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ABSTRACT. — In a celebrated paper motivated by applications to image analysis, L. Alvarez,
F. Guichard, P.-L. Lions and J.-M. Morel showed that any monotone semigroup defined on the
space of bounded uniformly continuous functions, which satisfies suitable regularity and locality
assumptions is in fact a semigroup associated to a fully nonlinear, possibly degenerate, secon
order parabolic partial differential equation. In this paper, we extend this result by weakening
the assumptions required on the semigroup to obtain such a result and also by treating the ca
where the semigroup is defined on a general space of continuous functions like, for example,
space of continuous functions with a prescribed growth at infinity. These extensions rely on &
completely different proof using in a more central way the monotonicity of the semigroup and
viscosity solutions methods. Then we study the consequences on the partial differential equatic
of various additional assumptions on the semigroup. Finally we briefly present the adaptatior
of our proof to the case of two-parameters families.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Dans un célebre article motivé par les applications au traitement d’image,
L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel ont montré qu’un semi-groupe monotone
défini sur I'espace des fonctions bornées uniformément continues satisfaisant des hypothéses
régularité et de localité est en fait un semi-groupe associé a une équation aux dérivées partiell
parabolique non linéaire éventuellement dégénérée. Dans le présent article, nous étendons
résultat en affaiblissant légerement les hypothéses nécessaires et en traitant le cas de se
groupes définis sur des espaces généraux de fonctions continues. Ces extension résultent d
preuve totalement différente utilisant de maniére plus centrale la monotonie du semi-groupe ¢
des méthodes de solutions de viscosité. Nous étudions ensuite les conséquences d’hypothé
supplémentaires sur le semi-groupe. Finallement, nous présentons brievement I'adaptation :
cas d'une famille d’opérateurs a deux parametres.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this article, we are interested in nonlinear semigroufi3,>o defined on some
subspaceX c C(R") and satisfying the following monotonicity assumption: for any

frgeX
f<g=TI[f1<T[g] foranyr>0,
where< denotes the partial ordering ¢itR") defined by

f<g<e f(x)<g(k) forallx eR".

In [1], L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel show thatXf=
BUC(RY), the space of bounded uniformly continuous functions, ai# )fo satisfies
in addition suitable regularity and locality assumptions, such a semigroup is associated t
a second-order parabolic partial differential equation. More precisely, they prove that, fol
anyug € BUC(RY), the continuous function(z, x) := T;[uo](x) is a viscosity solution
of an initial value problem of the form

ot 1)

a .
{—M—i—F(x,u,Du,Dzu) =0 in(0,+00) xRY,
u(0,-) =ug in RV,

whereDu and D?u denote respectively the gradient and the Hessian matuix afd F

is a continuous function oR"Y x R x RY x S(N), S(N) being the space of th¥ x N
symmetric matrices. We recall that Eq. (1) is said to be (degenerate) parabolic if the
function F satisfies the so-called “ellipticity” condition: for ale RV, r e R, p ¢ RV
andM, N € S(N),

M<N= F(x,r,p,M) > F(x,r, p,N). (2)

Their proof is essentially done in three steps. The main step is the first one where
using only the regularity assumption on the semigroup together with a contraction
property, they show the existence of a nonlinear infinitesimal generator

L TIfI-f

AT = tI—IHJ]+ t
which is well-defined if f is smooth. Then, using the monotonicity and the locality
assumption, they prove the existence of a continuous fundtiosuch that, for any
smooth functionf,

ALf1(x) = =F (x, f(x), Df (x), D*f(x)) inR".

Finally, using again the monotonicity assumption, a classical argument in viscosity
solutions theory yields that is a viscosity solution of (1).

The first contribution of this article is to provide a completely different and, to
our opinion, far simpler proof of this result, using in a more fundamental way the
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monotonicity of the semigroup. From the technical point of view, this will mean also that
we are also going to use in a more central way viscosity solutions methods. This nev
proof allows us to weaken slightly the assumptions made in [1{To) >0, to remove

the use of a Banach space structureXoand thus to extend the result to a large class of
spacesX.

Before going further in this introduction, we recall that viscosity solutions are weak
solutions for second-order degenerate elliptic partial differential equations and we refe
the reader to M.G. Crandall, I. Ishii and P.-L. Lions [6], W. Fleming and H.M. Soner [7]
for a complete presentation of this theory and to M. Bardi and |. Capuzzo-Dolcetta [2],
G. Barles [3] for an introduction to this theory in the case of first-order equations.

To be more specific on our results, we prove in Section 3, under localized versions o
the assumptions used in [1], that there exists a continuous funktisunch that, for all
xeRVN,

Jim T ZIE e 0, Df@, 027 0) ©
for any smooth functiorf of X and simultaneously that the functiagy, x) := T;[ug](x)
is a viscosity solution of (1) for everyp € X.

Obviously, we need some assumptions Xrbut it is worth noticing that they are
very weak and that they hold for a large class of spacesC(R”Y), like C(RY) itself,
BUC(RY), the space of bounded continuous functions or of continuous functions with
growth conditions at infinity, the space of uniformly continuous functiontc.

