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ABSTRACT. — Using a calibration method, we prove thatyifis a function which satisfies all
Euler conditions for the Mumford—Shah functional on a two-dimensional opef®,sehd the
discontinuity setS,, of w is a regular curve connecting two boundary points, then there exists
a uniform neighbourhood of S,, such thatw is a minimizer of the Mumford—Shah functional
on U with respect to its own boundary conditions ®b. We show that Euler conditions do not
guarantee in general the minimality ofin the class of functions with the same boundary value
of w on a2 and whose extended graph is contained in a neighbourhood of the extended graph ¢
w, and we give a sufficient condition in terms of the geometrical properti€sarid S,, under

which this kind of minimality holds.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Keywords:Free-discontinuity problems; Calibration method

1. Introduction

This paper deals with local minimizers of the Mumford—Shah functional (see [8]
and [9])

/ VuCe, )2 de dy + HE(S,). (1.1)
Q

where Q is a bounded open subset &f with a Lipschitz boundary}? is the one-
dimensional Hausdorff measure,is the unknown function in the spa&BW ) of
special functions of bounded variationdn S, is the set of essential discontinuity points
of u, while Vu denotes its approximate gradient (see [2] or [3]).

DEFINITION 1.1. —-We say(as in [1]) thatu is a Dirichlet minimizer o{1.1)in < if
it belongs to SBY2) and satisfies the inequality

/ VuCr, )2 dedy +HA(S,) < / Ve, y)[2dr dy + HY(S,)

Q Q
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for every functiorv € SBM2) with the same trace ason 9<2.

Suppose thai is a Dirichlet minimizer of (1.1) in2 and thatS, is a regular curve.

Then the following equilibrium conditions are satisfied (see [8] and [9]):
(i) u is harmonic ort2\ S,;
(i) the normal derivative of: vanishes on both sides §f;
(iii) the curvature ofS, is equal to the difference of the squares of the tangential
derivatives ofu on both sides of,,.

Elementary examples show that conditions (i), (ii), and (iii) are not sufficient for the
Dirichlet minimality of u.

In this paper we prove that, §, is an analytic curve connecting two points a2,
then (i), (ii), (iii) are also sufficient for the Dirichlet minimality afin small domains. In
other words, for everyxg, yo) in 2, there is an open neighbourhoétof (xg, yp) such
thatu is a Dirichlet minimizer of (1.1) irU. If (xq, yo) does not lie orf,,, this fact is well
known and can be proved by the calibration method (see [1]); so the interesting case |
when we consider points belongingdg: in this situation we have a stronger result, since
we can prove that the Dirichlet minimality actually holds in a uniform neighbourhood
of the discontinuity set. The analyticity assumption $grdoes not seem too restrictive:
it has been proved that the regular part of the discontinuity set of a minimizer is of class
C* and it is a conjecture that it is analytic (see [3]).

Let us give the precise statement of the result.

THEOREM 1.2. —LetQ be a connected open subseRdfandI” be a simple analytic
curve inq connecting two points of the boundary. lebe a function inH(Qg \ T')
with S, = T, with different traces at every point Df and satisfying the Euler conditions
(1), (i), and (i) in €2 (for the precise formulation of these conditions, see Se@jon
Finally, let 2 be an open set with Lipschitz boundary, compactly containgeypjrsuch
that @ N T # @. Then there exists an open neighbourhddaf I' N Q contained inQq
such thatx is a Dirichlet minimizer inU of the Mumford—Shah functionél.1).

