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1. Introduction

Let M be aC* Riemannian manifold, dif = n. A distribution onM is a smooth
linear subbundleA of the tangent bundlg’ M. We denote byA, the fiber of A at
qgeM; A, CT,M.The numbek =dimA, is therank of the distribution. We assume
that 1< k < n. The restriction of the Riemannian structureAois a sub-Riemannian
structure

Lipschitz integral curves of the distributioh are calledadmissible pathsthese are
Lipschitz curves — ¢(1), t € [0, 1], such thag (t) € A, for almost allz.

We fix a pointgo € M and study only admissible paths starting from this point, i.e.
meeting the initial conditiony (0) = ¢o. Sections of the linear bundla are smooth
vector fields; we set

A={XeVecM: X(q) € A,, q €M},
the space of sections &f. Iterated Lie brackets of the fields i define a flag
Ay CAZ C-oCAp--CT,M
in the following way:
Al =spaq[X1, [X2. [.... Xul.. J(q0): X; €A, i=1,...,m}.
A distribution A is bracket generatingat qo if A7 = T,,M for somem > 0. If A'is
bracket generating, then according to the classical Rashevski-Chow theorem (see [1
18]) there exist admissible paths connectiggvith any point of an open neighborhood

of go. Moreover, applying a general existence theorem for optimal controls [12] one
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obtains that for any;; in a small enough neighborhood gf there exists a shortest
admissible path connecting to ¢;. The Riemannian length of this shortest path is the
sub-Riemannian distana# Carnot—Caratheodory distandeetweeny, andg;.

In the remainder of the paper we assume thais bracket generating at the given
initial point go. We denote by (¢) the sub-Riemannian distance betwegrandg. It
follows from the Rashevsky—Chow theorem tlas a continuous function defined on a
neighborhood ofjo. Moreover,p is Holder-continuous with the Holder exponentid,
whereAy =T, M.

We study mainly the case of real-analyfi€ and A. The germ aty, of a Riemannian
distance is the square root of an analytic germ. This is not true for a sub-Riemannial
distance functio. Moreover,p is never smooth in a punctured neighborhoogqfi.e.
in a neighborhood without the padg). It may happen that is not even subanalytic. The
main results of the paper concern subanalyticity propertigsinfthe case of a generic
real-analyticA.

We prove that, generically, the germ pfat q¢ is subanalytic if:

n<(k—Dk+1 (Theorem7,

and is not subanalytic if:

k? 5k
n>k-—1 <§ + 5 + 1) (Theorem 10.

The ballsp~([0, r]) of small enough radius are subanalytia:it- k > 3 (Theorem 9).
This statement about the balls is valid not only generically, but up to a set of distributions
of codimensiono.

In particular, ifk > 3,n > (k— 1)(% + S—é‘ +1), then (generically!) the balls~([0, r])
are subanalytic byt is not!

This paper is a new step in a rather long research line, see [1,5,6,9,10,15,17,20]. Tk
main tools are the nilpotent approximation, Morse-type indices of geodesics, both in the
normal and abnormal cases, and transversality techniques.

We finish the introduction with some conjectures on still open questions.

(1) Small ballsp~([0, r]) for k = 2, n > 4. A natural conjecture is that they are,
generically, not subanalytic.

(2) The germ ofp atgo for (k — Dk +1<n < (k — 1)("—; + % +1). The bound
n < (k — LDk + 1 for “generically subanalytic dimensions” is, perhaps, exact, while
the boundn > (k — l)(% + %" + 1) for “generically nonsubanalytic dimensions”
may, probably, be improved. For a wide range of dimensions, the subanalyticity anc
nonsubanalyticity of the germ qf should be both typical (i.e. valid for open sets of
real-analytic distributions).

2. Nilpotentization

Nilpotentization or nilpotent approximation is a fundamental operation in the
geometric control theory and sub-Riemannian geometry; this is a real nonholonomic
analog of the usual linearization (see [2,3,7,8,19]).
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Given nonnegative integefs, ..., k;, wherek, + --- + k;, = n, we preseniR” as a
direct sumR* @ - .- @ R¥. Any vectorx € R” takes the form

X=(x1,...,%), X =(Xi1,...,Xig;) eRb i=1,...1
The differential operators dR" with smooth coefficients have the form

g (x)01!

Z oxe

o

whereq, € C*°(R") and« is a multi-index:
ki
a=(ag,....,0q), o =(1,..., %), o] =Zaija i=1...,10
j=1

The space of all differential operators with smooth coefficients forms an associative
algebra with composition of operators as multiplication. The differential operators with
polynomial coefficients form a subalgebra of this algebra with generatars %j—, i=
1,...,1, j=1,..., k. We introduce aZ-grading into this subalgebra by giving the
weightsv to the generators:(1) =0, v(x;;) =1, andv(ﬁij) = —i. Accordingly,

, P! ! .
v(x 8x—ﬁ> => (leil = 1Bi)i,

i=1

wherea and g are multi-indices.

A differential operator with polynomial coefficients is said to ibédomogeneousf
weight m if all the monomials occurring in it have weighi. It is easy to see that
v(D; 0 Dy) = v(Dy) + v(Dy) for anyv-homogeneous differential operatdbg and D,.
The most important for us are differential operators of order O (functions) and of order 1
(vector fields). We have(Xa) = v(X) + v(a), v([X1, X2]) = v(X1) + v(Xy) for any
v-homogeneous function and vector fieldsX, X;, X,. A differential operator of
order N has weight at least-N1; in particular, the weight of nonzero vector fields is
at least—/. Vector fields of nonnegative weights vanish at 0 while the values at O of
the fields of weight-i belong to the subspad, theith summand in the presentation
R'=Rl @ ... pRN,

We introduce a dilation; : R” — R”", ¢ € R, by the formula:

S (X1, X0, ..., x1) = (txl,tzxz,...,tlxl). (1)

v-homogeneity means homogeneity with respect to this dilation. In particular, we have
a(,x) = t"Ya(x), §,X =t"XX for any v-homogeneous functioa and vector
field X.

Now let X =37, ; aij% be an arbitrary smooth vector field. Expanding the
coefficientsa;; in a Taylor series in powers af, and grouping the terms with the same
weights, we get an expansion~ >+ X whereX ™ is av-homogeneous field
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of weightm. This expansion enables us to introduce a decreasing filtration in the Lie
algebra of smooth vector fields VB¢ by putting:

Vec" (ki, ..., k) ={X e VecR": XV =0fori <m}, —I<m <-+oo.
It is easy to see that:
[Ved”l(kl, e k), Ved2(kq, ..., kl)] C Ved"™2(ky, ..., k).

It happens that this class of filtrations is in a sense universal. We will need the following
theorem which is a special case of general results proved in [2,8].
SetAl ={0)y, AL =24y

THEOREM 1. —-Assume thadim(Ago/Aggl) =k;,i=1,...,1. Then there exists a
neighborhoodo,, of the pointge in M and a coordinate mapping : O,, — R" such
that

X(g0) =0 X:[7, (A, J=RY@. .. oRY 1<i<l,

and x.(A) c Vec Yk, ..., k).

