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ABSTRACT. – In a celebrated paper motivated by applications to image analysis, L. Alvarez,
F. Guichard, P.-L. Lions and J.-M. Morel showed that any monotone semigroup defined on the
space of bounded uniformly continuous functions, which satisfies suitable regularity and locality
assumptions is in fact a semigroup associated to a fully nonlinear, possibly degenerate, second-
order parabolic partial differential equation. In this paper, we extend this result by weakening
the assumptions required on the semigroup to obtain such a result and also by treating the case
where the semigroup is defined on a general space of continuous functions like, for example, a
space of continuous functions with a prescribed growth at infinity. These extensions rely on a
completely different proof using in a more central way the monotonicity of the semigroup and
viscosity solutions methods. Then we study the consequences on the partial differential equation
of various additional assumptions on the semigroup. Finally we briefly present the adaptation
of our proof to the case of two-parameters families.

RÉSUMÉ. – Dans un célèbre article motivé par les applications au traitement d’image,
L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel ont montré qu’un semi-groupe monotone
défini sur l’espace des fonctions bornées uniformément continues satisfaisant des hypothèses de
régularité et de localité est en fait un semi-groupe associé à une équation aux dérivées partielles
parabolique non linéaire éventuellement dégénérée. Dans le présent article, nous étendons ce
résultat en affaiblissant légèrement les hypothèses nécessaires et en traitant le cas de semi-
groupes définis sur des espaces généraux de fonctions continues. Ces extension résultent d’une
preuve totalement différente utilisant de manière plus centrale la monotonie du semi-groupe et
des méthodes de solutions de viscosité. Nous étudions ensuite les conséquences d’hypothèses
supplémentaires sur le semi-groupe. Finallement, nous présentons brièvement l’adaptation au
cas d’une famille d’opérateurs à deux paramètres.
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1. Introduction

In this article, we are interested in nonlinear semigroups(Tt)t�0 defined on some
subspaceX ⊂ C(RN) and satisfying the following monotonicity assumption: for any
f,g ∈X

f � g ⇒ Tt [f ] � Tt [g] for any t � 0,

where� denotes the partial ordering onC(RN) defined by

f � g ⇔ f (x)� g(x) for all x ∈ R
N.

In [1], L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel show that ifX =
BUC(RN), the space of bounded uniformly continuous functions, and if(Tt)t�0 satisfies
in addition suitable regularity and locality assumptions, such a semigroup is associated to
a second-order parabolic partial differential equation. More precisely, they prove that, for
anyu0 ∈ BUC(RN), the continuous functionu(t, x) := Tt [u0](x) is a viscosity solution
of an initial value problem of the form



∂u

∂t
+F

(
x,u,Du,D2u

) = 0 in (0,+∞)× R
N ,

u(0, ·)= u0 in R
N ,

(1)

whereDu andD2u denote respectively the gradient and the Hessian matrix ofu, andF
is a continuous function onRN × R × R

N × S(N), S(N) being the space of theN ×N

symmetric matrices. We recall that Eq. (1) is said to be (degenerate) parabolic if the
functionF satisfies the so-called “ellipticity” condition: for allx ∈ R

N , r ∈ R, p ∈ R
N

andM,N ∈ S(N),

M �N ⇒ F(x, r,p,M) � F(x, r,p,N). (2)

Their proof is essentially done in three steps. The main step is the first one where,
using only the regularity assumption on the semigroup together with a contraction
property, they show the existence of a nonlinear infinitesimal generator

A[f ] = lim
t→0+

Tt [f ] − f

t

which is well-defined iff is smooth. Then, using the monotonicity and the locality
assumption, they prove the existence of a continuous functionF such that, for any
smooth functionf ,

A[f ](x) = −F
(
x,f (x),Df (x),D2f (x)

)
in R

N.

Finally, using again the monotonicity assumption, a classical argument in viscosity
solutions theory yields thatu is a viscosity solution of (1).

The first contribution of this article is to provide a completely different and, to
our opinion, far simpler proof of this result, using in a more fundamental way the
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monotonicity of the semigroup. From the technical point of view, this will mean also that
we are also going to use in a more central way viscosity solutions methods. This new
proof allows us to weaken slightly the assumptions made in [1] on(Tt)t�0, to remove
the use of a Banach space structure onX and thus to extend the result to a large class of
spacesX.

Before going further in this introduction, we recall that viscosity solutions are weak
solutions for second-order degenerate elliptic partial differential equations and we refer
the reader to M.G. Crandall, I. Ishii and P.-L. Lions [6], W. Fleming and H.M. Soner [7]
for a complete presentation of this theory and to M. Bardi and I. Capuzzo-Dolcetta [2],
G. Barles [3] for an introduction to this theory in the case of first-order equations.

To be more specific on our results, we prove in Section 3, under localized versions of
the assumptions used in [1], that there exists a continuous functionF such that, for all
x ∈ R

N ,

lim
h→0+

Tt [f ](x)− f (x)

h
= −F

(
x,f (x),Df (x),D2f (x)

)
(3)

for any smooth functionf ofX and simultaneously that the functionu(t, x) := Tt [u0](x)
is a viscosity solution of (1) for everyu0 ∈X.

Obviously, we need some assumptions onX but it is worth noticing that they are
very weak and that they hold for a large class of spacesX ⊂ C(RN), like C(RN) itself,
BUC(RN), the space of bounded continuous functions or of continuous functions with
growth conditions at infinity, the space of uniformly continuous functions. . . etc.

In Section 4, we study the consequences of various additional assumptions on(Tt)t�0

and describe in particular the consequence of a finite speed of propagation property for
Tt [f ], i.e.

f (x)� g(x) for x ∈ B(x0, r)⇒ ∃Lx0,f,g > 0

such thatTt [f ](x0)� Tt [g](x0) for t � Lx0,f,gr
s .