In Section 4, we study the consequences of various additional assumptiofig,en
and describe in particular the consequence of a finite speed of propagation property f
T[f] ie.

f(x) <gx)forx e B(xog,r) = 3L, >0
such thatf;[ £1(xo) < T;[g](xo) for t < Ly 17"

The fact that a semigroup satisfying such kind of property is a semigroup associated t
an Hamilton—Jacobi equation was first proved by P.-L. Lions in [12]. Nevertheless, we
give a simplified proof using the Theorem of Section 3 which works in a slightly more
general context.
Then we address the following natural question: do the assumptions usét).en
to connect it to the initial value problem (1) ensure thais the unique solution of
this problem? In [1], the answer was yes; indeed, becauase of the applications to imac
analysis, it was natural to assume that the semigroup commutes with translations ar
additions of constants (which yields anand u-independentF). In this context, a
comparison result holds for the viscosity solutions of (1BIAC(R") (see for example
M.G. Crandall, I. Ishii, P-.L. Lions [6] or Y. Giga, S. Goto, I. Ishii and M.-H. Sato [8]).
Here, on the contrary, the answer is no in general, even for a linear semigroup i
the assumption of commutation with translations is removed. In Section 5, we build ar
example of a semigroup defined B C(R") which satisfy the assumptions of Section 2
and which is associated to a transport equation of the form

9 .
a—l:—i—b(x)-Du:O in (0, +00) x RY.
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But, uniqueness fails for the associated initial value problem.

This example is taken from M.G. Crandall and P.-L. Lions [5] and based on
“pathological” situations for flows ifR" studied by A. Beck in [4]. We give nevertheless
all the details of the construction for the convenience of the reader and in order to ensur
that assumptions of Section 2 hold even in the case BUC(RY).

Finally, in Section 6, we briefly present, as in [1], some necessary adjustements ir
order to extend the results of Section 3 to the case of two-parameters monotone familie
of operatory(7, ;) s~o0. We refer the reader to the book of W. Fleming and H.M. Soner
[7] for developments about this kind of families in the context of viscosity solutions and
optimal control and we just recall here that they are related to time-dependent equation

0 .
8—1: + F(t,x,u, Du, Dzu) =0 in(0,+o0) x RY,

and that the semigroup property is replaced by

T,,=T,;0T,, forallt>s>r>0and7,=Idy.

2. Notations and assumptions on the semigroup

We first describe the functional spaces we use througout this work and the relate
notations.
In the sequelX will denote a subspace GfR") satisfying the following conditions.
(H1) X containsD(R"), the space of*-functions with compact support iRV .
(H2) Foreveryf € X andy € R", the functionx — f(x + y) belongs toX.
(H3) For everyu € X, there existg € CP(RY) such thatx < g, whereCF (RY) =
C*RM)NX.
It is worth noticing that most of the classical subspace€@") used in non-
linear analysis satisfy this three assumptioB€R”"), BUCRY), WL ([RN),
bounded continuous functions, uniformly continuous functions, continuous
functions with growth conditions at infinity. etc.
We give now the assumptions we use throughout this work on the family of mappings
(T}):>0 defined fromX into X and make some comments about it. They are all more or
less slightly weak versions of these used in [1] thus we use the same terminology.

[Causality. —
T,.s=ToT, forallz,s >0 and To=Idy.
[Monotonicity. —For all f,g e X
f<g=TI[f1<Tlgl forallr>=0.

[Continuity]. — For everyug € X, the function(z, x) — T,[ug](x) is continuous and
for all b > a > 0 there existsf, .., € C¥ (RY) such that

|T;[uol| < fapuo, forallzela,bl.
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This last assumption may appear as being unusual and even restrictive. Big fdr
example defined by growth conditions at infinity, it may be equiped with a norm. The
assumption can be seen in this case as a relaxed version of the classical continuity
t — T;[f]in the norm sense.

[Locality]. — For everyf, g € C¥(R") and for any fixedx in R", if f = ¢ on some
B(x,r) then

T,[f1(x) — T;[gl(x) =0(r) ast— OF.

In order to state the next assumption, we introduce some particular subgat® f
already used in [1]. Il = (d,).cn IS @ Sequence of positive numbers, we set

Qs={feDR"),

D*f|| <d, for @ € N” with |a| < n}

wherela| =ay+oax+ -+ o, if o = (a1, ..., a,) e NP,
The assumption (H1) together with the vector spaces structucé allows us to
formulate the following assumption.

[Regularity. — For any sequence of positive numbétdor any compact subséf
RY and for everyf € CP(RY), there exists a positive functiong ,(-) :R* > R*
with mg 74(07) = 0 such that

I TiLf +281(x) = TLLf1(x) — A8 ()| < mk r.a(W)1

forany(x, g) € K x Q, and anyi, ¢t > 0.

Compared to [1], and if we restrict ourselves to tB&IC-framework, it is the
assumption which is the most relaxed. More precisely, we use gnyth compact
support and do not specify the dependenc¢ iior m ;.. Moreover,mg ;. can be an
arbitrary modulus and not only a linear one.

