Ann. I. H. Poincaré – AN 18, 3 (2001) 359–382

S0294-1449(00)00064-0/FLA © 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

ON THE SUBANALYTICITY OF CARNOT–CARATHEODORY DISTANCES

Andrei AGRACHEV ^a*,*b**, Jean-Paul GAUTHIER** ^c

^a *S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy* ^b *Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia* ^c *Lab. d'analyse appliquée et optimisation, Univ. de Bourgogne, Département de Mathématiques, B.P. 47870, 21078 Dijon, France*

Received 15 March 2000, revised 29 July 2000

1. Introduction

Let *M* be a C^{∞} Riemannian manifold, dim $M = n$. A distribution on *M* is a smooth linear subbundle Δ of the tangent bundle *TM*. We denote by Δ_q the fiber of Δ at *q* ∈ *M*; Δ_q ⊂ *T_aM*. The number *k* = dim Δ_q is the *rank* of the distribution. We assume that $1 < k < n$. The restriction of the Riemannian structure to Δ is a *sub-Riemannian structure*.

Lipschitz integral curves of the distribution Δ are called *admissible paths*; these are Lipschitz curves $t \mapsto q(t)$, $t \in [0, 1]$, such that $\dot{q}(t) \in \Delta_{q(t)}$ for almost all t .

We fix a point $q_0 \in M$ and study only admissible paths starting from this point, i.e. meeting the initial condition $q(0) = q_0$. Sections of the linear bundle Δ are smooth vector fields; we set

$$
\bar{\Delta} = \{ X \in \text{Vec } M \colon X(q) \in \Delta_q, \ q \in M \},
$$

the space of sections of Δ . Iterated Lie brackets of the fields in $\overline{\Delta}$ define a flag

$$
\Delta_{q_0} \subset \Delta_{q_0}^2 \subset \cdots \subset \Delta_{q_0}^m \cdots \subset T_qM
$$

in the following way:

$$
\Delta_{q_0}^m = \text{span}\big\{ [X_1, [X_2, [\ldots, X_m] \ldots] (q_0): X_i \in \bar{\Delta}, i = 1, \ldots, m \big\}.
$$

A distribution Δ is *bracket generating* at q_0 if $\Delta_{q_0}^m = T_{q_0}M$ for some $m > 0$. If Δ is bracket generating, then according to the classical Rashevski–Chow theorem (see [11, 18]) there exist admissible paths connecting q_0 with any point of an open neighborhood of *q*0. Moreover, applying a general existence theorem for optimal controls [12] one

E-mail addresses: agrachev@sissa.it (A. Agrachev), gauthier@u-bourgogne.fr (J.-P. Gauthier).

obtains that for any q_1 in a small enough neighborhood of q_0 there exists a shortest admissible path connecting q_0 to q_1 . The Riemannian length of this shortest path is the *sub-Riemannian distance* or *Carnot–Caratheodory distance* between *q*⁰ and *q*1.

In the remainder of the paper we assume that Δ is bracket generating at the given initial point q_0 . We denote by $\rho(q)$ the sub-Riemannian distance between q_0 and q . It follows from the Rashevsky–Chow theorem that ρ is a continuous function defined on a neighborhood of *q*0. Moreover, *ρ* is Hölder-continuous with the Hölder exponent 1*/m*, where $\Delta_{q_0}^m = T_{q_0} M$.

We study mainly the case of real-analytic *M* and Δ . The germ at q_0 of a Riemannian distance is the square root of an analytic germ. This is not true for a sub-Riemannian distance function ρ . Moreover, ρ is never smooth in a punctured neighborhood of q_0 (i.e. in a neighborhood without the pole q_0). It may happen that ρ is not even subanalytic. The main results of the paper concern subanalyticity properties of *ρ* in the case of a generic real-analytic Δ .

We prove that, generically, the germ of ρ at q_0 is subanalytic if:

$$
n \leq (k-1)k + 1 \quad \text{(Theorem 7)},
$$

and is not subanalytic if:

$$
n \geqslant (k-1)\left(\frac{k^2}{3} + \frac{5k}{6} + 1\right) \quad \text{(Theorem 10)}.
$$

The balls $\rho^{-1}([0, r])$ of small enough radius are subanalytic if $n > k \geq 3$ (Theorem 9). This statement about the balls is valid not only generically, but up to a set of distributions of codimension ∞.

In particular, if $k \ge 3$, $n \ge (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$, then (generically!) the balls $\rho^{-1}([0, r])$ are subanalytic but *ρ* is not!

This paper is a new step in a rather long research line, see [1,5,6,9,10,15,17,20]. The main tools are the nilpotent approximation, Morse-type indices of geodesics, both in the normal and abnormal cases, and transversality techniques.

We finish the introduction with some conjectures on still open questions.

(1) Small balls $\rho^{-1}([0, r])$ for $k = 2$, $n \ge 4$. A natural conjecture is that they are, generically, not subanalytic.

(2) The germ of ρ at q_0 for $(k-1)k + 1 < n < (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$. The bound $n \leq (k-1)k+1$ for "generically subanalytic dimensions" is, perhaps, exact, while the bound $n \geq (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ for "generically nonsubanalytic dimensions" may, probably, be improved. For a wide range of dimensions, the subanalyticity and nonsubanalyticity of the germ of ρ should be both typical (i.e. valid for open sets of real-analytic distributions).

2. Nilpotentization

Nilpotentization or nilpotent approximation is a fundamental operation in the geometric control theory and sub-Riemannian geometry; this is a real nonholonomic analog of the usual linearization (see [2,3,7,8,19]).

Given nonnegative integers k_1, \ldots, k_l , where $k_1 + \cdots + k_l = n$, we present \mathbb{R}^n as a direct sum $\mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$. Any vector $x \in \mathbb{R}^n$ takes the form

$$
x = (x_1, ..., x_l),
$$
 $x_i = (x_{i1}, ..., x_{ik_i}) \in \mathbb{R}^{k_i}, i = 1, ..., l.$

The differential operators on \mathbb{R}^n with smooth coefficients have the form

$$
\sum_{\alpha}\frac{a_{\alpha}(x)\partial^{|\alpha|}}{\partial x^{\alpha}},
$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^n)$ and α is a multi-index:

$$
\alpha = (\alpha_1, ..., \alpha_l),
$$
 $\alpha_i = (\alpha_{i1}, ..., \alpha_{ik_i}),$ $|\alpha_i| = \sum_{j=1}^{k_i} \alpha_{ij},$ $i = 1, ..., l.$

The space of all differential operators with smooth coefficients forms an associative algebra with composition of operators as multiplication. The differential operators with polynomial coefficients form a subalgebra of this algebra with generators $1, x_{ij}, \frac{\partial}{\partial x_{ij}}, i =$ $1, \ldots, l, j = 1, \ldots, k_i$. We introduce a Z-grading into this subalgebra by giving the weights *ν* to the generators: $v(1) = 0$, $v(x_{ij}) = i$, and $v(\frac{\partial}{\partial x_{ij}}) = -i$. Accordingly,

$$
\nu\left(x^{\alpha}\frac{\partial^{|\beta|}}{\partial x^{\beta}}\right)=\sum_{i=1}^l\left(|\alpha_i|-|\beta_i|\right)i,
$$

where α and β are multi-indices.

A differential operator with polynomial coefficients is said to be *ν*-*homogeneous* of weight *m* if all the monomials occurring in it have weight *m*. It is easy to see that $\nu(D_1 \circ D_2) = \nu(D_1) + \nu(D_2)$ for any *v*-homogeneous differential operators D_1 and D_2 . The most important for us are differential operators of order 0 (functions) and of order 1 (vector fields). We have $\nu(Xa) = \nu(X) + \nu(a), \nu([X_1, X_2]) = \nu(X_1) + \nu(X_2)$ for any *ν*-homogeneous function *a* and vector fields *X*, *X*1, *X*2. A differential operator of order *N* has weight at least −*Nl*; in particular, the weight of nonzero vector fields is at least −*l*. Vector fields of nonnegative weights vanish at 0 while the values at 0 of the fields of weight −*i* belong to the subspace R*ki* , the *i*th summand in the presentation $\mathbb{R}^n = \mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$.

We introduce a dilation $\delta_t : \mathbb{R}^n \to \mathbb{R}^n$, $t \in \mathbb{R}$, by the formula:

$$
\delta_t(x_1, x_2, \dots, x_l) = (tx_1, t^2 x_2, \dots, t^l x_l). \tag{1}
$$

ν-homogeneity means homogeneity with respect to this dilation. In particular, we have $a(\delta_t x) = t^{\nu(a)} a(x), \ \delta_{t*} X = t^{-\nu(X)} X$ for any *v*-homogeneous function *a* and vector field *X*.

Now let $X = \sum_{i,j} a_{ij} \frac{\partial}{\partial x_{ij}}$ be an arbitrary smooth vector field. Expanding the coefficients a_{ij} in a Taylor series in powers of x_{ij} and grouping the terms with the same weights, we get an expansion $X \approx \sum_{m=-l}^{+\infty} X^{(m)}$, where $X^{(m)}$ is a *v*-homogeneous field of weight *m*. This expansion enables us to introduce a decreasing filtration in the Lie algebra of smooth vector fields Vec \mathbb{R}^n by putting:

$$
\text{Vec}^m(k_1,\ldots,k_l) = \{ X \in \text{Vec} \, \mathbb{R}^n \colon X^{(i)} = 0 \text{ for } i < m \}, \quad -l \leq m < +\infty.
$$

It is easy to see that:

 $[\text{Vec}^{m_1}(k_1, ..., k_l), \text{Vec}^{m_2}(k_1, ..., k_l)] \subseteq \text{Vec}^{m_1 + m_2}(k_1, ..., k_l).$

It happens that this class of filtrations is in a sense universal. We will need the following theorem which is a special case of general results proved in [2,8].

Set $\Delta_{q_0}^0 = \{0\}_{q_0}, \ \Delta_{q_0}^1 = \Delta_{q_0}.$

THEOREM 1. – *Assume that* $\dim(\Delta_{q_0}^i/\Delta_{q_0}^{i-1}) = k_i$, $i = 1, ..., l$. Then there exists a *neighborhood* O_{q_0} *of the point* q_0 *in* \overline{M} *and a coordinate mapping* χ : $O_{q_0} \to \mathbb{R}^n$ *such that*

$$
\chi(q_0)=0, \quad \chi_*\big|_{T_{q_0}M}(\Delta_{q_0}^i)=\mathbb{R}^{k_1}\oplus\cdots\oplus\mathbb{R}^{k_i}, \quad 1\leqslant i\leqslant l,
$$

and $\chi_*(\bar{\Delta}) \subset \text{Vec}^{-1}(k_1, \ldots, k_l)$ *.*

The mapping $\chi: O_{q_0} \to \mathbb{R}^n$ from the theorem is called an *adapted coordinate map*. It is obtained from arbitrary coordinates by a polynomial change of variables and the construction is quite effective. For any $X \in \bar{\Delta}$ we have $\chi_*(X) \approx \chi_*(X)^{(-1)}$ + $\sum_{j\geqslant 0} \chi_*(X)^{(j)}$, where $\chi_*(X)^{(m)}$ is a *v*-homogeneous field of weight *m*. The field \hat{X} = $\chi_*^{-1}(\chi_*(X)^{(-1)})$ is called the *nilpotentization of X* (relative to the adapted coordinate mapping *χ*).

