in
(3.4)and(3.6).

Now we turn to the proof of Theorem 4. The proof is a modification of the proof of
Theorem 3. We will again utilize Lemma 1 as well as averaging along the streamlines of
u(x, y) in order to bound the arising averages of�T in terms of integrals off (T ) and
|∇T |2. The additional technical difficulties are due to the fact that two natural geometries
of the problem – streamlines for the advective term and Euclidean coordinates for
Laplacian – are in harmony in the case of shear flows, but at odds in the case of more
general percolating flows. Moreover, while in the case of shear flows we gave the proof
that we felt was simplest, here we will use the approach which is slightly more involved;
however, it is better adapted for the application to cellular flows in the following sections.

Let us consider a regionD+j = {(ρ, ξ): ρ ∈ [cj − hj , cj + hj ]} with u · ∇ξ > 0.
Introduce notationkj (ρ) = G(hj , ρ − cj )E1(ρ, ξ)|u(ρ, ξ)|(kj does not depend onξ
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by incompressibility ofu(x, y)) and, similarly to the shear case,

Fj =
cj+hj∫

cj−hj
kj (ρ)dρ.

We can findξ1 > ξ0 such that

cj+hj∫
cj−hj

kj (ρ)T (ρ, ξ0)dρ = θ4Fj ,

cj+hj∫
cj−hj

kj (ρ)T (ρ, ξ1)dρ = θ1Fj ,

and for everyξ ∈ [ξ0, ξ1] we have

θ1Fj �
cj+hj∫

cj−hj
kj (ρ)T (ρ, ξ)dρ � θ4Fj .

Let us denote bỹD+j the region bounded by the curvesρ = cj ± hj andξ = ξ0, ξ1. This
region depends on time, but we will suppress this dependence in notation. Theorem 4
will follow from the following

THEOREM 6. –Let T (x, y, t) be a solution of(3.1) with the boundary conditions
(1.3) and (1.4) or (1.5), with the initial dataT0(x, y) satisfying(3.3), and nonlinearity
f (T ) satisfying(1.8). Then under the assumptions(3.4)and (3.6)on the streamlines of
the flowu(x, y) ∈ C1(�), we have for every timet

∫
D̃+
j

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
dx dy � C(ζ, f0)

(
1+ l

h

)−1

(θ4− θ1)
3Fj

with the constantsζ , f0 andθ1,4 defined by(1.11).

Remark. – A similar lower bound on the integral overD+j is easier to obtain, and also
suffices to prove Theorem 4. We chose, however, to formulate Theorem 6 in this stronger
version since this is what we will need when dealing with cellular flows.

Proof. –Let θ3 = θ4− (θ4− θ1)/3, andθ2 = θ1+ (θ4− θ1)/3. Then we may choose
η0 andη1 similarly to the shear case, namely

η0= inf
η

{
η > 0:

cj+hj∫
cj−hj

dρ kj (ρ)T (ρ, ξ0+ η)= θ3Fj

}
,

η1= inf
η

{
η > 0:

cj+hj∫
cj−hj

dρ kj (ρ)T (ρ, ξ1− η)= θ2Fj

}
.
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We chooseα ∈ (0, η0) andβ ∈ (0, η1), integrate (3.1) overξ ∈ (η0 + α,η1 − β) and
average inρ with the kernelG to get

ξ1−β∫
ξ0+α

dξ

cj+hj∫
cj−hj

dρ G(hj , ρ − cj )E1E2Tt (3.10)

− κ

ξ1−β∫
ξ0+α

dξ

cj+hj∫
cj−hj

dρ G(hj , ρ − cj )E1E2[Txx + Tyy]

�
cj+hj∫

cj−hj
kj (ρ)

[
T (ρ, ξ0+ α)− T (ρ, ξ1− β)

]
dρ

� 1

3
(θ4− θ1)Fj .

In (3.10), we dropped the term involvingf (T ) on the right-hand side, as we did in the
shear case. We now look at the term involving the Laplacian:

ξ1−β∫
ξ0+α

dξ

cj+hj∫
cj−hj

dρG(hj , ρ − cj )E1(ρ, ξ)E2(ρ, ξ)
[
Txx(ρ, ξ)+ Tyy(ρ, ξ)

]

= 1

hj

hj∫
0

dδ

ξ1−β∫
ξ0+α

dξ

cj+δ∫
cj−δ

dρ E1(ρ, ξ)E2(ρ, ξ)
[
Txx(ρ, ξ)+ Tyy(ρ, ξ)

]
.

Let us denoteDδαβ the region bounded by coordinate curvesρ = cj ± δ andξ = ξ0+
α, ξ = ξ1− β. Using Green’s formula, we rewrite the last two integrations for fixedδ as

ξ1−β∫
ξ0+α

dξ

cj+δ∫
cj−δ

dρ E1(ρ, ξ)E2(ρ, ξ)
[
Txx(ρ, ξ)+ Tyy(ρ, ξ)

]

=
∫ ∫
Dδαβ

�T dx dy =
∫

∂Dδαβ

∂T

∂n
ds

=
ξ1−β∫

ξ0+α
dξ
[
ω(cj + δ, ξ)

∂T

∂ρ
(cj + δ, ξ)− ω(cj − δ, ξ)

∂T

∂ρ
(cj − δ, ξ)

]

+
cj+δ∫

cj−δ
dρ
[
ω−1(ρ, ξ1− β)

∂T

∂ξ
(ρ, ξ1− β)−ω−1(ρ, ξ0+ α)

∂T

∂ξ
(ρ, ξ0+ α)

]
.

(3.11)

We used the definition (3.5) of the functionω(ρ, ξ)=E2(ρ, ξ)/E1(ρ, ξ) in the last step.
The average of the term on the first line in (3.11) is estimated by the following lemma,
an analog of Lemma 2.
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LEMMA 4. –There exists a constantC > 0 such that we have for allξ ∈ [ξ0, ξ1]

κ

hj

∣∣∣∣∣
hj∫

0

dδ
[
ω(cj + δ, ξ)

∂T

∂ρ
(cj + δ, ξ)− ω(cj − δ, ξ)

∂T

∂ρ
(cj − δ, ξ)

]∣∣∣∣∣

�Cf
−1/2
0 ζ−1 κ

v0hj

[
v2

0

κ

cj+hj∫
cj−hj

dρE1E2f (T )+ κ

cj+hj∫
cj−hj

dρ E1E2|∇T |2
]
, (3.12)

where the constantC depends only on constants in the bounds(3.6)and(3.4).

Proof. –We will show that

∣∣∣∣∣
hj∫

0

dδ ω(cj + δ, ξ)
∂T

∂ρ
(cj + δ, ξ)

∣∣∣∣∣

� Cf
−1/2
0 ζ−1

v0

[
κ

cj+hj∫
cj

dρ T 2
ρ (ρ, ξ)+

v2
0

κ

cj+hj∫
cj

dρ f
(
T (ρ, ξ)

)]
(3.13)

for all ξ ∈ [ξ0, ξ1]. A similar estimate holds for the second term on the left side of (3.12).
By definition ofξ0 andξ1 for everyξ ∈ [ξ0, ξ1] there existsρ0 ∈ (cj − hj, cj + hj) such
thatT (ρ0, ξ ) ∈ [θ1, θ4]. Then givenξ ∈ [ξ0, ξ1] we have two possibilities. First, assume
thatT ∈ (θ1− ζ, θ4+ ζ ) for all ρ ∈ (cj − hj , cj + hj). Then we have for suchξ

cj+hj∫
cj

dρ f
(
T (ρ, ξ)

)
�Cf0

cj+hj∫
cj

dρ ω2(ρ, ξ),

which implies that

∣∣∣∣∣
hj∫

0

dδ ω(cj + δ, ξ)
∂T

∂ρ
(cj + δ, ξ)

∣∣∣∣∣

�
( cj+hj∫

cj

dρω2(ρ, ξ)

)1/2( cj+hj∫
cj

dρT 2
ρ (ρ, ξ)

)1/2

�Cf
−1/2
0

( cj+hj∫
cj

dρ f
(
T (ρ, ξ)

))1/2( cj+hj∫
cj

dρ (T 2
ρ (ρ, ξ)

)1/2

� Cf
−1/2
0

v0

[
κ

cj+hj∫
cj

dρ T 2
ρ (ρ, ξ)+

v2
0

κ

cj+hj∫
cj

dρ f
(
T (ρ, ξ)

)]
.