This theorem generalizes the result of Theorem 4.2 of [5] in two directions: the
discontinuity sefS, can be any analytic curve and the Dirichlet minimality:a§ proved
in a uniform neighbourhood df, N Q. The proof is obtained, as in [5], by the calibration
method introduced in [1]. The original idea of the new construction essentially relies on
the definition of the calibration around the graphwofhere it is obtained using the
gradient field of a family of harmonic functions, whose graphs fibrate a neighbourhood
of the graph ofu. This technique seems to have some similarities with the classical
method of the Weierstrass fields, where the proof of the minimality of a candidate
obtained by the construction of a slope field starting from a family of solutions of the
Euler equation, whose graphs foliate a neighbourhood of the graph of

In this paper we are also interested in a different type of minimality: in Theorem 1.2
we compares with perturbations which can be very large, but concentrated in a fixed
small domain; we wonder if a minimality property is preserved also when we admit as
competitors perturbations afwith L>°-norm very small outside a small neighbourhood
of S, but support possibly coinciding wiif.

This is made precise by the following definition.
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DEFINITION 1.3. —A functionu € SBM) is a local graph-minimizer i if there
exists a suitable neighbourhodd of the extended graph, of u (for the notion of
extended graph, see Sectidpsuch that

/ |Vu(x, y)|?de dy +H(S,) < / |Vu(x, y)|2dx dy + H*(S,)

Q Q

for everyv € SBM2) with the same trace as on 92 and whose extended graph is
contained inU.

In [1] it is proved that any harmonic function defined Qris a local graph-minimizer
whatever is. If the function presents some discontinuities, what we discover is that
the graph-minimality may fail whef2 is too large, even in the case of rectilinear
discontinuities, as the counterexample given in Section 4 shows.

To get the graph-minimality we have to add some restrictions on the damdin this
aim we introduce a suitable quantity which seems useful to describe the right geometrice
interaction betweers, and Q. Given an open set (with Lipschitz boundary) and a
portion " of A (with nonempty relative interior i A), we defineK (I, A) by the
variational problem

KT, A):= inf{/|w<x,y)|2dxdy: ve HY(A), /vdelzl,
r

A

andv=00naA\F}. (1.2)

First of all, it is easy to see that in the problem above the infimum is attained; moreover
the notation is well chosen sincE(I', A) is a quantity depending only ofi and

A, which describes a kind of “capacity” of the prescribed portion of the boundary
with respect to the whole open set. Note also thadifC A,, and T’y C I', then
K(T'1, A1) = K(I',, Ap), which suggests that iK (", A) is very large, therA is thin

in some sense. It is convenient to give the following definition.

DEFINITION 1.4.— Given a simple analytic curvE, we say that an open s€t is
I'-admissible if it is bounded] N @ connects two points af2, and Q \ I' has two
connected components, which have Lipschitz boundary.

The following theorem gives a sufficient condition for the graph-minimality in terms
of K(T", ) and of the geometrical properties of the curve. We denote the lendthopf
[(TI"), its curvature by cur¥", and theL*>°-norm of curv” by k(T").

THEOREM 1.5.— Let Qq, 2, u, andI' = §, satisfy the same assumptions as in
Theorem1.2; suppose that2 is I'-admissible and denote bf; and Q, the two
connected components@f\ I', byu; the restriction of: to 2;, and by, u; its tangential
derivative onI". There exists an absolute constant- O (independent of2q, 2, T,
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andu) such that if

mini:]_’z KT N, Q) 22: 19 ”2
>cC Uj ,
1+12(NQ)+ 12T NQRKA(NQ) e cHrnQ)

(1.3)

thenu is a local graph-minimizer om2.

Remark that condition (1.3) imposes a restriction on the size depending on the
behaviour otz along S, : if u has large or very oscillating tangential derivatives, we have
to take Q2 quite small to guarantee that (1.3) is satisfied. In the special case of a locally
constant functiont, condition (1.3) is always fulfilled whatever the domain isusis a
local graph-minimizer whateve® is, in agreement with a result that will be proved in
the final version of [1].

The plan of the paper is the following: in Section 2, we fix some notation and recall
the main result of [1]; Section 3 contains the proof of Theorem 1.2; finally, Section 4 is
devoted to the graph-minimality: we give a counterexample when (1.3) is violated, we
prove Theorem 1.5, and present some qualitative properti&€g1of2).