The mappingy : O,, — R" from the theorem is called aadapted coordinate map.
It is obtained from arbltrary coordinates by a polynomial change of variables and
the construction is quite effective. For ark € A we have x.(X) ~ x.(X)P +
>0 x+(X)Y), wherey, (X)™ is av-homogeneous field of weight. The fieldX =
Xgl(x*(X)<‘1>) is called thenilpotentization ofX (relative to the adapted coordinate
mappingy).

PrROPOSITION 1. —Assume thaty = (x1, ..., x1), X 10, —> RN, j=1,...,1,is
an adapted coordinate map4,..., X; € A, and X, is the nllpotenlzatlon ofX,,
1=1,...,i.Then

X10---0X;xj(qo) =0 Vj>i,

X100 XiXi(LIO) = 5510 ce OXiXi(qO)-
Proof. —We have:
X10---0X;x;(q0) = (X« X1) 0 0 (x:X1)Xjlo

= > (6XD"™ o0 (x:X)"x)lo,
my+tetmi=—j

since any monomial of positive weight vanishes at 0. Hence:

XlO"'OXin(qO):O for l<],

X100 Xixi(qo) = () X1) P00 (e X0) Pxilo= X100 X xi (qo0)- O
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3. Theendpoint mapping

We are working in a small neighborhoa®,, of o € M, where we fix an orthonormal
frame Xi,..., X € VecO,, of the sub-Riemannian structure under consideration.
Admissible paths are thus solutions of the Cauchy problem:

k
G=> uiXi(q), q€ Oy, q(0)=qo, )
i=1

whereu = (u1(:), ..., ug(-)) € L0, 1].

Below |[u|| = (g S-¥_ou?(r) dr)*? is the norm inL4[0, 1]. We also seflq ()| = ||u|,
whereg(-) = g(-; u) is the solution of (2). Let:

U, = {u e L0, 1]: |lull =r},

be the sphere of radiusin L4[0, 1]. Solutions of (2) are defined for alle [0, 1], if u

belongs to a sphere of radinssmall enough. In this paper we implicitely takenly in
such spheres. The lengtty (-)) = fol(zf.‘zl u?(t))¥2dt is well-defined and satisfies the
inequality:

I(q()) <|lgO)||=r. 3)
The length does not depend on the parametrization of the curve while the|adrm

depends. We say thatandg (-) arenormalizedif Zf.‘zl u?(t) does not depend an For
normalizedu, and only for them, the inequality (3) becomes an equality.

We consider thendpoint mapping : u — ¢(1). Itis a well-defined smooth mapping
of a neighborhood of the origin of4[0, 1] into M. Clearly, p(¢) = min{||lu|: u €
L%[0,1], f(u)=gq} and the minimum is attained at a normalized control. A normalized
u is calledminimalfor the system (2) ifo(f (1)) = ||u]|.

Remark— The notationdl¢(-)|| andl(g(-)) reflect the fact that these quantities do not
depend on the choice of the orthonormal frakne. .., X, and are characteristics of the
trajectory ¢ (-) rather than theontrol «. The L,-topology in the space of controls is the
H,-topology in the space of trajectories.

Letx : 0,, — R", be an adapted coordinate map afcbe the nilpotentization of;,
i=1,..., k. The system:

k
E=3 wixXi(x), xeR", x(0)=0, (2)
i=1
is the nilpotentization of the system (2) expressed in the adapted coordinates.
We define the mapping : L4[0, 1] — R” by the rulef :u(-) — x(1), wherex(-) =
x(;u) is the solution of 2). The following proposition is an easy corollary of the fact
that x,. X; arev-homogeneous of weighit-1) (see [2] for details).
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PROPOSITION 2. —Let x = (x1,..., x1), Xj: 04 — RN, j=1,...,1. Then the
following identities hold for any(-) € L4[0, 1], ¢ € R

1k
flu@e)= (/Zui(t))?ixl(qo) dr, ...,
/4

k
> uip (i) uy () Xy 00 Xy xi(qo) diy - -dn) ;

0<n <<t =t
f(eu(-)) =8, f (u(-)), wheres, is the dilation(1).
We setf.(u) =61 x(f(eu)). Thenf, is a smooth mapping from a neighborhood of 0

in L[0, 1] to R". Moreover, any bounded subsetidf[0, 1] is contained in the domain
of f. for ¢ small enough.

THEOREM 2. —f, — f ase — 0in the C™ topology of the uniform convergence of
the mappings and all their derivatives on the ballg#{0, 1].

Proof. —We have:

1 1
s (F) = (Ll @) S0 ).

\I—‘

k 1y
J(F0) = [ S u®X;a(a@)di = [ 300X, dr

o =1 o =1
1

+f / 0 (110, (12) Xy © Xy (g (20) dy d
0 i1=ip=1

1y

= [ S w0X; 0 dr

o i=1
1 k

+ / / S v ()0, (1) X, © Xipx;(q0) dra ity
00 i1=ip=1

k
4 / / / S o (1)U, ()35 ()Xo, 0 Xy 0 Xy (q(00)) dry dtp ity

Now, Proposition 1 implies:

1 k N N
= xi(f(ew) = // S uiy (1) ui, () Xy 0 -0 i x;(qo) dia -+ dt

0<n <<ty b=l
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k
+e / / S uiy (1) -ty (140) X 0 -

0<n <<t =t
o Xi . xj(q(ts; eu))dty---dtjyq.

It remains to apply Proposition 2 and to note that the mappings ¢(¢; v) are
uniformly bounded with all their derivatives on a small enough ballL0, 1] for
0<r<l. O

Recall thatp(¢) = min{|ju||: f(u) =g, u € L4[0, 1]} is the sub-Riemannian distance
function. We set:

. 1
pe(x) =min{[lul: f.(u)=x, ue L50,1]} = gp(x_l(fSEX))

and
p(x) =min{|[ull: f(u)=x, u e L]0, 11}.
Thusy is the sub-Riemannian distance for the nilpotentization of the original system.

LEmMmA 1.—-The family of functiong,|x is equicontinuous for any compagt C
R".

Proof. —The functionp(g) is the sub-Riemannian distance betweggrandg for the
sub-Riemannian structure with the orthonormal frakhe. .., X;. Hencep, (x) is the
sub-Riemannian distance between 0 aridr the structure with the orthonormal frame:

e(871) X X1s s e(87Y), xuXi @)

Letd,.(x, y) be the distance betweanand y for this sub-Riemannian structure so that
0:(x) =d: (0, x). Clearly, | p. (x) — p.(¥)| < d:(x, y). We are going to prove that:

[
d.(x,y) < clx — yY?.