The fact that a semigroup satisfying such kind of property is a semigroup associated to
an Hamilton–Jacobi equation was first proved by P.-L. Lions in [12]. Nevertheless, we
give a simplified proof using the Theorem of Section 3 which works in a slightly more
general context.

Then we address the following natural question: do the assumptions used on(Tt)t�0

to connect it to the initial value problem (1) ensure thatu is the unique solution of
this problem? In [1], the answer was yes; indeed, becauase of the applications to image
analysis, it was natural to assume that the semigroup commutes with translations and
additions of constants (which yields anx and u-independentF ). In this context, a
comparison result holds for the viscosity solutions of (1) inBUC(RN) (see for example
M.G. Crandall, I. Ishii, P-.L. Lions [6] or Y. Giga, S. Goto, I. Ishii and M.-H. Sato [8]).

Here, on the contrary, the answer is no in general, even for a linear semigroup if
the assumption of commutation with translations is removed. In Section 5, we build an
example of a semigroup defined onBUC(RN) which satisfy the assumptions of Section 2
and which is associated to a transport equation of the form

∂u

∂t
+ b(x) ·Du= 0 in (0,+∞)× R

N.
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But, uniqueness fails for the associated initial value problem.
This example is taken from M.G. Crandall and P.-L. Lions [5] and based on

“pathological” situations for flows inRN studied by A. Beck in [4]. We give nevertheless
all the details of the construction for the convenience of the reader and in order to ensure
that assumptions of Section 2 hold even in the caseX = BUC(RN).

Finally, in Section 6, we briefly present, as in [1], some necessary adjustements in
order to extend the results of Section 3 to the case of two-parameters monotone families
of operators(Tt,s)t,s>0. We refer the reader to the book of W. Fleming and H.M. Soner
[7] for developments about this kind of families in the context of viscosity solutions and
optimal control and we just recall here that they are related to time-dependent equations

∂u

∂t
+F

(
t, x, u,Du,D2u

) = 0 in (0,+∞)× R
N,

and that the semigroup property is replaced by

Tt,r = Tt,s ◦ Ts,r for all t � s � r � 0 and Tt,t = IdX.

2. Notations and assumptions on the semigroup

We first describe the functional spaces we use througout this work and the related
notations.

In the sequel,X will denote a subspace ofC(RN) satisfying the following conditions.
(H1) X containsD(RN), the space ofC∞-functions with compact support inRN .
(H2) For everyf ∈X andy ∈ R

N , the functionx �→ f (x + y) belongs toX.
(H3) For everyu ∈ X, there existsg ∈ C∞

X (RN) such thatu � g, whereC∞
X (RN) =

C∞(RN)∩X.
It is worth noticing that most of the classical subspaces ofC(RN) used in non-
linear analysis satisfy this three assumptions:C(RN), BUC(RN), W 1,∞(RN),
bounded continuous functions, uniformly continuous functions, continuous
functions with growth conditions at infinity. . . etc.

We give now the assumptions we use throughout this work on the family of mappings
(Tt)t�0 defined fromX into X and make some comments about it. They are all more or
less slightly weak versions of these used in [1] thus we use the same terminology.

[Causality]. –

Tt+s = Tt ◦ Ts for all t, s � 0 and T0 = IdX.

[Monotonicity]. – For allf,g ∈X

f � g ⇒ Tt [f ] � Tt [g] for all t � 0.

[Continuity]. – For everyu0 ∈ X, the function(t, x) �→ Tt [u0](x) is continuous and
for all b > a � 0 there existsfa,b,u0 ∈ C∞

X (RN) such that

∣∣Tt [u0]
∣∣ � fa,b,u0 for all t ∈ [a, b].
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This last assumption may appear as being unusual and even restrictive. But, ifX is for
example defined by growth conditions at infinity, it may be equiped with a norm. The
assumption can be seen in this case as a relaxed version of the classical continuity of
t �→ Tt [f ] in the norm sense.

[Locality]. – For everyf , g ∈ C∞
X (RN) and for any fixedx in R

N , if f ≡ g on some
B(x, r) then

Tt [f ](x)− Tt [g](x) = o(t) ast → 0+.

In order to state the next assumption, we introduce some particular subsets ofD(RN)

already used in [1]. Ifd = (dn)n∈N is a sequence of positive numbers, we set

Qd = {
f ∈D

(
R
N
)
,
∥∥Dαf

∥∥ � dn for α ∈ N
p with |α| � n

}

where|α| = α1 + α2 + · · · + αp if α = (α1, . . . , αp) ∈ N
p.

The assumption (H1) together with the vector spaces structure ofX allows us to
formulate the following assumption.

[Regularity]. – For any sequence of positive numbersd, for any compact subsetK ⊂
R
N and for everyf ∈ C∞

X (RN), there exists a positive functionmK,f,d(·) :R+ �→ R
+

with mK,f,d(0+)= 0 such that

∣∣Tt [f + λg](x)− Tt [f ](x)− λg(x)
∣∣ �mK,f,d(λ)t

for any(x, g) ∈K ×Qd and anyλ, t � 0.

Compared to [1], and if we restrict ourselves to theBUC-framework, it is the
assumption which is the most relaxed. More precisely, we use onlyg with compact
support and do not specify the dependence inf for mK,f,d . Moreover,mK,f,d can be an
arbitrary modulus and not only a linear one.

If x ∈ R
N , we denote byτx the translation operator onC(RN) defined by

τx · f (y)= f (x + y)

for f ∈ C(RN). Sinceτx ·X =X from (H2), we also denote byτx the restriction ofτx to
X.

[Translation]. – For any compact subsetK ⊂ R
N and everyf ∈ D(RN), there exists

a functionnK,f (·) : R
+ → R

+ with nK,f (0+)= 0 such that

∣∣τx · Tt [f ](y)− Tt(τx · f )(y)∣∣ � nK,f (|x|)t

for anyy ∈K , t � 0.