If x ¢ RY, we denote by, the translation operator ai(R”") defined by

LSO =fx+y)

for f e C(RV). Sincer, - X = X from (H2), we also denote by, the restriction ofr, to
X.

[Translatior]. — For any compact subsé&t ¢ RV and everyf € D(R"), there exists
afunctionng /() : RT — RT with ng_(0") = 0 such that

[T - LA = T(z - HOD| <k p(IxDr

foranyye K,t > 0.

We recall that in [1], the semigrou(;), was supposed to be invariant by translation
ie.t, - T;[f1=T,(z, - f) forany f € X andx € R" and to take in account semigroups
which do not satisfy such invariance property is also a main contribution of this article.
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3. Generation of the parabolic P.D.E

The main result is the:

THEOREM 3.1. — Let X be a subspace @f(R") for which(H1), (H2)and(H3) hold.
Let (7;),>0 a family of mappings fronX into X satisfying[Causality, [Monotonicity],
[Continuity, [Locality], [Regularity, and[Translatior]. Then there exists a continuous
function F defined orRY x R x RY x S(N) such that(3) holds for anyf € C¥(R")
andx € RY. Moreover,F satisfies the ellipticity conditio(2) and the function(z, x) :=
T;[uol(x) is a continuous viscosity solution () for every initial dataug € X.

Proof. —For any f € C¥(RY) andr > 0, we set

T, _
Mf]zy.

In [1], in order to prove the existence of the infinitesimal generator, the main step was tc
show that, for small enough(s,[ f1);>0 was a Cauchy sequenceBUC(R"Y). A rather
difficut and technical task where [Regularity] together with the contraction property of
(T1):>0 in BUC(RY) were playing the main roles.

Here the key idea is to avoid this step by introducing and studying the mapgings
andA defined onC(RY) by setting

Al f1(x) =limsupé,[ f1(x)

t—0*t
and
Alflx) = limggf 8 [f1(x).

The functionsA and A can be seen respectively as the “upper infinitesimal generator”
and the “lower infinitesimal generator” for the semigroup. The following lemma shows
that they are well-defined.

LEMMA 3.1 (Boundedness of the upper and lower infinitesimal generatéor any
x e R¥ and f € CF(RY), A[f1(x) and A[ f](x) are finite.

The proof of Lemma 3.1 is based on the following technical result whose proof is
postponed to Appendix A. We recall th@&?>*[u](to, xo) and P>~ [u](to, xo) denote
classically (see, for example, [6]) the second order parabolic semi-jets of the real-value
functionu at (7o, xp).

LEMMA 3.2.— Letug e X and u(z, x) := T;[ug](x). If (a, p, M) € P>*ul(to, x0)
(respecti\CerPZ"[u](to, xo)) then there exists a functiap: (o — a, to +a) x RN = R
such thatp(z, -) € CP(RY) for anyz € (1o — a, 1o + a) with

. a¢p - -
<¢(t07x0)9 E(to,xo), D¢(to, x0), D ¢(t07x0)> = (u(to, x0),a, p, M)
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and
Al (to, )] (x0) = Ald(t0, )] (x0) = —¢(f0, X0)

(respectively2? (1o, xo) < Al (to, )1(x0) < Al (7o, )1(x0)).

It is worth noticing that, a priori, the previous lemma does not say that the lim sup or
liminf are finite.

Proof of Lemma 3.1. %) The continuity ofu(z, x) = T;[0](x) implies that there
exists (11, x1) € (0, +00) x RV (respectively (., x2) € (0, +00) x R") such that
P%Ful(t1, x1) # @ (respectivelyP?~[u](t,, x») # ¥). Using Lemma 3.2, we deduce
the existence of a functiop; € C¥(RY) (respectivelyp, € CF(RY)) such that

Alpr(t1, )] (x1) = i(t1 x1) (4)
and

Aotz 2] (2) < 22,72 5)

2) Using a standard truncation argument together with [Locality], we get the same
inequalities for every®;, @, € D(RV) such that®; = ¢1(11,-) (respectively®, =
¢2(12, -)) on some neighbourhood of (respectivelyx,).

3) Using [Regularity] withf =0, g = ®; andix =1, we get, fori =1, 2

18:[01(x;) — & [@:1(xi)| < my, 00, (D) (6)

we deduce from (6), together with (4) and (5) that

0
A[O](x1) > %(tl, xX1) —my, 0,(1) =Cy (7)
and
— A2
A[0](x2) < ﬁ(fz, X2) +my, ¢,(1) = Co. 8)

4) Writing [Translation] forf = 0 gives for anyt > 0 and ye RY
18:[01Cx; + ) — 8, [0](xi)| < m(x;,y) fori=12

and together with inequalities (7) and (8) this implies that, for amyR", A[0](x) and
A[0](x) are finite.