First we introduce an auxiliary operation on families of control functions. Suppose
thatu, (), v,(-) € L5[0, 1], s € R, uo(-) = vo(-) = 0; we define:

ug/2(41), 0<t< %1,

1 1

[M U] (t) . U|S‘l/2(4l‘ — 1), 4 < < 5
) N -

up2(3 —4t), % <t < %,

2@ —4n, <<y,

where we take a branch &f|/? such that|s|/? > 0.
For any controk(-) and a system:

k
X=> ui(Zi(x), xeR’, (5)

i=1



366 A. AGRACHEYV, J.-P. GAUTHIER / Ann. I. H. Poincaré — AN 18 (2001) 359-382

we define a diffeomorphisr, : R" — R” by the rule3, (x(0)) = x(1), wheret — x(¢)
is a solution of the differential equation (5). Then

_2-1 -1
S[M,U]S - 31)"?'1/2 o 5”“‘1/2 o 3v|S|1/2 o 3"“”1/2'

If (5. %) > 3,,(x), (5, x) > 3, (x) areC*-mappings and-3,, |,—o = X, 23, ,=0=Y,
X,Y € VecR", then (s, x) — 3p,.,(x) is alsoC?! and %S[M,U]SL;:O =[X,Y]. Letg!
be the constant control with thagh coordinate equals and all other coordinates
equals 0. We setgliz...inl, = [¢%,[....¢™]...]; and obtain 23 . ls=0 =
[Z1,[..., Zn])...]. Note that||c[i1 .. .in]s || = sY/?".

Now we go back to the vector fields (4) and $&t= 5 x.X;, i =1,...,k. We
have(S{_;lX*X,- = %X*}A(,- + R}, whereR; is a family of vector fields smooth with respect
to ¢ (see Section 2). Henc& = y, X, + ¢ R¢.

The bracket generating assumption implies that a basiR”otan be formed by
vectors:

I:Xl%’ ["'9Xi’];ll]"'}(q0)7 ceey I:Xl]y_l9 ["'9Xi;7nn]"'](q0)a
where 1< mqp < -+ - <m, <. It follows from Proposition 1 that the vectors:

~

(X Lo Xip 1. (@0)s - [Xig Lo X, 1] (0,
form a basis ofR”. Indeed, the difference:

(XL Xy 10010 = (X L Xy 100 ] (o)

l 4
J mj

belongs toA;"J_l. We apply the diffeomorphism and obtain that the vectors:
e[ X Lo Xp 100X [ Xig, 112 ] (0, (6)
form a basis ofR” for any x from a neighborhood of 0. Moreover, the vectors (6) form

a basis ofR” for anyx € R” thanks to ther-homogeneity ofy, X;.
Take a compack C R". There existgg > 0 such that the vectors:

[Zf%,[..., z}ll]...}(x),...,[Zf;,[...,Zf%]...](x),
form a basis oR” for any (x, ¢) € Dx ={(x,¢)|x € K, |e| < ek}.

Finally, we define a family of controlg;, s = (s1,...,s,),s; € R, j=1,...,n, by
the rule:
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Let the mapping3’ be defined similarly td@3,, replacing the fieldZ; by the field Z¢.
Then:

&€ &€ &€
BSJS Y [Zi{’ [...,Zil_;j]...}.
In particular, the mappin@; :s — (3;,.(x) — x) is a submersion at 0 for any € K,
lel < ex; @5(0) =

Recall that the family of mappings$ is smooth with respect to the parametersy),
and (e, x) belongs to the compact sétx. Hence the inverse mappin@:) ! is well
defined on a bal{z € R": |z| < §}, the radiuss of which does not depend af, ).
Clearly, (®¢)~%(z) < ¢'|z| for some constant’. Hence the equatiod;, (x) =y has a
solutions such thatls| < ¢/|x — y| if x € K, |x — y| < 8, and|e| < k. It follows that
de(x.y) < Jlws|| < "sV2 <clx =y Y2, O

THEOREM 3. —p, — p uniformly on compact subsetskf as¢ — 0.

Proof. —Thanks to the equicontinuity of the family of functiops|x (Lemma 1) it is
enough to prove the pointwise convergenge—> o ass — 0.

Take x € R"; there existsi € Uj(,, such thatf(ﬁ) =x. Let x, = f. (7). We have
pe(xe) < |lit]l = p(x). Hence:

Pe(X) = pe(xs) + pe(X) — pe(xe) < P(x) + | pe(x) — pe(xe)].

According to Theorem 2y, — x ase — 0. Now Lemma 1 implies the inequality
“mSUpE_)O,OE(x) < ﬁ(X)

For any ¢ small enough, there exists, € U, ) such that f.(u,) = x. The
equicontinuity ofp, and the identityp.(0) = 0 imply that ||u.|| = p.(x) are uniformly
bounded. Lef, = f(u,). We havej(£.) < p.(x). Hence:

P(x) = p(Xe) — P(Re) + p(x) < pe(x) + | (Xe) — p(x)].

It follows from Theorem 2 thaft, — x ase — 0. The continuity ofp implies the
inequality p(x) < liminf._ g p.(x).
Finally, lim,_q0.(x) = o(x). O

The following proposition is a modification of a result by Jacquet [17].

PROPOSITION 3. —Let M, = {u € U,: Ja € (0, 1] s.t. au is minimal for (2)}. Then
M, is a compact subset of the Hilbert sphete and f (M, \ M) C ptr); i
particular, any element oM, \ M, is a minimal control for syster).

Proof. —First of all, the mappingg’ and  are weakly continuous; this is a standard
fact, see [1] for a few lines proof. Let, € M,, n=1,2,..., be a weakly convergent
sequence inL4[0, 1], such thata,v, are minimal. Letv be the weak limit ofv,,
vl < r. We may assume without lack of generality tAdim,,_. ., «, = «. There are
two possibilities.

(1) ¢ > 0. We havexr =lim,,_, oo a,r =lim,_ o, p(f(a,v,)) = p(f (av)). Hence the
length of the trajectory associated to the conirolis «r. In particular,||av| > ar. We
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already know thafv|| < r. Thus|v|| = r, vis normalized and belongs 1ot,.. Moreover,
the sequence, is strongly convergent since the weak and strong topologies coincide on
the Hilbert sphere.

(2) @ = 0. We haves (£ (v)) = lim, .« p(f (vy)). Theorems 2, 3, and Lemma 1 make
it possible to replace by p,, and f by f«, In the right-hand side of the last equality.
We obtain

P : 1 ,
,O(f(l))) = nll—>moo Pa, (foz,, (vn)) = nII—Ugo a—,O(f(Oln vn)) = nll—>moor =r.
Now the same arguments as in the case (1) showtismhormalized andv|| =1. O

4. Subanalyticity and nilpotentization

In this section we assume that the Riemannian mani¥oldnd the distributiomA are
real analytic. Then we can assume (and we do so) that the vector Xiglds., X; and
the adapted coordinate mapping are real analytic.