The other case for a givenξ is that the temperatureT (ρ, ξ) drops out of the range
(θ1 − ζ, θ4 + ζ ) for some ρ. Then we may findρ ′ ∈ (cj − h, cj + hj) such that
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T (ρ ′, ξ ) = θ1 − ζ or T (ρ ′, ξ ) = θ4 + ζ , and, moreover,T ∈ (θ1 − ζ, θ4 + ζ ) for all ρ
betweenρ ′ andρ0. Then we have|T (ρ ′, ξ )− T (ρ0, ξ )|� ζ and hence

( cj+hj∫
cj

dρ f
(
T (ρ, ξ)

))1/2( cj+hj∫
cj

dρ T 2
ρ (ρ, ξ)

)1/2

�
(

ζ 2

|ρ ′ − ρ0|f0|ρ ′ − ρ0|
)1/2

� ζf
1/2
0 .

Then the estimate (3.13) also holds in that case since

∣∣∣∣∣
hj∫

0

dδ ω(cj + δ, ξ)
∂T

∂ρ
(cj + δ, ξ)

∣∣∣∣∣� C

for all ξ , as can be seen from integrating by parts inρ and using (3.6). Sinceζ � 1/2
(3.13) holds in both cases.✷

In order to bring the term in the second line of (3.11) into a form convenient for
analysis we average (3.11) inα and β. Let us consider an estimate on the second
summand after averaging inα over[0, η0]; the other summand is treated similarly.

LEMMA 5. –There exists a constantC, depending only on constants in bounds(3.4)
and(3.6), such that

∣∣∣∣∣ κ

η0hj

hj∫
0

dδ

η0∫
0

dα

cj+δ∫
cj−δ

dρ ω−1(ρ, ξ0+ α)
∂T

∂ξ
(ρ, ξ0+ α)

∣∣∣∣∣
� C

[
f
−1/2
0 (θ4− θ1)

−1 min
(
(θ4− θ1), ζ

)−1 κ

v0hj

×
∫
D̃+
j

dx dy
[
v2

0

κ
f
(
T (x, y)

)+ κ|∇T (x, y)|2
]

+ (θ4− θ1)
−2κ

∫
D̃+
j

dx dy|∇T (x, y)|2
]
. (3.14)

Proof. –We have to estimate the following expression

1

η0

hj∫
0

dδ

η0∫
0

dα

cj+δ∫
cj−δ

dρ ω−1(ρ, ξ0+ α)
∂T

∂ξ
(ρ, ξ0+ α)

= 1

η0

hj∫
0

dδ

cj+δ∫
cj−δ

dρ
[
ω−1(ρ, ξ0+ η0)T (ρ, ξ0+ η0)− ω−1(ρ, ξ0)T (ρ, ξ0)

]
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− 1

η0

hj∫
0

dδ

η0∫
0

dα

cj+δ∫
cj−δ

dρ
∂ω−1

∂ξ
(ρ, ξ0+ α)T (ρ, ξ0+ α). (3.15)

The first term in (3.15) is evidently bounded by

1

η0

∣∣∣∣∣
hj∫

0

dδ

cj+δ∫
cj−δ

dρ
[
ω−1(ρ, ξ0+ η0)T (ρ, ξ0+ η0)−ω−1(ρ, ξ0)T (ρ, ξ0)

]∣∣∣∣∣� Ch2
j

η0
. (3.16)

Furthermore, we claim that

∫
D̃+
j

dx dy|∇T (x, y)|2 � C(θ4− θ3)
2hj

η0
. (3.17)

This is shown exactly as the estimate (2.22) in the proof of Lemma 3 for the shear case,
given the assumption (3.6) onω. We combine (3.16) and (3.17) to obtain

1

η0

∣∣∣∣∣
hj∫

0

dδ

cj+δ∫
cj−δ

dρ
[
ω−1(ρ, ξ0+ η0)T (ρ, ξ0+ η0)− ω−1(ρ, ξ0)T (ρ, ξ0)

]∣∣∣∣∣
�C(θ4− θ3)

−2hj

∫
D̃+
j

dx dy|∇T (x, y)|2. (3.18)

Next we estimate the second term in (3.15):

1

η0

∣∣∣∣∣
hj∫

0

dδ

ξ0+η0∫
ξ0

dξ

cj+δ∫
cj−δ

dρ
∂ω−1

∂ξ
(ρ, ξ)T (ρ, ξ)

∣∣∣∣∣� Chj (3.19)

because of (3.6). Notice that ifη0 � hj , then Lemma 5 follows directly from (3.17).
Hence we can assumeη0 > hj . The following final lemma allows us to finish the proof
of Lemma 5.

LEMMA 6. –Assume thatη0 > hj . Then there exists a constantC, which depends
only on the constants in bounds(3.6)and(3.4), such that

∫
D̃+
j

f (T )dx dy
∫
D̃+
j

|∇T |2 dx dy � Cf0(θ4− θ1)
2(min

(
(θ4− θ1), ζ/2

))2
h2
j .

Remark. – This lemma is much easier to prove withD+j instead ofD̃+j , basically the
argument of Proposition 1 applies. The simpler version is also sufficient for the proof of
Theorem 4, but we need this stronger version for the proof of Theorem 6.



336 A. KISELEV, L. RYZHIK / Ann. I. H. Poincaré – AN 18 (2001) 309–358

Proof. –Let us denote|S| the Lebesgue measure of a measurable setS. We know that

cj+hj∫
cj−hj

kj (ρ)
(
T (ρ, ξ0)− T (ρ, ξ1)

)
dρ = (θ4− θ1)Fj .

Consider two sets

S1= {ρ | T (ρ, ξ0)− T (ρ, ξ1) < (θ4− θ1)/2
}
, S2= [cj − hj , cj + hj ]\S1.

Then ∫
S1

kj (ρ)
(
T (ρ, ξ0)− T (ρ, ξ1)

)
dρ � (θ4− θ1)Fj/2,

and hence ∫
S2

kj (ρ)
(
T (ρ, ξ0)− T (ρ, ξ1)

)
dρ � (θ4− θ1)Fj/2.

SinceT (ρ, ξ0)− T (ρ, ξ1) � 1, andkj (ρ)/Fj � 2h−1
j by the properties ofG and (3.7)

we must have|S2|� (θ4− θ1)hj/4. Chooseρ0 ∈ S2 such that

ξ1∫
ξ0

dξ f
(
T (ρ0, ξ )

)
� 3

|S2|
∫
D̃+
j

f (T )dx dy

and
ξ1∫

ξ0

dξ T 2
ξ (ρ0, ξ )� 3

|S2|
∫
D̃+
j

T 2
ξ dρ dξ � C

|S2|
∫
D̃+
j

|∇T |2 dx dy,

with C depending only on the constants in (3.6). Sinceρ0 ∈ S2, we haveT (ρ0, ξ0) −
T (ρ0, ξ1) � (θ4 − θ1)/2. Assume first that there existsξ ∈ [ξ0, ξ1] whereT (ρ0, ξ ) ∈
[θ1− ζ/2, θ4+ ζ/2]. Then we can findξ0 � ξ2 � ξ3 � ξ1 such that for everyξ ∈ [ξ2, ξ3],
T (ρ0, ξ ) ∈ [θ1− ζ, θ4+ ζ ], and

T (ρ0, ξ2)− T (ρ0, ξ3)� min
(
(θ4− θ1)/2, ζ/2

)
.