PROPOSITION 1. – *Assume that* $\chi = (\chi_1, \ldots, \chi_l)$, $\chi_j : O_{q_0} \to \mathbb{R}^{k_j}$, $j = 1, \ldots, l$, is *an adapted coordinate map,* $X_1, \ldots, X_i \in \overline{\Delta}$ *, and* \widehat{X}_i *is the nilpotenization of* X_i *,* $i = 1, \ldots, i$ *. Then:*

$$
X_1 \circ \cdots \circ X_i \chi_j(q_0) = 0 \quad \forall j > i,
$$

$$
X_1 \circ \cdots \circ X_i \chi_i(q_0) = \hat{X}_1 \circ \cdots \circ \hat{X}_i \chi_i(q_0).
$$

Proof. – We have:

$$
X_1 \circ \cdots \circ X_i \chi_j(q_0) = (\chi_* X_1) \circ \cdots \circ (\chi_* X_i) \chi_j|_0
$$

=
$$
\sum_{m_1 + \cdots + m_i = -j} (\chi_* X_1)^{(m_1)} \circ \cdots \circ (\chi_* X_i)^{(m_i)} \chi_j|_0,
$$

since any monomial of positive weight vanishes at 0. Hence:

$$
X_1 \circ \cdots \circ X_i \chi_j(q_0) = 0 \quad \text{for} \quad i < j,
$$

$$
X_1 \circ \cdots \circ X_i \chi_i(q_0) = (\chi_* X_1)^{(-1)} \circ \cdots \circ (\chi_* X_i)^{(-1)} \chi_i|_0 = \hat{X}_1 \circ \cdots \circ \hat{X}_i \chi_i(q_0).
$$

3. The endpoint mapping

We are working in a small neighborhood O_{q_0} of $q_0 \in M$, where we fix an orthonormal frame $X_1, \ldots, X_k \in \text{Vec} \, O_{q_0}$ of the sub-Riemannian structure under consideration. Admissible paths are thus solutions of the Cauchy problem:

$$
\dot{q} = \sum_{i=1}^{k} u_i(t) X_i(q), \quad q \in O_{q_0}, \ q(0) = q_0,\tag{2}
$$

where $u = (u_1(\cdot), \dots, u_k(\cdot)) \in L_2^k[0, 1].$

Below $||u|| = (\int_0^1 \sum_{i=0}^k u_i^2(t) dt)^{1/2}$ is the norm in $L_2^k[0, 1]$. We also set $||q(\cdot)|| = ||u||$, where $q(\cdot) = q(\cdot; u)$ is the solution of (2). Let:

$$
U_r = \{ u \in L_2^k[0, 1]; \ \|u\| = r \},\
$$

be the sphere of radius *r* in $L_2^k[0, 1]$. Solutions of (2) are defined for all $t \in [0, 1]$, if *u* belongs to a sphere of radius *r*, small enough. In this paper we implicitely take *u* only in such spheres. The length $l(q(\cdot)) = \int_0^1 (\sum_{i=1}^k u_i^2(t))^{1/2} dt$ is well-defined and satisfies the inequality:

$$
l(q(\cdot)) \leqslant ||q(\cdot)|| = r.
$$
 (3)

The length does not depend on the parametrization of the curve while the norm $||u||$ depends. We say that *u* and $q(\cdot)$ are *normalized* if $\sum_{i=1}^{k} u_i^2(t)$ does not depend on *t*. For normalized u , and only for them, the inequality (3) becomes an equality.

We consider the *endpoint mapping* $f: u \mapsto q(1)$. It is a well-defined smooth mapping of a neighborhood of the origin of $L_2^k[0, 1]$ into *M*. Clearly, $\rho(q) = \min\{\|u\|: u \in$ $L_2^r[0, 1]$, $f(u) = q$ and the minimum is attained at a normalized control. A normalized *u* is called *minimal* for the system (2) if $\rho(f(u)) = ||u||$.

Remark. – The notations $q(\cdot)$ and $l(q(\cdot))$ reflect the fact that these quantities do not depend on the choice of the orthonormal frame X_1, \ldots, X_k and are characteristics of the *trajectory* $q(\cdot)$ rather than the *control* u . The L_2 -topology in the space of controls is the *H*₁-topology in the space of trajectories.

Let $\chi: O_{q_0} \to \mathbb{R}^n$, be an adapted coordinate map and \hat{X}_i be the nilpotentization of X_i , $i = 1, \ldots, k$. The system:

$$
\dot{x} = \sum_{i=1}^{k} u_i(t) \chi_* \hat{X}_i(x), \quad x \in \mathbb{R}^n, \ x(0) = 0,
$$
 (2)

is the nilpotentization of the system (2) expressed in the adapted coordinates.

We define the mapping $\hat{f}: L_2^k[0, 1] \to \mathbb{R}^n$ by the rule $\hat{f}: u(\cdot) \mapsto x(1)$, where $x(\cdot) =$ $x(\cdot; u)$ is the solution of (2). The following proposition is an easy corollary of the fact that $\chi_* \overline{X}_i$ are *v*-homogeneous of weight (-1) (see [2] for details).

PROPOSITION 2. – Let $\chi = (\chi_1, \ldots, \chi_l)$, $\chi_j: O_{q_0} \to \mathbb{R}^{k_j}$, $j = 1, \ldots, l$ *. Then the following identities hold for any* $u(\cdot) \in L_2^k[0, 1]$, $\varepsilon \in \mathbb{R}$:

$$
\hat{f}(u(\cdot)) = \left(\int_0^1 \sum_{i=1}^k u_i(t) \hat{X}_i \chi_1(q_0) dt, \dots, \int_0^1 \cdots \int_{0 \le t_1 \le \cdots \le t_l \le 1} \sum_{i_j=1}^k u_{i_1}(t_1) \cdots u_{i_l}(t_l) \hat{X}_{i_1} \circ \cdots \circ \hat{X}_{i_l} \chi_l(q_0) dt_1 \cdots dt_l \right);
$$

 $\hat{f}(\varepsilon u(\cdot)) = \delta_{\varepsilon} \hat{f}(u(\cdot))$ *, where* δ_{ε} *is the dilation* (1)*.*

We set $f_{\varepsilon}(u) = \delta_{\frac{1}{2}} \chi(f(\varepsilon u))$. Then f_{ε} is a smooth mapping from a neighborhood of 0 in $L_2^k[0, 1]$ to \mathbb{R}^n . Moreover, any bounded subset of $L_2^k[0, 1]$ is contained in the domain of *fε* for *ε* small enough.

THEOREM 2. – $f_{\varepsilon} \to \hat{f}$ as $\varepsilon \to 0$ in the C^{∞} topology of the uniform convergence of *the mappings and all their derivatives on the balls in* $L_2^k[0, 1]$ *.*

Proof. – We have:

$$
\delta_{\frac{1}{\varepsilon}}\chi\big(f(v)\big)=\bigg(\frac{1}{\varepsilon}\chi_1\big(f(v)\big),\ldots,\frac{1}{\varepsilon^l}\chi_l\big(f(v)\big)\bigg),
$$

$$
\chi_j(f(v)) = \int_0^1 \sum_{i=1}^k v_i(t) X_j \chi_j(q(t)) dt = \int_0^1 \sum_{i=1}^k v_i(t) X_j \chi_j(q_0) dt \n+ \int_0^1 \int_0^2 \sum_{i_1=i_2=1}^k v_{i_1}(t_1) v_{i_2}(t_2) X_{i_1} \circ X_{i_2} \chi_j(q(t_1)) dt_1 dt_2 \n= \int_0^1 \sum_{i=1}^k v_i(t) X_j \chi_j(q_0) dt \n+ \int_0^1 \int_0^2 \sum_{i_1=i_2=1}^k v_{i_1}(t_1) v_{i_2}(t_2) X_{i_1} \circ X_{i_2} \chi_j(q_0) dt_1 dt_2 \n+ \int_0^1 \int_0^1 \sum_{i_1=i_2=1}^k v_{i_1}(t_1) v_{i_2}(t_2) v_{i_3}(t_3) X_{i_1} \circ X_{i_2} \circ X_{i_3} \chi_j(q(t_1)) dt_1 dt_2 dt_3 \n= \cdots.
$$

Now, Proposition 1 implies:

$$
\frac{1}{\varepsilon^j} \chi_j(f(\varepsilon u)) = \int\limits_{0 \leq t_1 \leq \dots \leq t_j \leq 1} \sum_{i_j=1}^k u_{i_1}(t_1) \cdots u_{i_j}(t_j) \widehat{X}_{i_1} \circ \cdots \circ \widehat{X}_{i_j} \chi_j(q_0) dt_1 \cdots dt_j
$$

+ *ε* ··· 0*t*1-···*tj*+1-1 *k i*=1 *ui*¹ *(t*1*)*···*uij*⁺¹ *(tj*⁺1*)Xi*¹ ◦··· ◦ *Xij*⁺1*χj q(t*1; *εu) dt*¹ ··· *dtj*⁺1*.*

It remains to apply Proposition 2 and to note that the mappings $v \mapsto q(t; v)$ are uniformly bounded with all their derivatives on a small enough ball in $L_2^k[0,1]$ for $0 \leq t \leq 1. \quad \Box$

Recall that $\rho(q) = \min\{\|u\|: f(u) = q, u \in L_2^k[0, 1]\}\$ is the sub-Riemannian distance function. We set:

$$
\rho_{\varepsilon}(x) = \min\{ \|u\| \colon f_{\varepsilon}(u) = x, \ u \in L_2^k[0, 1] \} = \frac{1}{\varepsilon} \rho(\chi^{-1}(\delta_{\varepsilon} x))
$$

and

$$
\hat{\rho}(x) = \min\{||u||: \ \hat{f}(u) = x, \ u \in L_2^k[0, 1]\}.
$$

Thus $\hat{\rho}$ is the sub-Riemannian distance for the nilpotentization of the original system.

LEMMA 1. – *The family of functions* $\rho_{\varepsilon}|_K$ *is equicontinuous for any compact* $K \subset$ R*ⁿ.*

Proof. – The function $\rho(q)$ is the sub-Riemannian distance between q_0 and q for the sub-Riemannian structure with the orthonormal frame X_1, \ldots, X_k . Hence $\rho_{\varepsilon}(x)$ is the sub-Riemannian distance between 0 and x for the structure with the orthonormal frame:

$$
\varepsilon\big(\delta_{\varepsilon}^{-1}\big)_*\chi_* X_1,\ldots,\varepsilon\big(\delta_{\varepsilon}^{-1}\big)_*\chi_* X_k.\tag{4}
$$

Let $d_{\varepsilon}(x, y)$ be the distance between x and y for this sub-Riemannian structure so that $\rho_{\varepsilon}(x) = d_{\varepsilon}(0, x)$. Clearly, $|\rho_{\varepsilon}(x) - \rho_{\varepsilon}(y)| \leq d_{\varepsilon}(x, y)$. We are going to prove that:

$$
d_{\varepsilon}(x, y) \leqslant c|x-y|^{1/2^l}.
$$

First we introduce an auxiliary operation on families of control functions. Suppose that $u_s(\cdot), v_s(\cdot) \in L_2^k[0, 1], s \in \mathbb{R}, u_0(\cdot) = v_0(\cdot) = 0$; we define:

$$
[u, v]_s(t) = \begin{cases} u_{|s|^{1/2}}(4t), & 0 \leq t < \frac{1}{4}, \\ v_{|s|^{1/2}}(4t - 1), & \frac{1}{4} \leq t < \frac{1}{2}, \\ u_{|s|^{1/2}}(3 - 4t), & \frac{1}{2} \leq t < \frac{3}{4}, \\ v_{|s|^{1/2}}(4 - 4t), & \frac{3}{4} \leq t \leq 1, \end{cases}
$$

where we take a branch of $|s|^{1/2}$ such that $s|s|^{1/2} \ge 0$.