THEOREM 4. —If the germ ofp at ¢q is subanalytic, therp is subanalytic.

Proof. —Let $"~! be the unit sphere iR" and lete > 0 be such thap(x ~1(5,x))
is well defined for allx € "1, |t| < e. Then(z, x) — p(x~%(8,x)) is a subanalytic
function on the produat—e, €) x S"~1. Moreover,

. . 1,
p(x) =lim p; (x) = lim ;p(x (8,x)).

Hencep is a subanalytic function on the compact algebraic manifsid (see [13,16]).
Now the quasi-homogeneity @, 5(8,x) = |t|p(x), implies the subanalyticity of on
the wholeR”. O

So the subanalyticity op implies the same property fgt. It is hard to expect that
the inverse implication is always true. We are going however to show that it is true very
often. Namely, is subanalytic if the ninotentizatio(fZ) of the original system satisfies
general sufficient conditions for subanalyticity of sub-Riemannian balls developed in [1].
We point out that, in general, the subanalyticity of all balts ([0, 7]) (i.e. the Lebesgue
sets ofp) does not imply at all the subanalyticity pf(i.e. the graph op); see the next
section to appreciate a sharp difference between these two kinds of subanalyticity. At th
same time, the subanalyticity of the bafis'([0, ¢]) is equivalent to the subanalyticity
of p itself, by the quasi-homogeneity of

Let us recall the background on sub-Riemannian geodesics we need to formulat
the abovementioned subanalyticity conditions. First we fset f|y,, the restriction
of the endpoint mapping to the Hilbert sphere. The critical points of the mapping
f, U, — M are calledextremal controlsand the corresponding solutions of Eq. (2)
are calledextremal trajectorie®r sub-Riemannian geodesics. It is easy to check that all
minimal controls are extremal ones. The geodesics associated to minimal controls ar
also called minimal.
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An extremal control: and the corresponding geodegic) areregular if u is a regular
point of f; otherwise they arsingular or abnormal

Let D, f:L40, 1] — TruwyM be the differential off at u. Extremal controls (and
only them) satisfy the equation:

AD, f =vu @)

with some “Lagrange multipliers € 77,,M \ 0,v € R. HereAD, f is the composition

of the linear mappingD, f and the linear formi:Ty,,M — R, i.e. AD,f) €
L4[0, 1]* = LA[0, 1]. We havev # O for regular extremal controls, while for abnormal
controls v can be taken 0. In principle, abnormal controls may admit Lagrange
multipliers with both zero and nonzero If it is not the case, then the control and the
geodesic are callestrictly abnormal.

Pontryagin’s maximum principle gives an efficient way to solve Eqg. (7), i.e. to
find extremal controls and Lagrange multipliers. A coordinate free formulation of
the maximum principle uses the canonical symplectic structure on the cotangen
bundle T*M. The symplectic structure associates a Hamiltonian vector fietd
VecT*M to any smooth functioa : T*M — R.

We define the functions;, i =1, ..., k, andh on T*M by the formulas

— _1 . 2 *
hi (W) = (¥, Xi(q)), h(w)—ézh,-(w), VgeM, y eTM.
i=1

Pontryagin’s maximum principle implies the following:

PROPOSITION 4. —A triple (u, A, v) satisfies Eq(7) if and only if there exists a
solutionyr (7), 0< ¢t < 1, to the system of differential and pointwise equations

k
¥ =" wiOh(p), hi(y@) =vu 1), ®)

i=1
with boundary condltlonsi!/(O)e M, (1) =

Here (¥ (¢), v) are Lagrange multlpllers for the extremal contipt t —~ ru(r7); in
other wordsy (1) Dy, f = vu,.

Note that abnormal geodesics are still geodesics after an arbitrary reparametrizatiot
while regular geodesics are automatically normalized. We say that a geodgsasis
regular if it is normalized and is not strictly abnormal. Setting= 1 we obtain a simple
description of all quasi-regular geodesics.

CoROLLARY 1.—Quasi-regular geodesics are exactly projections th of the
solutions of the differential equatiopy = h(w) with initial conditionsy(0) € T M.
If h(y(0)) is small enough, then such a solution exiéts. is defined on the whole
segmenf0, 1]). The length of the geodesic is equal & (v (0)) and the Lagrange
multiplier » = ¥ (1).

Corollary 1 provides a parametrization of the space of quasi-regular geodesics b
the points of an open subs@t of 7@ M. Namely, U consists ofyq € 70 M such that
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the solutiony (¢) to the equationy = fl(d/) with the initial conditiony(0) = vy is
defined for allr € [0, 1]. The space of quasi-regular geodesics of a prescribed length
small enough, are parametrized by the points of the marﬂa‘o}dé) NTy M CW.This
manifold is diffeomorphic t&®”—* x §¥*~1. The composition of the given parametrization
with the endpoint mapping is theexponential mapping : ¥ — M. Thus& (¢ (0)) =
(¥ (1)), whererr : T*M — M is the canonical projection.

Throughout the paper the “hat” over a symbol means that we replace the original
system (2) by its nilpotentizatiof?) in the construction of the object denoted by the
symbol. In particular/z is the Hamiltonian and is the exponential mapping for the
system(2). Besides that, we denote i and&¢ the Hamiltonian and the exponential
mapping for the system:

k
X=> wZi(x), xeR", (2°)
i=1

whereZf = ¢8_1x. X;. Recall that systeni2®) produces the endpoint mappinfy and
sub-Riemannian distange. Note that(e, x) — Z{(x) are real analytic vector functions
and Z° = X;. Henceh® (), £° () are also analytic with respect te, ) andh® = ,
E0=¢.

Our results on subanalyticity of the distance functioare based upon the following
statement.

PROPOSITION 5. —Assume that there exists a comp&ct T M such thatp (1) C
E(K N (h’)‘l(%)) for any small enough nonnegative Then the germ op at ¢ is
subanalytic.

Proof. —We have:

p(g) =min{r: 3y € K, such that’ (y) =3, 6, W) = x(@)},

for any ¢ in a neighborhood ofy. One can enlarge the compakst, if necessary, to
make it semi-analytic. The subanalyticity @follows now from [23, Proposition 1.3.7],
thanks to the analyticity of” () andha” (y) with respect tar, ). O

Letu € U, be an extremal control, i.e. a critical point ff. The Hessian off, atu is
a quadratic mapping

Hes, f. :kerD, f, — cokerD, f,.

This is a coordinate free part of the second derivativg,adtu. Let (A, v) be Lagrange
multipliers associated with so that Eq. (7) is satisfied. Then the covectof s, M —
R annihilates imD, f, and the composition:

AHes, f, :kerD, f, — R, 9)

is well-defined.