5) We consider now € D(R") andx € RY. Using [Regularity] as in step 3) and
the previous result, we get a bound fafg](x) and A[g](x). We conclude that the
same property holds fof € C°(R") using again [Locality] together with a standard
truncation arguments. O

Now we turn to further properties of andA.
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LEmmA 3.3 (Structure of the upper and lower infinitesimal generatorffhere exist
two functionsF, F € C(RY x R x RY x S(N)) satisfying(2) such that, for every
feCP@®Y)andx e RV,

ALf1(x) = —F (x, f(x), Df (x), D*f (x))

and

A[f1(x) = —F (x, f(x), Df (x), D*f (x)).

We postpone the proof of this lemma to the end of the present section and
observe that in view of them, the notion of viscosity solution is well-defined for the
parabolic problems associated foand £. The following lemma is then nothing that a
direct consequence of Lemma 3.2 together with the definition of continuous viscosity
solutions.

LEMMA 3.4 (Semigroup, infinitesimal generators and parabolic equationspt—
ug € X. Then the functiom (z, x) := T;[ug](x) is a continuous viscosity solution of

0 .
a—l: + F(x,u, Du, D?u) =0 in (0, +00) x RY

and
0 — .
a—l: + F(x,u, Du, Dzu) =0 in (0, +o0) x RV,
We have now, in order to complete the proof of Theorem 3.1, to showftkaiF .

LEmmA 3.5 (Existence of the infinitesimal generator).Fer any (x,r, p, M) €
RY x R x RY x S(N), we have

F(x,r,p,M)=F(x,r,p, M).
In particular, if we setF := F = F then, for anyf e C;}o(]RN), we have

lim, it} ](xi IO px, ), DF @), D? ).

The proof of Theorem 3.1 is indeed complete since it shows that there exists a functiot
F := F = F defined oriR" x R x R x S(N) such that (3) holds for any € C¥R"Y)
andx € R". The functionF is continuous and elliptic since, by Lemma 3B,anF
are continuous and elliptic and from Lemma 3.4, the function x) := T,[uo](x) is a
continuous viscosity solution of (1) for every initial datge X.

It remains to prove Lemmas 3.5 and 3.3.

Proof of Lemma 3.5. Fo any(x, r, p, M) e R¥ x R x RN x S(N), we associate the
function f. , ,.u defined fory € RY by

1
Ferpm(y) = (” +(p.y—x)+ §<M (=), (y —X)>>V(y —X), ©)
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where v is a fixed function inD(R") with a compact support iB(0, 1) such that
O<v<landv=1onBQO,1/2).
In fact, because of Lemma 3.3, we have to prove that

imsup AW = F@)
h—0t h

F(x, f(x), p, M),

wheref = f, . ,.u. We setu(t, y) := T;[ f1[y] and proceed in several steps.
1) We introduce the family of function&¥, s), s-o defined in Q(co0) x R by

Wys(t, ) = ) +nly = xI?+1[E(x, f(x), p, M) +8]
and claim that for every > 0, there exists), T, r > 0 such that
u(t,y) < Wy,s(t,y) on[0,T]x B(x,r)=2r,. (10)
To prove our claim, we se, s =u — W, s and

Mn,B,T,r = Sup¢n,6-
ET.r

We have to show tha¥,, s 7 . < O for a suitable choice of parameters.
2) To do so, we first remark that, singeand F' are continuous, for every/> 0, there
existsn, T, r > 0 such that

% > —F(y,u(t,y), DW, s, D*W,s) on$2r,. (11)

3) Itis clear that (10) holds of0} x B(xo, ) for everyn, r > 0 with a strict inequality
for x # xo and thus on{0} x 3 B(xg, 7). Using the continuity ofx and the previous
observation, we conclude that for everyr there exist (5, r) > 0 such that (10) holds
on the lateral boundan, 7'(n, r)] x dB(xq, r).

4) We choose the parametgrT, » according to point 2) and 3) above and we assume
by contradiction thatV, s r . > 0. Then necessarily, this maximum is achieved at an
interior point(z, x) € 27, or for7 = T. Sinceu is a viscosity solution of the initial value
problem (1) withF = F and sinceW,, s € C2([0, +00) x RY), it follows, by definition,
that

oW,s _ _ - - -
8:’8(t,)’)<—E()’,M(t»)’),Dn,a(t,J’),DZWn,a(t»)’))

even ift = T (see [3]). But, this inequality contradicts the property (11) above and
therefore (10) holds.
5) We conclude by writing (10) at = x. For sufficiently small

T ~ 1)
Z’ ~

—F(x, f(x), Df (x), D*f(x)) +3].

Taking the lim sup for — 0" and then letting — O, we complete the proof of Lemma
3.5 and also the proof of Theorem 3.1
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We conclude this section by giving thgroof of Lemma 3.3. We provide the proof
for A, the proof forA being essentially the same with straightforward adaptations. We
follow the idea of [1].

1) To obtain thatA[f](x) = F(x, f(x), Df(x), D>f(x)), we takex € RY and
consider two functionsf, g € CP([RY) with D*f(x) = D*g(x) for |a| < 2. We
introduce a functiory, by setting

L) =f) +ely —x?-v(y—x)

recalling thatv is the smooth truncation defined in in the proof of Lemma 3.5.