For any control $u(\cdot)$ and a system:

$$
\dot{x} = \sum_{i=1}^{k} u_i(t) Z_i(x), \quad x \in \mathbb{R}^n,
$$
\n(5)

we define a diffeomorphism $\mathfrak{Z}_u : \mathbb{R}^n \to \mathbb{R}^n$ by the rule $\mathfrak{Z}_u(x(0)) = x(1)$, where $t \mapsto x(t)$ is a solution of the differential equation (5). Then

$$
\mathfrak{Z}_{[u,v]_s} = \mathfrak{Z}_{v_{|s|^{1/2}}}^{-1} \circ \mathfrak{Z}_{u_{|s|^{1/2}}}^{-1} \circ \mathfrak{Z}_{v_{|s|^{1/2}}} \circ \mathfrak{Z}_{u_{|s|^{1/2}}}.
$$

If $(s, x) \mapsto \mathfrak{Z}_{u_s}(x)$, $(s, x) \mapsto \mathfrak{Z}_{v_s}(x)$ are C^1 -mappings and $\frac{\partial}{\partial s}\mathfrak{Z}_{u_s}|_{s=0} = X$, $\frac{\partial}{\partial s}\mathfrak{Z}_{v_s}|_{s=0} = Y$, $X, Y \in \text{Vec } \mathbb{R}^n$, then $(s, x) \mapsto \mathfrak{Z}_{[u, v]_s}(x)$ is also C^1 and $\frac{\partial}{\partial s}\mathfrak{Z}_{[u, v]_s}|_{s=0} = [X, Y]$. Let ζ_s^i be the constant control with the *i*th coordinate equals *s* and all other coordinates equals 0. We set $\zeta[i_1 \dots i_m]_s = [\zeta^{i_1}, [\dots, \zeta^{i_m}] \dots]_s$ and obtain $\frac{\partial}{\partial s} \zeta[i_1 \dots i_m]_s |_{s=0}$ $[Z_1, [\ldots, Z_m] \ldots]$. Note that $||\varsigma[i_1 \ldots i_m]_s|| = s^{1/2^m}$.

Now we go back to the vector fields (4) and set $Z_i^{\varepsilon} = \varepsilon \delta_{\varepsilon *}^{-1} \chi_* X_i$, $i = 1, ..., k$. We have $\delta_{\varepsilon *}^{-1} \chi_* X_i = \frac{1}{\varepsilon} \chi_* \hat{X}_i + R_i^{\varepsilon}$, where R_i^{ε} is a family of vector fields smooth with respect to ε (see Section 2). Hence $Z_i^{\varepsilon} = \chi_* \widehat{X}_i + \varepsilon R_i^{\varepsilon}$.

The bracket generating assumption implies that a basis of \mathbb{R}^n can be formed by vectors:

$$
\big[X_{i_1^1}, \big[\ldots, X_{i_{m_1}^1} \big] \ldots \big] (q_0), \ldots, \big[X_{i_1^n}, \big[\ldots, X_{i_{m_n}^n} \big] \ldots \big] (q_0),
$$

where $1 \leq m_1 \leq \cdots \leq m_n \leq l$. It follows from Proposition 1 that the vectors:

 $[\hat{X}_{i_1^1}, \ldots, \hat{X}_{i_{m_1}^1}] \ldots](q_0), \ldots, [\hat{X}_{i_1^n}, \ldots, \hat{X}_{i_{m_n}^n}] \ldots](q_0),$

form a basis of \mathbb{R}^n . Indeed, the difference:

$$
\big[X_{i_1^j},[\ldots,X_{i_{m_j}^j}]\ldots\big](q_0)-\big[\widehat{X}_{i_1^j},[\ldots,\widehat{X}_{i_{m_j}^j}]\ldots\big](q_0),
$$

belongs to $\Delta_{q_0}^{m_j-1}$. We apply the diffeomorphism χ and obtain that the vectors:

$$
\chi_*\big[\widehat{X}_{i_1^1},[\ldots,\widehat{X}_{i_{m_1}^1}]\ldots](x),\ldots,\chi_*\big[\widehat{X}_{i_1^n},[\ldots,\widehat{X}_{i_{m_n}^n}]\ldots](x),\tag{6}
$$

form a basis of \mathbb{R}^n for any x from a neighborhood of 0. Moreover, the vectors (6) form a basis of \mathbb{R}^n for any $x \in \mathbb{R}^n$ thanks to the *ν*-homogeneity of $\chi_* \hat{X}_i$.

Take a compact $K \subset \mathbb{R}^n$. There exists $\varepsilon_K > 0$ such that the vectors:

$$
\big[Z^{\varepsilon}_{i_1^1},[\ldots,Z^{\varepsilon}_{i_{m_1}^1}]\ldots \big](x),\ldots,\big[Z^{\varepsilon}_{i_1^n},[\ldots,Z^{\varepsilon}_{i_{m_n}^n}]\ldots \big](x),
$$

form a basis of \mathbb{R}^n for any $(x, \varepsilon) \in D_K = \{(x, \varepsilon) | x \in K, |\varepsilon| \leqslant \varepsilon_K\}.$

Finally, we define a family of controls $w_{\bar{s}}$, $\bar{s} = (s_1, \ldots, s_n)$, $s_j \in \mathbb{R}$, $j = 1, \ldots, n$, by the rule:

$$
w_{\bar{s}} = \begin{cases} n \zeta[i_1^1 \dots i_{m_1}^1]_{s_1}(\frac{t}{n}), & 0 \leq t < \frac{1}{n}, \\ \dots & \dots & \dots \\ n \zeta[i_1^n \dots i_{m_n}^n]_{s_n}(\frac{t}{n}), & \frac{n-1}{n} \leq t \leq 1. \end{cases}
$$

Let the mapping $\mathfrak{Z}_{u}^{\varepsilon}$ be defined similarly to \mathfrak{Z}_{u} , replacing the field Z_i by the field Z_i^{ε} . Then:

$$
\frac{\partial}{\partial s_j} \mathfrak{Z}^{\varepsilon}_{w_{\bar{s}}} \Big|_{\bar{s}=0} = \big[Z^{\varepsilon}_{i_1^j}, \ldots, Z^{\varepsilon}_{i_{m_j}^j} \big] \ldots \big].
$$

In particular, the mapping $\Phi_x^{\varepsilon} : \bar{s} \mapsto (\mathfrak{Z}_{w_{\bar{s}}}^{\varepsilon}(x) - x)$ is a submersion at 0 for any $x \in K$, $|\varepsilon| \leqslant \varepsilon_K$; $\Phi_x^{\varepsilon}(0) = 0$.

Recall that the family of mappings Φ_x^{ε} is smooth with respect to the parameters (ε, x) , and (ε, x) belongs to the compact set D_K . Hence the inverse mapping $(\Phi_x^{\varepsilon})^{-1}$ is well defined on a ball $\{z \in \mathbb{R}^n: |z| \leq \delta\}$, the radius δ of which does not depend on (x, ε) . Clearly, $(\Phi_x^{\varepsilon})^{-1}(z) \leq c'|z|$ for some constant *c'*. Hence the equation $\mathfrak{Z}_{w_{\overline{s}}}^{\varepsilon}(x) = y$ has a solution \bar{s} such that $|s| \leq c' |x - y|$ if $x \in K$, $|x - y| \leq \delta$, and $|\varepsilon| \leq \varepsilon_K$. It follows that $d_{\varepsilon}(x, y) \leq \|w_{\bar{s}}\| \leq c'' |s|^{1/2^l} \leq c |x - y|^{1/2^l}.$

THEOREM $3. - \rho_{\varepsilon} \to \hat{\rho}$ *uniformly on compact subsets of* \mathbb{R}^n *as* $\varepsilon \to 0$ *.*

Proof. – Thanks to the equicontinuity of the family of functions $\rho_{\varepsilon}|_K$ (Lemma 1) it is enough to prove the pointwise convergence $\rho_{\varepsilon} \to \hat{\rho}$ as $\varepsilon \to 0$.

Take $x \in \mathbb{R}^n$; there exists $\hat{u} \in U_{\hat{\rho}(x)}$ such that $\hat{f}(\hat{u}) = x$. Let $x_{\varepsilon} = f_{\varepsilon}(\hat{u})$. We have $\rho_{\varepsilon}(x_{\varepsilon}) \leqslant ||\hat{u}|| = \hat{\rho}(x)$. Hence:

$$
\rho_{\varepsilon}(x)=\rho_{\varepsilon}(x_{\varepsilon})+\rho_{\varepsilon}(x)-\rho_{\varepsilon}(x_{\varepsilon})\leqslant \hat{\rho}(x)+\big|\rho_{\varepsilon}(x)-\rho_{\varepsilon}(x_{\varepsilon})\big|.
$$

According to Theorem 2, $x_{\varepsilon} \to x$ as $\varepsilon \to 0$. Now Lemma 1 implies the inequality $\limsup_{\varepsilon\to 0} \rho_{\varepsilon}(x) \leq \hat{\rho}(x)$.

For any ε small enough, there exists $u_{\varepsilon} \in U_{\rho_{\varepsilon}(x)}$ such that $f_{\varepsilon}(u_{\varepsilon}) = x$. The equicontinuity of ρ_{ε} and the identity $\rho_{\varepsilon}(0) = 0$ imply that $||u_{\varepsilon}|| = \rho_{\varepsilon}(x)$ are uniformly bounded. Let $\hat{x}_{\varepsilon} = \hat{f}(u_{\varepsilon})$. We have $\hat{\rho}(\hat{x}_{\varepsilon}) \leq \rho_{\varepsilon}(x)$. Hence:

$$
\hat{\rho}(x) = \hat{\rho}(\hat{x}_{\varepsilon}) - \hat{\rho}(\hat{x}_{\varepsilon}) + \hat{\rho}(x) \leq \rho_{\varepsilon}(x) + |\hat{\rho}(\hat{x}_{\varepsilon}) - \hat{\rho}(x)|.
$$

It follows from Theorem 2 that $\hat{x}_{\varepsilon} \to x$ as $\varepsilon \to 0$. The continuity of $\hat{\rho}$ implies the inequality $\hat{\rho}(x) \leq \liminf_{\varepsilon \to 0} \rho_{\varepsilon}(x)$.

Finally, $\lim_{\varepsilon \to 0} \rho_{\varepsilon}(x) = \hat{\rho}(x)$. \Box

The following proposition is a modification of a result by Jacquet [17].

PROPOSITION 3. – Let $\mathcal{M}_r = \{u \in U_r : \exists \alpha \in (0, 1] \text{ s.t. } \alpha u \text{ is minimal for } (2)\}\)$. Then $\overline{\mathcal{M}}_r$ *is a compact subset of the Hilbert sphere* U_r *and* $\hat{f}(\overline{\mathcal{M}}_r \setminus \mathcal{M}_r) \subset \hat{\rho}^{-1}(r)$; *in particular, any element of* $\overline{\mathcal{M}}_r \setminus \mathcal{M}_r$ *is a minimal control for system* (2)*.*

Proof. – First of all, the mappings f and \hat{f} are weakly continuous; this is a standard fact, see [1] for a few lines proof. Let $v_n \in \mathcal{M}_r$, $n = 1, 2, \ldots$, be a weakly convergent sequence in $L_2^k[0,1]$, such that $\alpha_n v_n$ are minimal. Let *v* be the weak limit of v_n , $\|v\|$ ≤ *r*. We may assume without lack of generality that ∃ lim_{*n*→∞} $\alpha_n = \alpha$. There are two possibilities.