2. Preliminary results

Given any subsel of R? and$ > 0, we denote byA; the §-neighbourhood of4,
defined by

As == {(x0, yo) € R% 3(x, y) € A such that(x — xo, y — yo)| < 8}.
Let  be an open set iR?. If v e SBURQ), for every(xo, yo) € 2 we put

vt (x0, yo) := aplimsupv(x,y) and v~ (xg, yo) := apliminf v(x, y)
(x,y)—(x0,y0) (x,y)—(x0,Y0)

(see [3]). We recall thatt = v~ Hl-a.e. inQ\ S,, while for H-a.e.(xq, yo) € S,

1

:I: _ .
v (xo,yo)—L@—Ez(&t(m’yo)) / v(x, ) dxdy,

B, (x0,y0)

where B (xo, yo) is the intersection of the ball of radiuscentred at(xo, yo) with the
half-space{(x, y) € R% £(x — xo, ¥ — Yo) - vy (x0, yo) = 0}, where the vector, (xo, yo)
is the normal vector t&, at (xo, yo) (which is definedH*-a.e. onsS,). The extended
graph ofv is the set

Fy={(x,y,0eQxR v (x,y) <t <v(x,»}.

Let I" be a smooth curve i®. Fix an orientation ofl" and callv the corresponding
normal vector field td". Let & — (x(§), y(¢)) be a parameterization d@f by the arc-
length. The (signed) curvature is defined by

curvl'(§) = —(¥(8), (&) - v(&); (2.1)
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since the two vectors in (2.1) are parallel, it follows that

[cuvT (6)12 = (¥(8))* + (&) (2.2)

Let u € SBM) be a function such that, = I'. We say thaiu satisfies the Euler

conditions for the Mumford—Shah functional §mif
(i) u is harmonic inQ \ T andu € HY(Q\ ),

(i) du/ov=0o0nT,

(i) |Vut]?>—|Vu~|>=curvl at every point of",
whereVu® denote the traces 6fu onT.

If U is any open subset @&, we shall consider the collectigA(U) of all piecewise
C* vector fieldsg:U — R? x R with the following property: there exists a finite
family (A;);c; of pairwise disjoint open subsets &f such that the family of their
closures coverd/, dA; N U is a Lipschitz surface without boundary for everyg I,
andg|,, € C1(A;,R? x R).

For every vector fielg : U — R? x R we define the mapg*, ¢, ¢*:U — R by

P(x,y,2) = (¢"(x,y,2), 9" (x,y,2), ¢*(x, y,2)).

Let U be an open neighbourhood Bf such that the intersection with every straight
vertical line is connected. Aalibration for u in U is a bounded vector field € F(U)
which is continuous on the graph sfand satisfies the following properties:
(a) divg =0 in the sense of distributions ii;
(b) (¢*(x,y.2)%+ (¢’ (x, y.2))* < 4p*(x, y,z) at every continuity poinix, y, z)
of ¢;

(©) (9%, ") (x,y,u(x,y)) =2Vu(x, y) ande*(x, y, u(x, y)) = |[Vu(x, y)|? for every
(x,y) € 2\ Sy;

d) (! ¢g*(x,y,2)d2)? + (! ¢¥(x, y,2)dz)? < 1 for every(x, y) €  and for every
s, t such that(x, y, s), (x, y,t) e U;

©) [0 (¢", 9" (x, v, 2) dz = v, (x, ) for every(x, ) € S,

The following theorem is proved in [1].

THEOREM 2.1. —If there exists a calibratiorp for u in Q x R, thenu is a Dirichlet
minimizer of the Mumford—-Shah functiordll)in <.

What the authors actually prove (but it is not explicitly remarked), is the following
more general statement.

