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1. Introduction

Let M be aC∞ Riemannian manifold, dimM = n. A distribution onM is a smooth
linear subbundle� of the tangent bundleT M . We denote by�q the fiber of� at
q ∈ M ; �q ⊂ TqM . The numberk = dim�q is therank of the distribution. We assume
that 1< k < n. The restriction of the Riemannian structure to� is a sub-Riemannian
structure.

Lipschitz integral curves of the distribution� are calledadmissible paths; these are
Lipschitz curvest �→ q(t), t ∈ [0,1], such thaṫq(t) ∈ �q(t) for almost allt .

We fix a pointq0 ∈ M and study only admissible paths starting from this point, i.e.
meeting the initial conditionq(0) = q0. Sections of the linear bundle� are smooth
vector fields; we set

�̄ = {X ∈ VecM: X(q) ∈ �q, q ∈ M},
the space of sections of�. Iterated Lie brackets of the fields in̄� define a flag

�q0 ⊂ �2
q0

⊂ · · · ⊂ �m
q0

· · · ⊂ TqM

in the following way:

�m
q0

= span
{[X1, [X2, [. . . ,Xm] . . .](q0): Xi ∈ �̄, i = 1, . . . ,m

}
.

A distribution � is bracket generatingat q0 if �m
q0

= Tq0M for somem > 0. If � is
bracket generating, then according to the classical Rashevski–Chow theorem (see [11,
18]) there exist admissible paths connectingq0 with any point of an open neighborhood
of q0. Moreover, applying a general existence theorem for optimal controls [12] one
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obtains that for anyq1 in a small enough neighborhood ofq0 there exists a shortest
admissible path connectingq0 to q1. The Riemannian length of this shortest path is the
sub-Riemannian distanceor Carnot–Caratheodory distancebetweenq0 andq1.

In the remainder of the paper we assume that� is bracket generating at the given
initial point q0. We denote byρ(q) the sub-Riemannian distance betweenq0 andq. It
follows from the Rashevsky–Chow theorem thatρ is a continuous function defined on a
neighborhood ofq0. Moreover,ρ is Hölder-continuous with the Hölder exponent 1/m,
where�m

q0
= Tq0M .

We study mainly the case of real-analyticM and�. The germ atq0 of a Riemannian
distance is the square root of an analytic germ. This is not true for a sub-Riemannian
distance functionρ. Moreover,ρ is never smooth in a punctured neighborhood ofq0 (i.e.
in a neighborhood without the poleq0). It may happen thatρ is not even subanalytic. The
main results of the paper concern subanalyticity properties ofρ in the case of a generic
real-analytic�.

We prove that, generically, the germ ofρ at q0 is subanalytic if:

n � (k − 1)k + 1 (Theorem 7),

and is not subanalytic if:

n � (k − 1)

(
k2

3
+ 5k

6
+ 1

)
(Theorem 10).

The ballsρ−1([0, r]) of small enough radius are subanalytic ifn > k � 3 (Theorem 9).
This statement about the balls is valid not only generically, but up to a set of distributions
of codimension∞.

In particular, ifk � 3,n � (k−1)( k2

3 + 5k
6 +1), then (generically!) the ballsρ−1([0, r])

are subanalytic butρ is not!
This paper is a new step in a rather long research line, see [1,5,6,9,10,15,17,20]. The

main tools are the nilpotent approximation, Morse-type indices of geodesics, both in the
normal and abnormal cases, and transversality techniques.

We finish the introduction with some conjectures on still open questions.
(1) Small ballsρ−1([0, r]) for k = 2, n � 4. A natural conjecture is that they are,

generically, not subanalytic.
(2) The germ ofρ at q0 for (k − 1)k + 1 < n < (k − 1)( k2

3 + 5k
6 + 1). The bound

n � (k − 1)k + 1 for “generically subanalytic dimensions” is, perhaps, exact, while
the boundn � (k − 1)( k2

3 + 5k
6 + 1) for “generically nonsubanalytic dimensions”

may, probably, be improved. For a wide range of dimensions, the subanalyticity and
nonsubanalyticity of the germ ofρ should be both typical (i.e. valid for open sets of
real-analytic distributions).

2. Nilpotentization

Nilpotentization or nilpotent approximation is a fundamental operation in the
geometric control theory and sub-Riemannian geometry; this is a real nonholonomic
analog of the usual linearization (see [2,3,7,8,19]).
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Given nonnegative integersk1, . . . , kl , wherek1 + · · · + kl = n, we presentRn as a
direct sumR

k1 ⊕ · · · ⊕ R
kl . Any vectorx ∈ R

n takes the form

x = (x1, . . . , xl), xi = (xi1, . . . , xiki
) ∈ R

ki , i = 1, . . . , l.

The differential operators onRn with smooth coefficients have the form

∑
α

aα(x)∂ |α|

∂xα
,

whereaα ∈ C∞(Rn) andα is a multi-index:

α = (α1, . . . , αl), αi = (αi1, . . . , αiki
), |αi| =

ki∑
j=1

αij , i = 1, . . . , l.

The space of all differential operators with smooth coefficients forms an associative
algebra with composition of operators as multiplication. The differential operators with
polynomial coefficients form a subalgebra of this algebra with generators 1, xij , ∂

∂xij
, i =

1, . . . , l, j = 1, . . . , ki . We introduce aZ-grading into this subalgebra by giving the
weightsν to the generators:ν(1) = 0, ν(xij ) = i, andν( ∂

∂xij
) = −i. Accordingly,

ν

(
xα ∂ |β|

∂xβ

)
=

l∑
i=1

(|αi| − |βi |)i,
whereα andβ are multi-indices.

A differential operator with polynomial coefficients is said to beν-homogeneousof
weight m if all the monomials occurring in it have weightm. It is easy to see that
ν(D1 ◦ D2) = ν(D1) + ν(D2) for anyν-homogeneous differential operatorsD1 andD2.
The most important for us are differential operators of order 0 (functions) and of order 1
(vector fields). We haveν(Xa) = ν(X) + ν(a), ν([X1,X2]) = ν(X1) + ν(X2) for any
ν-homogeneous functiona and vector fieldsX, X1, X2. A differential operator of
orderN has weight at least−Nl; in particular, the weight of nonzero vector fields is
at least−l. Vector fields of nonnegative weights vanish at 0 while the values at 0 of
the fields of weight−i belong to the subspaceRki , theith summand in the presentation
R

n = R
k1 ⊕ · · · ⊕ R

kl .
We introduce a dilationδt :Rn → R

n, t ∈ R, by the formula:

δt (x1, x2, . . . , xl) = (tx1, t2x2, . . . , t lxl

)
. (1)

ν-homogeneity means homogeneity with respect to this dilation. In particular, we have
a(δtx) = tν(a)a(x), δt∗X = t−ν(X)X for any ν-homogeneous functiona and vector
field X.

Now let X = ∑
i,j aij

∂
∂xij

be an arbitrary smooth vector field. Expanding the
coefficientsaij in a Taylor series in powers ofxı and grouping the terms with the same
weights, we get an expansionX ≈∑+∞

m=−l X
(m), whereX(m) is a ν-homogeneous field
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of weight m. This expansion enables us to introduce a decreasing filtration in the Lie
algebra of smooth vector fields VecR

n by putting:

Vecm(k1, . . . , kl) = {X ∈ VecR
n: X(i) = 0 for i < m

}
, −l � m < +∞.

It is easy to see that:[
Vecm1(k1, . . . , kl),Vecm2(k1, . . . , kl)

]⊆ Vecm1+m2(k1, . . . , kl).

It happens that this class of filtrations is in a sense universal. We will need the following
theorem which is a special case of general results proved in [2,8].

Set�0
q0

= {0}q0, �1
q0

= �q0.

THEOREM 1. –Assume thatdim(�i
q0

/�i−1
q0

) = ki , i = 1, . . . , l. Then there exists a
neighborhoodOq0 of the pointq0 in M and a coordinate mappingχ :Oq0 → R

n such
that

χ(q0) = 0, χ∗
∣∣
Tq0M

(
�i

q0

)= R
k1 ⊕ · · · ⊕ R

ki , 1 � i � l,

andχ∗(�̄) ⊂ Vec−1(k1, . . . , kl).

The mappingχ :Oq0 → R
n from the theorem is called anadapted coordinate map.