Therefore,
ξ1∫

ξ0

f (T )dξ � f0(ξ3− ξ2),

while
ξ1∫

ξ0

T 2
ξ dξ � (min((θ4− θ1)/2, ζ/2))2

ξ3− ξ2
.
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Combining these estimates and the definition ofρ0, we find∫
D̃+
j

f (T )dx dy
∫
D̃+
j

|∇T |2 dx dy �Cf0
(
min
(
(θ4− θ1)/2, ζ/2

))2|S2|2,

which proves the lemma in this case.
The other case we have to consider is that for everyξ ∈ [ξ0, ξ1], T (ρ0, ξ ) /∈ [θ1 −

ζ/2, θ4+ ζ/2]. Then we will be able to find a pointξ ∈ [ξ0, ξ1] so that there is a drop in
temperature along the curveξ = const. AssumeT (ρ0, ξ ) > θ4+ ζ/2 for all ξ , the other
case being similar. By mean value theorem, we also have that for everyξ ∈ [ξ0, ξ1] there
existsρ1 such thatT (ρ1, ξ ) ∈ [θ1, θ4], and soT (ρ1, ξ )� θ4. Similarly to the above, we
can findξ̃ such that

cj+hj∫
cj−hj

dρ f
(
T (ρ, ξ̃)

)
� 3

ξ1− ξ0

∫
D̃+
j

f (T )dx dy � 3

η0

∫
D̃+
j

f (T )dx dy

and

cj+hj∫
cj−hj

dρ T 2
ρ (ρ, ξ̃ )� 3

ξ1− ξ0

∫
D̃+
j

T 2
ρ dρ dξ � 3

η0

∫
D̃+
j

T 2
ρ dρ dξ � C

η0

∫
D̃+
j

|∇T |2 dx dy.

An argument identical to the one we used in the previous case establishes that

cj+hj∫
cj−hj

f (T )dρ � f0(ρ1− ρ2),

while
cj+hj∫

cj−hj
T 2
ρ dρ � ζ 2

4(ρ1− ρ2)

for somecj + hj � ρ1 > ρ2 � cj − hj . This implies that∫
D̃+
j

f (T )dx dy
∫
D̃+
j

|∇T |2 dx dy �Cf0ζ
2η2

0 � Cf0ζ
2h2

j .

Thus Lemma 6 is proven.✷
Lemma 6 and the assumptions (3.4) and (3.6) imply that

∫
D̃+
j

dx dy
[
v0

κ
f (T )+ κ

v0
|∇T |2

]
�Cf

1/2
0 (θ4− θ1)min

(
(θ4− θ1)/2, ζ/2

)
hj .
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Therefore we deduce from (3.19) that

1

η0hj

∣∣∣∣∣
hj∫

0

dδ

ξ0+η0∫
ξ0

dξ

cj+δ∫
cj−δ

dρ
∂ω−1

∂ξ
(ρ, ξ)T (ρ, ξ)

∣∣∣∣∣
�Cf

−1/2
0 (θ4− θ1)

−1 min
(
(θ4− θ1)/2, ζ/2

)−1 1

v0hj

×
∫
D̃+
j

dx dy
[
v2

0

κ
f (T )+ κ|∇T |2

]
. (3.20)

Then (3.15), (3.18) and (3.20) imply Lemma 5.✷
Averaging of (3.11) inβ ∈ [0, b1] produces terms similar to the left side of (3.14),

which are bounded by the same quantity. Now we put together our estimates onD̃+j , that
is, Eqs. (3.10) and (3.11), and Lemmas 4 and 5:∫

D̃+
j

dx dyG(hj , ρ − cj )Tt + ζ−1f
−1/2
0

κ

v0hj

∫
D̃+
j

dx dy
[
v2

0

κ
f (T )+ κ|∇T |2

]

+Cf
−1/2
0 (θ4− θ1)

−1 min
(
(θ4− θ1), ζ

)−1 κ

v0hj

∫
D̃+
j

dx dy
[
v2

0

κ
f (T )+ κ|∇T |2

]

+C(θ4− θ1)
−2κ

∫
D̃+
j

dx dy|∇T |2 � C(θ4− θ1)Fj .

Therefore we obtain(
1+ κ

v0hj

) ∫
D̃+
j

dx dy
[
Tt + v2

0

κ
f (T )+ κ|∇T |2

]
�C(ζ, f0)(θ4− θ1)

3Fj

� C(ζ, f0)(θ4− θ1)
3

cj+hj∫
cj−hj

E1(ρ, ξ)|u(ρ, ξ)|dξ,

which proves Theorem 6.✷
The estimate on the regionsD−j with u · ∇ξ < 0 is similar. The only essential

difference is that in inequality (3.10) we drop the term involvingTt but keep the one
with f (T ), which does not make any difference in the final result. Then Theorem 4
follows after summation over allD±j from Lemma 1 and Proposition 1.✷

4. Cellular flows: The main result

Now we consider (1.2) in a cellular flow:

Tt + u · ∇T = κ�T + v2
0

κ
f (T ), (4.1)
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that is, flow with closed streamlines, and establish a lower bound for the burning rate.
For simplicity, we limit our consideration to one typical representative class of cellular
flows, given by the stream function

ψ(x, y)=UH sin
x

H
sin

y

H
(4.2)

on the strip(−∞,∞)× [0, πH ] (for convenience from now onH will be the width of
the strip divided byπ ). The flowu(x, y) is given by

u(x, y)=U∇⊥ψ(x, y)=U

(
sin

x

H
cos

y

H
,−cos

x

H
sin

y

H

)
. (4.3)

The streamlines inside a period cell are depicted on Fig. 2. The results we prove can be
extended in a direct way to the periodic cellular flows of more general form.

We will further assume that the Peclet number is larger than one:

Pe= UH

κ
� 1 (4.4)

and the size of the cell is larger than the laminar front width:

l

H
� 1, l = κ

v0
. (4.5)

Conditions (4.4) and (4.5) are natural for flows of large amplitude and for thin fronts.
Moreover, our results may be easily adapted to the other regimes, where (4.4) and (4.5)
are violated. We introduce also the turnover timeτu, and the chemical reaction timeτc:

τu = H

U
, τc = κ

v2
0
. (4.6)

It turns out that the ratioτu/τc is the crucial parameter for burning in the cellular flows.
Finally we assume thatT (x, y, t) satisfies the usual boundary conditions and that

∂T

∂t
(x, y, t) � 0.

As we noted previously, this condition is satisfied as long as it holds initially.

THEOREM 7. –Let T (x, y, t) be a solution of(2.1) with the boundary conditions
(1.3) and either(1.4) or (1.5), and the cellular flow given by(4.3). Let the initial data
T0(x, y) satisfy(2.4), (1.6)and(1.7), and let the non-linearityf (T ) be of either ignition
or general KPP type. Furthermore, assume that(4.4) and (4.5) hold. Then we have for
any timet

V (t)�



(
C1

√
τc
τu
+C2

)
v0, if τc � τu,(

C1
(
τc
τu

)1/5+C2
)
v0, if τc � τu.