By Taylor's formula, f. is greater tharg on B(x, r,) for a suitabler,. But in order to
use [Monotonicity], we need an inequality in the whole space. To this end, we use the
functionv, (y) = v((y — x)/r.) and define

Sfe= feve, 8e = 8Ve-

We clearly have

Je>8:

andf,, 3. € C¥(RY) by (H1).
2) Applying [Monotonicity] to the previous inequality we get

Ti(fe) > Ti(E.)-
Sincef,(x) = f:(x) = f(x) = g(x), we have
Ti(fo)x) = fo(x) = T,(3,) (x) — g(x).
Then, sincef, = f. andg =g, on B(x, r./2), we can use [Locality] to obtain
T, (fe)(x) — fe(x) +0(e, 1) = T, (g)(x) — g(x).

Using now [Regularity] withf € C¥(RY), w = |- —x|?v(- —x) € D(RY) andx = ¢ we
get

T,(f)(x) — f(x)+0(e, 1) =2 T (8)(x) — g(x) — my ru(e)L.
Dividing by ¢ and taking the limsup far — 0%, and then letting — O we obtain
ALf1(x) > A[gl(x).

Since the previous computations are symmetri¢ iandg, we get the equality.

3) Here and thereirix, r, p, M) will ever denote an arbitrary element B x R x
R x S(N) and f,, ,.» € D(RY) the function defined by (9). We define the functibn
onRY x R x RY x S(N) by setting

—f(x,r, va) :Z[fx,r,p,M](x) (12)
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and thanks to the previous point we have for gy C¥ (RY) andx € RY

Alf1(x) = —F (x, f(x), Df (x), D*f (x)).

The ellipticity of F is then a direct consequence of [Monotonicity] together with the
obvious following fact

N>2M= fx,r,p,N > fx,r,p,M-

4) To complete the proof of the proposition, we need to see that the fungtiisn
continuous.

Let (x, ro, po, Mo) € RY x R x RY x S(N) and setfo = frg.10.p0.M,- WWE have, using
[Translation], that

\T;[ fol(x0) — Tilt—s - fol(xo+x)| = |t—s - Ti[ fol(xo + x) — T;[7—x fol(x0 + x)|
gnxo,fo(lxl)t-
and thus,
| F(x0, 0, po, Mo) — F (xo + x, ro, po, Mo)| < nyg, 1 (Ix1). (13)

Moreover, for anyR > 0 and any positive sequendewe can rewrite [Regularity] under
the form

|A[ fo+ eg1(xo + x) — A fol (xo + x)| < myg g, fo.a(€)
forany(x, g) € B(0, R) x Q.. We apply the previous inequality with

8e = fxo-i-x,r/s,p/s,M/s

noticing that theg, are in a samead, for |r|, |p|, |M| < ¢ and get that there exists an
R > 0 such that

|F(xo+x,r0, po, Mo) — F(xo+x,r0+7, po+ p, Mo+ M)| <myg g pa(e)  (14)

forany|x|, |r], |pl, IM| <e.
From (13) and (14), we complete the proof of the continuity. O

Remark 3.1. — We want to point out that our proof works if [Regularity] is stated
only for functions f appearing in [Continuity] or which belong tB(R") instead of
f € CP@RY). In particular, ifX is a subspace of bounded functions as in [1], it suffices
to write the assumption only fof € C3°(RY).

4. Consequences of additional propertiesfor the semigroup

We start with elementary facts. The proofs of these facts are straightforward using
Theorem 3.1, so we will omit them.

PROPOSITION 4.1. —Let F be the function which appears in Theor8m.
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(1) If T, is linear for any¢, there exists continuous functioms b, ¢ from R" to
S*(N), RN andR respectively, such that

F(x,r,p,M)=—Tr|a(x)M] + (b(x), p) + c(x)r,

whereS*(N) denote the space of the positive symmetric matrices.
2) FT,[f+Cl=T[f1+ C forany f € X andC € R thenF is independent of.
) If 7 [T ()] =T, [z (/)] for all (z,x) € [0,400) x RV and f € D(RY) then F
is independent of.

It is well-known that, under suitable assumptions, first-order Hamilton—Jacobi
equations satisfy properties of “finite speed of propagation” or “domain of dependence”.
Such properties were first proved by M.G. Crandall and P.-L. Lions in [5] (see also
. Ishii [9] or O. Ley [10] for a different proof).

We address now the question of the converse property: is a semigroup satisfying somn
domain of dependence-type property associated to a first-order equation? The answer
yes and a first result in this direction was first proved by P.-L. Lions in [12] under slightly
stronger but less numerous assumptions than here.

We introduce the following formulation of a domain of dependence property for
(TH)i>o0

[Strong-Locality. — For any £, g € X and any compact subs&t c RY there exists a
positive constanL s, and O< s < 2 such that

f<ginB(xo, R) = T,[ f1(x0) < Ti[g](xo) for t < L s, R*

for anyxop € K and anyR > 0.