A. AGRACHEYV, J.-P. GAUTHIER/ Ann. |. H. Poincaré — AN 18 (2001) 359-382 371

The quadratic form (9) is theecond variationof the sub-Riemannian problem at
(u, A, v). We have:

AHes, f,(v) =AD2f(v,v) — v|v|?, vekerD,f,.
Letg(-) be the geodesic associated with the conirdlVe set:
ind(f; u, A, v) =ind, (A Hes, f,) — dimcokerD,, f,, (10)

where ind. (A Hes, f,) is the positive inertia index of the quadratic forhHes, f,.
Decoding some of the symbols we can rewrite:

ind(f; u, A, v) =sup{dimV: V c kerD, f,, AD2f(v,v) > v|v|?, Yve V \ 0}
—dim{)' e T}, M: 'D, f, =0}.
The value of indf; u, A, v) may be an integer ofoco.

Remark— The index (10) does not depend on the choice of the orthonormal frame
Xi1,..., X, and is actually a characteristic of the geodegic) and the Lagrange
multipliers (1, v). Indeed, a change of the frame leads to a smooth transformation of
the Hilbert manifoldU, and to a linear transformation of variables in the quadratic form
A Hes, f, and the linear mapping, f.. Both terms in the right-hand side of (10) remain
unchanged.

The next theorem presents the most important properties of index (10); see [1,5] an
references there for proofs and detalils.

THEOREM 5. — (1) The integer-valued functior(f,u, A,v) — ind(f;u, r,v) is
lower semicontinuous for th&? topology in the space of the mappingsL[0, 1] — M.

(2) For any minimal controlu there exist Lagrange multipliers., v such that
ind(f;u,A,v) <O.

Now we are ready to formulate the main result of this section. It is a generalization of
some results from [1,17].

THEOREM 6. —Assurr)e tha'md(f; u, X, 0) > 0 for any nonzero abqormal contrdl
of the nilpotent systern2) and any associated Lagrange multipliefs, 0). Then the
germ ofp at g is subanalytic.

Proof. —First we’ll prove that no sufficiently small strictly abnormal control of the
original system (2) is minimal.

Assume on the contrary that,, m = 1,2,..., is a sequence of minimal strictly
abnormal controls|u,,|| = &, &x — 0 (m — o0). The minimality ofu,, implies the
existence of a nonzery, < TF oM such that:

AmDy,, f=0, Ind(f;um,An,0) <O. (12)
Setv,, = ium, MUm =8 A, and rewrite relations (11) in the form:

/’LmDvm fam = 0» ind(fsm; Um> Mm, 0) <0.
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According to Proposition 3, we may assume that there exists a (strong) lins,,, = v.
Of course, we may also assume that there existg ligu,, = u # 0. Theorem 2
implies thatuD, f = 0, i.e.v is an abnormal control for the nilpotent systeﬁ). On
the other hand, the lower semicontinuity of ind implies that(jficb, 12, 0) < 0 and we
come to a contradiction.

Therefore, any short enough minimal geodesic is quasi-regular. Hence:

p(g) =min{r: 3y € TZR", such that” (¥) =3, 5. W) =x(@}.  (12)

Now it remains only to show that, in relation (12;R" can be replaced by a compact
subsetk C T;R" and to apply Proposition 5.

Denote byuw(o) the extremal control associated with(0) e (h’)‘l(%) so that
E"(Y(0) = fr(uy ). We haveuw(o) = (hy(¥ (), ..., h (¥ (-))) (see Proposition 4 and
its corollary). In particulary’, o, depends continuously of(0). We set:

K, ={¥ 0 e (1) (3): u) o is minimal for (2'),ind(f,; ), ), ¥ (1), 0) < 0},

U ..

0<r<e

It follows from Theorem 5 that one can repla€gR" by K° in (12) if ¢ lies in
»~1([0, £]). We have shown above that the system

/’LDUfé‘:O’ lnd(fé"v?l’l/vo)<0, MGR}’L\O’ UGU]_,

has no solutions fos small enough, and we assuméo be so small. We are going to
prove thatkK* is compact.

Take a sequencé,,(0) € K,, € K°, m=1,2,.... We have to find a convergent
subsequencek is compact in virtue of [1, Theorem 5] applied to systén. Hence
we may assume that, > O for all m. Moreover, we may assume that there exists
lim,,~ecrm =7. The controlsbtw ) belong toM,; according to Proposition 3, there
exists a convergent subsequence of this sequence of controls and its limit is minimal fo
system(2"). To simplify notations, we assume that the sequerite,, m=1,2,...,
is already convergent and ljm, o, uf;’ 0 = U.

It follows from Proposition 4 thaty,,(1) D, ™ fr,,, uw - There are two possibil-

ities: either|y,,(1)| — oo (m — o0) or wm(l) m=1,2, ..., contains a convergent
subsequence.

In the first case we come to the equatjoP; f; = 0, wherei is a limiting point of the
sequenchwm(l) || = 1. The lower semicontinuity of ind implies the inequality
ind( f;; i, jx, 0) < 0. We come to a contradiction with our assumptiore@incer < ¢.

In the second case lef, (1), [ =1,2,..., be a convergent subsequence. Then

V¥, (0), 1=1,2,..., is also convergeng lim;_, ¥, (0) = ¥ (0). Theni = ”¢<0) and

ind( f;; i1, ¥ (1), 1) < 0 because of the lower semicontinuity of ind. Herc®) € K7 C
K* and we are done. O
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To apply the last theorem we need a way to evaluate our index. There is a well
developed theory about that, see [1] for some references. In the next proposition w
formulate just the most simple and easy to check necessary conditions for the finitenes
of the ind. A detailed proof can be found in [4, Appendix 2].

PROPOSITION 6. —Assume that (-) is an abnormal control angy (-) # 0 satisfieq8)
forv=0.If ind(f; u(-), ¥ (1), 0) < oo, then

{hi h Y (W (1)) =0 Vi, je{l ... .k}, (13)

k k
> {h,-, {h,-, Zul(t)hl}}v,-vj <0 VY(vi,...,1) € R, (14)
i,j=1 =1

for almost allr € [0, 1], where{a, b} = ab is the Poisson bracket of the Hamiltoni-
ansa, b.

Remark— Identity (13) is called the Goh condition while inequality (14) is the
generalized Legendre condition. It is easy to see that both conditions are actuall
intrinsic: Identity (13) does not depend on the choice of the orthonormal frame
X1, ..., X sinceh; (v (1)), i =1, ..., k, vanish anyway. Inequality (14) does not depend
on the choice of the orthonormal frame provided that (13) is satisfied.

We say that«(-) is aGoh controlif (13) is satisfied for an appropriat¢(-); it is a
Goh-Legendre contraf both (13) and (14) are satisfied.

COROLLARY 2. —If the nilpotent systemﬁ) does not admit nonzero Goh—Legendre
abnormal controls, then the germ pfat g is subanalytic.