We recall that in [1], the semigroup(Tt )t was supposed to be invariant by translation
i.e. τx · Tt [f ] = Tt (τx · f ) for anyf ∈X andx ∈ R

N and to take in account semigroups
which do not satisfy such invariance property is also a main contribution of this article.
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3. Generation of the parabolic P.D.E

The main result is the:

THEOREM 3.1. – LetX be a subspace ofC(RN) for which(H1), (H2)and(H3) hold.
Let (Tt )t�0 a family of mappings fromX into X satisfying[Causality], [Monotonicity],
[Continuity], [Locality], [Regularity], and [Translation]. Then there exists a continuous
functionF defined onRN × R × R

N × S(N) such that(3) holds for anyf ∈ C∞
X (RN)

andx ∈ R
N. Moreover,F satisfies the ellipticity condition(2) and the functionu(t, x) :=

Tt [u0](x) is a continuous viscosity solution of(1) for every initial datau0 ∈X.

Proof. –For anyf ∈ C∞
X (RN) andt > 0, we set

δt [f ] = Tt [f ] − f

t
.

In [1], in order to prove the existence of the infinitesimal generator, the main step was to
show that, fort small enough,(δt [f ])t�0 was a Cauchy sequence inBUC(RN). A rather
difficut and technical task where [Regularity] together with the contraction property of
(Tt)t�0 in BUC(RN) were playing the main roles.

Here the key idea is to avoid this step by introducing and studying the mappingsA

andA defined onC∞
X (RN) by setting

A[f ](x) = lim sup
t→0+

δt [f ](x)

and

A[f ](x) = lim inf
t→0+ δt [f ](x).

The functionsA andA can be seen respectively as the “upper infinitesimal generator”
and the “lower infinitesimal generator” for the semigroup. The following lemma shows
that they are well-defined.

LEMMA 3.1 (Boundedness of the upper and lower infinitesimal generator). –For any
x ∈ R

N andf ∈ C∞
X (RN), A[f ](x) andA[f ](x) are finite.

The proof of Lemma 3.1 is based on the following technical result whose proof is
postponed to Appendix A. We recall thatP2,+[u](t0, x0) and P2,−[u](t0, x0) denote
classically (see, for example, [6]) the second order parabolic semi-jets of the real-valued
functionu at (t0, x0).

LEMMA 3.2. – Let u0 ∈ X and u(t, x) := Tt [u0](x). If (a,p,M) ∈ P2,+[u](t0, x0)

(respectivelyP2,−[u](t0, x0)) then there exists a functioñφ : (t0 − a, t0 + a)× R
N �→ R

such thatφ̃(t, ·) ∈ C∞
X (RN) for any t ∈ (t0 − a, t0 + a) with

(
φ̃(t0, x0),

∂φ̃

∂t
(t0, x0),Dφ̃(t0, x0),D

2φ̃(t0, x0)

)
= (

u(t0, x0), a,p,M
)
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and

A
[
φ̃(t0, ·)](x0)�A

[
φ̃(t0, ·)](x0)� ∂φ̃

∂t
(t0, x0)

(respectively∂φ̃
∂t
(t0, x0)�A[φ̃(t0, ·)](x0)�A[φ̃(t0, ·)](x0)).

It is worth noticing that, a priori, the previous lemma does not say that the lim sup or
lim inf are finite.

Proof of Lemma 3.1. –1) The continuity ofu(t, x) = Tt [0](x) implies that there
exists (t1, x1) ∈ (0,+∞) × R

N (respectively (t2, x2) ∈ (0,+∞) × R
N ) such that

P2,+[u](t1, x1) �= ∅ (respectivelyP2,−[u](t2, x2) �= ∅). Using Lemma 3.2, we deduce
the existence of a functionφ1 ∈C∞

X (RN) (respectivelyφ2 ∈C∞
X (RN)) such that

A
[
φ1(t1, ·)](x1)� ∂φ1

∂t
(t1, x1) (4)

and

A
[
φ2(t2, ·)](x2)� ∂φ2

∂t
(t2, x2). (5)

2) Using a standard truncation argument together with [Locality], we get the same
inequalities for everyΦ1,Φ2 ∈ D(RN) such thatΦ1 ≡ φ1(t1, ·) (respectivelyΦ2 ≡
φ2(t2, ·)) on some neighbourhood ofx1 (respectivelyx2).

3) Using [Regularity] withf = 0, g =Φi andλ= 1, we get, fori = 1,2

∣∣δt [0](xi )− δt [Φi](xi)
∣∣ �mxi,Φi

(1) (6)

we deduce from (6), together with (4) and (5) that

A[0](x1)� ∂φ1

∂t
(t1, x1)−mx1,Φ1(1)= C1 (7)

and

A[0](x2)� ∂φ2

∂t
(t2, x2)+mx2,Φ2(1)= C2. (8)

4) Writing [Translation] forf ≡ 0 gives for anyt > 0 and y∈ R
N

|δt [0](xi + y)− δt [0](xi )| � n(xi, y) for i = 1,2

and together with inequalities (7) and (8) this implies that, for anyx ∈ R
N , A[0](x) and

A[0](x) are finite.
5) We consider nowg ∈ D(RN) and x ∈ R

N. Using [Regularity] as in step 3) and
the previous result, we get a bound forA[g](x) andA[g](x). We conclude that the
same property holds forg ∈ C∞

X (RN) using again [Locality] together with a standard
truncation arguments.✷

Now we turn to further properties ofA andA.
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LEMMA 3.3 (Structure of the upper and lower infinitesimal generator). –There exist
two functionsF,F ∈ C(RN × R × R

N × S(N)) satisfying (2) such that, for every
f ∈ C∞

X (RN) andx ∈ R
N,

A[f ](x) = −F
(
x,f (x),Df (x),D2f (x)

)

and

A[f ](x) = −F
(
x,f (x),Df (x),D2f (x)

)
.