THEOREM 2.2. —Let U be an open neighbourhood bf, such that the intersection
with every straight vertical line is connected. If there exists a calibragidor « in U,
then

/IVu(x,y)Izdxdy+Hl(SuﬂQ)</|Vv(x,y)|2dxdy+Hl(Sv)
Q Q

for everyv € SBM2) such thatv =u ond2 andI", C U.
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3. Proof of Theorem 1.2

LEMMA 3.1.— Let U be an open subset &? and I, J be two real intervals. Let
u:UxJ — I be afunction of clas€* such that

e u(-,-;s) is harmonic for every € J;

e there exists & functions: U x I — J such thatu(x, y; t (x, y; 2)) = z.
Then, if we define iV x I the vector field

b (x,y,2) = (2Vu(x, y; t(x, y; 2)), [Vu(x, y; t (x, y; 2))[%),

whereVu(x, y; t(x, y; z)) denotes the gradient af with respect to the variableg, y)
computed atx, y; (x, y; 2)), ¢ is divergence free it/ x I.

Proof. —Let us compute the divergence @f
divg(x,y,z) = ZAu(x, yit(x,y; z)) + ZBSVu(x, yit(x,y; z)) -Vit(x,y;2)
+20,t(x, y; 2)Vu(x, y; 1(x, y;2)) - 9, Vu(x, y; t(x, y;2)), (3.1)
where Au(x, y; t(x, y; z)) denotes the laplacian af with respect to(x, y) computed
at (x, y; t(x, y;z)), andVr(x, y; z) denotes the gradient ofwith respect tax, y). By

differentiating the identity verified by the functianfirst with respect taz and with
respect tqx, y), we derive that

dsu(x, y; 1(x, y;2)) 00 (x, y;2) =1,
Vu(x, y; t(x, y;2)) + dsu(x, y; t(x, y;2)) Vi(x, y; 2) = 0.
Using these identities and substituting in (3.1), we finally obtain

dive(x, y,z) = 2Au(x, y; t(x, y; 7)) =0,

since by assumption is harmonic with respect tor, y). O
Proof of Theorem 1.2. tn the sequel, the intersectidhN Q will be still denoted by

I'. Let
Cx=x(s)
r { y=y(s)
be a parameterization by the arc-length, wherearies in [0, [(I")]; we choose as
orientation the normal vector fields) = (—y(s), X(s)).
By Cauchy—Kowalevski Theorem (see [7]) there exist an open neighbouthasd
contained in2g and a harmonic functiof defined onU such that

9§

£(I'(s))=s and P

(C'(s)) =0.
We can suppose thét is simply connected. Lej: U — R? be the harmonic conjugate
of £ that vanishes of, i.e., the function satisfying,n(x, y) = —9,&(x, y), dyn(x, y) =
dx&(x, y), andn(I'(s)) = 0.

TakingU smaller if needed, we can suppose that the mépn y) := (£(x, y), n(x, y))
is invertible onU. We call ¢ the inverse function&, n) — (x(&, n), ¥(&, n)), which
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is defined in the open sevV := ®(U). Note that, if U is small enough, then
(x(&,1m), y(&,n)) belongs td" if and only if » = 0. Moreover,

dex 0, F 1 (3. dn
DW= 57 ’t): (x . ) 3.2
(8837 9,y [VEIZ \0y§ dyn (3-2)

where, in the last formula, all functions are computedxaty) = ¥ (&, ), and so

%%=0,5 and 9,i=—0:5. (3.3)

In particular,x andy are harmonic.
On U we will use the coordinate syste, n) given by ®. By (3.2) the canonical
basis of the tangent spacelibat a point(x, y) is given by

\%3 Vi

=—, =1, 3.4
T ver T e (3-4)

For every(&,n) € V, let G(&,n) be the matrix associated with the first fundamental
form of U in the coordinate systertt, n), and letg(&, ) be its determinant. By (3.2)
and (3.4),

2 1

=——. 3.5
IVE(W)[* (85

g = (3% + (39

We sety (&, ) =g, n).