It is obtained from arbitrary coordinates by a polynomial change of variables and
the construction is quite effective. For anyX ∈ �̄ we haveχ∗(X) ≈ χ∗(X)(−1) +∑

j�0 χ∗(X)(j), whereχ∗(X)(m) is a ν-homogeneous field of weightm. The fieldX̂ =
χ−1∗ (χ∗(X)(−1)) is called thenilpotentization ofX (relative to the adapted coordinate
mappingχ ).

PROPOSITION 1. –Assume thatχ = (χ1, . . . , χl), χj :Oq0 → R
kj , j = 1, . . . , l, is

an adapted coordinate map,X1, . . . ,Xi ∈ �̄, and X̂ı is the nilpotenization ofXı ,
ı = 1, . . . , i. Then:

X1 ◦ · · · ◦ Xiχj (q0) = 0 ∀j > i,

X1 ◦ · · · ◦ Xiχi(q0) = X̂1 ◦ · · · ◦ X̂iχi(q0).

Proof. –We have:

X1 ◦ · · · ◦ Xiχj (q0) = (χ∗X1) ◦ · · · ◦ (χ∗Xi)xj |0
= ∑

m1+···+mi=−j

(χ∗X1)
(m1) ◦ · · · ◦ (χ∗Xi)

(mi)xj |0,

since any monomial of positive weight vanishes at 0. Hence:

X1 ◦ · · · ◦ Xiχj (q0) = 0 for i < j,

X1 ◦ · · · ◦ Xiχi(q0) = (χ∗X1)
(−1) ◦ · · · ◦ (χ∗Xi)

(−1)xi |0 = X̂1 ◦ · · · ◦ X̂iχi(q0). ✷
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3. The endpoint mapping

We are working in a small neighborhoodOq0 of q0 ∈ M , where we fix an orthonormal
frame X1, . . . ,Xk ∈ VecOq0 of the sub-Riemannian structure under consideration.
Admissible paths are thus solutions of the Cauchy problem:

q̇ =
k∑

i=1

ui(t)Xi(q), q ∈ Oq0, q(0) = q0, (2)

whereu = (u1(·), . . . , uk(·)) ∈ Lk
2[0,1].

Below‖u‖ = (
∫ 1

0

∑k
i=0 u2

i (t) dt)1/2 is the norm inLk
2[0,1]. We also set‖q(·)‖ = ‖u‖,

whereq(·) = q(·;u) is the solution of (2). Let:

Ur = {u ∈ Lk
2[0,1]: ‖u‖ = r

}
,

be the sphere of radiusr in Lk
2[0,1]. Solutions of (2) are defined for allt ∈ [0,1], if u

belongs to a sphere of radiusr , small enough. In this paper we implicitely takeu only in
such spheres. The lengthl(q(·)) = ∫ 1

0 (
∑k

i=1 u2
i (t))

1/2dt is well-defined and satisfies the
inequality:

l
(
q(·))�

∥∥q(·)∥∥= r. (3)

The length does not depend on the parametrization of the curve while the norm‖u‖
depends. We say thatu andq(·) arenormalizedif

∑k
i=1 u2

i (t) does not depend ont . For
normalizedu, and only for them, the inequality (3) becomes an equality.

We consider theendpoint mappingf :u �→ q(1). It is a well-defined smooth mapping
of a neighborhood of the origin ofLk

2[0,1] into M . Clearly, ρ(q) = min{‖u‖: u ∈
Lr

2[0,1], f (u) = q} and the minimum is attained at a normalized control. A normalized
u is calledminimalfor the system (2) ifρ(f (u)) = ‖u‖.

Remark. – The notations‖q(·)‖ andl(q(·)) reflect the fact that these quantities do not
depend on the choice of the orthonormal frameX1, . . . ,Xk and are characteristics of the
trajectoryq(·) rather than thecontrol u. TheL2-topology in the space of controls is the
H1-topology in the space of trajectories.

Let χ :Oq0 → R
n, be an adapted coordinate map andX̂i be the nilpotentization ofXi ,

i = 1, . . . , k. The system:

ẋ =
k∑

i=1

ui(t)χ∗X̂i(x), x ∈ R
n, x(0) = 0, (2̂)

is the nilpotentization of the system (2) expressed in the adapted coordinates.

We define the mappinĝf :Lk
2[0,1] → R

n by the rulef̂ :u(·) �→ x(1), wherex(·) =
x(·;u) is the solution of (̂2). The following proposition is an easy corollary of the fact
thatχ∗X̂i areν-homogeneous of weight(−1) (see [2] for details).
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PROPOSITION 2. –Let χ = (χ1, . . . , χl), χj :Oq0 → R
kj , j = 1, . . . , l. Then the

following identities hold for anyu(·) ∈ Lk
2[0,1], ε ∈ R:

f̂
(
u(·))=( 1∫

0

k∑
i=1

ui(t)X̂iχ1(q0) dt, . . . ,

∫
· · ·
∫

0�t1�···�tl�1

k∑
i =1

ui1(t1) · · ·uil (tl)X̂i1 ◦ · · · ◦ X̂il χl(q0) dt1 · · ·dtl

)
;

f̂ (εu(·)) = δεf̂ (u(·)), whereδε is the dilation(1).

We setfε(u) = δ1
ε

χ(f (εu)). Thenfε is a smooth mapping from a neighborhood of 0

in Lk
2[0,1] to R

n. Moreover, any bounded subset ofLk
2[0,1] is contained in the domain

of fε for ε small enough.

THEOREM 2. –fε → f̂ asε → 0 in theC∞ topology of the uniform convergence of
the mappings and all their derivatives on the balls inLk

2[0,1].
Proof. –We have:

δ 1
ε
χ
(
f (v)

)= (1

ε
χ1
(
f (v)

)
, . . . ,

1

εl
χl

(
f (v)

))
,

χj

(
f (v)

)= 1∫
0

k∑
i=1

vi(t)Xj χj

(
q(t)

)
dt =

1∫
0

k∑
i=1

vi(t)Xjχj (q0) dt

+
1∫

0

t2∫
0

k∑
i1=i2=1

vi1(t1)vi2(t2)Xi1 ◦ Xi2χj

(
q(t1)

)
dt1 dt2

=
1∫

0

k∑
i=1

vi(t)Xj χj (q0) dt

+
1∫

0

t2∫
0

k∑
i1=i2=1

vi1(t1)vi2(t2)Xi1 ◦ Xi2χj (q0) dt1 dt2

+
∫ ∫ ∫

0�t1�t2�t3

k∑
i=1

vi1(t1)vi2(t2)vi3(t3)Xi1 ◦ Xi2 ◦ Xi3χj

(
q(t1)

)
dt1 dt2 dt3

= · · · .
Now, Proposition 1 implies:

1

εj
χj

(
f (εu)

)= ∫
· · ·
∫

0�t1�···�tj �1

k∑
i=1

ui1(t1) · · ·uij (tj )X̂i1 ◦ · · · ◦ X̂ij χj (q0) dt1 · · ·dtj
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+ ε

∫
· · ·
∫

0�t1�···�tj+1�1

k∑
i=1

ui1(t1) · · ·uij+1(tj+1)Xi1 ◦ · · ·

◦ Xij+1χj

(
q(t1; εu)

)
dt1 · · ·dtj+1.

It remains to apply Proposition 2 and to note that the mappingsv �→ q(t;v) are
uniformly bounded with all their derivatives on a small enough ball inLk

2[0,1] for
0� t � 1. ✷

Recall thatρ(q) = min{‖u‖: f (u) = q, u ∈ Lk
2[0,1]} is the sub-Riemannian distance

function. We set:

ρε(x) = min
{‖u‖: fε(u) = x, u ∈ Lk

2[0,1]}= 1

ε
ρ
(
χ−1(δεx)

)
and

ρ̂(x) = min
{‖u‖: f̂ (u) = x, u ∈ Lk

2[0,1]}.
Thusρ̂ is the sub-Riemannian distance for the nilpotentization of the original system.

LEMMA 1. –The family of functionsρε|K is equicontinuous for any compactK ⊂
R

n.