(1) $\alpha > 0$. We have $\alpha r = \lim_{n \to \infty} \alpha_n r = \lim_{n \to \infty} \rho(f(\alpha_n v_n)) = \rho(f(\alpha v))$. Hence the length of the trajectory associated to the control αv is αr . In particular, $\|\alpha v\| \geq \alpha r$. We

already know that $\|v\| \le r$. Thus $\|v\| = r$, *v* is normalized and belongs to \mathcal{M}_r . Moreover, the sequence v_n is strongly convergent since the weak and strong topologies coincide on the Hilbert sphere.

(2) $\alpha = 0$. We have $\hat{\rho}(\hat{f}(v)) = \lim_{n \to \infty} \hat{\rho}(\hat{f}(v_n))$. Theorems 2, 3, and Lemma 1 make it possible to replace $\hat{\rho}$ by ρ_{α_n} and \hat{f} by f_{α_n} in the right-hand side of the last equality. We obtain

$$
\hat{\rho}(\hat{f}(v)) = \lim_{n \to \infty} \rho_{\alpha_n}(f_{\alpha_n}(v_n)) = \lim_{n \to \infty} \frac{1}{\alpha_n} \rho(f(\alpha_n v_n)) = \lim_{n \to \infty} r = r.
$$

Now the same arguments as in the case (1) show that *v* is normalized and $||v|| = 1$. \Box

4. Subanalyticity and nilpotentization

In this section we assume that the Riemannian manifold M and the distribution Δ are real analytic. Then we can assume (and we do so) that the vector fields X_1, \ldots, X_k and the adapted coordinate mapping are real analytic.

THEOREM 4. – If the germ of ρ at q_0 is subanalytic, then $\hat{\rho}$ is subanalytic.

Proof. – Let S^{n-1} be the unit sphere in \mathbb{R}^n and let $\varepsilon > 0$ be such that $\rho(\chi^{-1}(\delta_t x))$ is well defined for all $x \in S^{n-1}$, $|t| \le \varepsilon$. Then $(t, x) \mapsto \rho(\chi^{-1}(\delta_t x))$ is a subanalytic function on the product $(-\varepsilon, \varepsilon) \times S^{n-1}$. Moreover,

$$
\hat{\rho}(x) = \lim_{t \to 0} \rho_t(x) = \lim_{t \to 0} \frac{1}{t} \rho(\chi^{-1}(\delta_t x)).
$$

Hence $\hat{\rho}$ is a subanalytic function on the compact algebraic manifold S^{n-1} (see [13,16]). Now the quasi-homogeneity of $\hat{\rho}$, $\hat{\rho}(\delta_t x) = |t| \hat{\rho}(x)$, implies the subanalyticity of $\hat{\rho}$ on the whole \mathbb{R}^n . \Box

So the subanalyticity of ρ implies the same property for $\hat{\rho}$. It is hard to expect that the inverse implication is always true. We are going however to show that it is true very often. Namely, ρ is subanalytic if the nilpotentization $(\hat{2})$ of the original system satisfies general sufficient conditions for subanalyticity of sub-Riemannian balls developed in [1]. We point out that, in general, the subanalyticity of all balls $\rho^{-1}([0, r])$ (i.e. the Lebesgue sets of ρ) does not imply at all the subanalyticity of ρ (i.e. the graph of ρ); see the next section to appreciate a sharp difference between these two kinds of subanalyticity. At the same time, the subanalyticity of the balls $\hat{\rho}^{-1}([0, \varepsilon])$ is equivalent to the subanalyticity of $\hat{\rho}$ itself, by the quasi-homogeneity of $\hat{\rho}$.

Let us recall the background on sub-Riemannian geodesics we need to formulate the abovementioned subanalyticity conditions. First we set $f_r = f|_{U_r}$, the restriction of the endpoint mapping to the Hilbert sphere. The critical points of the mapping $f_r: U_r \to M$ are called *extremal controls* and the corresponding solutions of Eq. (2) are called *extremal trajectories* or *sub-Riemannian geodesics*. It is easy to check that all minimal controls are extremal ones. The geodesics associated to minimal controls are also called minimal.

An extremal control *u* and the corresponding geodesic $q(\cdot)$ are *regular* if *u* is a regular point of *f* ; otherwise they are *singular* or *abnormal*.

Let $D_u f: L_2^k[0,1] \to T_{f(u)}M$ be the differential of f at *u*. Extremal controls (and only them) satisfy the equation:

$$
\lambda D_u f = v u \tag{7}
$$

with some "Lagrange multipliers" $\lambda \in T_{f(u)}^* M \setminus 0$, $\nu \in \mathbb{R}$. Here $\lambda D_u f$ is the composition of the linear mapping $D_{u}f$ and the linear form $\lambda: T_{f(u)}M \to \mathbb{R}$, i.e. $(\lambda D_{u}f) \in$ $L_2^k[0,1]^* = L_2^k[0,1]$. We have $\nu \neq 0$ for regular extremal controls, while for abnormal controls *ν* can be taken 0. In principle, abnormal controls may admit Lagrange multipliers with both zero and nonzero *ν*. If it is not the case, then the control and the geodesic are called *strictly abnormal*.

Pontryagin's maximum principle gives an efficient way to solve Eq. (7), i.e. to find extremal controls and Lagrange multipliers. A coordinate free formulation of the maximum principle uses the canonical symplectic structure on the cotangent bundle *T*^{*}*M*. The symplectic structure associates a Hamiltonian vector field $\vec{a} \in$ Vec T^*M to any smooth function $a: T^*M \to \mathbb{R}$.

We define the functions h_i , $i = 1, \ldots, k$, and h on T^*M by the formulas

$$
h_i(\psi) = \langle \psi, X_i(q) \rangle, \quad h(\psi) = \frac{1}{2} \sum_{i=1}^k h_i^2(\psi), \quad \forall q \in M, \ \psi \in T_q^*M.
$$

Pontryagin's maximum principle implies the following:

PROPOSITION 4. – *A triple* (u, λ, v) *satisfies Eq.* (7) *if and only if there exists a solution* $\psi(t)$, $0 \le t \le 1$, *to the system of differential and pointwise equations:*

$$
\dot{\psi} = \sum_{i=1}^{k} u_i(t) \vec{h}_i(\psi), \quad h_i(\psi(t)) = v u_i(t), \tag{8}
$$

with boundary conditions $\psi(0) \in T_{q_0}^* M$, $\psi(1) = \lambda$ *.*

Here $(\psi(t), \nu)$ are Lagrange multipliers for the extremal control $u_t : \tau \mapsto tu(t\tau)$; in other words, $\psi(t)D_{u_t}f = v u_t$.

Note that abnormal geodesics are still geodesics after an arbitrary reparametrization, while regular geodesics are automatically normalized. We say that a geodesic is *quasiregular* if it is normalized and is not strictly abnormal. Setting $\nu = 1$ we obtain a simple description of all quasi-regular geodesics.

COROLLARY 1. – *Quasi-regular geodesics are exactly projections on M of the solutions of the differential equation* $\dot{\psi} = \vec{h}(\psi)$ with initial conditions $\psi(0) \in T_{q_0}^*M$. *If h(ψ(*0*)) is small enough, then such a solution exists (i.e. is defined on the whole segment* [0, 1]). The length of the geodesic is equal to $\sqrt{2h(\psi(0))}$ and the Lagrange *multiplier* $\lambda = \psi(1)$ *.*

Corollary 1 provides a parametrization of the space of quasi-regular geodesics by the points of an open subset Ψ of $T_{q_0}^*M$. Namely, Ψ consists of $\psi_0 \in T_{q_0}^*M$ such that

the solution $\psi(t)$ to the equation $\dot{\psi} = \vec{h}(\psi)$ with the initial condition $\psi(0) = \psi_0$ is defined for all $t \in [0, 1]$. The space of quasi-regular geodesics of a prescribed length *r*, small enough, are parametrized by the points of the manifold $h^{-1}(\frac{r^2}{2}) \cap T_{q_0}^*M \subset \Psi$. This manifold is diffeomorphic to $\mathbb{R}^{n-k} \times S^{k-1}$. The composition of the given parametrization with the endpoint mapping *f* is the *exponential mapping* $\mathcal{E}: \Psi \to M$. Thus $\mathcal{E}(\psi(0)) =$ $\pi(\psi(1))$, where $\pi: T^*M \to M$ is the canonical projection.

Throughout the paper the "hat" over a symbol means that we replace the original system (2) by its nilpotentization $(\hat{2})$ in the construction of the object denoted by the symbol. In particular, \hat{h} is the Hamiltonian and $\hat{\mathcal{E}}$ is the exponential mapping for the system (2). Besides that, we denote by h^{ε} and $\mathcal{E}^{\varepsilon}$ the Hamiltonian and the exponential mapping for the system:

$$
\dot{x} = \sum_{i=1}^{k} u_i Z_i^{\varepsilon}(x), \quad x \in \mathbb{R}^n,
$$
\n(2^{\varepsilon})

where $Z_i^{\varepsilon} = \varepsilon \delta_{\varepsilon *}^{-1} \chi_* X_i$. Recall that system (2^{ε}) produces the endpoint mapping f_{ε} and sub-Riemannian distance ρ_{ε} . Note that $(\varepsilon, x) \mapsto Z_i^{\varepsilon}(x)$ are real analytic vector functions and $Z_i^0 = \hat{X}_i$. Hence $h^{\varepsilon}(\psi)$, $\mathcal{E}^{\varepsilon}(\psi)$ are also analytic with respect to (ε, ψ) and $h^0 = \hat{h}$, $\mathcal{E}^0 = \dot{\mathcal{E}}$

Our results on subanalyticity of the distance function ρ are based upon the following statement.

PROPOSITION 5. – Assume that there exists a compact $K \subset T_{q_0}^*M$ such that $\rho_r^{-1}(1) \subset$ $\mathcal{E}(K \cap (h^r)^{-1}(\frac{1}{2}))$ *for any small enough nonnegative r. Then the germ of* ρ *at* q_0 *is subanalytic.*

Proof. – We have:

 $\rho(q) = \min\{r: \exists \psi \in K, \text{ such that } h^r(\psi) = \frac{1}{2}, \delta_r \mathcal{E}^r(\psi) = \chi(q)\},\$

for any q in a neighborhood of q_0 . One can enlarge the compact K , if necessary, to make it semi-analytic. The subanalyticity of ρ follows now from [23, Proposition 1.3.7], thanks to the analyticity of $\mathcal{E}^r(\psi)$ and $h^r(\psi)$ with respect to (r, ψ) . \Box

Let $u \in U_r$ be an extremal control, i.e. a critical point of f_r . The Hessian of f_r at u is a quadratic mapping

$$
\operatorname{Hes}_u f_r : \ker D_u f_r \to \operatorname{coker} D_u f_r.
$$

This is a coordinate free part of the second derivative of f_r at u . Let (λ, v) be Lagrange multipliers associated with *u* so that Eq. (7) is satisfied. Then the covector $\lambda : T_{f(u)}M \to$ R annihilates im $D_{\mu} f_r$ and the composition:

$$
\lambda \operatorname{Hes}_u f_r : \ker D_u f_r \to \mathbb{R},\tag{9}
$$

is well-defined.