From now on we will assume that is symmetric with respect t§(, n) € ®(U):

n =0}.
Note that we can write the functianin this new coordinate system as

_ Ml(g,fl) if (S,U)EV,U<O,
u@.m)= {uz@, n i EmeV,n>0,

where we can suppose thatandu, are defined i (indeedu; is a priori defined only
on the sef{(&,n) € V: n < 0}, but it can be extended 1@ by reflection; an analogous
argument applies te,), 0 < u; (&, 0) < uy(&, 0) for every(¢,0) € V, and
() Zeui (5, m) + 0Zui(§,m)=0fori =1,2;
(i) dyu1(€,0) = dyun(€, 0) =0;
(i) (Dzua(&, 0)? — (eu1(§,0)? = cunvr (&)
The calibrationp(x, y, z) onU x R will be written as

1
Y2(E(x, y), n(x,y))

whereg : V x R — R can be represented by

Px,y,2)= d(E(x, y),n(x, y),2), (3.6)

BE N 2) = (€, 1, 2T + 9" (E, 1, 2T, + ¢°(E, 1, 2es, (3.7)

wheree, is the third vector of the canonical basis®#t, andz;, t, are computed at the
point W (&, n). We now reformulate the conditions of Section 2 in this new coordinate
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system. It is known from Differential Geometry (see, e.g., [4, Proposition 3.5]) that, if
X = X*t: + X1, is a vector field orU, then the divergence of is given by

1

divX = 2

(3 (2X°) + 0, (y2X™)). (3.8)

Using (3.4)—(3.7), and (3.8) it turns out thais a calibration if the following conditions
are satisfied:

(@) 3:¢° + 0,0" + 0.¢° =0 for every(&,n,z) € V x R;

(b) (@°(&.1.2)°+ (@"(§.n,2))> <4p°(§.n,2) forevery(§,n,2) e V xR

©) ¢°E nuE ) = 20:uE,n), ¢"¢E, nuE, n) = 20,u,n), and ¢*&,n,

u(€,m) = (Qeu(€, m) + (0,u(E, n))* for every(&,n) € V;

d) (J]*E.n.2)d) >+ (] 9" (5, n.2) d2)? < y2(&, n) forevery(E,m) € V, 5,1 € R;

€ Ju7 ¢°(£,0,2)dz=0 and[,?¢"(¢,0,z)dz =y (§,0) = 1 for every(§,0) € V.

Given suitable parametess> 0 andx > 0, that will be chosen later, we consider the

following subsets o/ x R

Ar:i={(E,n2)eV xR z<ui(&,n) —¢},
Ay:={E,n2)eV xRiui§,n) —e<z<ui(§,n)+e¢},
Az:i={(E, 0,0 €V xR us(€,m +e<z<pi& )}
Ag:={E n,2)eV xR: B1(&,n) <z < P&, 1)+ 1/2},
As:={(, 7,20 €V xR: Ba(§, M+ 1/1 <z <uzé,n) — e},
Ag:={(E,n2)eV xR ux&,n)—e<z<uxé,n)+e¢},
A7:={(E n2) eV xR z>ux&,n) +e},

wherep; andg, are suitable smooth functions such thatt, 0) < 81(¢,0) = B2(£,0) <
uz(£€,0), which will be defined later. Since we suppase> 0 onV, if ¢ is small enough,
while A is sufficiently large, then the sefs, ..., A7 are nonempty and disjoint, provided
V is sufficiently small.