THEOREM 4.1. — Let(T;),>0 Satisfy the assumptions of Theor8rhiwhere[Locality]
and [Monotonicity are replaced by[Strong-Locality. There exists a functiorF e
C (RN xR x R") such that, for anyig € X, the function(z, x) — T;[uo](x) is a viscosity
solution of the Hamilton—Jacobi Equation associatedid.e.

ou

ot F(x,u,Du)=0 in (0, +00) x R". (15)

Proof of Theorem 4.1. First it is clear that [Strong-Locality] implies [Monotonicity]
and [Locality] and thus Theorem 3.1 holds. Therefore we have only to prove that

F(x,r,p,A)=F(x,r,p,B) forany(x,r,p,A, B) e RY x R x R¥ x S(N)2
To this end, we consider the functioifs, , » and f; . , p and 12 > n > 0. We have

|B—A| , .
> nv(—x) InB(x,n)

fx,r,p,A < fx,r,p.B +

for n sufficiently small, where is the smooth truncation function defined in the proof
of Lemma 3.5.
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Using [Strong-Locality] and [Regularity], this implies

B—A
| > |n2+mx,,,p,A,B(n2)t forr < Ln’

Tt[fx,r,p.A](x) < Tt[fx,r,p.B](x) +

with L independent of;. Subtractingr, we use this inequality for = L»*, divide by
Ln* and finally we lety — 0. We obtain

_F(x»r,P,A) < _F(x»r,P,B)
and we conclude by the symmetry &fand B in the previous arguments.O

Remark4.1. — More regularity onF occurs with respect tgp if we add more
restrictions on the ternL R* in [Strong-Locality]. For example, if. is independent
of (x, f, g) ands = 1, the nonlinearityF is Lipschitz continuous irp uniformly with
respect to the other variables.

5. Ontheuniquenesfor the associated p.d.e

We will show in this section that uniqueness may fail in general for viscosity
solutions of the partial differential equation associated to a semigroup which satisfie:
only assumptions of Theorem 3.1 or Theorem 4.1 eveh#f BUC(RY).

Our example is entirely taken from [5] where it was used by Crandall and Lions as
a counter-example to uniqueness for viscosity solution of a transport equation when th
natural assumptions are not satisfied. This is related to the non-uniqueness for flows
the associated dynamic studied by Beck in [4].

LEMMA 5.1. — There exist two different continuously differentiable homeomorphism
f, h onR such that

(@) =h(htx)) foranyxeR. (16)

In addition, one can impose that, f~,k,h~* are uniformly continuous of® and f,
f", f” bounded.

Proof. —We follow the ideas of [4] and just introduce slightly specifications in order
to ensure that the assumptions of Section 2 hold.

1) We consider a Cantor s&t C [0, 1] with a strictly positive Lebesgue measure and
a smooth functiorg such that 6< g <1, g(x) =0ifand only ifx € K, g’, g’ bounded
onRandg >n >0 on(—o0, —1]U[2, +00). Then we define a functiofi by setting

Fox) = / g(n)dr.
0

Clearly, f is a Lipschitz continuous differentiable homeomorphism fr&@mo R.
Moreover the last requirement og ensures thatf~* is Lipschitz continuous on
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(—oo, FH(=D]U[f1(2), +00) and thus is uniformly continuous oR since it is
continuous orR.
2) We construct an other differentiable homeomorphishy setting successively

a(x) =x+ n(K N[0, x]),
whereu denote the Lebesgue measurefoand then
h=foal

The functione is strictly increasing continuous and thus is an homeomorphism Rom
to R. Moreover it is a Lipschitz continuous function & Finally we have the following
inequality

a(y2) —a(y) =y2—y1 foranyy, > y; (17)

which ensures that ! is also Lipschitz continuous.

It follows finally that and/x~* are also uniformly continuous.

3) We check the property (16).

(@) We first consider € R such thatf~1(x) ¢ K. We want to check thak is
differentiable at:~*(x). But, sincef~1(x) ¢ K, there is a neighborhood ¢f(x) on
which « is nothing but/dg + ¢ for some constant, and thereforex is differentiable at
f~1(x) with derivative 1.

We deduce from this fact that~! is differentiable ato(f~1(x)) = h~1(x) with
derivative 1 and then thatis differentiable at:~2(x) with

W(hH00) =1x f'(@ ™) = f'(f 7).
(b) Letx € R such thaty = f~%(x) € K. We have

h(h(x)) —h(z) = flaH(h 1)) = fle ()]
< sluplf/l.Kafl.|(h‘1(x)) —zl, (18)

where K,-1 denote the Lipschitz constant far ' and Iy = [a~ (A 1(x)),  1(2)].
Since f is Ct and f'(e¢~(h~1(x))) = f'(f~*(x)) = 0 recalling f ~*(x) € K we obtain
dividing by (A ~%(x)) — X and lettingX — h~(x) that# is differentiable ak~(x) with

W x)=0=f (). O
Following [5] we now define two flows by setting,(z, x) = f(t + f~1(x)) and
Y, (t,x) = h(t + h~%(x)). There flows are distinct and provide two semigroups on
BUC(R) by setting
T/ [uol(x) = uo(Ys(t,x)) (respectivelyl; [uo](x) = uo(Yy(t, x)))

for everyup € BUC(R).
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PrROPOSITION 5.1. — The linear semigrour(T,f)@o satisfies all the assumptions
Theorem4.1 with X = BUC(R). Moreover 7./ and T! give both viscosity solutions
of

au
ot
whereb(x) = f'(f~1(x)) = h'(h*(x)).