The system (2) is said to beedium faif:
quM= A;O +Spar( [Xa [XHX]H (qo) l?] = 19 9k}

for any X € A, X(qo) # 0 (see [5]). Medium fat systems do not admit nontrivial Goh
controls. It follows directly from the definitions that a system is medium fat if and only
if its nilpotentization is. We come to the following:

COROLLARY 3. -If the system(2) is medium fat, then the germ @f at ¢o is
subanalytic.

It is proved in [5] that generic germs of distributions are medium fatufet (k —
1)k + 1. This gives the following general result.

THEOREM 7. —Assume that < (k — 1)k + 1. Then the germ of the sub-Riemann-
ian distance function associated with a generic germ of a rardistribution on an
n-dimensional real-analytic Riemannian manifold is subanalytic.

5. Exclusivity of Goh controls for rank > 2 distributions

First we’ll make precise the term exclusivity. Rahldistributions onM are smooth
sections of the “Grassmannizatio, T M of the tangent bundl€ M. The space of
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sections is endowed with th&>* Whitney topology and is denoted Wy, T M. Smooth
families of distributions parametrized by the finite dimensional manifldre sections
of the bundlep’ H,T M over N x M induced by the standard projectipff : N x M —
M. Let A C H,TM be a set of distributions. We say thdt has codimensioro in
H, T M if the subset:

{DepVNH,TM: D\, sy ¢ A Vx N},

is everywhere dense iny H,TM,VN.

We will also use a real-analytic version of the definition, just given. The only
difference with the smooth case is that the manifolds and the sections are assumed
be real-analytic, while the topology remains the same Whitney topology.

THEOREM 8. —For anyk > 3, the distributions admitting nonzero Goh controls form
a subset of codimensiar in the space of all smooth rarkkdistributions onM.

Proof. —We start with a weaker result related smoothGoh controls. Namely, we
are going to prove that the distributions that admit nonzéto Goh controls form a
subset of codimensioto in the space of rank > 3 distributions. Thom transversality
theorem allows to reduce the proof to calculations in the jet spaces/’tét, k) be the
space ofn-jets at O ofk-tuples of vector fields iR” and 7" (n, k) = {(X1, ..., Xi) €
J"(n, k) X1(0) A -+ A Xi(0) #£ O} be the space ofi-jets of k-frames. To any vector
field X; we associate the Hamiltonia?n(é x) é X;(x)), (§,x) e R™ x R" and

the Hamiltonian fieldh; (&, x) = Y_ (s 2 — 0. Setyr = (¢, x); the Goh

controls for the system = Zf;l u; (HX;(x), x(0) =0, are admissible controls =
(u1("), ..., ur(+)) such that there exist:

k
YO =(EQ.x(), EO#£0, x@=0 ¥=Sw®h),  (15)

i=1

hi(y () ={hi b} (W (@) =0, i j=1 ...k (16)

Working in the jet space we try to solve Eqgs. (16) not precisely but up to a certain
order. We say that then-jet of (X4,..., X}) is Goh-compatible if there exists a
nontrivial smooth solutioriu, ¥ (-)) of (15) such that the functions— h; (v (¢)), t —
{hi,hj}( (1)), i, j=1,..., k, have zeron-jets atr = 0.

Let A" C J(n, k) be the set of all Goh-compatible-jets. Standard transversality
techniques reduce the expected result about the set of distributions admitting nontriv
ial C* Goh controls to the following lemma.

LEMMA 2.—-A" is an algebraic subset of the linear spacé&(n,k) and
codimA™ — oo asm — o0.

Proof. —Differentiating (16)m times in virtue of (15) at = O leads to a system
of polynomial equations o (0), u;(0),...,u" P(0), i = 1,... k. Actually, these
eguations are even linear with respect&@). The setA™ is thus automatically
algebraic.
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Any reparametrization of a Goh trajectory is still Goh. In particular, we may normalize
one of the coordinates of the nontrivial smooth Goh control assuminguthat 1
for someip. Without lack of generality, we may compute everything only in the
caseip = 1. Moreover, any nonvanishing vector field is locally rectifiable and gauge
transformationsX; — X1, X; — X;(x) +a; (x) X1(x), i =2, ..., k, do not change Goh-
compatibility.

Hence we may assume that:

0 - 0
Xi=—73.  Xi0)= ;aij(x)ﬁ, i=2,...,k,
whereq;; (x) are polynomials of degree. In particular,X; = >-"_(x1)*Y#(y), where
y=2 . xh), Y, .. Y e "n—Lk—1,a=1....mand(¥y,.... Y9 €
JM(n—1, k—1). Finally, the codimension ofl” in 7" (n, k) is equal to codimension of
the subseB™ ofall (Y3,..., Y% ..., Yy, .. Y e T "n—L k-1 x J"(n—1,m(k—
1)) such that:

8 - o “ o
(@,Z(xl) ve 3 (Y Y;;) e A,
a=0 a=0
inJ"n—1k—1) x J"(n —1,mk —1)).
We study the subsystem of (16) corresponding,tb= 2, ..., k. The requirement
that (15) admits a nontrivial solutiof, v (-)) such that:

hi (@) =0@™™),  (hi, b} () =0@™?), 2<i<j<k, (17)

defines an algebraic subsBt! in Jrn —1,k—1) x J"(n —1,m(k — 1)), where
B™ > B™. We'll show that the codimension of this larger subset tends to infinity as
m — oQ.
We havex!(t) =t in virtue of (15). We seh = (£2,...,&"), H*(n, y) = (n, Y2 (1)),
then (15), (17) take the form:

d(n D R —
=> " r“u;(H}, (18)

i=2 a=0

m

Zta<77(t), Yia (y(t))> — O(tm+1),

a=0

S e, (Y Y] (v0)) =0(" ), 2<i < j <k, (19)

a+p<m
The derivative of the function— (n(¢), Y (y(¢))), by (18), has the form:

Xk:if“‘ui(ﬂ@(ﬂ, (Y2, Y] (y@)).

i=2a=0
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Successive differentiations and evaluation of the derivatives-41, show that (18), (19)
are equivalent to a system of equations of the form:

(n(0), Y*(0)) = ¢ (Y2, uP(0); B<a,1=2,...,k,
(n(0), [Y,-“‘(O),Y,Q](O)+[Y,-°(0), Y¢1(0)) = @F  (¥F, u(0));
B<a,1=2,....k, a=01....m, 2<i<j<k, (20)

wheregy, & ; are certain polynomials.
The number of equations in the system (20Qwis+ 1)&2—1{ The mappings:
0), Y*(0))
{(n(0), [Y#(0), Y21(0) + [V, 0.7 RI(0) ) S

are, obviously, submersiong(Q) has to be nonzero). The polynomiaig, ®7; do not
depend onY®, 1 =1,...,k. Hence the solutionsY?, n(0), u»(0)) of (20) form an
algebraic subset:

C"C I =1 k=1 x J"(n— Lm(k — 1)) x RP" x R,

of codimensionim + 1)1 The set3” is the image of” under the projection:

Trn—1k—1) x J"(n—1mk—1) x RP"* x R"*~D
- J'n—Lk—1)xJ"(n—-1mk-1).