The quadratic form (9) is the *second variation* of the sub-Riemannian problem at *(u, λ, ν)*. We have:

$$
\lambda \operatorname{Hes}_u f_r(v) = \lambda D_u^2 f(v, v) - v|v|^2, \quad v \in \ker D_u f_r.
$$

Let $q(\cdot)$ be the geodesic associated with the control *u*. We set:

$$
ind(f; u, \lambda, v) = ind_{+}(\lambda \operatorname{Hes}_{u} f_{r}) - dim \operatorname{coker} D_{u} f_{r},
$$
\n(10)

where $ind_{+}(\lambda \text{Hes}_{u} f_{r})$ is the positive inertia index of the quadratic form $\lambda \text{Hes}_{u} f_{r}$. Decoding some of the symbols we can rewrite:

$$
\text{ind}(f; u, \lambda, v) = \sup \{ \dim V: \ V \subset \ker D_u f_r, \ \lambda D_u^2 f(v, v) > v |v|^2, \ \forall v \in V \setminus 0 \} \\ - \dim \{ \lambda' \in T_{f(u)}^* M: \ \lambda' D_u f_r = 0 \}.
$$

The value of ind(f ; u , λ , v) may be an integer or $+\infty$.

Remark. – The index (10) does not depend on the choice of the orthonormal frame X_1, \ldots, X_k and is actually a characteristic of the geodesic $q(\cdot)$ and the Lagrange multipliers (λ, ν) . Indeed, a change of the frame leads to a smooth transformation of the Hilbert manifold *Ur* and to a linear transformation of variables in the quadratic form $λ$ Hes_{*ufr*} and the linear mapping $D_u f_r$. Both terms in the right-hand side of (10) remain unchanged.

The next theorem presents the most important properties of index (10); see [1,5] and references there for proofs and details.

THEOREM 5. – (1) *The integer-valued function* $(f, u, \lambda, v) \mapsto \text{ind}(f; u, \lambda, v)$ *is lower semicontinuous for the* C^2 *topology in the space of the mappings* $f: L_2^k[0,1] \to M$.

(2) *For any minimal control u there exist Lagrange multipliers λ,ν such that* ind $(f; u, \lambda, v) < 0$.

Now we are ready to formulate the main result of this section. It is a generalization of some results from [1,17].

THEOREM 6. – Assume that $\text{ind}(\hat{f}; \hat{u}, \hat{\lambda}, 0) \geq 0$ for any nonzero abnormal control \hat{u} *of the nilpotent system (*2ˆ*) and any associated Lagrange multipliers (λ,*ˆ 0*). Then the germ of ρ at q*⁰ *is subanalytic.*

Proof. – First we'll prove that no sufficiently small strictly abnormal control of the original system (2) is minimal.

Assume on the contrary that u_m , $m = 1, 2, \ldots$, is a sequence of minimal strictly abnormal controls, $||u_m|| = \varepsilon_m$, $\varepsilon_m \to 0$ ($m \to \infty$). The minimality of u_m implies the existence of a nonzero $\lambda_m \in T^*_{f(u_m)}M$ such that:

$$
\lambda_m D_{u_m} f = 0, \quad \text{ind}(f; u_m, \lambda_m, 0) < 0. \tag{11}
$$

Set $v_m = \frac{1}{\varepsilon_m} u_m$, $\mu_m = \delta_{\varepsilon_m}^* \lambda_m$ and rewrite relations (11) in the form:

$$
\mu_m D_{v_m} f_{\varepsilon_m} = 0, \quad \text{ind}(f_{\varepsilon_m}; v_m, \mu_m, 0) < 0.
$$

According to Proposition 3, we may assume that there exists a (strong) $\lim_{m\to\infty} v_m = v$. Of course, we may also assume that there exists $\lim_{m\to\infty} \mu_m = \mu \neq 0$. Theorem 2 implies that $\mu D_v \hat{f} = 0$, i.e. *v* is an abnormal control for the nilpotent system (2). On the other hand, the lower semicontinuity of ind implies that ind $(\hat{f}$; $v, \mu, 0) < 0$ and we come to a contradiction.

Therefore, any short enough minimal geodesic is quasi-regular. Hence:

$$
\rho(q) = \min\{r: \exists \psi \in T_0^* \mathbb{R}^n, \text{ such that } h^r(\psi) = \frac{1}{2}, \delta_r \mathcal{E}^r(\psi) = \chi(q)\}.
$$
 (12)

Now it remains only to show that, in relation (12), $T_0^* \mathbb{R}^n$ can be replaced by a compact subset $K \subset T_0^* \mathbb{R}^n$ and to apply Proposition 5.

Denote by $u^r_{\psi(0)}$ the extremal control associated with $\psi(0) \in (h^r)^{-1}(\frac{1}{2})$ so that $\mathcal{E}^r(\psi(0)) = f_r(u_{\psi(0)})$. We have $u^r_{\psi(0)} = (h^r_1(\psi(\cdot)), \dots, h^r_k(\psi(\cdot)))$ (see Proposition 4 and its corollary). In particular, $u^r_{\psi(0)}$ depends continuously on $\psi(0)$. We set:

$$
K_r = \{ \psi(0) \in (h^r)^{-1}(\frac{1}{2}) : u'_{\psi(0)} \text{ is minimal for } (2^r), \text{ind}(f_r; u'_{\psi(0)}, \psi(1), 0) < 0 \},
$$

$$
K^{\varepsilon}=\bigcup_{0\leq r\leq \varepsilon}K_r.
$$

It follows from Theorem 5 that one can replace $T_0^* \mathbb{R}^n$ by K^{ε} in (12) if *q* lies in $\rho^{-1}([0, \varepsilon])$. We have shown above that the system

$$
\mu D_v f_{\varepsilon} = 0, \quad \text{ind}(f_{\varepsilon}; v, \mu, 0) < 0, \quad \mu \in \mathbb{R}^n \setminus 0, \ v \in U_1,
$$

has no solutions for *ε* small enough, and we assume *ε* to be so small. We are going to prove that K^{ε} is compact.

Take a sequence $\psi_m(0) \in K_{r_m} \subset K^{\varepsilon}, m = 1, 2, \ldots$. We have to find a convergent subsequence. K_0 is compact in virtue of [1, Theorem 5] applied to system $(\hat{2})$. Hence we may assume that $r_m > 0$ for all *m*. Moreover, we may assume that there exists $\lim_{m\to\infty} r_m = \bar{r}$. The controls $u_{\psi_m(0)}^{r_m}$ belong to $\mathcal{M}_{\varepsilon}$; according to Proposition 3, there exists a convergent subsequence of this sequence of controls and its limit is minimal for system $(2^{\bar{r}})$. To simplify notations, we assume that the sequence $u_{\psi_m(0)}^{r_m}$, $m = 1, 2, \ldots$, is already convergent and $\lim_{m\to\infty} u_{\psi_m(0)}^{r_m} = \bar{u}$.

It follows from Proposition 4 that $\psi_m(1)D_{u_{\psi_m(0)}^{rm}}f_{r_m}=u_{\psi_m(0)}^{r_m}$. There are two possibilities: either $|\psi_m(1)| \to \infty$ $(m \to \infty)$ or $\psi_m(1)$, $m = 1, 2, \ldots$, contains a convergent subsequence.

In the first case we come to the equation $\bar{\mu}D_{\bar{u}}f_{\bar{r}}=0$, where $\bar{\mu}$ is a limiting point of the sequence $\frac{1}{|\psi_m(1)|} \psi_m(1)$, $|\bar{\mu}| = 1$. The lower semicontinuity of ind implies the inequality $\text{ind}(f_{\vec{r}}; \vec{u}, \vec{u}, \vec{b}) < 0$. We come to a contradiction with our assumption on ε since $\vec{r} \leq \varepsilon$.

In the second case let $\psi_{m_l}(1)$, $l = 1, 2, \ldots$, be a convergent subsequence. Then $\psi_{m_l}(0)$, $l = 1, 2, \ldots$, is also convergent, $\exists \lim_{l \to \infty} \psi_{m_l}(0) = \tilde{\psi}(0)$. Then $\hat{u} = u^{\bar{r}}_{\psi(0)}$ and $ind(f_{\bar{r}}; \bar{u}, \bar{\psi}(1), 1) < 0$ because of the lower semicontinuity of ind. Hence $\bar{\psi}(0) \in K_{\bar{r}} \subset$ K^{ε} and we are done. \square

To apply the last theorem we need a way to evaluate our index. There is a well developed theory about that, see [1] for some references. In the next proposition we formulate just the most simple and easy to check necessary conditions for the finiteness of the ind. A detailed proof can be found in [4, Appendix 2].

PROPOSITION 6. – *Assume that* $u(\cdot)$ *is an abnormal control and* $\psi(\cdot) \neq 0$ *satisfies* (8) *for* $v = 0$ *. If* ind(*f* ; $u(·)$, $\psi(1)$, 0*)* < ∞ *, then*:

$$
\{h_i, h_j\}(\psi(t)) = 0 \quad \forall i, j \in \{1, ..., k\},\tag{13}
$$

$$
\sum_{i,j=1}^k \left\{ h_i, \left\{ h_j, \sum_{i=1}^k u_i(t) h_i \right\} \right\} v_i v_j \leq 0 \quad \forall (v_1, \dots, v_k) \in \mathbb{R}^k,
$$
 (14)

for almost all $t \in [0, 1]$ *, where* $\{a, b\} = \overrightarrow{ab}$ *is the Poisson bracket of the Hamiltonians a, b.*

Remark. – Identity (13) is called the Goh condition while inequality (14) is the generalized Legendre condition. It is easy to see that both conditions are actually intrinsic: Identity (13) does not depend on the choice of the orthonormal frame X_1, \ldots, X_k since $h_i(\psi(t))$, $i = 1, \ldots, k$, vanish anyway. Inequality (14) does not depend on the choice of the orthonormal frame provided that (13) is satisfied.

We say that $u(\cdot)$ is a *Goh control* if (13) is satisfied for an appropriate $\psi(\cdot)$; it is a *Goh–Legendre control* if both (13) and (14) are satisfied.

COROLLARY 2. – *If the nilpotent system (*2ˆ*) does not admit nonzero Goh–Legendre abnormal controls, then the germ of* ρ *at* q_0 *is subanalytic.*

The system (2) is said to be *medium fat* if:

$$
T_{q_0}M = \Delta_{q_0}^2 + \text{span}\{[X,[X_i,X_j]](q_0): i, j = 1,\ldots,k\}
$$

for any $X \in \overline{\Delta}$, $X(q_0) \neq 0$ (see [5]). Medium fat systems do not admit nontrivial Goh controls. It follows directly from the definitions that a system is medium fat if and only if its nilpotentization is. We come to the following:

COROLLARY 3. – If the system (2) is medium fat, then the germ of ρ at q_0 is *subanalytic.*

It is proved in [5] that generic germs of distributions are medium fat for $n \leq k - 1$ $1/k + 1$. This gives the following general result.

THEOREM 7. – Assume that $n \leq (k-1)k + 1$. Then the germ of the sub-Riemann*ian distance function associated with a generic germ of a rank k distribution on an n-dimensional real-analytic Riemannian manifold is subanalytic.*

5. Exclusivity of Goh controls for rank *>* **2 distributions**

First we'll make precise the term exclusivity. Rank *k* distributions on *M* are smooth sections of the "Grassmannization" H_kTM of the tangent bundle TM . The space of sections is endowed with the C^{∞} Whitney topology and is denoted by $\overline{H_kTM}$. Smooth families of distributions parametrized by the finite dimensional manifold *N* are sections of the bundle $p_*^N H_k T M$ over $N \times M$ induced by the standard projection $p^N : N \times M \to$ *M*. Let $A \subset \overline{H_kTM}$ be a set of distributions. We say that A has codimension ∞ in $H_k \overline{T} \overline{M}$ if the subset:

$$
\big\{D\in\overline{p_*^N H_k TM}\colon D|_{x\times M}\notin\mathcal{A},\ \forall x\in N\big\},\
$$

is everywhere dense in $p_*^N H_k T M$, $\forall N$.