Proof. –The functionρ(q) is the sub-Riemannian distance betweenq0 andq for the
sub-Riemannian structure with the orthonormal frameX1, . . . ,Xk . Henceρε(x) is the
sub-Riemannian distance between 0 andx for the structure with the orthonormal frame:

ε
(
δ−1

ε

)
∗χ∗X1, . . . , ε

(
δ−1

ε

)
∗χ∗Xk. (4)

Let dε(x, y) be the distance betweenx andy for this sub-Riemannian structure so that
ρε(x) = dε(0, x). Clearly,|ρε(x) − ρε(y)| � dε(x, y). We are going to prove that:

dε(x, y) � c|x − y|1/2l

.

First we introduce an auxiliary operation on families of control functions. Suppose
thatus(·), vs(·) ∈ Lk

2[0,1], s ∈ R, u0(·) = v0(·) = 0; we define:

[u, v]s(t) =



u|s|1/2(4t), 0 � t < 1
4,

v|s|1/2(4t − 1), 1
4 � t < 1

2,

u|s|1/2(3− 4t), 1
2 � t < 3

4,

v|s|1/2(4− 4t), 3
4 � t � 1,

where we take a branch of|s|1/2 such thats|s|1/2 � 0.
For any controlu(·) and a system:

ẋ =
k∑

i=1

ui(t)Zi(x), x ∈ R
n, (5)
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we define a diffeomorphismZu :Rn → R
n by the ruleZu(x(0)) = x(1), wheret �→ x(t)

is a solution of the differential equation (5). Then

Z[u,v]s = Z−1
v|s|1/2

◦ Z−1
u|s|1/2

◦ Zv|s|1/2 ◦ Zu|s|1/2 .

If (s, x) �→ Zus
(x), (s, x) �→ Zvs

(x) areC1-mappings and∂
∂s

Zus
|s=0 = X, ∂

∂s
Zvs

|s=0 = Y ,
X,Y ∈ VecR

n, then (s, x) �→ Z[u,v]s (x) is alsoC1 and ∂
∂s

Z[u,v]s |s=0 = [X,Y ]. Let ςi
s

be the constant control with theith coordinate equalss and all other coordinates
equals 0. We setς [i1 . . . im]s = [ςi1, [. . . , ς im] . . .]s and obtain ∂

∂s
Zς[i1...im]s |s=0 =

[Z1, [. . . ,Zm] . . .]. Note that‖ς [i1 . . . im]s‖ = s1/2m

.
Now we go back to the vector fields (4) and setZε

i = εδ−1
ε∗ χ∗Xi, i = 1, . . . , k. We

haveδ−1
ε∗ χ∗Xi = 1

ε
χ∗X̂i + Rε

i , whereRε
i is a family of vector fields smooth with respect

to ε (see Section 2). HenceZε
i = χ∗X̂i + εRε

i .
The bracket generating assumption implies that a basis ofR

n can be formed by
vectors: [

Xi1
1
, [. . . ,Xi1

m1
] . . . ](q0), . . . ,

[
Xin1

, [. . . ,Xinmn
] . . . ](q0),

where 1� m1 � · · · � mn � l. It follows from Proposition 1 that the vectors:

[
X̂i1

1
, [. . . , X̂i1

m1
] . . . ](q0), . . . ,

[
X̂in1

, [. . . , X̂inmn
] . . . ](q0),

form a basis ofRn. Indeed, the difference:

[
X

i
j

1
, [. . . ,X

i
j
mj

] . . . ](q0) − [X̂
i
j

1
, [. . . , X̂

i
j
mj

] . . . ](q0),

belongs to�
mj −1
q0 . We apply the diffeomorphismχ and obtain that the vectors:

χ∗
[
X̂i1

1
, [. . . , X̂i1

m1
] . . . ](x), . . . , χ∗

[
X̂in1

, [. . . , X̂inmn
] . . . ](x), (6)

form a basis ofRn for anyx from a neighborhood of 0. Moreover, the vectors (6) form
a basis ofRn for anyx ∈ R

n thanks to theν-homogeneity ofχ∗X̂i .
Take a compactK ⊂ R

n. There existsεK > 0 such that the vectors:

[
Zε

i1
1
, [. . . ,Zε

i1
m1

] . . . ](x), . . . ,
[
Zε

in1
, [. . . ,Zε

inmn
] . . . ](x),

form a basis ofRn for any(x, ε) ∈ DK = {(x, ε)|x ∈ K, |ε| � εK}.
Finally, we define a family of controlsws̄ , s̄ = (s1, . . . , sn), sj ∈ R, j = 1, . . . , n, by

the rule:

ws̄ =


nς [i1
1 . . . i1

m1
]s1(

t
n
), 0� t < 1

n
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

nς [in
1 . . . in

mn
]sn

( t
n
), n−1

n
� t � 1.
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Let the mappingZε
u be defined similarly toZu, replacing the fieldZi by the fieldZε

i .
Then:

∂

∂sj

Zε
ws̄

∣∣∣∣
s̄=0

= [Zε

i
j

1
, [. . . ,Zε

i
j
mj

] . . . ].
In particular, the mapping5ε

x : s̄ �→ (Zε
ws̄

(x) − x) is a submersion at 0 for anyx ∈ K ,
|ε| � εK ; 5ε

x(0) = 0.
Recall that the family of mappings5ε

x is smooth with respect to the parameters(ε, x),
and (ε, x) belongs to the compact setDK . Hence the inverse mapping(5ε

x)−1 is well
defined on a ball{z ∈ R

n: |z| � δ}, the radiusδ of which does not depend on(x, ε).
Clearly, (5ε

x)
−1(z) � c′|z| for some constantc′. Hence the equationZε

ws̄
(x) = y has a

solution s̄ such that|s| � c′|x − y| if x ∈ K , |x − y| � δ, and|ε| � εK . It follows that
dε(x, y) � ‖ws̄‖ � c′′|s|1/2l � c|x − y|1/2l

. ✷
THEOREM 3. –ρε → ρ̂ uniformly on compact subsets ofR

n asε → 0.

Proof. –Thanks to the equicontinuity of the family of functionsρε|K (Lemma 1) it is
enough to prove the pointwise convergenceρε → ρ̂ asε → 0.

Take x ∈ R
n; there existsû ∈ Uρ̂(x) such thatf̂ (û) = x. Let xε = fε(û). We have

ρε(xε) � ‖û‖ = ρ̂(x). Hence:

ρε(x) = ρε(xε) + ρε(x) − ρε(xε) � ρ̂(x) + ∣∣ρε(x) − ρε(xε)
∣∣.

According to Theorem 2,xε → x as ε → 0. Now Lemma 1 implies the inequality
lim supε→0 ρε(x) � ρ̂(x).

For any ε small enough, there existsuε ∈ Uρε(x) such that fε(uε) = x. The
equicontinuity ofρε and the identityρε(0) = 0 imply that‖uε‖ = ρε(x) are uniformly
bounded. Let̂xε = f̂ (uε). We haveρ̂(x̂ε) � ρε(x). Hence:

ρ̂(x) = ρ̂(x̂ε) − ρ̂(x̂ε) + ρ̂(x) � ρε(x) + ∣∣ρ̂(x̂ε) − ρ̂(x)
∣∣.

It follows from Theorem 2 that̂xε → x as ε → 0. The continuity ofρ̂ implies the
inequalityρ̂(x) � lim inf ε→0 ρε(x).

Finally, limε→0 ρε(x) = ρ̂(x). ✷
The following proposition is a modification of a result by Jacquet [17].

PROPOSITION 3. –LetMr = {u ∈ Ur : ∃α ∈ (0,1] s.t. αu is minimal for(2)}. Then
Mr is a compact subset of the Hilbert sphereUr and f̂ (Mr \ Mr ) ⊂ ρ̂−1(r); in
particular, any element ofMr \Mr is a minimal control for system(2̂).

Proof. –First of all, the mappingsf andf̂ are weakly continuous; this is a standard
fact, see [1] for a few lines proof. Letvn ∈ Mr , n = 1,2, . . . , be a weakly convergent
sequence inLk

2[0,1], such thatαnvn are minimal. Letv be the weak limit ofvn,
‖v‖ � r . We may assume without lack of generality that∃ limn→∞ αn = α. There are
two possibilities.