We postpone the proof of this lemma to the end of the present section and
observe that in view of them, the notion of viscosity solution is well-defined for the
parabolic problems associated toF andF . The following lemma is then nothing that a
direct consequence of Lemma 3.2 together with the definition of continuous viscosity
solutions.

LEMMA 3.4 (Semigroup, infinitesimal generators and parabolic equations). –Let
u0 ∈X. Then the functionu(t, x) := Tt [u0](x) is a continuous viscosity solution of

∂u

∂t
+ F

(
x,u,Du,D2u

) = 0 in (0,+∞)× R
N

and
∂u

∂t
+F

(
x,u,Du,D2u

) = 0 in (0,+∞)× R
N.

We have now, in order to complete the proof of Theorem 3.1, to show thatF = F .

LEMMA 3.5 (Existence of the infinitesimal generator). –For any (x, r,p,M) ∈
R
N × R × R

N × S(N), we have

F(x, r,p,M) = F(x, r,p,M).

In particular, if we setF := F = F then, for anyf ∈C∞
X (RN), we have

lim
t→0+

Tt [f ](x)− f (x)

t
= −F

(
x,f (x),Df (x),D2f (x)

)
.

The proof of Theorem 3.1 is indeed complete since it shows that there exists a function
F := F = F defined onRN × R × R

N ×S(N) such that (3) holds for anyf ∈ C∞
X (RN)

andx ∈ R
N . The functionF is continuous and elliptic since, by Lemma 3.3,F anF

are continuous and elliptic and from Lemma 3.4, the functionu(t, x) := Tt [u0](x) is a
continuous viscosity solution of (1) for every initial datau0 ∈X.

It remains to prove Lemmas 3.5 and 3.3.

Proof of Lemma 3.5. –To any(x, r,p,M) ∈ R
N × R × R

N × S(N), we associate the
functionfx,r,p,M defined fory ∈ R

N by

fx,r,p,M(y) =
(
r + 〈p,y − x〉 + 1

2

〈
M · (y − x), (y − x)

〉)
ν(y − x), (9)
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where ν is a fixed function inD(RN) with a compact support inB(0,1) such that
0� ν � 1 and ν≡ 1 on B(0,1/2).

In fact, because of Lemma 3.3, we have to prove that

lim sup
h→0+

Th[f ](x)− f (x)

h
� −F

(
x,f (x),p,M

)
,

wheref = fx,r,p,M . We setu(t, y) := Tt [f ][y] and proceed in several steps.
1) We introduce the family of functions(Wη,δ)η,δ>0 defined in 0, (∞)× R

N by

Wη,δ(t, y) = f (y)+ η|y − x|2 + t
[
F(x,f (x),p,M)+ δ

]

and claim that for everyδ > 0, there existsη,T , r > 0 such that

u(t, y) �Wη,δ(t, y) on [0, T ] ×B(x, r) =ΩT,r . (10)

To prove our claim, we setφη,δ = u−Wη,δ and

Mη,δ,T ,r = sup
ΩT,r

φη,δ.

We have to show thatMη,δ,T ,r � 0 for a suitable choice of parameters.
2) To do so, we first remark that, sinceu andF are continuous, for everyδ > 0, there

existsη,T , r > 0 such that

∂Wη,δ

∂t
>−F

(
y,u(t, y),DWη,δ,D

2Wη,δ

)
onΩT,r . (11)

3) It is clear that (10) holds on{0}×B(x0, r) for everyη, r > 0 with a strict inequality
for x �= x0 and thus on{0} × ∂B(x0, r). Using the continuity ofu and the previous
observation, we conclude that for everyη, r there existsT (η, r) > 0 such that (10) holds
on the lateral boundary[0, T (η, r)] × ∂B(x0, r).

4) We choose the parameterη,T , r according to point 2) and 3) above and we assume
by contradiction thatMη,δ,T ,r > 0. Then necessarily, this maximum is achieved at an
interior point(t̄, x̄) ∈ΩT,r or for t̄ = T . Sinceu is a viscosity solution of the initial value
problem (1) withF = F and sinceWη,δ ∈ C2([0,+∞)× R

N), it follows, by definition,
that

∂Wη,δ

∂t
(t̄, ȳ)� −F

(
ȳ, u(t̄ , ȳ),Dη,δ(t̄, ȳ),D

2Wη,δ(t̄ , ȳ)
)

even if t̄ = T (see [3]). But, this inequality contradicts the property (11) above and
therefore (10) holds.

5) We conclude by writing (10) aty = x. For t sufficiently small

Tt [f ](x)− f (x)

t
�

[−F(x,f (x),Df (x),D2f (x))+ δ
]
.

Taking the lim sup fort → 0+ and then lettingδ → 0+, we complete the proof of Lemma
3.5 and also the proof of Theorem 3.1.✷
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We conclude this section by giving theproof of Lemma 3.3. We provide the proof
for A, the proof forA being essentially the same with straightforward adaptations. We
follow the idea of [1].

1) To obtain thatA[f ](x) = F(x,f (x),Df (x),D2f (x)), we take x ∈ R
N and

consider two functionsf,g ∈ C∞
X (RN) with Dαf (x) = Dαg(x) for |α| � 2. We

introduce a functionfε by setting

fε(y)= f (y)+ ε|y − x|2 · ν(y − x)

recalling thatν is the smooth truncation defined in in the proof of Lemma 3.5.
By Taylor’s formula,fε is greater thang onB(x, rε) for a suitablerε. But in order to

use [Monotonicity], we need an inequality in the whole space. To this end, we use the
functionνε(y)= ν((y − x)/rε) and define

f ε = fενε, gε = gνε.