We will also use a real-analytic version of the definition, just given. The only difference with the smooth case is that the manifolds and the sections are assumed to be real-analytic, while the topology remains the same Whitney topology.

THEOREM $8.$ – *For any* $k \geqslant 3$, the distributions admitting nonzero Goh controls form *a subset of codimension* ∞ *in the space of all smooth rank k distributions on M*.

Proof. – We start with a weaker result related to *smooth* Goh controls. Namely, we are going to prove that the distributions that admit nonzero C^{∞} Goh controls form a subset of codimension ∞ in the space of rank $k \geq 3$ distributions. Thom transversality theorem allows to reduce the proof to calculations in the jet spaces. Let $\mathcal{J}^m(n, k)$ be the space of *m*-jets at 0 of *k*-tuples of vector fields in \mathbb{R}^n and $\mathcal{J}_o^m(n, k) = \{(X_1, \ldots, X_k) \in$ $\mathcal{J}^m(n, k)$: $X_1(0) \wedge \cdots \wedge X_k(0) \neq 0$ } be the space of *m*-jets of *k*-frames. To any vector field X_i we associate the Hamiltonian $h_i(\xi, x) = \langle \xi, X_i(x) \rangle$, $(\xi, x) \in \mathbb{R}^{n*} \times \mathbb{R}^n$ and the Hamiltonian field $\vec{h}_i(\xi, x) = \sum_{j=1}^n (\frac{\partial \vec{h}_i}{\partial \xi^j} \frac{\partial}{\partial x^j} - \frac{\partial \vec{h}_i}{\partial x^j} \frac{\partial}{\partial \xi^j})$. Set $\psi = (\xi, x)$; the Goh controls for the system $\dot{x} = \sum_{i=1}^{k} u_i(t) X_i(x)$, $x(0) = 0$, are admissible controls $u =$ $(u_1(\cdot), \ldots, u_k(\cdot))$ such that there exist:

$$
\psi(\cdot) = (\xi(\cdot), x(\cdot)), \quad \xi(0) \neq 0, \quad x(0) = 0, \quad \dot{\psi} = \sum_{i=1}^{k} u_i(t) \vec{h}_i(\psi), \tag{15}
$$

$$
h_i(\psi(t)) = \{h_i, h_j\}(\psi(t)) \equiv 0, \quad i, j = 1, ..., k.
$$
 (16)

Working in the jet space we try to solve Eqs. (16) not precisely but up to a certain order. We say that the m -jet of (X_1, \ldots, X_k) is Goh-compatible if there exists a nontrivial smooth solution $(u, \psi(\cdot))$ of (15) such that the functions $t \mapsto h_i(\psi(t))$, $t \mapsto$ ${h_i, h_j}(\psi(t)), i, j = 1, \ldots, k$, have zero *m*-jets at $t = 0$.

Let $\mathcal{A}^m \subset \mathcal{J}_o^m(n,k)$ be the set of all Goh-compatible *m*-jets. Standard transversality techniques reduce the expected result about the set of distributions admitting nontrivial C^{∞} Goh controls to the following lemma.

LEMMA 2. – \mathcal{A}^m *is an algebraic subset of the linear space* $\mathcal{J}_o^m(n, k)$ *and* $\operatorname{codim} \mathcal{A}^m \to \infty \text{ as } m \to \infty.$

Proof. – Differentiating (16) *m* times in virtue of (15) at $t = 0$ leads to a system of polynomial equations on $\xi(0)$, $u_i(0)$, ..., $u_i^{(m-1)}(0)$, $i = 1, ..., k$. Actually, these equations are even linear with respect to $\xi(0)$. The set \mathcal{A}^m is thus automatically algebraic.

Any reparametrization of a Goh trajectory is still Goh. In particular, we may normalize one of the coordinates of the nontrivial smooth Goh control assuming that $u_{i_0} \equiv 1$ for some *i*0. Without lack of generality, we may compute everything only in the case $i_0 = 1$. Moreover, any nonvanishing vector field is locally rectifiable and gauge transformations $X_1 \mapsto X_1, X_i \mapsto X_i(x) + a_i(x)X_1(x), i = 2, \ldots, k$, do not change Gohcompatibility.

Hence we may assume that:

$$
X_1 = \frac{\partial}{\partial x^1}
$$
, $X_i(x) = \sum_{j=2}^n a_{ij}(x) \frac{\partial}{\partial x^j}$, $i = 2, ..., k$,

where $a_{ij}(x)$ are polynomials of degree *m*. In particular, $X_i = \sum_{\alpha=0}^m (x^1)^{\alpha} Y_i^{\alpha}(y)$, where $y = (x^2, ..., x^n), (Y_2^{\alpha}, ..., Y_k^{\alpha}) \in \mathcal{J}^m(n-1, k-1), \alpha = 1, ..., m$, and $(Y_2^0, ..., Y_k^0) \in$ $\mathcal{J}_o^m(n-1,k-1)$. Finally, the codimension of \mathcal{A}^m in $\mathcal{J}_o^m(n,k)$ is equal to codimension of the subset \mathcal{B}^m of all $(Y_2^0, \ldots, Y_k^0; \ldots, Y_2^m, \ldots, Y_k^m) \in \mathcal{J}_o^m(n-1, k-1) \times \mathcal{J}^m(n-1, m(k-1))$ 1*))* such that:

$$
\left(\frac{\partial}{\partial x^1}, \sum_{\alpha=0}^m (x^1)^{\alpha} Y_2^{\alpha}, \dots, \sum_{\alpha=0}^m (x^1)^{\alpha} Y_m^{\alpha}\right) \in \mathcal{A}^m,
$$

 $\lim_{n \to \infty} \mathcal{J}_o^m(n-1, k-1) \times \mathcal{J}^m(n-1, m(k-1)).$

 $\overline{}$ *α*+*β*-*m*

We study the subsystem of (16) corresponding to $i, j = 2, \ldots, k$. The requirement that (15) admits a nontrivial solution $(u, \psi(\cdot))$ such that:

$$
h_i(\psi(t)) = O(t^{m+1}), \quad \{h_i, h_j\}(\psi(t)) = O(t^{m+1}), \quad 2 \le i < j \le k,\tag{17}
$$

defines an algebraic subset $\widehat{\mathcal{B}}^m$ in $\mathcal{J}_o^m(n-1,k-1) \times \mathcal{J}^m(n-1,m(k-1))$, where \widehat{B}^m ⊃ \mathcal{B}^m . We'll show that the codimension of this larger subset tends to infinity as $m \rightarrow \infty$.

We have $x^1(t) = t$ in virtue of (15). We set $η = (ξ^2, ..., ξ^n), H_i^α(η, y) = (η, Y_i^α(y)),$ then (15) , (17) take the form:

$$
\frac{d(\eta, y)}{dt} = \sum_{i=2}^{k} \sum_{\alpha=0}^{m} t^{\alpha} u_i(t) \overrightarrow{H_i^{\alpha}},
$$
\n
$$
\sum_{\alpha=0}^{m} t^{\alpha} \langle \eta(t), Y_i^{\alpha}(y(t)) \rangle = O(t^{m+1}),
$$
\n
$$
t^{\alpha+\beta} \langle \eta(t), [Y_i^{\alpha}, Y_j^{\beta}](y(t)) \rangle = O(t^{m+1}), \quad 2 \le i < j \le k.
$$
\n(19)

The derivative of the function $t \mapsto \langle \eta(t), Y(y(t)) \rangle$, by (18), has the form:

$$
\sum_{i=2}^k \sum_{\alpha=0}^m t^{\alpha} u_i(t) \langle \eta(t), [Y_i^{\alpha}, Y](y(t)) \rangle.
$$

Successive differentiations and evaluation of the derivatives at $t = 0$, show that (18), (19) are equivalent to a system of equations of the form:

$$
\langle \eta(0), Y_i^{\alpha}(0) \rangle = \phi_i^{\alpha} (Y_i^{\beta}, u_i^{(\beta)}(0)); \quad \beta < \alpha, \ i = 2, ..., k,
$$

$$
\langle \eta(0), [Y_i^{\alpha}(0), Y_j^0](0) + [Y_i^0(0), Y_j^{\alpha}](0) \rangle = \Phi_{i,j}^{\alpha} (Y_i^{\beta}, u_i^{(\beta)}(0));
$$

$$
\beta < \alpha, \ i = 2, ..., k, \quad \alpha = 0, 1, ..., m, \quad 2 \leq i < j \leq k,
$$
 (20)

where ϕ_i^{α} , $\Phi_{i,j}^{\alpha}$ are certain polynomials.

The number of equations in the system (20) is $(m + 1)\frac{k(k-1)}{2}$. The mappings:

$$
(Y_1^{\alpha},...,Y_k^{\alpha}) \mapsto \begin{pmatrix} {\{\eta(0), Y_i^{\alpha}(0)\}}_{2 \le i \le k} \\ {\{\eta(0), [Y_i^{\alpha}(0), Y_j^0](0) + [Y_i^0(0), Y_j^{\alpha}](0)\}}_{2 \le i < j \le k} \end{pmatrix}
$$

are, obviously, submersions (η (0) has to be nonzero). The polynomials ϕ_i^{α} , $\Phi_{i,j}^{\alpha}$ do not depend on Y_i^{α} , $i = 1, ..., k$. Hence the solutions $(Y_i^{\alpha}, \eta(0), u^{(\beta)}(0))$ of (20) form an algebraic subset:

$$
\mathcal{C}^m \subset \mathcal{J}_o^m(n-1,k-1) \times \mathcal{J}^m(n-1,m(k-1)) \times \mathbb{R} \mathbb{P}^{n-1} \times \mathbb{R}^{m(k-1)},
$$

of codimension $(m + 1)\frac{k(k-1)}{2}$. The set $\widehat{\mathcal{B}}^m$ is the image of \mathcal{C}^m under the projection:

$$
\mathcal{J}_o^m(n-1, k-1) \times \mathcal{J}^m(n-1, m(k-1)) \times \mathbb{R} \mathbb{P}^{n-1} \times \mathbb{R}^{m(k-1)}
$$

$$
\rightarrow \mathcal{J}_o^m(n-1, k-1) \times \mathcal{J}^m(n-1, m(k-1)).
$$

Hence:

$$
\operatorname{codim} \widehat{B}^m \ge (m+1)\frac{k(k-1)}{2} - (n-1) - m(k-1)
$$

$$
= m\frac{(k-1)(k-2)}{2} - (n-1) + \frac{k(k-1)}{2};
$$

$$
\operatorname{codim} \widehat{B}^m \to \infty \ (m \to \infty). \qquad \Box
$$

Lemma 2 plus a transversality routine give the following:

COROLLARY 4. – *For any smooth manifold N, the set of families of distributions admitting no smooth nonzero Goh controls, contains an open everywhere dense subset of* $p_*^N H_k T M$.

Any smooth manifold admits a real-analytic structure and any smooth family of distributions can be approximated in the Whitney topology by a real-analytic one. What remains to be proved is that a real-analytic distribution admits a nontrivial smooth Goh control as soon as it admits a nontrivial bounded measurable Goh control. We derive this fact from the following lemma.