(1) α > 0. We haveαr = limn→∞ αnr = limn→∞ ρ(f (αnvn)) = ρ(f (αv)). Hence the
length of the trajectory associated to the controlαv is αr . In particular,‖αv‖ � αr . We
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already know that‖v‖ � r . Thus‖v‖ = r , v is normalized and belongs toMr . Moreover,
the sequencevn is strongly convergent since the weak and strong topologies coincide on
the Hilbert sphere.

(2) α = 0. We haveρ̂(f̂ (v)) = limn→∞ ρ̂(f̂ (vn)). Theorems 2, 3, and Lemma 1 make
it possible to replacêρ by ραn

and f̂ by fαn
in the right-hand side of the last equality.

We obtain

ρ̂
(
f̂ (v)

)= lim
n→∞ραn

(
fαn

(vn)
)= lim

n→∞
1

αn

ρ
(
f (αnvn)

)= lim
n→∞ r = r.

Now the same arguments as in the case (1) show thatv is normalized and‖v‖ = 1. ✷
4. Subanalyticity and nilpotentization

In this section we assume that the Riemannian manifoldM and the distribution� are
real analytic. Then we can assume (and we do so) that the vector fieldsX1, . . . ,Xk and
the adapted coordinate mapping are real analytic.

THEOREM 4. – If the germ ofρ at q0 is subanalytic, then̂ρ is subanalytic.

Proof. –Let Sn−1 be the unit sphere inRn and letε > 0 be such thatρ(χ−1(δtx))

is well defined for allx ∈ Sn−1, |t| � ε. Then (t, x) �→ ρ(χ−1(δtx)) is a subanalytic
function on the product(−ε, ε) × Sn−1. Moreover,

ρ̂(x) = lim
t→0

ρt(x) = lim
t→0

1

t
ρ
(
χ−1(δtx)

)
.

Henceρ̂ is a subanalytic function on the compact algebraic manifoldSn−1 (see [13,16]).
Now the quasi-homogeneity of̂ρ, ρ̂(δtx) = |t|ρ̂(x), implies the subanalyticity of̂ρ on
the wholeR

n. ✷
So the subanalyticity ofρ implies the same property for̂ρ. It is hard to expect that

the inverse implication is always true. We are going however to show that it is true very
often. Namely,ρ is subanalytic if the nilpotentization(2̂) of the original system satisfies
general sufficient conditions for subanalyticity of sub-Riemannian balls developed in [1].
We point out that, in general, the subanalyticity of all ballsρ−1([0, r]) (i.e. the Lebesgue
sets ofρ) does not imply at all the subanalyticity ofρ (i.e. the graph ofρ); see the next
section to appreciate a sharp difference between these two kinds of subanalyticity. At the
same time, the subanalyticity of the ballsρ̂−1([0, ε]) is equivalent to the subanalyticity
of ρ̂ itself, by the quasi-homogeneity ofρ̂.

Let us recall the background on sub-Riemannian geodesics we need to formulate
the abovementioned subanalyticity conditions. First we setfr = f |Ur

, the restriction
of the endpoint mapping to the Hilbert sphere. The critical points of the mapping
fr :Ur → M are calledextremal controlsand the corresponding solutions of Eq. (2)
are calledextremal trajectoriesor sub-Riemannian geodesics. It is easy to check that all
minimal controls are extremal ones. The geodesics associated to minimal controls are
also called minimal.
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An extremal controlu and the corresponding geodesicq(·) areregular if u is a regular
point of f ; otherwise they aresingularor abnormal.

Let Duf :Lk
2[0,1] → Tf (u)M be the differential off at u. Extremal controls (and

only them) satisfy the equation:

λDuf = νu (7)

with some “Lagrange multipliers”λ ∈ T ∗
f (u)M \0, ν ∈ R. HereλDuf is the composition

of the linear mappingDuf and the linear formλ :Tf (u)M → R, i.e. (λDuf ) ∈
Lk

2[0,1]∗ = Lk
2[0,1]. We haveν �= 0 for regular extremal controls, while for abnormal

controls ν can be taken 0. In principle, abnormal controls may admit Lagrange
multipliers with both zero and nonzeroν. If it is not the case, then the control and the
geodesic are calledstrictly abnormal.

Pontryagin’s maximum principle gives an efficient way to solve Eq. (7), i.e. to
find extremal controls and Lagrange multipliers. A coordinate free formulation of
the maximum principle uses the canonical symplectic structure on the cotangent
bundle T ∗M . The symplectic structure associates a Hamiltonian vector field�a ∈
VecT ∗M to any smooth functiona :T ∗M → R.

We define the functionshi, i = 1, . . . , k, andh on T ∗M by the formulas

hi(ψ) = 〈ψ,Xi(q)〉, h(ψ) = 1

2

k∑
i=1

h2
i (ψ), ∀q ∈ M, ψ ∈ T ∗

q M.

Pontryagin’s maximum principle implies the following:

PROPOSITION 4. –A triple (u, λ, ν) satisfies Eq.(7) if and only if there exists a
solutionψ(t), 0� t � 1, to the system of differential and pointwise equations:

ψ̇ =
k∑

i=1

ui(t)�hi(ψ), hi

(
ψ(t)

)= νui(t), (8)

with boundary conditionsψ(0) ∈ T ∗
q0

M, ψ(1) = λ.

Here (ψ(t), ν) are Lagrange multipliers for the extremal controlut : τ �→ tu(tτ ); in
other words,ψ(t)Dut

f = νut .
Note that abnormal geodesics are still geodesics after an arbitrary reparametrization,

while regular geodesics are automatically normalized. We say that a geodesic isquasi-
regular if it is normalized and is not strictly abnormal. Settingν = 1 we obtain a simple
description of all quasi-regular geodesics.

COROLLARY 1. –Quasi-regular geodesics are exactly projections onM of the
solutions of the differential equatioṅψ = �h(ψ) with initial conditionsψ(0) ∈ T ∗

q0
M .

If h(ψ(0)) is small enough, then such a solution exists(i.e. is defined on the whole
segment[0,1]). The length of the geodesic is equal to

√
2h(ψ(0)) and the Lagrange

multiplier λ = ψ(1).

Corollary 1 provides a parametrization of the space of quasi-regular geodesics by
the points of an open subset< of T ∗

q0
M . Namely,< consists ofψ0 ∈ T ∗

q0
M such that
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the solutionψ(t) to the equationψ̇ = �h(ψ) with the initial conditionψ(0) = ψ0 is
defined for allt ∈ [0,1]. The space of quasi-regular geodesics of a prescribed lengthr ,
small enough, are parametrized by the points of the manifoldh−1( r2

2 ) ∩ T ∗
q0

M ⊂ <. This
manifold is diffeomorphic toRn−k ×Sk−1. The composition of the given parametrization
with the endpoint mappingf is theexponential mappingE :< → M . ThusE(ψ(0)) =
π(ψ(1)), whereπ :T ∗M → M is the canonical projection.

Throughout the paper the “hat” over a symbol means that we replace the original
system (2) by its nilpotentization(2̂) in the construction of the object denoted by the
symbol. In particular,ĥ is the Hamiltonian and̂E is the exponential mapping for the
system(2̂). Besides that, we denote byhε andEε the Hamiltonian and the exponential
mapping for the system:

ẋ =
k∑

i=1

uiZ
ε
i (x), x ∈ R

n, (2ε)

whereZε
i = εδ−1

ε∗ χ∗Xi . Recall that system(2ε) produces the endpoint mappingfε and
sub-Riemannian distanceρε. Note that(ε, x) �→ Zε

i (x) are real analytic vector functions
andZ0

i = X̂i . Hencehε(ψ),Eε(ψ) are also analytic with respect to(ε,ψ) andh0 = ĥ,
E0 = Ê .

Our results on subanalyticity of the distance functionρ are based upon the following
statement.

PROPOSITION 5. –Assume that there exists a compactK ⊂ T ∗
q0

M such thatρ−1
r (1) ⊂

E(K ∩ (hr)−1(1
2)) for any small enough nonnegativer . Then the germ ofρ at q0 is

subanalytic.

Proof. –We have:

ρ(q) = min
{
r: ∃ψ ∈ K, such thathr(ψ) = 1

2, δrE r (ψ) = χ(q)
}
,

for any q in a neighborhood ofq0. One can enlarge the compactK , if necessary, to
make it semi-analytic. The subanalyticity ofρ follows now from [23, Proposition 1.3.7],
thanks to the analyticity ofE r (ψ) andhr(ψ) with respect to(r,ψ). ✷

Let u ∈ Ur be an extremal control, i.e. a critical point offr . The Hessian offr at u is
a quadratic mapping

Hesufr : kerDufr → cokerDufr .