(4.7)
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The constants in the inequalities depend only on the reactionf , more particularly on
constantsf0, ζ , andθ4− θ1 that appear in(1.11).

Remark. – As we noted above, in order to avoid excessive details, we chose not
to formulate Theorem 7 in the exhaustive form which goes through all possible
relationships between parameters (largeκ limit, small H limit, small v0 limit). The
reader will find it not difficult to extend the results we prove to the above mentioned
regimes. Theorem 7 is formulated here for the range of parameters that appears to be
physically reasonable for most problems of interest.

Furthermore, we have the following corollary.

COROLLARY 3. –Letf (T ) be of ignition nonlinearity type(1.10), or of the KPP type
(1.9)and letc be the speed of a traveling wave-type solutionT (x, y, t)=U(x−ct, x, y)
of (4.1) , periodic in the second two variables. Then there exist constantsC1,2 > 0 which
depend only on the functionf and on the constants appearing in(3.4) and (3.6) such
that

c �



(
C1

√
τc
τu
+C2

)
v0, if τc � τu,(

C1
(
τc
τu

)1/5+C2
)
v0, if τc � τu.

Corollary 3 follows from Theorem 7 since the traveling front profileU(s, x, y) is
monotonically decreasing ins (see [31] for the ignition case, and [3] for KPP). Then
Theorem 2 follows immediately from Corollary 3, results of [31] and the argument we
gave in the proof of Theorem 1.

The proof of Theorem 7 is a boundary layer argument that proceeds, roughly, as
follows. The temperature drops from one on the left to zero on the right. We will watch
the temperature in the layers of widthh formed by streamlines near the boundary of
the cells. The drop of temperature in these layers may occur inside the cells or over
the diffusive interfaces. The first estimate, which we call advective, shows how much
the cell must contribute to the bulk burning rate if a certain drop of the temperature
(in the range[θ1, θ4]) takes place along the streamlines inside the cell. It is reasonable
to expect that the drop over the cell will be small when advection is strong since it
mixes the fluid inside the cell quickly: in an analytic form this intuition will translate
into a large lower bound for the burning rate if the temperature drop is significant. The
second estimate, which we call diffusive, gives a lower bound for the burning rate given
certain drop of the temperature between the two cells. We do expect the temperature
to drop on the boundaries, and hence the lower bound is only effective if we chooseh

in an appropriate way, sufficiently small. Finally, we prove the reaction estimate, which
takes into account the total area of the region over which the temperature drops. These
estimates will be brought together to establish the lower bound for the bulk burning rate
using an appropriate optimization argument.

5. Cellular flows: regularity of the streamlines

Our first objective is to define appropriate curvilinear coordinates on the cells, and to
show that these coordinates satisfy certain technical assumptions that we will need. The
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natural choice of the coordinateρ, which is constant on the streamlines, is

ρ(x, y)= ψ(x, y)

U
=H sin

x

H
sin

y

H
. (5.1)

We have certain freedom in the definition of the orthogonal coordinateξ along the
streamlines:

∇ξ =Q∇⊥ρ, (5.2)

whereQ is some function which should satisfy

∇ρ · ∇Q=−Q�ρ. (5.3)

It is easy to compute that

∂ρ = xρ∂x + yρ∂y = ξy

J
∂x − ξx

J
∂y,

whereJ = ρxξy − ρyξx =−Q|∇ρ|2. Hence

∂ρ = 1

|∇ρ|2∇ρ · ∇,

and so we have from (5.3)

∂Q

∂ρ
=−Q�ρ

|∇ρ|2 . (5.4)

We will chooseQ so thatQ(H/2, ξ ) = 1; Eq. (5.4) then allows us to defineQ in the
regionH > ρ > 0:

Q(ρ, ξ)= e
−
∫ ρ
H/2

�ρ(h,ξ)

|∇ρ(h,ξ)|2 dh
. (5.5)

We have the following auxiliary

LEMMA 7. – In the regionH/2� ρ > 0 we have the following bound for the function
Q:

0< e−1 �Q(ρ, ξ)� e.

Proof. –Consider formula (5.5). We have

�ρ =−2π2

H 2
ρ(x, y),

and

|∇ρ|2=
(

cos
x

H
sin

y

H

)2

+
(

sin
x

H
cos

y

H

)2

=
(

sin
y

H

)2

+
(

sin
x

H

)2

− 2ρ2

H 2
� 2

ρ

H

(
1− ρ

H

)
� ρ

H
(5.6)
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in the regionρ �H/2. Hence in the regionH/2� ρ > 0.

|�ρ|
|∇ρ|2 � 2/H.

Therefore, by (5.5), we have e−1 �Q� e in this region. ✷
Recall our notation

dx2+ dy2=E2
1 dρ2+E2

2 dξ2, ω = E2

E1
.

The next proposition summarizes some of the properties of the coordinates(ρ, ξ) in a
region of interest to us.

PROPOSITION 2. –For the cellular flow defined by(4.3)and coordinatesρ, ξ defined
by (5.1), (5.2), and(5.5), the following bounds hold in the regionH/2� ρ > 0:

E1,2(ρ, ξ)� C, (5.7)

0<C−1 � ω(ρ, ξ)� C, (5.8)∣∣∣∣∂ω∂ρ (ρ, ξ)
∣∣∣∣� CH−1, (5.9)

∣∣∣∣∂ω∂ξ (ρ, ξ)
∣∣∣∣� CH−1| log(ρ/H)|.

Proof. –Direct computation gives thatE1= 1/|∇ρ|, E2= 1/Q|∇ρ|. Then Lemma 7
and the fact that|∇ρ|� 1 imply (5.7). It follows from the definition ofω thatω= 1/Q,
and hence Lemma 7 implies (5.9). Next,

∣∣∣∣∂ω∂ρ
∣∣∣∣= 1

Q

|�ρ|
|∇ρ|2 � 2e

H
,

proving (5.10). Finally,

∣∣∣∣∂ωρξ
∣∣∣∣= 2

QH 2

∣∣∣∣∣
ρ∫

H/2

h∂ξ

(
1

|∇ρ|2
)

dh

∣∣∣∣∣.

Notice that

∂ξ = xξ ∂x + yξ∂y = ρy

Q|∇ρ|2∂x −
ρx

Q|∇ρ|2∂y.
A straightforward computation using (5.5) and (5.6) leads to

∣∣∣∣∂ω∂ξ
∣∣∣∣� C

H

∣∣∣∣∣
ρ∫

H/2

dh

h

∣∣∣∣∣�CH−1| log(ρ/H)|. ✷
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6. Cellular flows: Advective estimate

Let us introduce some notation. Within the cell, we will normalizeξ by letting it be
zero in the negative direction of thex axis (assuming that the origin has been placed in
the center of the cell). We will denote byL the value ofξ in the positive direction of
thex axis. In every cell, we will consider a tube of streamlines bounded byρ = h and
ρ = 3h; h will be always assumed to be less thanH/6. We set

k(ρ)=G(h,ρ − 2h)E1(ρ, ξ)|u(ρ, ξ)|.
The fact thatk(ρ) does not depend onξ is a direct corollary of incompressibility of
the flow. Moreover, with our definition ofρ for the cellular flow, we havek(ρ) =
UG(h,ρ − 2h). We also denote

F =
3h∫
h

k(ρ)dρ.

As a corollary of Proposition 2, in the striph � ρ � 3h we have all conditions onE1,2

andω that have been necessary for the percolating flow estimates. In particular, we have

∣∣∣∣∂ω∂ξ
∣∣∣∣�CH−1| log(ρ/H)|�Ch−1, (6.1)

sinceh� ρ �H . We first state an estimate very similar to Theorem 6.