Hence:
codimB™ > (m + 1)k(k - n—1) —mk—1)
k= Dk=2 k(=1
_m—z (l’l 1) + 2 ’
codimB™ — oo (m — 00). O

Lemma 2 plus a transversality routine give the following:

COROLLARY 4. —For any smooth manifoldVv, the set of families of distributions
admitting no smooth nonzero Goh controls, contains an open everywhere dense subs
of pNH,TM.

Any smooth manifold admits a real-analytic structure and any smooth family of
distributions can be approximated in the Whitney topology by a real-analytic one. What
remains to be proved is that a real-analytic distribution admits a nontrivial smooth Goh
control as soon as it admits a nontrivial bounded measurable Goh control. We derive thi
fact from the following lemma.

LEMMA 3.-Letz =g(z,u), z€ W, u € U be a real-analytic control system and
¢: W x U — R™ be an analytic mappindghere W is a real-analytic manifold and/
is a compact subanalytic set. Assume that there exists a bounded measurable contr
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u(-): (to, t1) — U and a Lipschitzian trajectory(-) : (to, t1) — W such that
dz
5 O= g(z(),u@®), ¢(z@),u®) =0,

for almost allz € (fo, t1). Then there also exists an analytic contial) : (f, 1) — U
and a trajectoryz(-) : (fo, f1) — W such that

dz A
d—f(r) =g(G().a(). G(EM.4(1)) =0, Vi€ (fo.hy).

A detailed proof of this rather hard technical lemma is contained in the proof of [14,
Theorem 5.1]. It follows also from anterior results by H.J. Sussmann [21,22].

The statement on real-analytic distributions we have to prove is local with respect
to the state variables and we may assume that the distribationder consideration
is defined onR"” and admits a basishA, = spaiXi(q), ..., Xi(q)}, Vx € R". Let
h;(&,x) = (&, X;(x)) be the Hamiltonian associated X5. We set:

k
W=R"\0)xR", z=(,x), U=S"1= {(ul,...,uk)eRk: Z“le}’
i=1

k(k—1)

k
gy = wihi(§,x), ¢ =(h1,.... i {ha, ha}, ..o {hia, bi}) W — R 2
i=1
and apply Lemma 3. Theorem 8 has been proved.

It was proved in [1, Corollary 4] that the small sub-Riemannian balls are subanalytic
for any real-analytic sub-Riemannian structure without nontrivial Goh controls. Com-
bining this fact with Theorem 8, we obtain the following result. Recall that all over the
paper we keep the notatign(g), ¢ € M, for the sub-Riemannian distance between
and the fixed poingo. The sub-Riemannian distance is defined by a given distribution
A on the Riemannian manifolslf.

THEOREM 9. —Suppose thad is real-analytic andk > 3. There exists a subset
of codimensioro in the space of rank real-analytic distributions onV such that the
relation A ¢ A implies the subanalyticity of the sub-Riemannian baltd([0, ]) for
all r, small enough.

6. Nilpotent systems

The system:

k
X=> u(nY;(x), xeR" x(0)=0, (21)
i=1
is called nilpotent if it coincides with its own nilpotentization expressed in adapted
coordinates.
In other words,R” is presented as a direct SURt = R @ .- @ R¥, ki =k,
so that any vector € R” takes the formx = (xg,...,x)), x; = (xi1, ..., xi;) € RN,
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i=1,...,1. The vector fieldy;, i =1, ..., k, are polynomial and quasi-homogeneous.
More precisely, they are homogeneous of weighitwith respect to the dilation:

8t (x1, X2y ooy xp) > (21, ’x5, ..., tlxl), teR;

8 Y =1Y;, i=1... k.

We keep the notatior : L]0, 1] — R" for the endpoint mapping — x(1; u), where
x(+; u) is the solution of (21)y = (u1(+), ..., ur(-)), and the notatiorp: R” — R for
the sub-Riemannian distang&x) = min{|ju|l: fu) = x}.

A special case of the system (21) with=1 =3, k1 =2,k, =0, k3 =1, is called
“the flat Martinet system”. We will use the special notatigf: R” — R, for the sub-
Riemannian distance in this case, which plays an important role below.

PROPOSITION 7. —Assume thatkt = 2, k3 # 0. Then there exists a polynomial
submersiond : R” — R2 such that(p™)~1([0, r]) = ®(p~2([0, r])), Vr > 0.

Proof. —The inequalityksz # 0 means that at least one of the third order brackets of the
fields Y1, Y» is linearly independent on the brackets of lower order at 0. We may assume
that:

[Y1, [Y1, Y21](0) ¢ spar{Y1(0), Y>(0), [Y1, Y>](0) }.

There are 2 possibilities.

(1) k2 = 0. Applying, if necessary @, preserving linear change of coordinates,
we may assume thai;(0) = 8/dx?, Y»(0) = 8/9x2, [Y1, [Y1, Y>]]1(0) = 3/9x%. The
coordinatesx?, x2, x3 have the weights 1, 1, 3 respectively (see Section 2). All other
coordinates have weights not less than 3. We have:

0 L ad
)]i - — bj PSR | = 19 29
=g+ LWz

where the polynomialsh3(x), b3(x) depend only onx!, x2. Then the mapping
&:(xY, . x") = (x1 x2, x%) satisfies required properties. Indeedl, Y, ®.Y, are
well-definedvector fields onR® generating the flat Martinet system. Hence the image
under the mapping of any trajectoryt — x(¢; u) of the system (21) is the trajectory of
the flat Martinet system associated to the same control

(2) ko, = 1. We may assume that (0) = 9/0x1, Yo(0) = 3/9x2, [Y1, Y2](0) = 3/0x5,
[Y1, [Y1, Y2]1(0) = 8/3x*. The desired mapping is constructed as the composition of
three mappings. The first one is the projectidh: (x*, ..., x") — (x%,...,x%. Then
oly;, @1y, arewell-definedvector fields onR*; we denote them by, = ®1v;, i =
1,2. The fieldsZ,, Z, define a distributionD = spariZ,, Z»} in R* with the growth
vector(2, 3, 4), i.e. an Engel distribution.