This is a coordinate free part of the second derivative offr at u. Let (λ, ν) be Lagrange
multipliers associated withu so that Eq. (7) is satisfied. Then the covectorλ :Tf (u)M →
R annihilates imDufr and the composition:

λHesufr : kerDufr → R, (9)

is well-defined.
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The quadratic form (9) is thesecond variationof the sub-Riemannian problem at
(u, λ, ν). We have:

λHesufr(v) = λD2
uf (v, v) − ν|v|2, v ∈ kerDufr .

Let q(·) be the geodesic associated with the controlu. We set:

ind(f ;u,λ, ν) = ind+(λHesufr) − dim cokerDufr, (10)

where ind+(λHesufr) is the positive inertia index of the quadratic formλHesufr .
Decoding some of the symbols we can rewrite:

ind(f ;u,λ, ν) = sup
{
dimV : V ⊂ kerDufr, λD2

uf (v, v) > ν|v|2, ∀v ∈ V \ 0
}

− dim
{
λ′ ∈ T ∗

f (u)M: λ′Dufr = 0
}
.

The value of ind(f ;u,λ, ν) may be an integer or+∞.

Remark. – The index (10) does not depend on the choice of the orthonormal frame
X1, . . . ,Xk and is actually a characteristic of the geodesicq(·) and the Lagrange
multipliers (λ, ν). Indeed, a change of the frame leads to a smooth transformation of
the Hilbert manifoldUr and to a linear transformation of variables in the quadratic form
λHesufr and the linear mappingDufr . Both terms in the right-hand side of (10) remain
unchanged.

The next theorem presents the most important properties of index (10); see [1,5] and
references there for proofs and details.

THEOREM 5. – (1) The integer-valued function(f, u,λ, ν) �→ ind(f ;u,λ, ν) is
lower semicontinuous for theC2 topology in the space of the mappingsf :Lk

2[0,1] → M .
(2) For any minimal controlu there exist Lagrange multipliersλ, ν such that

ind(f ;u,λ, ν) < 0.

Now we are ready to formulate the main result of this section. It is a generalization of
some results from [1,17].

THEOREM 6. –Assume thatind(f̂ ; û, λ̂,0) � 0 for any nonzero abnormal control̂u
of the nilpotent system(2̂) and any associated Lagrange multipliers(λ̂,0). Then the
germ ofρ at q0 is subanalytic.

Proof. –First we’ll prove that no sufficiently small strictly abnormal control of the
original system (2) is minimal.

Assume on the contrary thatum, m = 1,2, . . . , is a sequence of minimal strictly
abnormal controls,‖um‖ = εm, εm → 0 (m → ∞). The minimality ofum implies the
existence of a nonzeroλm ∈ T ∗

f (um)M such that:

λmDum
f = 0, ind(f ;um,λm,0) < 0. (11)

Setvm = 1
εm

um, µm = δ∗
εm

λm and rewrite relations (11) in the form:

µmDvm
fεm

= 0, ind(fεm
;vm,µm,0) < 0.
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According to Proposition 3, we may assume that there exists a (strong) limm→∞ vm = v.
Of course, we may also assume that there exists limm→∞ µm = µ �= 0. Theorem 2
implies thatµDvf̂ = 0, i.e.v is an abnormal control for the nilpotent system(2̂). On
the other hand, the lower semicontinuity of ind implies that ind(f̂ ;v,µ,0) < 0 and we
come to a contradiction.

Therefore, any short enough minimal geodesic is quasi-regular. Hence:

ρ(q) = min
{
r: ∃ψ ∈ T ∗

0 R
n, such thathr(ψ) = 1

2, δrE r (ψ) = χ(q)
}
. (12)

Now it remains only to show that, in relation (12),T ∗
0 R

n can be replaced by a compact
subsetK ⊂ T ∗

0 R
n and to apply Proposition 5.

Denote byur
ψ(0) the extremal control associated withψ(0) ∈ (hr)−1(1

2) so that
E r(ψ(0)) = fr(uψ(0)). We haveur

ψ(0) = (hr
1(ψ(·)), . . . , hr

k(ψ(·))) (see Proposition 4 and
its corollary). In particular,ur

ψ(0) depends continuously onψ(0). We set:

Kr = {ψ(0) ∈ (hr
)−1(1

2

)
: ur

ψ(0) is minimal for
(
2r
)
, ind

(
fr;ur

ψ(0),ψ(1),0
)

< 0
}
,

Kε = ⋃
0�r�ε

Kr .

It follows from Theorem 5 that one can replaceT ∗
0 R

n by Kε in (12) if q lies in
ρ−1([0, ε]). We have shown above that the system

µDvfε = 0, ind(fε;v,µ,0) < 0, µ ∈ R
n \ 0, v ∈ U1,

has no solutions forε small enough, and we assumeε to be so small. We are going to
prove thatKε is compact.

Take a sequenceψm(0) ∈ Krm
⊂ Kε, m = 1,2, . . . . We have to find a convergent

subsequence.K0 is compact in virtue of [1, Theorem 5] applied to system(2̂). Hence
we may assume thatrm > 0 for all m. Moreover, we may assume that there exists
limm→∞ rm = r̄ . The controlsurm

ψm(0) belong toMε; according to Proposition 3, there
exists a convergent subsequence of this sequence of controls and its limit is minimal for
system(2r̄ ). To simplify notations, we assume that the sequenceu

rm

ψm(0), m = 1,2, . . . ,

is already convergent and limm→∞ u
rm

ψm(0) = ū.
It follows from Proposition 4 thatψm(1)Du

rm
ψm(0)

frm
= u

rm

ψm(0). There are two possibil-
ities: either|ψm(1)| → ∞ (m → ∞) or ψm(1), m = 1,2, . . . , contains a convergent
subsequence.

In the first case we come to the equationµ̄Dūfr̄ = 0, whereµ̄ is a limiting point of the
sequence 1

|ψm(1)|ψm(1), |µ̄| = 1. The lower semicontinuity of ind implies the inequality
ind(fr̄; ū, µ̄,0) < 0. We come to a contradiction with our assumption onε sincer̄ � ε.

In the second case letψml
(1), l = 1,2, . . . , be a convergent subsequence. Then

ψml
(0), l = 1,2, . . . , is also convergent,∃ lim l→∞ ψml

(0) = ψ̄(0). Thenū = ur̄
ψ̄(0)

and

ind(fr̄; ū, ψ̄(1),1) < 0 because of the lower semicontinuity of ind. Henceψ̄(0) ∈ Kr̄ ⊂
Kε and we are done. ✷
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To apply the last theorem we need a way to evaluate our index. There is a well
developed theory about that, see [1] for some references. In the next proposition we
formulate just the most simple and easy to check necessary conditions for the finiteness
of the ind. A detailed proof can be found in [4, Appendix 2].

PROPOSITION 6. –Assume thatu(·) is an abnormal control andψ(·) �= 0 satisfies(8)
for ν = 0. If ind(f ;u(·),ψ(1),0) < ∞, then:

{hi, hj }(ψ(t)
)= 0 ∀i, j ∈ {1, . . . , k}, (13)

k∑
i,j=1

{
hi,

{
hj ,

k∑
ı=1

uı(t)hı

}}
vivj � 0 ∀(v1, . . . , vk) ∈ R

k, (14)

for almost all t ∈ [0,1], where{a, b} = �ab is the Poisson bracket of the Hamiltoni-
ansa, b.

Remark. – Identity (13) is called the Goh condition while inequality (14) is the
generalized Legendre condition. It is easy to see that both conditions are actually
intrinsic: Identity (13) does not depend on the choice of the orthonormal frame
X1, . . . ,Xk sincehi(ψ(t)), i = 1, . . . , k, vanish anyway. Inequality (14) does not depend
on the choice of the orthonormal frame provided that (13) is satisfied.

We say thatu(·) is a Goh control if (13) is satisfied for an appropriateψ(·); it is a
Goh–Legendre controlif both (13) and (14) are satisfied.