The vectorg (&, n, z) introduced in (3.6) will be written as

. n.2)=(¢°"(€,n,2), $°(¢, 1. 2)),

whereg®” is the two-dimensional vector given by the paj, ¢"). For (¢, ) € V and
z € R we defineg (€, n, z) as follows:

(0, w1(&, 1)) in Ay U As,
(2Vuy — 292V vy, [Vug — 5V %) in Ay,
(o (&, mVw, w) in Ag,
(0, w2(&, 1)) in As U A7,

(2Vup — 272V, [Vup — ﬁ—;zwzﬁ) in Asg,
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whereV denotes the gradient with respect to the varialffes), the functionsv; are
defined by

vi(§,n) :==¢+ Mpn, vo(€,1) =& — Mp,
andM andu are positive parameters which will be fixed later, while

06 = S () = (e ) @9)
fori =1, 2, and for every&, n) € V. We choosew as the solution of the Cauchy problem
Aw =0,
2¢ ;
wE0)=—1— 0/ n(s) (deus(s, 0) + deun(s,0)ds,  (3.10)

Jw§,0) =n(é),

wheren is a positive analytic function that will be chosen later in a suitable way (g
sufficiently small,w is defined inV'). To defines, we need some further explanations:
we call p(&, n) the solution of the problem

w

_ %w
{anp(é, =5 (PEM ). (3.11)
pE,.0=¢,

which is defined inV, providedV is small enough. By applying the Implicit Function
Theorem, it is easy to see that there exists a funcjiokefined inV (takeV smaller, if
needed) such that

plg&. n).n) =¢&. (3.12)
At last, we define
1
,n) i =————(1—2eM).
&M= e e

We chooses;, fori =1, 2, as the solution of the Cauchy problem

Ao (&, )0z w(E, M)d:Bi (€, 1) + Ao (&, md,w(E, n)d,Bi(E, ) — i
Bi(€,0) = 2(u1(&,0) + uz(£, 0)).

Since the linen = 0 is not characteristic, there exists a unique solugpre C*°(V),
providedV is small enough.

The purpose of the definition @fin A, and Ag is to provide a divergence free vector
field satisfying condition (c) and such that

¢"(£,0,2) >0 foruy, <z <us,
¢"(,0,2) <0 forz <u;andz > us.
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These properties are crucial in order to obtain (d) and (e) simultaneously.

The role of A4 is to give the main contribution to the integral in (e). The idea of the
construction is to start from the gradient field of a harmonic functiowhose normal
derivative is positive on the ling = 0, while the tangential derivative is chosen in order
to annihilate thes-component ofp, as required in (e). Then, we multiply the field by
a functiono which is defined first oy = 0 in order to make (e) true, and then in a
neighbourhood off = 0 by assuming constant along the integral curves of the gradient
field, so thatr Vw remains divergence free.

The other setsA; are simply regions of transition, where the field is taken purely
vertical.

Let us prove condition (a). By Lemma 3.1 it follows thatis divergence free in
A, U Ag, noting that it is constructed starting from the family of harmonic functions
u;(§,m) —tvi(§,n).

In A4 condition (a) is true since, as remarked abavés the product oV w with the
functiono which, by construction, is constant along the integral curvegwof

In the other sets, condition (@) is trivially satisfied.

Note that the normal component ¢fis continuous across eadi;: for the regions
A, Ag, and for Ay, this continuity is guaranteed by our choicexgfandg; respectively.
This implies that (a) is satisfied in the sense of distribution&cnR.

Since w; (£,0) = M? — (9:u; (£, 0))2, condition (b) is satisfied iM; U A3 and in
As U Ay if we require that

M > supf{|d:u;(€§,0)|: (§,00€V, i=12},

providedV is small enough.
Arguing in a similar way, if we impose that

2

)\'2
supl (1 —2eM)? (14 ——
H= Up{4( ¢ )<+(l—28M)2

(326,00 + Beuz(6. 0)°): €.0 €V .
condition (b) holds ind4, providedV is sufficiently small.

In the other cases, (b) is trivial.

Looking at the definition ofp on A, and Ag, one can check that condition (c) is
satisfied.