We clearly have

f ε � gε

andf ε, gε ∈ C∞
X (RN) by (H1).

2) Applying [Monotonicity] to the previous inequality we get

Tt (f ε)� Tt (gε).

Sincef ε(x) = fε(x)= f (x) = g(x), we have

Tt(f ε)(x)− f ε(x)� Tt(gε)(x)− g(x).

Then, sincef ε ≡ fε andg ≡ gε onB(x, rε/2), we can use [Locality] to obtain

Tt (fε)(x)− fε(x)+ o(ε, t) � Tt (g)(x)− g(x).

Using now [Regularity] withf ∈C∞
X (RN), w = | ·−x|2ν(·− x) ∈D(RN) andλ= ε we

get

Tt (f )(x)− f (x)+ o(ε, t) � Tt (g)(x)− g(x)−mx,f,w(ε)t.

Dividing by t and taking the lim sup fort → 0+, and then lettingε → 0 we obtain

A[f ](x) �A[g](x).
Since the previous computations are symmetric inf andg, we get the equality.

3) Here and therein(x, r,p,M) will ever denote an arbitrary element ofR
N × R ×

R
N ×S(N) andfx,r,p,M ∈D(RN) the function defined by (9). We define the functionF

on R
N × R × R

N × S(N) by setting

−F(x, r,p,M) =A[fx,r,p,M](x) (12)
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and thanks to the previous point we have for anyf ∈C∞
X (RN) andx ∈ R

N

A[f ](x) = −F
(
x,f (x),Df (x),D2f (x)

)
.

The ellipticity of F is then a direct consequence of [Monotonicity] together with the
obvious following fact

N �M ⇒ fx,r,p,N � fx,r,p,M.

4) To complete the proof of the proposition, we need to see that the functionF is
continuous.

Let (x, r0,p0,M0) ∈ R
N × R × R

N × S(N) and setf0 = fx0,r0,p0,M0. We have, using
[Translation], that

∣∣Tt [f0](x0)− Tt [τ−x · f0](x0 + x)
∣∣ = ∣∣τ−x · Tt [f0](x0 + x)− Tt [τ−xf0](x0 + x)

∣∣
� nx0,f0(|x|)t.

and thus, ∣∣F(x0, r0,p0,M0)− F(x0 + x, r0,p0,M0)
∣∣ � nx0,f0(|x|). (13)

Moreover, for anyR > 0 and any positive sequenced, we can rewrite [Regularity] under
the form ∣∣A[f0 + εg](x0 + x)−A[f0](x0 + x)

∣∣ �mx0,R,f0,d(ε)

for any(x, g) ∈ B(0,R)×Qd. We apply the previous inequality with

gε = fx0+x,r/ε,p/ε,M/ε

noticing that thegε are in a sameQd for |r|, |p|, |M| � ε and get that there exists an
R > 0 such that

∣∣F(x0 + x, r0,p0,M0)− F(x0 + x, r0 + r,p0 + p,M0 +M)
∣∣ �mx0,R,f0,d (ε) (14)

for any |x|, |r|, |p|, |M| � ε.

From (13) and (14), we complete the proof of the continuity. ✷
Remark3.1. – We want to point out that our proof works if [Regularity] is stated

only for functionsf appearing in [Continuity] or which belong toD(RN) instead of
f ∈ C∞

X (RN). In particular, ifX is a subspace of bounded functions as in [1], it suffices
to write the assumption only forf ∈C∞

b (RN).

4. Consequences of additional properties for the semigroup

We start with elementary facts. The proofs of these facts are straightforward using
Theorem 3.1, so we will omit them.

PROPOSITION 4.1. –LetF be the function which appears in Theorem3.1.
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(1) If Tt is linear for any t , there exists continuous functionsa, b, c from R
N to

S+(N), R
N andR respectively, such that

F(x, r,p,M) = −T r
[
a(x)M

] + 〈
b(x),p

〉+ c(x)r,

whereS+(N) denote the space of the positive symmetric matrices.
(2) If Tt [f +C] = Tt [f ] +C for anyf ∈X andC ∈ R thenF is independent ofr.
(3) If τx

[
Tt (f )

] = Tt
[
τx(f )

]
for all (t, x) ∈ [0,+∞) × R

N andf ∈ D(RN) thenF
is independent ofx.

It is well-known that, under suitable assumptions, first-order Hamilton–Jacobi
equations satisfy properties of “finite speed of propagation” or “domain of dependence”.
Such properties were first proved by M.G. Crandall and P.-L. Lions in [5] (see also
I. Ishii [9] or O. Ley [10] for a different proof).

We address now the question of the converse property: is a semigroup satisfying some
domain of dependence-type property associated to a first-order equation? The answer is
yes and a first result in this direction was first proved by P.-L. Lions in [12] under slightly
stronger but less numerous assumptions than here.

We introduce the following formulation of a domain of dependence property for
(Tt)t�0

[Strong-Locality]. – For anyf,g ∈X and any compact subsetK ⊂ R
N there exists a

positive constantLK,f,g and 0< s < 2 such that

f � g in B(x0,R)⇒ Tt [f ](x0)� Tt [g](x0) for t � LK,f,gR
s

for anyx0 ∈K and anyR > 0.

THEOREM 4.1. – Let(Tt)t�0 satisfy the assumptions of Theorem3.1where[Locality]
and [Monotonicity] are replaced by[Strong-Locality]. There exists a functionF ∈
C(RN ×R×R

N) such that, for anyu0 ∈X, the function(t, x) �→ Tt [u0](x) is a viscosity
solution of the Hamilton–Jacobi Equation associated toF , i.e.