The Engel distributionD contains a nonvanishing characteristic vector field, i.e. a
vector fieldZ such that Z, D?] = D?. We may assume without lack of generality that
Z = Z,. This implies the relation:

[Z2,(Z2, Z1]] (x) € spar{ Z1(x), Z2(x), [Z1, Z2)(x)}  Vx e R (22)
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The vector fieldsZi(x), Z2(x),[Z1, Z2),[Z1,[Z1, Z5]] generate polynomial quasi-
homogeneous flows, thanks to their triangular “nilpotent” structure. We will use the
exponential notations’“1, ¢'#2, etc. for these flows. The mappind? is a change of
coordinatesb?: (x1, ..., x*) — (y1,...,y%), defined in the following way:

1 2 3 4
(xl, o, x4) — eV g ¥ 22 § V121 22] b [le[leZZ]](O).
The coordinatesy?, ..., y%) are still adapted and we have:

d
P27 = e D2Z| 10 =

e D[ Z1, Za]l 1my2o =

ay?’ ay®’

2 0
q)* [Z]_, [Z]_, Zz]] |y1:y2:y3:0 == 8—))4

These identities and the relation (22) leave the only possibilitydfz,
1 0 (yl)z 0

ad
P27, = — +y1- 2 2
2 8y2+y 8y3+ 2 0y*

In particular, the coefficients in the coordinate expressionitﬁ,-, i =1, 2, depend only
onyl.

We define®3: (v, y2, y3, yH — (¥, y2, y*) and ® = &% o &2 o L. The fields
d, Y1, .Y, are well-defined and generate a flat Martinet distributio.

COROLLARY 5. —Under the conditions of Propositiori the sub-Riemannian balls
o([0, r]), r > 0, are not subanalytic.

Proof. —Assume thap ([0, r]) is subanalytic. Thed® (p~1([0, r])) = (™) ~2([0, r])
is also subanalytic becauge([0, r]) is compact ana is polynomial. It is shown how-
ever in [6] that(p™)~%([0, r]) is not subanalytic. O

Now consider nilpotent distributions of rank greater than 2kie.k, > 2. We restrict
ourselves to the case of maximal possibleks. It means

k(k—l)}

2

k2=min{n —k, > 3

ks = min{n Ckk+ D) (k+ Dtk — 1) }

Remark — Generic germs of distributions and their nilpotentizations have the maximal
possible growth vector and, in particular, the maximal posdiflés.

PrROPOSITION 8. —Assume that > (k — 1)("—32 + 5—65‘ + 1) and ky, k3 are maximal

possible. Then there exists a polynomial submerdio®” — R2 such that(p”)~1(r) =
®(pH(r)), Vr = 0.

Proof. —We'll present® as a composition of certain polynomial submersions. The
first one is the projection:

O} R — ROt @l(x) = (x1, x2, x3).
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Then®ly;, i =1,...,k, are well-defined vector fields and the nilpotent distribution
spaf®ly;: i =1,..., k} has maximal growth vectaks, k1 + ko, k1 + ko + k3) at 0. We
setm = ky + ko + k3, Z; = ®Y;, D, = D} =spar{Z;(x): 1<i <k},

D?=spar{[Z;, Z;1(x): 1<, j <k},
D} =span[Z,,[Z;, Z;1] (x): 1<i, j. 1 <k}.

The maximality ofk,, k3 and homogeneity of; with respect to the dilation imply that
dmDi =k;, i =1,2,3, Vx e R".

Take bracket monomials:

Ziva =1Zip: Zig)s  Zigtkorp = [Zigys [ Zigy Zigs 1),

a=1...k, B=1,... ks, 1<iyj, ig;j <ka, in such a way thaZ(0), ..., Z,(0)
form a basis ofR™. Then Z1(x), ..., Z,,(x) form a basis ofR™ for Vx € R™. In
particular, any Lie monomial of the field8,, ..., Z; is a linear combination of the
fields Z4, ..., Z,, with smooth coefficients. The nilpotency of the systém..., Z;
implies that these coefficients have weight 0 and are actually constants. Moreover, all Li
monomials of order greater than 3 are zero. We obtain that the #glds., Z, generate
anm-dimensional nilpotent Lie algebra with the bagls ..., Z,,; the sub-Riemannian
structure with the orthonormal fram@, ..., Z; is isometric to the left-invariant sub-
Riemannian structure on the correspondimglimensional simply connected nilpotent
Lie group G,,. We will identify G,, with R™ and assume that the fields are left-
invariant. 0O

LEMMA 4.-Letl(Zs,..., Z,) betheidealinthe Lie algebraie{Z,, ..., Z;} gener-
ated by Zs,...,Z. If dimlie{Zs,...,Z}) >  — D& + % + 1), then
dim(Lie{Zl, s ZY1(Z3,y ..., Zy)) = 4,

Proof. —The following monomials represent the specialization of a Ph. Hall basis of
the free Lie algebra with generators up to the order 3:

Zi, [Zi,Zj], [Zl,[Zi,Zj]], i,j,le{l,...,k}, l<], l<l (23)
This Ph. Hall basis consists of

k(k—1 k+Dk(k—1 k? 5k
sty =k + 2 EEDEEED (T4 Z 1) 41

elements. Hence: equals eithepz(k) or vz(k) — 1. In both cases, removing the fields
[Z1,[Z1, Z5]1), [Z2,[Z2, Z1]] from the list (23) we obtain that the linear hull of the
remaining fields is a proper subspace of{dg ..., Z;}.

Let ¢:Lie{Zy,..., Z;} — Lie{Zy,..., Z}/1(Z3, ..., Z;) be the canonical homo-
morphism. We obtain that at least one of the fiehd§Z1, [Z1, Z51]), ¢ ([Z2, [Z2, Z1]])
is nonzero. O

Let G(I) be the normal subgroup af,, generated byl (Zs,..., Z;). Then¢ =
®2, where ®2:G,, — G,,/G(I) is the canonical epimorphism. We hade&Z; =
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.= ®27, =0, while spafd?Z;, ®2Z,} is a nilpotent distribution with the growth
vector 2,3,5 or 2 3, 4. We are thus in the situation of Proposition 7. This proposition
provides us with the submersio®®:G,,/G(I) — R3 which “projects” the sub-
Riemannian structure with orthonormal fran®?Zz;, ®2Z, onto the flat Martinet
structure. Finally, we seb = &% o 2o ®1,

COROLLARY 6. —Under the conditions of Propositio8, the sub-Riemannian balls
0([0, r]), r > 0, are not sub-analytic.

The proof is a strict repetition of the proof of Corollary 5.

Let now A be an arbitrary (not necessarily nilpotent) germ of a bracket generating
distribution atgo € M, and letp be the germ of the associated sub-Riemannian distance
function. Combining Corollaries 5, 6, and Theorem 4 we obtain the following:

THEOREM 10. —Assume that eithér = 2 and A3 # A2 or dimM > (k — 1)(% +

5—6" + 1) and the segmernk, dim Aso, dim Ago) of the growth vector is maximal. Then
is not subanalytic. In particular, generic germs are such thas not subanalytic.

Finally, combining Theorem 10 with Theorem 9 we come to the following surprising
result.

COROLLARY 7.-Let p be a germ of sub-Riemannian distance function associated
with a generic germ of real-analytic distribution of rarkk> 3, on an-dimensional

manifold,n > (k — 1)(% + %" + 1). Then the ballso~1([0, r]) are subanalytic for all
small enoughr, but the functiorp is not subanalytic!
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