Sketch of proof of Proposition 5.1.Itis easy to check tha([Tlf )i>o0 (respectively
(T");>0) is defined orBUC(R) using and thayf ~* (respectively: ~1) is uniformly con-
tinuous. Then, straightforward computations involving the linearity of the semigroups
and the differentiability off and/ show that [Continuity] [Strong-Locality] and [Regu-
larity] hold for (7,),>0 and(T}*),o.

Moreover(Tlf ):>0 satisfies [Translation]. Indeed, fop € D(R), we write

+b(x)-Du(t,x)=0 in (0, +00) x R, (29)

|7y - T/ [uol () = T/ [, - uol(x)]
= |uo[f (=t + [+ )] —uo[f (=t + f 1)) + ¥]|
<N Duolloo - [ f (=1 + fHax + ) = f (=1 +177@0) = y.
But, using a Taylor's formula, we have

|f(=t+ e+ ) = f(=1+ @) =y
1
1—h)?
<tlb(x +y) = b(x)| + 12 / %U”(f‘l(x +y) —ht) = f(f~Hx) — ht)| dh
0

and we get that [Translation] holds foTlf),>0 using the boundedness @f’ together
with the uniform continuity ob = f/ o 1.

But it is worth mentioning that it is not clear that the semigro'), satisfies
the [Translation] property. Anyway, as in [S(z, x) := T,f[uo](x) and uy(t, x) 1=
T'uol(x) are both continuous viscosity solutions of (19), this fact being also a
consequence of Theorem 3.1 only for. O

This example shows in particular that, in general, uniqueness may fail for viscosity
solutions of the initial value problems deduced from semigroups satisfying only the
assumptions of Section 2.

6. The case of two-parameters families

We give briefly the generalization of Theorem 3.1 for a two-parameters family
(T: s)i=s>0 from X into X. As in [1], we use adaptations of the assumptions used for
the one-parameter case.

[Causality. —

T,,=T, 50T, foranyt>s>r>0 and T,,=Idx.
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[Monotonicity. —Foranyf,ge X,t > h >0,

fzg= Tt,t—h[f] P Tz,z—h[g]-

[Continuity. — For any ug € X, t > 0, the function u(h, x) := T4y [uol(x) is
continuous and for ang > a > 0, there existsf,, .., € C¥(R") such that

|Tysniluol| < frugap fOranyh e la,bl.

[Locality]. — For any f,g € C¥(RY) and x € R", if f = gin B(x, R) for some
R > O then

Toi-nl f1() = T, 1—1[gl(x) = O(h) ash— 0.

[Regularity. — For any sequence of positive numbefsany compact subsek C
RY x [0, +00) and everyf € C¥(R") there exists a positive functionk ;,(-) with
mg q4,r(07) =0 such that

| Ti—nlf +281(x) = T —n[f1(x) — Ag ()| < m ra(Mh

forevery((x,1),g) € K x Q4,2 >0,0< h <1t.

[Translatior]. — For any compact subsé& c RY x [0, +o0) and any f € D(RY)
there exists a functiong /(-) with ng (0%) = 0 such that

|y - Tronl F1) = Thon(zy - H)X)] <ng p(IyDh

forevery((x,1), f) e K x Qu, y e RN, 0<h < 1.
In addition, we need as in [1] the following property:

[Stability]. — For every sequence of positive humbetsand any compact subset
K C RY, there exists a functiopk 4(-) with px 4(07) = 0 such that

|Tt,t—h[f](-x) - Tt’,t’—h[f](x)| < pra(lt —t'Dh

forany(x, f) e K x Qq,t,t' >h > 0.
We have then the:

THEOREM 6.1. — Let (7} ),>s>0 a family of mappings defined froml¥ into X
where X c C(RY), satisfying [Causality, [Monotonicity}, [Continuity], [Locality],
[Regularity, [Translatior] and [Stability] and X satisfies(H1)—(H3). There exists a
continuous functionF on [0, +00) x RY x R x RY x S(N) such that for anyf e
CE¥RV), x e RY

im Lra=nlf100) = f(x)

h—0t h

= A[f1(x) = —F(t,x, f(x), Df (x), D*f(x)).
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Moreover, the functiorF satisfies the ellipticity conditio(2) and for anyug € X, the

functionu(z, x) := T; o[uo](x) is a continuous viscosity solution of the Cauchy problem

u 2N 0 i N

{ o T F(t,x,u, Du, Du) = 0 !n (01:/+oo) x R¥Y, (20)
u(0, ) =ug in RY,

Proof. —First, we observe that for every fixed 0 the mapping$7; ;) >n>o Satisfy
the same properties &$%},),>0 except [Causality]. Thus the proof is nothing else that a
straigthforward adaptation of those we have given in the one parameter case. Therefo
we do not mention every details and just give the essential adjustements.