∂u

∂t
+ F(x,u,Du)= 0 in (0,+∞)× R

N. (15)

Proof of Theorem 4.1. –First it is clear that [Strong-Locality] implies [Monotonicity]
and [Locality] and thus Theorem 3.1 holds. Therefore we have only to prove that

F(x, r,p,A)= F(x, r,p,B) for any(x, r,p,A,B) ∈ R
N × R × R

N × S(N)2.

To this end, we consider the functionsfx,r,p,A andfx,r,p,B and 1/2> η > 0. We have

fx,r,p,A � fx,r,p,B + |B −A|
2

η2ν(· − x) in B(x, η)

for η sufficiently small, whereν is the smooth truncation function defined in the proof
of Lemma 3.5.
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Using [Strong-Locality] and [Regularity], this implies

Tt [fx,r,p,A](x) � Tt [fx,r,p,B](x)+ |B −A|
2

η2 +mx,r,p,A,B(η
2)t for t � Lηs

with L independent ofη. Subtractingr , we use this inequality fort = Lηs , divide by
Lηs and finally we letη → 0+. We obtain

−F(x, r,p,A)� −F(x, r,p,B)

and we conclude by the symmetry ofA andB in the previous arguments.✷
Remark4.1. – More regularity onF occurs with respect top if we add more

restrictions on the termLRs in [Strong-Locality]. For example, ifL is independent
of (x, f, g) ands = 1, the nonlinearityF is Lipschitz continuous inp uniformly with
respect to the other variables.

5. On the uniquenes for the associated p.d.e

We will show in this section that uniqueness may fail in general for viscosity
solutions of the partial differential equation associated to a semigroup which satisfies
only assumptions of Theorem 3.1 or Theorem 4.1 even ifX = BUC(RN).

Our example is entirely taken from [5] where it was used by Crandall and Lions as
a counter-example to uniqueness for viscosity solution of a transport equation when the
natural assumptions are not satisfied. This is related to the non-uniqueness for flows of
the associated dynamic studied by Beck in [4].

LEMMA 5.1. – There exist two different continuously differentiable homeomorphism
f,h on R such that

f ′(f −1(x)
) = h′(h−1(x)

)
for anyx ∈ R. (16)

In addition, one can impose thatf ,f −1,h,h−1 are uniformly continuous onR and f ′,
f ′′, f ′′′ bounded.

Proof. –We follow the ideas of [4] and just introduce slightly specifications in order
to ensure that the assumptions of Section 2 hold.

1) We consider a Cantor setK ⊂ [0,1] with a strictly positive Lebesgue measure and
a smooth functiong such that 0� g � 1, g(x) = 0 if and only if x ∈K , g′, g′′ bounded
on R andg � η > 0 on(−∞,−1] ∪ [2,+∞). Then we define a functionf by setting

f (x) =
x∫

0

g(τ) dτ.

Clearly, f is a Lipschitz continuous differentiable homeomorphism fromR to R.
Moreover the last requirement ong ensures thatf −1 is Lipschitz continuous on
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(−∞, f−1(−1)] ∪ [f −1(2),+∞) and thus is uniformly continuous onR since it is
continuous onR.

2) We construct an other differentiable homeomorphismh by setting successively

α(x)= x +µ
(
K ∩ [0, x]),

whereµ denote the Lebesgue measure onR and then

h= f ◦ α−1.

The functionα is strictly increasing continuous and thus is an homeomorphism fromR

to R. Moreover it is a Lipschitz continuous function onR. Finally we have the following
inequality

α(y2)− α(y1)� y2 − y1 for anyy2 � y1 (17)

which ensures thatα−1 is also Lipschitz continuous.
It follows finally thath andh−1 are also uniformly continuous.
3) We check the property (16).
(a) We first considerx ∈ R such thatf −1(x) /∈ K . We want to check thath is

differentiable ath−1(x). But, sincef −1(x) /∈ K , there is a neighborhood off −1(x) on
whichα is nothing butIdR + c for some constantc, and thereforeα is differentiable at
f −1(x) with derivative 1.

We deduce from this fact thatα−1 is differentiable atα(f −1(x)) = h−1(x) with
derivative 1 and then thath is differentiable ath−1(x) with

h′(h−1(x)
) = 1× f ′(α−1(h−1(x)

) = f ′(f −1(x)
)
.

(b) Letx ∈ R such thaty = f −1(x) ∈K . We have

h
(
h−1(x)

) − h(z)= f
[
α−1(h−1(x)

)]− f
[
α−1(z)

]
� sup

Iz

|f ′|.Kα−1.
∣∣(h−1(x)

) − z
∣∣, (18)

whereKα−1 denote the Lipschitz constant forα−1 and IX = [α−1(h−1(x)), α−1(z)].
Sincef is C1 andf ′(α−1(h−1(x))) = f ′(f −1(x)) = 0 recallingf −1(x) ∈K we obtain
dividing by (h−1(x))−X and lettingX → h−1(x) thath is differentiable ath−1(x) with

h′(h−1(x)
) = 0= f ′(f −1(x)

)
. ✷

Following [5] we now define two flows by settingYf (t, x) = f (t + f −1(x)) and
Yh(t, x) = h(t + h−1(x)). There flows are distinct and provide two semigroups on
BUC(R) by setting

T f
t [u0](x) = u0

(
Yf (t, x)

) (
respectivelyT h

t [u0](x)= u0
(
Yh(t, x)

))

for everyu0 ∈ BUC(R).
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PROPOSITION 5.1. – The linear semigroup
(
T
f
t

)
t�0 satisfies all the assumptions

Theorem4.1 with X = BUC(R). MoreoverT f
t and T h

t give both viscosity solutions
of

∂u

∂t
+ b(x) ·Du(t, x) = 0 in (0,+∞)× R, (19)

whereb(x) = f ′(f −1(x)) = h′(h−1(x)).