COROLLARY 2. – If the nilpotent system(2̂) does not admit nonzero Goh–Legendre
abnormal controls, then the germ ofρ at q0 is subanalytic.

The system (2) is said to bemedium fatif:

Tq0M = �2
q0

+ span
{[

X, [Xi,Xj ]](q0): i, j = 1, . . . , k
}

for any X ∈ �̄, X(q0) �= 0 (see [5]). Medium fat systems do not admit nontrivial Goh
controls. It follows directly from the definitions that a system is medium fat if and only
if its nilpotentization is. We come to the following:

COROLLARY 3. – If the system(2) is medium fat, then the germ ofρ at q0 is
subanalytic.

It is proved in [5] that generic germs of distributions are medium fat forn � (k −
1)k + 1. This gives the following general result.

THEOREM 7. –Assume thatn � (k − 1)k + 1. Then the germ of the sub-Riemann-
ian distance function associated with a generic germ of a rankk distribution on an
n-dimensional real-analytic Riemannian manifold is subanalytic.

5. Exclusivity of Goh controls for rank > 2 distributions

First we’ll make precise the term exclusivity. Rankk distributions onM are smooth
sections of the “Grassmannization”HkT M of the tangent bundleT M . The space of
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sections is endowed with theC∞ Whitney topology and is denoted byHkT M . Smooth
families of distributions parametrized by the finite dimensional manifoldN are sections
of the bundlepN∗ HkT M overN ×M induced by the standard projectionpN :N ×M →
M . Let A ⊂ HkT M be a set of distributions. We say thatA has codimension∞ in
HkT M if the subset: {

D ∈ pN∗ HkT M: D|x×M /∈A, ∀x ∈ N
}
,

is everywhere dense inpN∗ HkT M , ∀N .
We will also use a real-analytic version of the definition, just given. The only

difference with the smooth case is that the manifolds and the sections are assumed to
be real-analytic, while the topology remains the same Whitney topology.

THEOREM 8. –For anyk � 3, the distributions admitting nonzero Goh controls form
a subset of codimension∞ in the space of all smooth rankk distributions onM .

Proof. –We start with a weaker result related tosmoothGoh controls. Namely, we
are going to prove that the distributions that admit nonzeroC∞ Goh controls form a
subset of codimension∞ in the space of rankk � 3 distributions. Thom transversality
theorem allows to reduce the proof to calculations in the jet spaces. LetJ m(n, k) be the
space ofm-jets at 0 ofk-tuples of vector fields inRn andJ m

o (n, k) = {(X1, . . . ,Xk) ∈
J m(n, k): X1(0) ∧ · · · ∧ Xk(0) �= 0} be the space ofm-jets ofk-frames. To any vector
field Xi we associate the Hamiltonianhi(ξ, x) = 〈ξ,Xi(x)〉, (ξ, x) ∈ R

n∗ × R
n and

the Hamiltonian field�hi(ξ, x) = ∑n
j=1(

∂hi

∂ξj
∂

∂xj − ∂hi

∂xj
∂

∂ξj ). Set ψ = (ξ, x); the Goh

controls for the systeṁx = ∑k
i=1 ui(t)Xi(x), x(0) = 0, are admissible controlsu =

(u1(·), . . . , uk(·)) such that there exist:

ψ(·) = (ξ(·), x(·)), ξ(0) �= 0, x(0) = 0, ψ̇ =
k∑

i=1

ui(t)�hi(ψ), (15)

hi

(
ψ(t)

)= {hi, hj }(ψ(t)
)≡ 0, i, j = 1, . . . , k. (16)

Working in the jet space we try to solve Eqs. (16) not precisely but up to a certain
order. We say that them-jet of (X1, . . . ,Xk) is Goh-compatible if there exists a
nontrivial smooth solution(u,ψ(·)) of (15) such that the functionst �→ hi(ψ(t)), t �→
{hi, hj }(ψ(t)), i, j = 1, . . . , k, have zerom-jets att = 0.

Let Am ⊂ J m
o (n, k) be the set of all Goh-compatiblem-jets. Standard transversality

techniques reduce the expected result about the set of distributions admitting nontriv-
ial C∞ Goh controls to the following lemma.

LEMMA 2. –Am is an algebraic subset of the linear spaceJ m
o (n, k) and

codimAm → ∞ asm → ∞.

Proof. –Differentiating (16)m times in virtue of (15) att = 0 leads to a system
of polynomial equations onξ(0), ui(0), . . . , u

(m−1)
i (0), i = 1, . . . , k. Actually, these

equations are even linear with respect toξ(0). The setAm is thus automatically
algebraic.
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Any reparametrization of a Goh trajectory is still Goh. In particular, we may normalize
one of the coordinates of the nontrivial smooth Goh control assuming thatui0 ≡ 1
for some i0. Without lack of generality, we may compute everything only in the
casei0 = 1. Moreover, any nonvanishing vector field is locally rectifiable and gauge
transformationsX1 �→ X1,Xi �→ Xi(x)+ai(x)X1(x), i = 2, . . . , k, do not change Goh-
compatibility.

Hence we may assume that:

X1 = ∂

∂x1
, Xi(x) =

n∑
j=2

aij (x)
∂

∂xj
, i = 2, . . . , k,

whereaij (x) are polynomials of degreem. In particular,Xi =∑m
α=0(x

1)αY α
i (y), where

y = (x2, . . . , xn), (Y α
2 , . . . , Y α

k ) ∈ J m(n − 1, k − 1), α = 1, . . . ,m, and(Y 0
2 , . . . , Y 0

k ) ∈
J m

o (n−1, k−1). Finally, the codimension ofAm in J m
o (n, k) is equal to codimension of

the subsetBm of all (Y 0
2 , . . . , Y 0

k ; . . . , Y m
2 , . . .Y m

k ) ∈ J m
o (n−1, k−1)×Jm(n−1,m(k−

1)) such that: (
∂

∂x1
,

m∑
α=0

(
x1)αY α

2 , . . . ,

m∑
α=0

(
x1)αY α

m

)
∈Am,

in J m
o (n − 1, k − 1) ×J m(n − 1,m(k − 1)).

We study the subsystem of (16) corresponding toi, j = 2, . . . , k. The requirement
that (15) admits a nontrivial solution(u,ψ(·)) such that:

hi

(
ψ(t)

)= O
(
tm+1), {hi, hj}(ψ(t)

)= O
(
tm+1), 2 � i < j � k, (17)

defines an algebraic subset̂Bm in J m
o (n − 1, k − 1) × J m(n − 1,m(k − 1)), where

B̂m ⊃ Bm. We’ll show that the codimension of this larger subset tends to infinity as
m → ∞.

We havex1(t) = t in virtue of (15). We setη = (ξ2, . . . , ξ n), H α
i (η, y) = 〈η,Y α

i (y)〉,
then (15), (17) take the form:

d(η, y)

dt
=

k∑
i=2

m∑
α=0

tαui(t)
−→
H α

i , (18)

m∑
α=0

tα
〈
η(t), Y α

i

(
y(t)

)〉= O
(
tm+1),

∑
α+β�m

tα+β
〈
η(t),

[
Y α

i , Y
β
j

](
y(t)

)〉= O
(
tm+1), 2 � i < j � k. (19)

The derivative of the functiont �→ 〈η(t), Y (y(t))〉, by (18), has the form:

k∑
i=2

m∑
α=0

tαui(t)
〈
η(t),

[
Y α

i , Y
](

y(t)
)〉

.
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Successive differentiations and evaluation of the derivatives att = 0, show that (18), (19)
are equivalent to a system of equations of the form:〈

η(0), Y α
i (0)

〉= φα
i

(
Y β

ı , u(β)
ı (0)

); β < α, ı = 2, . . . , k,〈
η(0),

[
Y α

i (0), Y 0
j

]
(0) + [Y 0

i (0), Y α
j

]
(0)
〉= 5α

i,j

(
Y β

ı , u(β)
ı (0)

);
β < α, ı = 2, . . . , k, α = 0,1, . . . ,m, 2 � i < j � k, (20)

whereφα
i ,5α

i,j are certain polynomials.