Again, we define two time-dependent mappings by

fimsup =t = FC) i sios, aLf 1) = A LA

h—0+ h h—0+

and
lim inf Ti—nlf1(x) — f(x)
h—0t h

1) For Lemma 3.2, we have first to obtain the equivalent of (24). Using [Continuity],
we construct a functiog as in Lemma 3.2 and write

= Ilhrlloqf Sei—nlfl1x) =A,[f1(x).

Tio—nolol < (to—h,-) forh <t
Applying T;, ,,—», [Monotonicity] and [Causality], we get

Tro.0lt0) — u(to, x0) < Ty so—n [B(to — 1, )] — @ (o, X0)-

By the same computation, using [Regularity], we obtain
. . ¢
0 < Tig 01 [@(t0, )] (x0) — ¢ (t0, x0) — h {E(Io, xo) +&(h, Xo)}

N By
+m<to,xO,¢(l‘0, 4, a—f(l‘o, ) +e(h, ),h)h (21)

This inequality provides the equivalent one of Lemma 3.2.

2) The proof of Lemma 3.1 is the same and in proof of Lemma 3.3, we just have
to use [Stability] in order to obtain the time-continuity fér and F deduced fromA
andA.

3) For Lemma 3.4 we observe in addition that the same arguments show et if
fixed andug € X, (h, x) = Tyy1n.[10](x) IS @ continuous vicosity solution of

ou
£+F(to+h,x,u(h,x),Du(h,x),Dzu(h,x)):0 (22)

and also of the same equation withreplaced byF .
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4) In the proof of the Lemma 3.5, we fi%, xo, 7, p, M) € [0, +00) x R¥ x R x RN x
S(N) and use the function

(h,.X) = Tlo—l—h,lo[f](-x)v

where f = f, . ».m Which gives a viscosity solution of (22). Using this fact, we obtain
that fors > 0 small enough,

71[()-I—h,lo[]p](xo) < f(-xo) + h [_E(th Xo, ", P, M) + 8] .
We then use [Stability] with = tg andt’ =1y — h to get
T'lo,[o—h[f](-xo) - f(-xo) - hpxo,f(h) < h [_E(th Xo, ", P, M] + 8]

and we obtain the result dividing b taking the limsup and lettinggo to 0. O

Appendix A

We give here the proof of Lemma 3.2 we have postponed in Section 3.

Proof of Lemma 3.2. We make the proof fota, p, M) € P>+ [u](to, xo), the one for
(a, p, M) € P>~ [ul(to, xo) being the same with straightforward adaptations.

1) We first construct a suitable function. Since, p, M) € P%*[ul(to, x0), by
classical results, there exisfse C*((0, +00) x RY) such thatu — ¢ has a local
maximum point aitg, xo) With ¢ (to, x0) = u(to, x0), Dp (o, x0) = p, D¢ (to, x0) = M
and%—f’(to, xo) = a (see for example [3]). There exigtr > 0 such that

u<¢ onlip—a,fg+al x B(xo,r).
Recalling that«(z, x) = T;[uol(x), [Continuity] provides a functiory,, ,, » such that
u(t,x) < fuppa(x) fortelto—o,to+al,xe RV
Takingv as in proof of Lemma 3.5, we construgt(x) := v((x — xg)/r), and get
u< v, + A=) fugpa =¢ ON[tg—a, to+a] x RY. (23)

Since X is assumed to be a vector space contairl@”"), ¢(t,-) € CERY) for
t € [to — a, to + «]. Moreover,p = ¢ on[fy — o, tog+ ] X B(xg,r/2). Thus

- d¢ - -
(¢(to,xo), 8—4;00,)60), D¢ (to, x0), Dz¢(f0,x0)> = (u(t0, x0),a, p, M).
2) We rewrite (23), forz sufficiently small, under the form

Tio—nluo] < to — 1, -).
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Then using [Monotonicity] and substractingto, xo) = ¢(to, xo) wWe obtain, forh > 0
sufficiently small

Ty [Tio-n(0)] — u(to, x0) < Ty [p(t0 — h, )] — (1o, x0).
Using now [Causality] and applying the inequalityxgt this yields
0< Ty [¢(to — h, )] (x0) — (to, x0).
Then by Taylor’s formula fot (tg — -, x)

- Ry -
0L T, [(lﬁ(to, D)= ha—q:(fo, ) — he(h, ')} (x0) — ¢ (70, X0)-

We notice that, by construction f, w(h, -) = %—f(to, ) +e(h,-) € DRY) and apply
[Regularity] in the last inequality. We get

- . Y]
0 < T [p(to, )] (x0) — ¢ (t0, X0) — h [a—(f(to, xo) +&(h, xo)} + 1My G0y .wn,y (. (24)

Remarking that the functiongw(#, -)),>r>0 are in a same&Q, independent of: for
some sequencg, we deduce from (24) that

: - _ - I
lim supé;, [¢ (1o, )] (xo0) > |lhrE|OQf 8 [@ (10, )] (xo0) > a—(f(fo, Xo).

h—0t

And the proof is complete. O
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