Sketch of proof of Proposition 5.1. –It is easy to check that(T f
t )t�0 (respectively

(T h
t )t�0) is defined onBUC(R) using and thatf −1 (respectivelyh−1) is uniformly con-

tinuous. Then, straightforward computations involving the linearity of the semigroups
and the differentiability off andh show that [Continuity] [Strong-Locality] and [Regu-
larity] hold for (T f

t )t�0 and(T h
t )t�0.

Moreover(T f
t )t�0 satisfies [Translation]. Indeed, foru0 ∈D(R), we write

∣∣τy · T f
t [u0](x)− T f

t [τy · u0](x)
∣∣

= ∣∣u0
[
f
(−t + f −1(x + y)

)]− u0
[
f
(−t + f −1(x)

) + y
]∣∣

� ‖Du0‖∞ · ∣∣f (−t + f −1(x + y)
) − f

(−t + t−1(x)
) − y

∣∣.
But, using a Taylor’s formula, we have∣∣f (−t + f −1(x + y)

) − f
(−t + f −1(x)

) − y
∣∣

� t
∣∣b(x + y)− b(x)

∣∣ + t2
1∫

0

(1− h)2

2

∣∣f ′′(f −1(x + y)− ht
) − f ′′(f −1(x)− ht

)∣∣dh

and we get that [Translation] holds for(T f
t )t�0 using the boundedness off ′′′ together

with the uniform continuity ofb = f ′ ◦ f −1.
But it is worth mentioning that it is not clear that the semigroup(T h

t )t satisfies
the [Translation] property. Anyway, as in [5],uf (t, x) := T

f
t [u0](x) and uh(t, x) :=

T h
t [u0](x) are both continuous viscosity solutions of (19), this fact being also a

consequence of Theorem 3.1 only foruf . ✷
This example shows in particular that, in general, uniqueness may fail for viscosity

solutions of the initial value problems deduced from semigroups satisfying only the
assumptions of Section 2.

6. The case of two-parameters families

We give briefly the generalization of Theorem 3.1 for a two-parameters family
(Tt,s)t�s�0 from X into X. As in [1], we use adaptations of the assumptions used for
the one-parameter case.

[Causality]. –

Tt,r = Tt,s ◦ Ts,r for any t � s � r � 0 and Tt,t = IdX.
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[Monotonicity]. – For anyf,g ∈X, t � h� 0,

f � g ⇒ Tt,t−h[f ] � Tt,t−h[g].

[Continuity]. – For any u0 ∈ X, t � 0, the function u(h, x) := Tt+h,t [u0](x) is
continuous and for anyb � a � 0, there existsfu0,a,b ∈C∞

X (RN) such that

∣∣Tt+h,t [u0]
∣∣ � ft,u0,a,b for anyh ∈ [a, b].

[Locality]. – For any f,g ∈ C∞
X (RN) and x ∈ R

N , if f ≡ g in B(x,R) for some
R > 0 then

Tt,t−h[f ](x)− Tt,t−h[g](x) = o(h) ash→ 0+.

[Regularity]. – For any sequence of positive numbersd, any compact subsetK ⊂
R
N × [0,+∞) and everyf ∈ C∞

X (RN) there exists a positive functionmK,f,d(·) with
mK,d,f (0+)= 0 such that

∣∣Tt,t−h[f + λg](x)− Tt,t−h[f ](x)− λg(x)
∣∣ �mK,f,d(λ)h

for every((x, t), g) ∈K ×Qd , λ� 0,0� h� t.

[Translation]. – For any compact subsetK ⊂ R
N × [0,+∞) and anyf ∈ D(RN)

there exists a functionnK,f (·) with nK,f (0+)= 0 such that

∣∣τy · Tt,t−h[f ](x)− Tt,t−h(τy · f )(x)∣∣ � nK,f (|y|)h

for every((x, t), f ) ∈K ×Qd , y ∈ R
N , 0� h� t.

In addition, we need as in [1] the following property:

[Stability]. – For every sequence of positive numbersd and any compact subset
K ⊂ R

N , there exists a functionpK,d(·) with pK,d(0+)= 0 such that

∣∣Tt,t−h[f ](x)− Tt ′,t ′−h[f ](x)∣∣ � pK,d(|t − t ′|)h

for any(x, f ) ∈K ×Qd , t, t ′ � h� 0.

We have then the:

THEOREM 6.1. – Let (Tt,s)t�s�0 a family of mappings defined fromX into X

where X ⊂ C(RN), satisfying [Causality], [Monotonicity], [Continuity], [Locality],
[Regularity], [Translation] and [Stability] and X satisfies(H1)–(H3). There exists a
continuous functionF on [0,+∞) × R

N × R × R
N × S(N) such that for anyf ∈

C∞
X (RN), x ∈ R

N

lim
h→0+

Tt,t−h[f ](x)− f (x)

h
=At [f ](x) = −F

(
t, x, f (x),Df (x),D2f (x)

)
.
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Moreover, the functionF satisfies the ellipticity condition(2) and for anyu0 ∈ X, the
functionu(t, x) := Tt,0[u0](x) is a continuous viscosity solution of the Cauchy problem

{
∂u
∂t

+F(t, x, u,Du,D2u)= 0 in (0,+∞)× R
N ,

u(0, ·) = u0 in R
N .

(20)

Proof. –First, we observe that for every fixedt � 0 the mappings(Tt,t−h)t�h�0 satisfy
the same properties as(Th)h�0 except [Causality]. Thus the proof is nothing else that a
straigthforward adaptation of those we have given in the one parameter case. Therefore
we do not mention every details and just give the essential adjustements.