LEMMA 3. – Let $\dot{z} = g(z, u)$, $z \in W$, $u \in U$ *be a real-analytic control system and* $\phi: W \times U \rightarrow \mathbb{R}^m$ *be an analytic mapping*; *here W is a real-analytic manifold and U is a compact subanalytic set. Assume that there exists a bounded measurable control* $u(\cdot):(t_0, t_1) \to U$ *and a Lipschitzian trajectory* $z(\cdot):(t_0, t_1) \to W$ *such that:*

$$
\frac{dz}{dt}(t) = g(z(t), u(t)), \quad \phi(z(t), u(t)) = 0,
$$

for almost all $t \in (t_0, t_1)$ *. Then there also exists an analytic control* $\hat{u}(\cdot) : (\hat{t}_0, \hat{t}_1) \to U$ *and a trajectory* $\hat{z}(\cdot)$: $(\hat{t}_0, \hat{t}_1) \rightarrow W$ *such that*:

$$
\frac{d\hat{z}}{dt}(t) = g(\hat{z}(t), \hat{u}(t)), \quad \phi(\hat{z}(t), \hat{u}(t)) = 0, \quad \forall t \in (\hat{t}_0, \hat{t}_1).
$$

A detailed proof of this rather hard technical lemma is contained in the proof of [14, Theorem 5.1]. It follows also from anterior results by H.J. Sussmann [21,22].

The statement on real-analytic distributions we have to prove is local with respect to the state variables and we may assume that the distribution Δ under consideration is defined on \mathbb{R}^n and admits a basis, $\Delta_x = \text{span}\{X_1(q), \ldots, X_k(q)\}\$, $\forall x \in \mathbb{R}^n$. Let $h_i(\xi, x) = \langle \xi, X_i(x) \rangle$ be the Hamiltonian associated to X_i . We set:

$$
W = (\mathbb{R}^{n*} \setminus 0) \times \mathbb{R}^n, \quad z = (\xi, x), \quad U = S^{k-1} = \left\{ (u_1, \dots, u_k) \in \mathbb{R}^k: \sum_{i=1}^k u_i^2 = 1 \right\},
$$

$$
g(z, u) = \sum_{i=1}^k u_i \vec{h}_i(\xi, x), \quad \phi = (h_1, \dots, h_k; \{h_1, h_2\}, \dots, \{h_{k-1}, h_k\}): W \to \mathbb{R}^{k + \frac{k(k-1)}{2}},
$$

and apply Lemma 3. Theorem 8 has been proved.

It was proved in [1, Corollary 4] that the small sub-Riemannian balls are subanalytic for any real-analytic sub-Riemannian structure without nontrivial Goh controls. Combining this fact with Theorem 8, we obtain the following result. Recall that all over the paper we keep the notation $\rho(q)$, $q \in M$, for the sub-Riemannian distance between *q* and the fixed point q_0 . The sub-Riemannian distance is defined by a given distribution Δ on the Riemannian manifold M.

THEOREM 9. – *Suppose that M is real-analytic and* $k \geq 3$ *. There exists a subset A of codimension* ∞ *in the space of rank k real-analytic distributions on M* such that the *relation* $\Delta \notin \mathcal{A}$ *implies the subanalyticity of the sub-Riemannian balls* $\rho^{-1}([0, r])$ *for all r, small enough.*

6. Nilpotent systems

The system:

$$
\dot{x} = \sum_{i=1}^{k} u_i(t) Y_i(x), \quad x \in \mathbb{R}^n, \ x(0) = 0,
$$
\n(21)

is called *nilpotent* if it coincides with its own nilpotentization expressed in adapted coordinates.

In other words, \mathbb{R}^n is presented as a direct sum $\mathbb{R}^n = \mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$, $k_1 = k$, so that any vector $x \in \mathbb{R}^n$ takes the form $x = (x_1, \ldots, x_l)$, $x_i = (x_{i1}, \ldots, x_{ik}) \in \mathbb{R}^{k_i}$,

 $i = 1, \ldots, l$. The vector fields Y_i , $i = 1, \ldots, k$, are polynomial and quasi-homogeneous. More precisely, they are homogeneous of weight -1 with respect to the dilation:

$$
\delta_t: (x_1, x_2, \ldots, x_l) \mapsto (tx_1, t^2x_2, \ldots, t^lx_l), \quad t \in \mathbb{R};
$$

 $\delta_{t*} Y_i = t Y_i, i = 1, ..., k.$

We keep the notation $\hat{f}: L_2^k[0,1] \to \mathbb{R}^n$ for the endpoint mapping $u \mapsto x(1;u)$, where $x(\cdot; u)$ is the solution of (21), $u = (u_1(\cdot), \dots, u_k(\cdot))$, and the notation $\hat{\rho}: \mathbb{R}^n \to \mathbb{R}_+$ for the sub-Riemannian distance, $\hat{\rho}(x) = \min\{\|u\|: \hat{f}(u) = x\}.$

A special case of the system (21) with $n = l = 3$, $k_1 = 2$, $k_2 = 0$, $k_3 = 1$, is called "the flat Martinet system". We will use the special notation $\rho^m : \mathbb{R}^n \to \mathbb{R}_+$ for the sub-Riemannian distance in this case, which plays an important role below.

PROPOSITION 7. – Assume that $k = 2$, $k_3 \neq 0$. Then there exists a polynomial *submersion* $\Phi : \mathbb{R}^n \to \mathbb{R}^3$ *such that* $(\rho^m)^{-1}([0, r]) = \Phi(\hat{\rho}^{-1}([0, r]))$, $\forall r \ge 0$.

Proof. – The inequality $k_3 \neq 0$ means that at least one of the third order brackets of the fields Y_1 , Y_2 is linearly independent on the brackets of lower order at 0. We may assume that:

$$
[Y_1, [Y_1, Y_2]](0) \notin \text{span}\{Y_1(0), Y_2(0), [Y_1, Y_2](0)\}.
$$

There are 2 possibilities.

(1) $k_2 = 0$. Applying, if necessary a δ_t preserving linear change of coordinates, we may assume that $Y_1(0) = \partial/\partial x^1$, $Y_2(0) = \partial/\partial x^2$, $[Y_1, [Y_1, Y_2]](0) = \partial/\partial x^3$. The coordinates x^1 , x^2 , x^3 have the weights 1, 1, 3 respectively (see Section 2). All other coordinates have weights not less than 3. We have:

$$
Y_i(x) = \frac{\partial}{\partial x^i} + \sum_{j=3}^n b_i^j(x) \frac{\partial}{\partial x^j}, \quad i = 1, 2,
$$

where the polynomials $b_1^3(x)$, $b_2^3(x)$ depend only on x^1 , x^2 . Then the mapping $\Phi: (x^1, \ldots, x^n) \mapsto (x^1, x^2, x^3)$ satisfies required properties. Indeed, $\Phi_* Y_1, \Phi_* Y_2$ are *well-defined* vector fields on \mathbb{R}^3 generating the flat Martinet system. Hence the image under the mapping Φ of any trajectory $t \mapsto x(t; u)$ of the system (21) is the trajectory of the flat Martinet system associated to the same control *u*.

(2) $k_2 = 1$. We may assume that $Y_1(0) = \partial/\partial x^1$, $Y_2(0) = \partial/\partial x^2$, $[Y_1, Y_2](0) = \partial/\partial x^3$, $[Y_1, [Y_1, Y_2]](0) = \partial/\partial x^4$. The desired mapping Φ is constructed as the composition of three mappings. The first one is the projection Φ^1 : $(x^1, \ldots, x^n) \mapsto (x^1, \ldots, x^4)$. Then $\Phi^1_* Y_1, \Phi^1_* Y_2$ are *well-defined* vector fields on \mathbb{R}^4 ; we denote them by $Z_i = \Phi^1_* Y_i$, $i =$ 1, 2. The fields Z_1 , Z_2 define a distribution $D = \text{span}\{Z_1, Z_2\}$ in \mathbb{R}^4 with the growth vector *(*2*,* 3*,* 4*)*, i.e. an Engel distribution.

The Engel distribution *D* contains a nonvanishing characteristic vector field, i.e. a vector field *Z* such that $[Z, D^2] = D^2$. We may assume without lack of generality that $Z = Z_2$. This implies the relation:

$$
[Z_2, [Z_2, Z_1]](x) \in \text{span}\{Z_1(x), Z_2(x), [Z_1, Z_2](x)\} \quad \forall x \in \mathbb{R}^4. \tag{22}
$$

The vector fields $Z_1(x)$, $Z_2(x)$, $[Z_1, Z_2]$, $[Z_1, Z_2]$] generate polynomial quasihomogeneous flows, thanks to their triangular "nilpotent" structure. We will use the exponential notations e^{tZ_1} , e^{tZ_2} , etc. for these flows. The mapping Φ^2 is a change of coordinates Φ^2 : $(x^1, \ldots, x^4) \mapsto (y^1, \ldots, y^4)$, defined in the following way:

$$
(x1,...,x4) = ey1Z1 \circ ey2Z2 \circ ey3[Z1, Z2] \circ ey4[Z1, [Z1, Z2]](0).
$$

The coordinates (y^1, \ldots, y^4) are still adapted and we have:

$$
\Phi_*^2 Z_1 = \frac{\partial}{\partial y^1}, \quad \Phi_*^2 Z_2|_{y^1=0} = \frac{\partial}{\partial y^2}, \quad \Phi_*^2 [Z_1, Z_2]|_{y^1=y^2=0} = \frac{\partial}{\partial y^3},
$$

$$
\Phi_*^2 [Z_1, [Z_1, Z_2]]|_{y^1=y^2=y^3=0} = \frac{\partial}{\partial y^4}.
$$

These identities and the relation (22) leave the only possibility for $\Phi_*^2 Z_2$,

$$
\Phi_*^2 Z_2 = \frac{\partial}{\partial y^2} + y^1 \frac{\partial}{\partial y^3} + \frac{(y^1)^2}{2} \frac{\partial}{\partial y^4}.
$$

In particular, the coefficients in the coordinate expression of $\Phi_*^2 Z_i$, $i = 1, 2$, depend only on y^1 .

We define Φ^3 : $(y^1, y^2, y^3, y^4) \mapsto (y^1, y^2, y^4)$ and $\Phi = \Phi^3 \circ \Phi^2 \circ \Phi^1$. The fields $\Phi_* Y_1, \Phi_* Y_2$ are well-defined and generate a flat Martinet distribution. \Box

COROLLARY 5. – *Under the conditions of Proposition* 7 *the sub-Riemannian balls* $\hat{\rho}([0, r])$, $r > 0$, are not subanalytic.

Proof. – Assume that $\hat{\rho}^{-1}([0, r])$ is subanalytic. Then $\Phi(\hat{\rho}^{-1}([0, r])) = (\rho^m)^{-1}([0, r])$ is also subanalytic because $\hat{\rho}^{-1}([0, r])$ is compact and Φ is polynomial. It is shown however in [6] that $(\rho^m)^{-1}([0, r])$ is not subanalytic. \Box

Now consider nilpotent distributions of rank greater than 2, i.e. $k = k_1 > 2$. We restrict ourselves to the case of maximal possible k_2, k_3 . It means

$$
k_2 = \min\left\{n - k, \frac{k(k-1)}{2}\right\}, \qquad k_3 = \min\left\{n - \frac{k(k+1)}{2}, \frac{(k+1)k(k-1)}{3}\right\}.
$$

Remark. – Generic germs of distributions and their nilpotentizations have the maximal possible growth vector and, in particular, the maximal possible k_2, k_3 .