THEOREM 8. –Assume that within one cellC, there exist two valuesξ0, ξ1 such that
for somes0, s1 ∈ [θ1, θ4], s0 > s1, we have

3h∫
h

k(ρ)T (ρ, ξ0)dρ = s0F,

3h∫
h

k(ρ)T (ρ, ξ1)dρ = s1F,

s1F �
3h∫
h

k(ρ)T (ρ, ξ)dρ � s0F for ξ ∈ [ξ0, ξ1].

LetD be the region bounded by the curvesρ = h, ρ = 3h, ξ = ξ0 andξ = ξ1. Then

∫
D

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
dx dy � C(ζ, f0)

(
1+ l

h

)−1

(s0− s1)
3F. (6.2)

The constantC in (6.2) depends only on parametersζ andf0 of the reactionf , that
appear in(1.11), and on the constants in the bounds of Proposition2.

Proof. –The proof is exactly the same as for Theorem 6 for percolating flows. We
need only to replaceθ1 with s1, θ4 with s0, and setcj = 2h, hj = h. ✷
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The estimate (6.2) works well if there is a significant change of the temperature along
the streamlines within the cell. But it has a serious flaw if the temperature drops gradually
and there is little change of temperature inside any cell. The factor(s0− s1)

3 on the right
hand side of the estimate makes it rather inefficient. Our next goal is to derive an estimate
which has linear dependence on the temperature drop when the drop is small. Our main
measurement tool for the temperature within the cell will be the following average

〈T 〉ξ0 =
1

2AF

ξ0+A∫
ξ0−A

dξ

3h∫
h

k(ρ)T (ρ, ξ)dρ.

We will normally takeA so that the region of averaging inξ covers about half of the
width of the strip whenξ0= 0 or ξ0= L, henceA≈H . Our measure of the temperature
change along the cell will be the difference between such averages for differentξ0.

THEOREM 9. –Assume that for allξ in a given cell we have

1

F

3h∫
h

k(ρ)T (ρ, ξ)dρ ∈ [θ1, θ4].

Then for anyξ0, ξ1 we have forA� h

ξ1+A∫
ξ0−A

3h∫
h

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
E1E2 dξ dρ

� C(f0, ζ )

(
1+ l

h

)−1

|〈T 〉ξ0 − 〈T 〉ξ1|F, (6.3)

whereC depends only onf0, ζ and constants in the bounds of Proposition2.

Proof. –We will consider the case where〈T 〉ξ0 > 〈T 〉ξ1, the other case being similar.
Let us integrate

Tt + u · ∇T − κ�T = v2
0

κ
f (T )

in x andy over the region whereξ varies fromξ2 to ξ3, whereξ2 ∈ [ξ0 − A,ξ0 + A],
ξ3 ∈ (ξ1−A,ξ1+A), andρ takes values betweenh and 3h, with kernelG(h,ρ − 2h).
We obtain

ξ3∫
ξ2

dξ

3h∫
h

dρ G(h,ρ − 2h)E1E2Tt(ρ, ξ)− κ

ξ3∫
ξ2

dξ

3h∫
h

dρG(h,ρ − 2h)E1E2�T

�
3h∫
h

dρ k(ρ)
(
T (ρ, ξ2)− T (ρ, ξ3)

)
. (6.4)

As usual, our goal is to control the Laplacian term. Rewrite it in a familiar form
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κ

h

h∫
0

dδ

{ ξ3∫
ξ2

dξ
[
∂T

∂ρ
ω(ξ,2h+ δ)− ∂T

∂ρ
ω(ξ,2h− δ)

]

+
2h+δ∫

2h−δ
dρ
[
∂T

∂ξ
ω−1(ξ3, ρ)− ∂T

∂ξ
ω−1(ξ2, ρ)

]}
. (6.5)

We carry out two more averagings in (6.4)

1

4A2

ξ0+A∫
ξ0−A

dξ2

ξ1+A∫
ξ1−A

dξ3

to be able to estimate the second part of the Laplacian term (6.5). Let us start by
estimating the first expression in square brackets, more precisely,

κ

h

h∫
0

dδ

ξ3∫
ξ2

dξ
∂T

∂ρ
ω(ξ,2h+ δ)

(the other part is estimated similarly). Notice that by the assumption of the theorem for
everyξ there existsρ (depending onξ ) such thatT (ρ, ξ)∈ [θ1, θ4]. The estimate of this
term now follows step by step the estimate of the same term in the proof of Theorem 6.
We get that for everyξ ∈ [ξ0−A,ξ1+A],

κ

h

h∫
0

dδ
∂T

∂ρ
ω(ξ,2h+ δ)�Cf −1/2ζ−1 κ

v0h

3h∫
h

[
κ|∇T |2+ v2

0

κ
f (T )

]
E1E2 dρ. (6.6)

The integrations inξ2,3 simply average out, they are not needed for this term.
Let us now consider the estimate of the second expression in square brackets in (6.5),

more particularly the first summand (the second one is estimated in the same way).
Averaging inξ2 simply disappears since there is no dependence on this variable, and we
are left with

κ

2hA

h∫
0

dδ

2h+δ∫
2h−δ

dρ

ξ1+A∫
ξ1−A

dξ3
∂T

∂ξ
ω−1(ξ3, ρ).

The following lemma is the crucial step in the proof.

LEMMA 8. –Under conditions of Theorem9 we have

κ

2hA

h∫
0

dδ

2h+δ∫
2h−δ

dρ

ξ1+A∫
ξ1−A

dξ3
∂T

∂ξ
ω−1(ξ3, ρ)

� Cf
−1/2
0 ζ−1 κ

hv0

∫
D

[
κ|∇T |2+ v2

0

κ
f (T )

]
dx dy, (6.7)
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where the constantC depends only on the bounds in Proposition2.

Proof. –Integrating by parts and using (6.1), we find that

∣∣∣∣∣
ξ1+A∫

ξ1−A
dξ3

∂T

∂ξ
ω−1(ξ3, ρ)

∣∣∣∣∣� C

(
1+ A

h

)
(6.8)

and therefore

κ

2hA

∣∣∣∣∣
h∫

0

dδ

2h+δ∫
2h−δ

dρ

ξ1+A∫
ξ1−A

dξ3
∂T

∂ξ
ω−1(ξ3, ρ)

∣∣∣∣∣�Cκ

(
h

A
+ 1
)

�Cκ. (6.9)

We have to consider several cases.
Option 1. There existsρ0 such that for allξ ∈ [ξ1− A,ξ1+ A], we haveT (ρ0, ξ ) /∈

[θ1− ζ/2, θ4+ ζ/2]. By mean value theorem, for everyξ , there also existsρ1(ξ) such
that T (ρ1, ξ ) ∈ [θ1, θ4]. Then for everyξ we can findρ3 > ρ2 such that|T (ρ2, ξ ) −
T (ρ3, ξ )| = ζ/2, and for everyρ ∈ [ρ2, ρ3], T (ρ, ξ) ∈ [θ1− ζ/2, θ4+ ζ/2]. Therefore,
as we have seen before, for everyξ ∈ [ξ1−A,ξ1+A] we have

( 3h∫
h

dρ T 2
ρ

)1/2( 3h∫
h

dρ f (T )

)1/2

� ζf
1/2
0

2
.

Hence, using Cauchy–Schwartz and integrating inξ , we get

3h∫
h

dρ

ξ1+A∫
ξ1−A

dξ E1E2

(
κ|∇T |2+ v2

0

κ
f (T )

)
� v0ζf

1/2
0 A

2
.