The number of equations in the system (20) is(m + 1) k(k−1)

2 . The mappings:

(
Y α

1 , . . . , Y α
k

) �→( {〈η(0), Y α
i (0)〉}2�i�k{〈η(0), [Y α

i (0), Y 0
j ](0) + [Y 0

i (0), Y α
j ](0)〉}2�i<j�k

)

are, obviously, submersions (η(0) has to be nonzero). The polynomialsφα
i ,5α

i,j do not
depend onY α

ı , ı = 1, . . . , k. Hence the solutions(Y α
i , η(0), u(β)(0)) of (20) form an

algebraic subset:

Cm ⊂ J m
o (n − 1, k − 1) ×J m

(
n − 1,m(k − 1)

)× RP
n−1 × R

m(k−1),

of codimension(m + 1) k(k−1)

2 . The setB̂m is the image ofCm under the projection:

J m
o (n − 1, k − 1) ×J m

(
n − 1,m(k − 1)

)× RP
n−1 × R

m(k−1)

→ J m
o (n − 1, k − 1) ×J m

(
n − 1,m(k − 1)

)
.

Hence:

codimB̂m � (m + 1)
k(k − 1)

2
− (n − 1) − m(k − 1)

= m
(k − 1)(k − 2)

2
− (n − 1) + k(k − 1)

2
;

codimB̂m → ∞ (m → ∞). ✷
Lemma 2 plus a transversality routine give the following:

COROLLARY 4. –For any smooth manifoldN , the set of families of distributions
admitting no smooth nonzero Goh controls, contains an open everywhere dense subset
of pN∗ HkT M .

Any smooth manifold admits a real-analytic structure and any smooth family of
distributions can be approximated in the Whitney topology by a real-analytic one. What
remains to be proved is that a real-analytic distribution admits a nontrivial smooth Goh
control as soon as it admits a nontrivial bounded measurable Goh control. We derive this
fact from the following lemma.

LEMMA 3. –Let ż = g(z, u), z ∈ W, u ∈ U be a real-analytic control system and
φ :W × U → R

m be an analytic mapping;hereW is a real-analytic manifold andU
is a compact subanalytic set. Assume that there exists a bounded measurable control
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u(·) : (t0, t1) → U and a Lipschitzian trajectoryz(·) : (t0, t1) → W such that:

dz

dt
(t) = g

(
z(t), u(t)

)
, φ

(
z(t), u(t)

)= 0,

for almost all t ∈ (t0, t1). Then there also exists an analytic controlû(·) : (t̂0, t̂1) → U

and a trajectoryẑ(·) : (t̂0, t̂1) → W such that:

dẑ

dt
(t) = g

(
ẑ(t), û(t)

)
, φ

(
ẑ(t), û(t)

)= 0, ∀t ∈ (t̂0, t̂1).

A detailed proof of this rather hard technical lemma is contained in the proof of [14,
Theorem 5.1]. It follows also from anterior results by H.J. Sussmann [21,22].

The statement on real-analytic distributions we have to prove is local with respect
to the state variables and we may assume that the distribution� under consideration
is defined onR

n and admits a basis,�x = span{X1(q), . . . ,Xk(q)}, ∀x ∈ R
n. Let

hi(ξ, x) = 〈ξ,Xi(x)〉 be the Hamiltonian associated toXi . We set:

W = (Rn∗ \ 0
)× R

n, z = (ξ, x), U = Sk−1 =
{

(u1, . . . , uk) ∈ R
k:

k∑
i=1

u2
i = 1

}
,

g(z, u) =
k∑

i=1

ui
�hi(ξ, x), φ = (h1, . . . , hk; {h1, h2}, . . . , {hk−1, hk}) :W → R

k+ k(k−1)
2 ,

and apply Lemma 3. Theorem 8 has been proved.
It was proved in [1, Corollary 4] that the small sub-Riemannian balls are subanalytic

for any real-analytic sub-Riemannian structure without nontrivial Goh controls. Com-
bining this fact with Theorem 8, we obtain the following result. Recall that all over the
paper we keep the notationρ(q), q ∈ M , for the sub-Riemannian distance betweenq

and the fixed pointq0. The sub-Riemannian distance is defined by a given distribution
� on the Riemannian manifoldM .

THEOREM 9. –Suppose thatM is real-analytic andk � 3. There exists a subsetA
of codimension∞ in the space of rankk real-analytic distributions onM such that the
relation � /∈ A implies the subanalyticity of the sub-Riemannian ballsρ−1([0, r]) for
all r , small enough.

6. Nilpotent systems

The system:

ẋ =
k∑

i=1

ui(t)Yi(x), x ∈ R
n, x(0) = 0, (21)

is called nilpotent if it coincides with its own nilpotentization expressed in adapted
coordinates.

In other words,Rn is presented as a direct sumRn = R
k1 ⊕ · · · ⊕ R

kl , k1 = k,
so that any vectorx ∈ R

n takes the formx = (x1, . . . , xl), xi = (xi1, . . . , xiki
) ∈ R

ki ,
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i = 1, . . . , l. The vector fieldsYi, i = 1, . . . , k, are polynomial and quasi-homogeneous.
More precisely, they are homogeneous of weight−1 with respect to the dilation:

δt : (x1, x2, . . . , xl) �→ (
tx1, t2x2, . . . , t lxl

)
, t ∈ R;

δt∗Yi = tYi, i = 1, . . . , k.

We keep the notation̂f :Lk
2[0,1] → R

n for the endpoint mappingu �→ x(1;u), where
x(·;u) is the solution of (21),u = (u1(·), . . . , uk(·)), and the notation̂ρ :Rn → R+ for
the sub-Riemannian distance,ρ̂(x) = min{‖u‖: f̂ (u) = x}.

A special case of the system (21) withn = l = 3, k1 = 2, k2 = 0, k3 = 1, is called
“the flat Martinet system”. We will use the special notationρm :Rn → R+ for the sub-
Riemannian distance in this case, which plays an important role below.

PROPOSITION 7. –Assume thatk = 2, k3 �= 0. Then there exists a polynomial
submersion5 :Rn → R

3 such that(ρm)−1([0, r]) = 5(ρ̂−1([0, r])), ∀r � 0.

Proof. –The inequalityk3 �= 0 means that at least one of the third order brackets of the
fieldsY1, Y2 is linearly independent on the brackets of lower order at 0. We may assume
that: [

Y1, [Y1, Y2]](0) /∈ span
{
Y1(0), Y2(0), [Y1, Y2](0)

}
.

There are 2 possibilities.
(1) k2 = 0. Applying, if necessary aδt preserving linear change of coordinates,

we may assume thatY1(0) = ∂/∂x1, Y2(0) = ∂/∂x2, [Y1, [Y1, Y2]](0) = ∂/∂x3. The
coordinatesx1, x2, x3 have the weights 1, 1, 3 respectively (see Section 2). All other
coordinates have weights not less than 3. We have:

Yi(x) = ∂

∂xi
+

n∑
j=3

b
j
i (x)

∂

∂xj
, i = 1,2,

where the polynomialsb3
1(x), b3

2(x) depend only onx1, x2. Then the mapping
5 : (x1, . . . , xn) �→ (x1, x2, x3) satisfies required properties. Indeed,5∗Y1,5∗Y2 are
well-definedvector fields onR3 generating the flat Martinet system. Hence the image
under the mapping5 of any trajectoryt �→ x(t;u) of the system (21) is the trajectory of
the flat Martinet system associated to the same controlu.

(2) k2 = 1. We may assume thatY1(0) = ∂/∂x1, Y2(0) = ∂/∂x2, [Y1, Y2](0) = ∂/∂x3,
[Y1, [Y1, Y2]](0) = ∂/∂x4. The desired mapping5 is constructed as the composition of
three mappings. The first one is the projection51 : (x1, . . . , xn) �→ (x1, . . . , x4). Then
51∗Y1,51∗Y2 arewell-definedvector fields onR4; we denote them byZi = 51∗Yi, i =
1,2. The fieldsZ1,Z2 define a distributionD = span{Z1,Z2} in R

4 with the growth
vector(2,3,4), i.e. an Engel distribution.