Again, we define two time-dependent mappings by

lim sup
h→0+

Tt,t−h[f ](x)− f (x)

h
= lim sup

h→0+
δt,t−h[f ](x) =At [f ](x)

and

lim inf
h→0+

Tt,t−h[f ](x)− f (x)

h
= lim inf

h→0+ δt,t−h[f ](x) =At [f ](x).
1) For Lemma 3.2, we have first to obtain the equivalent of (24). Using [Continuity],

we construct a functioñφ as in Lemma 3.2 and write

Tt0−h,0[u0] � φ̃(t0 − h, ·) for h < t0.

Applying Tt0,t0−h, [Monotonicity] and [Causality], we get

Tt0,0[u0] − u(t0, x0)� Tt0,t0−h

[
φ̃(t0 − h, ·)]− φ̃(t0, x0).

By the same computation, using [Regularity], we obtain

0� Tt0,t0−h

[
φ̃(t0, ·)](x0)− φ̃(t0, x0)− h

[
∂φ̃

∂t
(t0, x0)+ ε(h, x0)

]

+m

(
t0, x0, φ̃(t0, ·), ∂φ̃

∂t
(t0, ·)+ ε(h, ·), h

)
h. (21)

This inequality provides the equivalent one of Lemma 3.2.
2) The proof of Lemma 3.1 is the same and in proof of Lemma 3.3, we just have

to use [Stability] in order to obtain the time-continuity forF andF deduced fromA
andA.

3) For Lemma 3.4 we observe in addition that the same arguments show that ift0 is
fixed andu0 ∈X, (h, x) �→ Tt0+h,t0[u0](x) is a continuous vicosity solution of

∂u

∂h
+ F

(
t0 + h, x,u(h, x),Du(h, x),D2u(h, x)

) = 0 (22)

and also of the same equation withF replaced byF .
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4) In the proof of the Lemma 3.5, we fix(t0, x0, r,p,M) ∈ [0,+∞)×R
N ×R×R

N ×
S(N) and use the function

(h, x) �→ Tt0+h,t0[f ](x),
wheref = fx0,r,p,M which gives a viscosity solution of (22). Using this fact, we obtain
that forh > 0 small enough,

Tt0+h,t0[f ](x0)� f (x0)+ h
[−F(t0, x0, r,p,M)+ δ

]
.

We then use [Stability] witht = t0 andt ′ = t0 − h to get

Tt0,t0−h[f ](x0)− f (x0)− h.px0,f (h)� h
[−F(t0, x0, r,p,M] + δ

]

and we obtain the result dividing byh, taking the lim sup and lettingδ go to 0. ✷

Appendix A

We give here the proof of Lemma 3.2 we have postponed in Section 3.

Proof of Lemma 3.2. –We make the proof for(a,p,M) ∈P2,+[u](t0, x0), the one for
(a,p,M) ∈P2,−[u](t0, x0) being the same with straightforward adaptations.

1) We first construct a suitable function. Since(a,p,M) ∈ P2,+[u](t0, x0), by
classical results, there existsφ ∈ C∞((0,+∞) × R

N) such thatu − φ has a local
maximum point at(t0, x0) with φ(t0, x0) = u(t0, x0), Dφ(t0, x0) = p, D2φ(t0, x0) = M

and ∂φ

∂t
(t0, x0)= a (see for example [3]). There existα, r > 0 such that

u� φ on [t0 − α, t0 + α] ×B(x0, r).

Recalling thatu(t, x) = Tt [u0](x), [Continuity] provides a functionfu0,t0,α such that

u(t, x) � fu0,t0,α(x) for t ∈ [t0 − α, t0 + α], x ∈ R
N.

Takingν as in proof of Lemma 3.5, we constructνr(x) := ν((x − x0)/r), and get

u� φνr + (1− νr)fu0,t0,α = φ̃ on [t0 − α, t0 + α] × R
N. (23)

SinceX is assumed to be a vector space containingD(RN), φ̃(t, ·) ∈ C∞
X (RN) for

t ∈ [t0 − α, t0 + α]. Moreover,φ̃ ≡ φ on [t0 − α, t0 + α] ×B(x0, r/2). Thus

(
φ̃(t0, x0),

∂φ̃

∂t
(t0, x0),Dφ̃(t0, x0),D

2φ̃(t0, x0)

)
= (

u(t0, x0), a,p,M
)
.

2) We rewrite (23), forh sufficiently small, under the form

Tt0−h[u0] � φ̃(t0 − h, ·).
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Then using [Monotonicity] and substractingu(t0, x0) = φ̃(t0, x0) we obtain, forh > 0
sufficiently small

Th
[
Tt0−h(u0)

] − u(t0, x0)� Th
[
φ̃(t0 − h, ·)]− φ̃(t0, x0).

Using now [Causality] and applying the inequality atx0, this yields

0� Th
[
φ̃(t0 − h, ·)](x0)− φ̃(t0, x0).

Then by Taylor’s formula for̃φ(t0 − ·, x)

0 � Th

[
φ̃(t0, ·)− h

∂φ̃

∂t
(t0, ·)− hε(h, ·)

]
(x0)− φ̃(t0, x0).

We notice that, by construction of̃φ, w(h, ·) = ∂φ̃

∂t
(t0, ·) + ε(h, ·) ∈ D(RN) and apply

[Regularity] in the last inequality. We get

0� Th
[
φ̃(t0, ·)](x0)− φ̃(t0, x0)−h

[
∂φ̃

∂t
(t0, x0)+ ε(h, x0)

]
+mx0,φ̃(t0,·),w(h,·)(h)h. (24)

Remarking that the functions(w(h, ·))t0�h�0 are in a sameQd independent ofh for
some sequenced, we deduce from (24) that

lim sup
h→0+

δh
[
φ̃(t0, ·)](x0)� lim inf

h→0+ δh
[
φ̃(t0, ·)](x0)� ∂φ̃

∂t
(t0, x0).

And the proof is complete. ✷
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