From this inequality and (6.9) our lemma follows sinceA� h.
Option 2. For everyρ, there existsξ4 such thatT (ρ, ξ4) ∈ [θ1− ζ/2, θ4+ ζ/2]. Here

we have to consider two distinct sets ofρ. First, assume thatT (ρ, ξ) ∈ [θ1− ζ, θ4+ ζ ]
for all ξ . Denote the set of all suchρ by S1. Forρ ∈ S1 we have

ξ1+A∫
ξ1−A

f (T )dξ � Cf0

ξ1+A∫
ξ1−A

ω−2(ρ, ξ)dξ,

and so∣∣∣∣∣
ξ1+A∫

ξ1−A

∂T

∂ξ
ω−1(ρ, ξ)dξ

∣∣∣∣∣�Cf
−1/2
0

( ξ1+A∫
ξ1−A

f (T )dξ

)1/2( ξ1+A∫
ξ1−A

T 2
ξ dξ

)1/2

�Cf
−1/2
0 v−1

0

ξ1+A∫
ξ1−A

[
κ|∇T |2+ v2

0

κ
f (T )

]
E1E2 dξ. (6.10)
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The second case is that there existsξ4 ∈ [ξ1 − A,ξ1 + A] such thatT (ρ, ξ4) /∈ [θ1 −
ζ, θ4+ ζ ]. Denote the set of all suchρ by S2. Forρ ∈ S2, we can findξ5 andξ6 such that
|T (ρ, ξ5)− T (ρ, ξ6)| = ζ/2, andT (ρ, ζ ) ∈ [θ1− ζ, θ4+ ζ ] for all ξ betweenξ5 andξ6.
In this case, similarly to the above reasoning, we have

ξ1+A∫
ξ1−A

f
(
T (ρ, ξ)

)
dξ

ξ1+A∫
ξ1−A

T 2
ξ (ρ, ξ)dξ �Cζ 2f0,

and so

f
−1/2
0 ζ−1v−1

0

ξ1+A∫
ξ1−A

[
κ|∇T |2+ v2

0

κ
f (T )

]
E1E2 dξ �C.

Then (6.8) implies that forρ ∈ S2 we have

∣∣∣∣∣
ξ1+A∫

ξ1−A
dξ3

∂T

∂ξ
ω−1(ξ3, ρ)

∣∣∣∣∣� C

(
1+ A

h

)
f
−1/2
0 ζ−1v−1

0

ξ1+A∫
ξ1−A

[
κ|∇T |2+ v2

0

κ
f (T )

]
E1E2 dξ.

(6.11)
Combining the two estimates (6.10) and (6.11), and taking into account thatA � h, we
obtain the result of Lemma 8.✷

Now we can finish the proof of Theorem 9. Taking into account (6.6) and (6.7) we see
that

ξ1+A∫
ξ0−A

dξ

3h∫
h

dρ G(h,ρ − 2h)E1E2Tt(ρ, ξ)

+Cf
−1/2
0 ζ−1 κ

v0h

ξ1+A∫
ξ0−A

dξ

3h∫
h

dρE1E2

[
κ|∇T |2+ v2

0

κ
f (T )

]

� 1

4A2

ξ0+A∫
ξ0−A

dξ2

ξ1+A∫
ξ1−A

dξ3

3h∫
h

dρ k(ρ)
(
T (ρ, ξ2)− T (ρ, ξ3)

)
,

and this implies

ξ1+A∫
ξ0−A

3h∫
h

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
E1E2 dξ dρ � C(f0, ζ )

(
1+ l

h

)−1

|〈T 〉ξ0 − 〈T 〉ξ1|F.
✷

7. Cellular flows: Diffusive estimate

Our goal in this section is to estimate the burning rate from below in terms of the jump
of the temperature across the interface separating two cells. We will only consider this
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estimate in the context of the particular cellular flow we are studying, though it can be
easily extended to a more general situation. Consider two neighboring cells, which we
denoteCn−1 andCn. We will look at two regionsD2n−1⊂ Cn−1 andD2n ⊂ Cn which are
symmetric under reflection with respect to the line separating the cells (see Fig. 5). The
regionD2n is bounded by the curvesρ = h,ρ = 3h, ξ =−A, andξ =A. For simplicity,
we chooseρ andξ coordinates in cellCn−1 so thatρ changes from−3h to −h andξ
from −A to A on D2n−1 (see the figure). Notice that this is different from the choice
of coordinates we employed locally in each cell in the previous section; in terms of the
old coordinates,D2n−1 ⊂ Cn−1 is bounded by the curvesρ = h,ρ = 3h, ξ = L − A,
ξ = L+A . With the new choice of coordinates, we denote byIn the part ofCn−1 ∪Cn

bounded by the curvesρ = −3h, ρ = 3h, ξ = −A, andξ = A. We also denote, in the
extension of notation of the previous section,

〈T 〉2n−1= 1

2AF

∫
D2n−1

T (ρ, ξ)k(ρ)dξ dρ, (7.1)

〈T 〉2n = 1

2AF

∫
D2n

T (ρ, ξ)k(ρ)dξ dρ (7.2)

(k(ρ) is defined in a natural way ask(−ρ) whenρ < 0).

THEOREM 10. –There exist constantsC1,2 depending only on the constants in the
bounds of Proposition2, such that

κ

∫
In

|∇T |2 dx dy � C1κH

h

(〈T 〉2n − 〈T 〉2n−1
)2

(7.3)

for A=C2H .

Fig. 5. The regionsDn.
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Proof. –Notice that

1

2AF

∣∣∣∣∣
A∫

−A
dξ

( 3h∫
h

k(ρ)T (ρ, ξ)dρ −
−3h∫
−h

k(ρ)T (ρ, ξ)dρ

)∣∣∣∣∣
� 1

2AF

A∫
−A

dξ

3h∫
h

k(ρ)dρ

3h∫
−3h

∣∣∣∣∂T∂ρ (γ, ξ)
∣∣∣∣dγ

�
(

3h

A

)1/2
( A∫
−A

3h∫
−3h

∣∣∣∣∂T∂ρ (ρ, ξ)
∣∣∣∣
2

dρ

)1/2

� C
h1/2

H 1/2

(∫
In

|∇T |2 dx dy
)
.

Comparing the quantity we estimated with the definitions (7.1) and (7.2), we see that
(7.3) follows. ✷

8. Cellular flows: Reactive estimate

It is worthy to note that the diffusive estimate we proved in the last section is quadratic
in the drop of the temperature over the interface. With the estimates we currently have we
could not prove any lower bound for the burning rate, since the temperature could stay
constant inside the cells (so that advective estimate does not give us anything) and drop
in extremely small increments over the diffusive interfaces. There is no lower bound
for such scenario because of the quadratic dependence. But in this case, the region
whereT ∈ [θ1, θ4] would be very large, and hence we can hope to get a lower bound
on
∫
f (T ). The following theorem is a rigorous expression of the above idea. We are

mostly interested in the caseH � κ/v0 but include the caseH � κ/v0 for completeness.