PROPOSITION 8. – Assume that $n \geq (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ and k_2, k_3 are maximal *possible. Then there exists a polynomial submersion* $\Phi: \mathbb{R}^n \to \mathbb{R}^3$ *such that* $(\rho^m)^{-1}(r) =$ $\Phi(\hat{\rho}^{-1}(r)), \forall r \geqslant 0.$

Proof. – We'll present Φ as a composition of certain polynomial submersions. The first one is the projection:

$$
\Phi^1_* : \mathbb{R}^n \to \mathbb{R}^{k_1+k_2+k_3}, \quad \Phi^1(x) = (x_1, x_2, x_3).
$$

Then $\Phi^1_* Y_i$, $i = 1, ..., k$, are well-defined vector fields and the nilpotent distribution span $\{\Phi_*^1 Y_i : i = 1, ..., k\}$ has maximal growth vector $(k_1, k_1 + k_2, k_1 + k_2 + k_3)$ at 0. We set *m* = *k*₁ + *k*₂ + *k*₃, $Z_i = \Phi^1_* Y_i$, $D_x = D^1_x = \text{span}\{Z_i(x): 1 \le i \le k\}$,

$$
D_x^2 = \text{span}\{ [Z_i, Z_j](x): 1 \le i, j \le k \},
$$

\n
$$
D_x^3 = \text{span}\{ [Z_l, [Z_i, Z_j]](x): 1 \le i, j, l \le k \}.
$$

The maximality of k_2, k_3 and homogeneity of Z_i with respect to the dilation imply that dim $D_x^i = k_i$, $i = 1, 2, 3, \forall x \in \mathbb{R}^n$.

Take bracket monomials:

$$
Z_{k_1+\alpha} = [Z_{i_{\alpha 1}}, Z_{i_{\alpha 2}}], \qquad Z_{k_1+k_2+\beta} = [Z_{i_{\beta 1}}, [Z_{i_{\beta 2}}, Z_{i_{\beta 3}})],
$$

 $\alpha = 1, \ldots, k_2, \ \beta = 1, \ldots, k_3, \ 1 \leq i_{\alpha j}, \ i_{\beta j} \leq k_1$, in such a way that $Z_1(0), \ldots, Z_m(0)$ form a basis of \mathbb{R}^m . Then $Z_1(x), \ldots, Z_m(x)$ form a basis of \mathbb{R}^m for $\forall x \in \mathbb{R}^m$. In particular, any Lie monomial of the fields Z_1, \ldots, Z_k is a linear combination of the fields Z_1, \ldots, Z_m with smooth coefficients. The nilpotency of the system Z_1, \ldots, Z_k implies that these coefficients have weight 0 and are actually constants. Moreover, all Lie monomials of order greater than 3 are zero. We obtain that the fields Z_1, \ldots, Z_k generate an *m*-dimensional nilpotent Lie algebra with the basis Z_1, \ldots, Z_m ; the sub-Riemannian structure with the orthonormal frame Z_1, \ldots, Z_k is isometric to the left-invariant sub-Riemannian structure on the corresponding *m*-dimensional simply connected nilpotent Lie group G_m . We will identify G_m with \mathbb{R}^m and assume that the fields Z_i are leftinvariant. \Box

LEMMA 4. – Let $I(Z_3, \ldots, Z_k)$ be the ideal in the Lie algebra Lie $\{Z_1, \ldots, Z_k\}$ gener*ated by* Z_3, \ldots, Z_k *. If* dim(Lie{ Z_1, \ldots, Z_k }) $\geqslant (k - 1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ *, then* $\dim(\text{Lie}\{Z_1, \ldots, Z_k\}/I(Z_3, \ldots, Z_k)) \geq 4.$

Proof. – The following monomials represent the specialization of a Ph. Hall basis of the free Lie algebra with k generators up to the order 3:

$$
Z_i, [Z_i, Z_j], [Z_l, [Z_i, Z_j]], \quad i, j, l \in \{1, \dots, k\}, \quad i < j, \quad i \leq l. \tag{23}
$$

This Ph. Hall basis consists of

$$
\nu_3(k) = k + \frac{k(k-1)}{2} + \frac{(k+1)k(k-1)}{3} = (k-1)\left(\frac{k^2}{3} + \frac{5k}{6} + 1\right) + 1
$$

elements. Hence *m* equals either $v_3(k)$ or $v_3(k) - 1$. In both cases, removing the fields $[Z_1,[Z_1,Z_2]]$, $[Z_2,[Z_2,Z_1]]$ from the list (23) we obtain that the linear hull of the remaining fields is a proper subspace of $Lie{Z_1, \ldots, Z_k}$.

Let $\phi: \text{Lie}\{Z_1, \ldots, Z_k\} \to \text{Lie}\{Z_1, \ldots, Z_k\}/I(Z_3, \ldots, Z_k)$ be the canonical homomorphism. We obtain that at least one of the fields $\phi([Z_1, [Z_1, Z_2]])$, $\phi([Z_2, [Z_2, Z_1]])$ is nonzero. \square

Let *G(I)* be the normal subgroup of G_m generated by $I(Z_3, ..., Z_k)$. Then $\phi =$ Φ^2_* , where Φ^2 : $G_m \to G_m/G(I)$ is the canonical epimorphism. We have $\Phi^2_* Z_3 =$

 $\cdots = \Phi_*^2 Z_n = 0$, while span $\{\Phi_*^2 Z_1, \Phi_*^2 Z_2\}$ is a nilpotent distribution with the growth vector 2*,* 3*,* 5 or 2*,* 3*,* 4. We are thus in the situation of Proposition 7. This proposition provides us with the submersion Φ^3 : $G_m/G(I) \to \mathbb{R}^3$ which "projects" the sub-Riemannian structure with orthonormal frame $\Phi_*^2 Z_1, \Phi_*^2 Z_2$ onto the flat Martinet structure. Finally, we set $\Phi = \Phi^3 \circ \Phi^2 \circ \Phi^1$.

COROLLARY 6. – *Under the conditions of Proposition* 8*, the sub-Riemannian balls* $\hat{\rho}([0,r])$, $r > 0$, are not sub-analytic.

The proof is a strict repetition of the proof of Corollary 5.

Let now Δ be an arbitrary (not necessarily nilpotent) germ of a bracket generating distribution at $q_0 \in M$, and let ρ be the germ of the associated sub-Riemannian distance function. Combining Corollaries 5, 6, and Theorem 4 we obtain the following:

THEOREM 10. – *Assume that either* $k = 2$ *and* $\Delta_{q_0}^3 \neq \Delta_{q_0}^2$ *or* dim $M \geq (k-1)(\frac{k^2}{3} +$ $\frac{5k}{6} + 1$) *and the segment* $(k, \dim \Delta_{q_0}^2, \dim \Delta_{q_0}^3)$ *of the growth vector is maximal. Then* ρ *is not subanalytic. In particular, generic germs are such that ρ is not subanalytic.*

Finally, combining Theorem 10 with Theorem 9 we come to the following surprising result.

COROLLARY 7. – *Let ρ be a germ of sub-Riemannian distance function associated* with a generic germ of real-analytic distribution of rank $k \geqslant 3$, on a n-dimensional *manifold,* $n \geq (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ *. Then the balls* $\rho^{-1}([0, r])$ *are subanalytic for all small enough r, but the function ρ is not subanalytic!*

Acknowledgement

We are grateful to Sébastien Jacquet for fruitful discussions.

REFERENCES

- [1] Agrachev A.A., Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Semin. Mat. Torino 56 (1998).
- [2] Agrachev A.A., Gamkrelidze R.V., Sarychev A.V., Local invariants of smooth control systems, Acta Appl. Math. 14 (1989) 191–237.
- [3] Agrachev A.A., Sarychev A.V., Filtrations of a Lie algebra of vector fields and nilpotent approximation of control systems, Dokl. Akad. Nauk SSSR 295 (1987) 777–781; English transl. in Soviet Math. Dokl. 36 (1988) 104–108.
- [4] Agrachev A.A., Sarychev A.V., Abnormal sub-Riemannian geodesics: Morse index and rigidity, Annales de l'Institut Henri Poincaré, Analyse non linéaire 13 (1996) 635–690.
- [5] Agrachev A.A., Sarychev A.V., Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity, J. ESAIM: Control, Optimisation and Calculus of Variations 4 (1999) 377–403.
- [6] Agrachev A.A., Bonnard B., Chyba M., Kupka I., Sub-Riemannian sphere in Martinet flat case, J. ESAIM: Control, Optimisation and Calculus of Variations 2 (1997) 377–448.
- [7] Bellaïche A., The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 1–78.
- 382 A. AGRACHEV, J.-P. GAUTHIER / Ann. I. H. Poincaré AN 18 (2001) 359–382
- [8] Bianchini R.M., Stefani G., Graded approximations and controllability along a trajectory, SIAM J. Control Optim. 28 (1990) 903–924.
- [9] Bonnard B., Chyba M., Méthodes géométriques et analytique pour étudier l'application exponentiele, la sphère et le front d'onde en géometrie SR dans le cas Martinet, J. ESAIM: Control, Optimisation and Calculus of Variations, submitted.
- [10] Bonnard B., Launay G., Trélat E., The transcendence we need to compute the sphere and the wave front in Martinet SR-geometry, in: Proc. Int. Confer. Dedicated to Pontryagin, Moscow, September 1998, to appear.
- [11] Chow W.-L., Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung, Math. Ann. 117 (1939) 98–105.
- [12] Filippov A.F., On certain questions in the theory of optimal control, Vestnik Moskov. Univ., Ser. Matem., Mekhan., Astron. 2 (1959) 25–32.
- [13] Gabrielov A., Projections of semi analytic sets, Funct. Anal. Appl. 2 (1968) 282–291.
- [14] Gauthier J.-P., Kupka I., Observability for systems with more outputs than inputs and asymptotic observers, Mathem. Zeitschrift 223 (1996) 47–78.
- [15] Ge Zhong, Horizontal path space and Carnot–Caratheodory metric, Pacific J. Math. 161 (1993) 255–286.
- [16] Hironaka H., Subanalytic sets, in: Numbers Theory, Algebraic Geometry, and Commutative Algebra (in honor of V. Akizuki), Tokyo, 1973, pp. 453–493.
- [17] Jacquet S., Subanalyticity of the sub-Riemannian distance, J. Dynamical and Control Systems 5 (1999).
- [18] Rashevsky P.K., About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libknechta 2 (1938) 83–94.
- [19] Stefani G., On local controllability of a scalar-input system, in: Byrnes, Lindquist (Eds.), Theory and Appl. of Nonlinear Control Syst., North Holland, Amsterdam, 1986, pp. 167– 179.
- [20] Sussmann H.J., Optimal control and piecewise analyticity of the distance function, in: Ioffe A., Reich S. (Eds.), Pitman Research Notes in Mathematics, Longman Publishers, 1992, pp. 298–310.
- [21] Sussmann H.J., Trajectory regularity and real analyticity, in: Proc. 25th CDC Conference, Athens, Greece, 1986, pp. 592–595.
- [22] Sussmann H.J., A weak regularity theorem for real-analytic optimal control problems, Revista Mathematica Iberoamericana 2 (3) (1986) 307–317.
- [23] Tamm M., Subanalytic sets in the calculus of variations, Acta Mathematica 46 (1981) 167– 199.