The Engel distributionD contains a nonvanishing characteristic vector field, i.e. a
vector fieldZ such that[Z,D2] = D2. We may assume without lack of generality that
Z = Z2. This implies the relation:[

Z2, [Z2,Z1]](x) ∈ span
{
Z1(x),Z2(x), [Z1,Z2](x)

} ∀x ∈ R
4. (22)
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The vector fieldsZ1(x),Z2(x), [Z1,Z2], [Z1, [Z1,Z2]] generate polynomial quasi-
homogeneous flows, thanks to their triangular “nilpotent” structure. We will use the
exponential notationsetZ1, etZ2, etc. for these flows. The mapping52 is a change of
coordinates52 : (x1, . . . , x4) �→ (y1, . . . , y4), defined in the following way:(

x1, . . . , x4)= ey1Z1 ◦ ey2Z2 ◦ ey3[Z1,Z2] ◦ ey4[Z1,[Z1,Z2]](0).

The coordinates(y1, . . . , y4) are still adapted and we have:

52
∗Z1 = ∂

∂y1
, 52

∗Z2|y1=0 = ∂

∂y2
, 52

∗[Z1,Z2]|y1=y2=0 = ∂

∂y3
,

52
∗
[
Z1, [Z1,Z2]]|y1=y2=y3=0 = ∂

∂y4
.

These identities and the relation (22) leave the only possibility for52∗Z2,

52
∗Z2 = ∂

∂y2
+ y1 ∂

∂y3
+ (y1)2

2

∂

∂y4
.

In particular, the coefficients in the coordinate expression of52∗Zi, i = 1,2, depend only
on y1.

We define53 : (y1, y2, y3, y4) �→ (y1, y2, y4) and 5 = 53 ◦ 52 ◦ 51. The fields
5∗Y1,5∗Y2 are well-defined and generate a flat Martinet distribution.✷

COROLLARY 5. –Under the conditions of Proposition7 the sub-Riemannian balls
ρ̂([0, r]), r > 0, are not subanalytic.

Proof. –Assume that̂ρ−1([0, r]) is subanalytic. Then5(ρ̂−1([0, r])) = (ρm)−1([0, r])
is also subanalytic becauseρ̂−1([0, r]) is compact and5 is polynomial. It is shown how-
ever in [6] that(ρm)−1([0, r]) is not subanalytic. ✷

Now consider nilpotent distributions of rank greater than 2, i.e.k = k1 > 2. We restrict
ourselves to the case of maximal possiblek2, k3. It means

k2 = min
{

n − k,
k(k − 1)

2

}
, k3 = min

{
n − k(k + 1)

2
,
(k + 1)k(k − 1)

3

}
.

Remark. – Generic germs of distributions and their nilpotentizations have the maximal
possible growth vector and, in particular, the maximal possiblek2, k3.

PROPOSITION 8. –Assume thatn � (k − 1)( k2

3 + 5k
6 + 1) and k2, k3 are maximal

possible. Then there exists a polynomial submersion5 :Rn → R
3 such that(ρm)−1(r) =

5(ρ̂−1(r)), ∀r � 0.

Proof. –We’ll present5 as a composition of certain polynomial submersions. The
first one is the projection:

51
∗ :Rn → R

k1+k2+k3, 51(x) = (x1, x2, x3).
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Then51∗Yi, i = 1, . . . , k, are well-defined vector fields and the nilpotent distribution
span{51∗Yi: i = 1, . . . , k} has maximal growth vector(k1, k1 + k2, k1 + k2 + k3) at 0. We
setm = k1 + k2 + k3, Zi = 51∗Yi , Dx = D1

x = span{Zi(x): 1� i � k},
D2

x = span
{[Zi,Zj ](x): 1� i, j � k

}
,

D3
x = span

{[
Zl, [Zi,Zj ]](x): 1� i, j, l � k

}
.

The maximality ofk2, k3 and homogeneity ofZi with respect to the dilation imply that
dimDi

x = ki, i = 1,2,3, ∀x ∈ R
n.

Take bracket monomials:

Zk1+α = [Ziα1,Ziα2], Zk1+k2+β = [Ziβ1, [Ziβ2,Ziβ3]
]
,

α = 1, . . . , k2, β = 1, . . . , k3, 1 � iαj , iβj � k1, in such a way thatZ1(0), . . . ,Zm(0)

form a basis ofRm. Then Z1(x), . . . ,Zm(x) form a basis ofRm for ∀x ∈ R
m. In

particular, any Lie monomial of the fieldsZ1, . . . ,Zk is a linear combination of the
fields Z1, . . . ,Zm with smooth coefficients. The nilpotency of the systemZ1, . . . ,Zk

implies that these coefficients have weight 0 and are actually constants. Moreover, all Lie
monomials of order greater than 3 are zero. We obtain that the fieldsZ1, . . . ,Zk generate
anm-dimensional nilpotent Lie algebra with the basisZ1, . . . ,Zm; the sub-Riemannian
structure with the orthonormal frameZ1, . . . ,Zk is isometric to the left-invariant sub-
Riemannian structure on the correspondingm-dimensional simply connected nilpotent
Lie group Gm. We will identify Gm with R

m and assume that the fieldsZi are left-
invariant. ✷

LEMMA 4. –LetI (Z3, . . . ,Zk) be the ideal in the Lie algebraLie{Z1, . . . ,Zk} gener-
ated by Z3, . . . ,Zk . If dim(Lie{Z1, . . . ,Zk}) � (k − 1)( k2

3 + 5k
6 + 1), then

dim(Lie{Z1, . . . ,Zk}/I (Z3, . . . ,Zk)) � 4.

Proof. –The following monomials represent the specialization of a Ph. Hall basis of
the free Lie algebra withk generators up to the order 3:

Zi, [Zi,Zj ], [Zl, [Zi,Zj ]], i, j, l ∈ {1, . . . , k}, i < j, i � l. (23)

This Ph. Hall basis consists of

ν3(k) = k + k(k − 1)

2
+ (k + 1)k(k − 1)

3
= (k − 1)

(
k2

3
+ 5k

6
+ 1

)
+ 1

elements. Hencem equals eitherν3(k) or ν3(k) − 1. In both cases, removing the fields
[Z1, [Z1,Z2]], [Z2, [Z2,Z1]] from the list (23) we obtain that the linear hull of the
remaining fields is a proper subspace of Lie{Z1, . . . ,Zk}.

Let φ : Lie{Z1, . . . ,Zk} → Lie{Z1, . . . ,Zk}/I (Z3, . . . ,Zk) be the canonical homo-
morphism. We obtain that at least one of the fieldsφ([Z1, [Z1,Z2]]), φ([Z2, [Z2,Z1]])
is nonzero. ✷

Let G(I) be the normal subgroup ofGm generated byI (Z3, . . . ,Zk). Then φ =
52∗, where 52 :Gm → Gm/G(I) is the canonical epimorphism. We have52∗Z3 =
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· · · = 52∗Zn = 0, while span{52∗Z1,52∗Z2} is a nilpotent distribution with the growth
vector 2,3,5 or 2,3,4. We are thus in the situation of Proposition 7. This proposition
provides us with the submersion53 :Gm/G(I) → R

3 which “projects” the sub-
Riemannian structure with orthonormal frame52∗Z1,52∗Z2 onto the flat Martinet
structure. Finally, we set5 = 53 ◦ 52 ◦ 51.

COROLLARY 6. –Under the conditions of Proposition8, the sub-Riemannian balls
ρ̂([0, r]), r > 0, are not sub-analytic.

The proof is a strict repetition of the proof of Corollary 5.
Let now � be an arbitrary (not necessarily nilpotent) germ of a bracket generating

distribution atq0 ∈ M , and letρ be the germ of the associated sub-Riemannian distance
function. Combining Corollaries 5, 6, and Theorem 4 we obtain the following:

THEOREM 10. –Assume that eitherk = 2 and�3
q0

�= �2
q0

or dimM � (k − 1)( k2

3 +
5k
6 + 1) and the segment(k,dim�2

q0
,dim�3

q0
) of the growth vector is maximal. Thenρ

is not subanalytic. In particular, generic germs are such thatρ is not subanalytic.

Finally, combining Theorem 10 with Theorem 9 we come to the following surprising
result.

COROLLARY 7. –Let ρ be a germ of sub-Riemannian distance function associated
with a generic germ of real-analytic distribution of rankk � 3, on a n-dimensional
manifold,n � (k − 1)( k2

3 + 5k
6 + 1). Then the ballsρ−1([0, r]) are subanalytic for all

small enoughr , but the functionρ is not subanalytic!
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