THEOREM 11. –Assume that in a given cellCn,

1

F

3h∫
h

T (ρ, ξ)dρ ∈ [θ1, θ4]

for everyξ . Then

∫
Cn

[
κ|∇T |2+ v2

0

κ
f (T )

]
dx dy �C(f0, ζ )v0H min

(
1,
Hv0

κ

)
. (8.1)

Proof. –The proof uses an argument we already used several times when proving
advective estimate. Consider a region inCn bounded by the curvesρ = h andρ =H/2.
By mean value theorem, for everyξ , there existsρ0 ∈ [h,3h] whereT (ρ0, ξ ) ∈ [θ1, θ4].
All ξ fall into two cases. In the first case,T (ρ, ξ) ∈ [θ1− ζ, θ4+ ζ ] for everyρ in the
regionρ ∈ [h,H/2]. Then

v2
0

κ

H/2∫
κ

f
(
T (ρ, ξ)

)
dρ � f0Hv2

0

κ
.
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In the second case, there also existsρ1 ∈ [h,H/2] such thatT (ρ1, ξ ) /∈ [θ1−ζ, θ4+ζ ]. In
this case we can findρ2, ρ3 such that|T (ρ2, ξ )−T (ρ3, ξ )|� ζ , and for everyρ between
ρ2 andρ3, we haveT (ρ, ξ) ∈ [θ1− ζ, θ4+ ζ ]. In this case, by the usual argument, we
have

f
1/2
0 ζ �

( H/2∫
h

f (T )dρ

H/2∫
h

|∇T |2 dρ

)1/2

� 1

2v0

H/2∫
h

[
κ|∇T |2+ v2

0

κ
f (T )

]
dρ.

It is easy to show following Lemma 7 and Proposition 2 that the length of the interval of
integration inξ , 2L, satisfies 2L� CH , whereC is some universal constant. Integrating
overξ , we then get the result of the theorem.✷

9. Cellular flows: Putting it together

Now we have all necessary estimates to establish the lower bound on burning rate in
the case of cellular flows. We begin with an auxiliary computation. Its goal is to choose
the right value ofh depending on other physical parameters fixed in the problem. The
argument below may not be completely rigorous; we will fill in the gaps in the actual
proof. Consider the sequence of averages (7.1), (7.2) introduced in Section 7 devoted to
the diffusive estimate:

. . . , 〈T 〉2n, 〈T 〉2n+1, 〈T 〉2(n+1), 〈T 〉2n+3, . . . ,

wheren varies from−∞ to∞. The values of the averages tend to 1 asn→−∞ and
to 0 asn→∞. Assume that (for sufficiently largeU ) the change is gradual, and there
exists a number of consecutive numbersn where all averages lie in the interval[θ1, θ4].
Moreover, assume that in all cells corresponding to these values ofn, we have

1

F

3h∫
h

k(ρ)T (ρ, ξ)dρ ∈ [θ1, θ4]

for all ξ , so that the reactive and linear advective estimates may be applied in these cells.
It does not concern us here thath has to be chosen yet; as we mentioned above, this is an
auxiliary computation and the rigorous argument will appear in the proof. Let us denote

δTn,α = |〈T 〉2n+1− 〈T 〉2n|

the change of the averages controlled by the advective estimate, and

δTn,d = |〈T 〉2(n+1) − 〈T 〉2n+1|

the drop of the temperature controlled by diffusive estimate. We also setδTn = δTn,a +
δTn,d which we call the total drop overnth cell. Then we have, according to the advective
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estimate (6.3),

∫
Cn

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
dx dy

H
� C(f0, ζ )

(
1+ κ

v0h

)−1
Uh

H
δTn,a, (9.1)

where the constantC depends only onf0, ζ and fixed constants associated with the
geometry of streamlines of the flow. According to the diffusive estimate (7.3), we also
have ∫

Cn∪Cn+1

(
κ|∇T |2+ v2

0

κ
f (T )

)
dx dy

H
� C

κ

h
δT 2

n,d . (9.2)

Also for everyCn from the region we consider, we have by the reactive estimate (8.1)
that ∫

Cn

(
κ|∇T |2+ v2

0

κ
f (T )

)
dx dy

H
� C(f0, ζ )v0 min

(
1,
Hv0

κ

)
=C(f0, ζ )v0 (9.3)

under the assumptionHv0/κ > 1 (see (4.5)). Fix some cellCn, and introduce a
parameter 0� an � 1 such that

anδTn = δTn,d, (1− an)δTn = δTn,a.

According to (9.1), (9.2), and (9.3), we have∫
Cn∪Cn+1

(
κ|∇T |2+ v2

0

κ
f (T )

)
dx dy

H

� C

[(
1+ κ

v0h

)−1
Uh

H
δTn(1− an)+ κa2

n

h
δT 2

n + v0

]
. (9.4)

Over our sequence of cells, the value of temperature averages falls by a fixed amount,
θ4− θ1. We are going to assume that this fall is gradual, and consider the lower bound
on the contribution of the cellsCn andCn+1 to the total burning rate normalized by the
temperature falloffδTn over the cellCn. Namely, denote

Vn =
∫

Cn∪Cn+1

(
Tt + κ|∇T |2+ v2

0

κ
f (T )

)
dx dy

H
,

then the burning rateV satisfies

V � 1

6

∑
n

Vn.

Eq. (9.4) may be rewritten as

Vn �C

[(
1+ κ

v0h

)−1
Uh

H
(1− an)+ κa2

n

h
δTn + v0

δTn

]
δTn. (9.5)
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Moreover, ∑
δTn � θ4− θ1,

where summation is taken over the set of cells where all estimates apply. In the lower
bound (9.5),an and|δTn| are out of our control, but we may chooseh optimally. Hence
if we denote

B(κ, v0,U,H)

= max
0�h�H/6

{
min

0�an�1, 0�δTn�2

((
1+ κ

v0h

)−1
Uh

H
(1− an)+ κa2

n

h
δTn + v0

δTn

)}
,

then

V �CB(κ, v0,U,H)(θ4− θ1).

Therefore our goal is to findB(κ, v0,U,H). The minimum inδTn is achieved when

δTn =min
(

2,
1

an

√
v0h

κ

)
.

Let us consider two different regimes.
(1) If κ/v0h� 1 then the minimum is achieved forδTn � 1 and

B(κ, v0,U,H)� C max
0�h�H/3

{
min

0�an�1

(
Uh

H
(1− an)+ κa2

n

h
+ v0

)}
,

whereC is a universal constant. Chooseh out of the conditionUh/H = κ/h, so that

h=
√
κH

U
. (9.6)

Then evidently

B(κ, v0,U,H)� C

(√
κU

H
+ v0

)
= Cv0

(√
τc

τu
+ 1

)

with τc andτu defined in (4.6). Given (9.6), conditionκ/v0h� 1 translates into

1

v0

√
κU

H
= τc

τu
� 1.

For this computation to apply, we also need to ensure thath�H/6, that is,

√
κ

UH
� 1/6,

so thath is in the acceptable range. This is a condition on the Peclet number. All our
bounds will remain valid if replace the choice ofh by Ch with C in some fixed range;
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we just have to adjust the universal constants. Therefore, for presentation purposes we
will henceforth require the condition (4.4)

Pe=
√
UH

κ
� 1.

(2) If κ
v0h

� 1 then, sinceδTn =min(2, 1
an

√
v0h

κ
), we have that

B(κ, v0,U,H)� max
0�h�H/6

min
0�an�1

g(an),

where

g(an)=



Uh2v0

κH
(1− an)+ 2κa2

n

h
+ v0

2
, an � 1

2

√
v0h

κ
,

Uh2v0

κH
(1− an)+ 2an

√
v0κ

h
, an � 1

2

√
v0h

κ
.

Note that

max
0�h�H/6

min
0�an�1

(
Uh2v0

κH
(1− an)+ 2κa2

n

h
+ v0

2

)

�C
((
Uv0H

−1κ
)1/3+ v0

)= Cv0

((
τc

τu

)1/3

+ 1
)
,

since we can chooseh from Uh2v0/(κH)= κ/h, which gives

h=
(
κ2H

uv0

)1/3

. (9.7)

Also

max
0�h�H/3

min
0�an�1

(
Uh2v0

κH
(1− an)+ 2an

√
v0κ

h

)
� C
(
Uv3

0κH
−1)1/5=Cv0

(
τc

τu

)1/5

,

since we can chooseh from Uh2v0/(κH)=√v0κ/h, which gives

h=
(
κ3H 2

U2v0

)1/5

. (9.8)

Therefore,

max
0�h�H/3

min
0�an�1

g(an)� Cv0 min
{((

τc

τu

)1/3

+ 1
)
,

(
τc

τu

)1/5}
.

Notice thatτc/τu � 1 in the regime we consider, sinceτc/τu is also equal to(κ/v0h)
3

with h chosen according to (9.7) or(κ/v0h)
5/2 with h chosen according to (9.8).
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Therefore, we get that the second regime is characterized by

τc

τu
= 1

v0

√
κU

H
� 1,

and in this case

B(κ, v0,U,H)� Cv0

(
τc

τu

)1/5

.

The choice ofh is given by (9.8). In this regime, we also need to assume that

(
κ3

U2H 3v0

)1/5

� 1/6,

so thath is in the acceptable range. This, up to a constant, is a condition

l

H
� Pe2

which is satisfied provided (4.5) and (4.4) hold.
Now we are finally ready to give a proof of Theorem 7.

Proof. –Given the parametersκ , v0, H andU , defineh according to

h= 1

6

√
κH

U
, τc/τu � 1, (9.9)

h= 1

6

(
κ3H 2

U2v0

)1/5

, τc/τu � 1. (9.10)

These choices ensure thath� H/6 provided that (4.4), (4.5) are satisfied. Consider the
smallest integer numberm1 such that〈T 〉i � θ4− (θ4− θ1)/10 for all i � m1. We need
to consider several options. The first is taken care of by

LEMMA 9. – If 〈T 〉m1 � θ4 − (θ4 − θ1)/5 then the bounds of Theorem7 hold.
Moreover, the same is true if for somem,m+ 1, we have〈T 〉m, 〈T 〉m+1 ∈ [θ1, θ4] and

|〈T 〉m+1− 〈T 〉m|� (θ4− θ1)/10.

Proof. –Let us consider the case where〈T 〉m1 � θ4 − (θ4 − θ1)/5, the other case is
similar. If m1= 2n is even, notice that by definition ofm1, 〈T 〉2n−1 � θ4− (θ4− θ1)/10.
Then by the diffusive estimate (7.3) we obtain

V � 1

3
Vn � C

κ

h
(θ4− θ1)

2.

In the case whereτc/τu � 1 putting inh given by (9.9) gives exactly the bound (4.7) of
Theorem 7, moduloC2v0. But by Proposition 1, we can always addCv0 to the lower
bound onV . In the case whereτc/τu � 1, putting inh given by (9.10) gives the lower
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boundC(κ2U2H−2v0)
1/5 = Cv0(τc/τu)

2/5, which is even better than the bound (4.7)
(modulov0). Hence, Theorem 7 also holds.

If m1 = 2n + 1 is odd, then by definition ofm1, 〈T 〉2n � θ4 − (θ4 − θ1)/10. Thus
temperature falls inside the cellCn, and we may use advective estimate of Theorem 8.
We can findξ0, ξ1 in the cellCn such that

1

F

3h∫
h

k(ρ)T (ρ, ξ0)dρ = θ4− θ4− θ1

10
,

1

F

3h∫
h

k(ρ)T (ρ, ξ1)dρ = θ4− θ4− θ1

5
,

and

1

F

3h∫
h

k(ρ)T (ρ, ξ)dρ ∈
[
θ4− θ4− θ1

5
, θ4− θ4− θ1

10

]

for everyξ betweenξ0 andξ1. By the advective estimate (6.2), we get

V � 1

3
Vn � C(ζ, f0)

(
1+ κ

v0h

)−1

(θ4− θ1)
3Uh

H
.

Direct substitution of the expression (9.9) or (9.10) forh depending on the value ofτc/τu
and comparison of the above bound with (4.7) gives the conclusion of Theorem 7. The
proof of the second statement of this lemma is parallel to the above argument.✷

Lemma 9 proves Theorem 7 unless there exists a sequencem1, . . . ,m2 (of length at
least 8, in fact) such that for everym1 �m�m2.

〈T 〉m ∈
[
θ1+ θ4− θ1

10
, θ4− θ4− θ1

10

]
,

and form=m1, . . . ,m2− 1

|〈T 〉m+1− 〈T 〉m|� θ4− θ1

10
.

Therefore there exists a sequence of at least three (or more) consecutive cells
Cn1, . . . ,Cn2 such that and

〈T 〉2n1 � θ4− 3

10
(θ4− θ1), 〈T 〉2n2+1 � θ1+ 3

10
(θ4− θ1), (9.11)

and

〈T 〉m ∈
[
θ4− θ4− θ1

10
, θ1+ θ4− θ1

10

]
(9.12)



356 A. KISELEV, L. RYZHIK / Ann. I. H. Poincaré – AN 18 (2001) 309–358

for everym such that 2n1 � m � 2n2 + 1. Assume that there exists a cellCn with
n1 � n� n2 where we can findξ0 so that

3h∫
h

k(ρ)T (ρ, ξ0)dρ /∈ [θ1, θ4].

By (9.12) and mean value theorem we can also findξ1 in this cell such that

3h∫
h

k(ρ)T (ρ, ξ1)dρ ∈
[
θ1+ θ4− θ1

10
, θ4− θ4− θ1

10

]
.

Therefore, the advective estimate (6.2) can be applied in this cell, giving

Vn � C(ζ, f0)

(
1+ κ

v0h

)−1

(θ4− θ1)
3Uh

H
.

Hence, similarly to the proof of Lemma 9. Theorem 7 holds in this case. The only
case left to consider is the case where for everyn1 � n� n2, for everyξ in a cellCn, we
have

3h∫
h

k(ρ)T (ρ, ξ)dρ ∈ [θ1, θ4].

In this case the second advective estimate (6.3), as well as reactive estimate (8.1) apply
in every cellCn such thatn1 � n2. Recall the notation

(1− an)δTn = δTn,a = |〈T 〉2n+1− 〈T 〉2n|,
anδTn = δTn,d = |〈T 〉2(n+1) − 〈T 〉2n+1|.

Following the computation we performed at the beginning of this section we get

V � 1

6

n2∑
n=n1

Vn � C

n2∑
n=n1

[((
1+ κ

v0h

)−1
Uh

H
(1−an)+ κ

h
a2
nδTn+v0δT

−1
n

)
δTn

]
. (9.13)

Consider the case whereτc/τu � 1 (the other case is similar but simpler). Putting the
expression forh from (9.10) into (9.13), we get

V � C

n2∑
n=n1

([
v0

(
τc

τu

)1/5

(1− an)+ v0

(
τc

τu

)2/5

a2
nδTn + v0δT

−1
n

]
δTn

)
.

Since by (9.11),
∑n2

n=n1
δTn � 2(θ4− θ1)/5, we have

V � Cv0 min
0�an�1,0�δTn�2

[(
τc

τu

)1/5

(1− an)+
(
τc

τu

)2/5

a2
nδTn + δT −1

n

]
. (9.14)
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It remains to show that the expression in square brackets in (9.14) is always greater
or equal toCv0(τc/τu)

1/5 (we can always addCv0 later to the lower bound forV by
Proposition 1). Ifan < 1/2, the first term in the sum gives exactly the estimate we need
(no matter what is the value ofδTn � 1). Hence it remains to consider the case where
an > 1/2. In this case the sum of the second and third term in the square brackets is
greater than or equal to

Cv0

((
τc

τu

)2/5

δTn + δT −1
n

)
�Cv0

(
τc

τu

)1/5

and this finishes the proof of Theorem 7.✷
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