By direct computations we find that

uz

1
/¢§ dZ:2885M1+2885u2+)x<,32—,31+X)Gagw, (3.14)
ui

&? &?

M
8+Mn+ e— Mn

up
/(]5" dz = 288,71/l1 + 288,71/l2 + M

ui

+A<,82—,81—|—%>08,]w, (3.15)
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forevery(&,n) e V.
By using (3.10) and the definition of, we obtain

u2(£.,0)

| #eond=0 (3.16)
u1(¢,0)

and
uz(¢,0)
[ eond=1 (3.17)
u1(¢,0)

so condition (e) is satisfied.

The proof of condition (d) will be split in two steps: we first prove that condition (d)
holds ifs andz respectively belong to a suitable neighbourhood @£, n) andu, (&, n),
whose width is uniform with respect 1@, n) in V; then, by a quite simple continuity
argument we show that condition (d) is true r 7 is not too close ta; (&, ) orux(&, n)
respectively.

For(&,n) e V ands, t € R, we set

t

1E. 0. 5.0) :=/¢é"<s,n,z)dz

N

and we denote by® and” its components.

Stepl. For a suitable choice efand of the functiom: (see (3.10)) there exists> 0
such that condition (d) holds fas — u1(&€,n)| < 8, |t —u2(&,n)| <8, and(E,n) e V,
providedV is small enough.

To estimate the vector whose components are given by (3.14) and (3.15), we us
suitable polar coordinates. ¥ is small enough, for everyé,n) € V there exist
pen(E,m)>0and—n/2 <6, ,(&,n) < /2 such that

15 (&8, m, us(E, ), u2(E,0) = pe.nu (&, 1) SING, (€, 1), (3.18)
I"(&,n,u1(€,n), u2(8,1)) = pe.n(§,n) COKH, (€, 7). (3.19)

In the notation above we have made explicit the dependence on the pararaeteon
the functionn which appears in the definition af (see (3.10)).

In order to prove condition (d), we want to compare the behaviour of the func-
tions p., andy for |n| small. We have already proved that,(&,0) = y(£,0) = 1;
we start computing the first derivative of and of p., with respect to the vari-
ablen.

CLAIM 1.-There holds thaﬁ,,(|ny§(\IJ)|2)(§, 0) = —2curvl'(§).
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Proof of the Claim. -By (3.5) we obtain

va W 2=f,
Ve E (9 (0:5)2 + (3:3)2

hence
0, (Vs (W)1)7 = —[(3:5)? + (8 7)) ~* (20 %02, % + 20, 702,7). (3.20)

Using the fact thatd: X)? + (3:¥)? is equal to 1 at&, 0), and the equalities in (3.3), we
finally get

3y (IVay§(W)[?) (€, 0) = —2(—0: X092, § + 9705, %) = —2curvl'(§),
where the last equality follows from (2.1): therefore the claim is proved.

Sincey = (|V,,&(W)|?) Y2, one has thal,y = —3(|V.,&(W)[%) 7320, (| Vi, §(W)]2);
using the previous claim we can conclude that

1
B(1)(E. 0) = — 53, (1Y, 5 (W) (6. 0) = cUnvE ©).
Using the equality
P2, & m) = (T5E, m, ua(E, ), ua(E, )+ (I7(E, m, ua(E, ), ua(E, )7,

we obtain

1
3, (158, m, ur, u2)) 15 (&, n, uz, u)

e,n

ar} (Ios,n) =

+

1
3y (1"(&, m,uz, u))I"(&, n, ug, us).

By (3.16) it follows that the first addend in the expression above is equal to ze€rat
while by (3.17) it turns out that” (&, O, u3, uz) = p..,(§, 0) = 1; therefore,

3y (pe.n)(§,0) =0, (1"(§,0,uz, uz)). (3.21)
By (3.15) it follows that
2 2 & 2 & 2
0, (I"(&,n, uy, =2¢0 2¢c0 - M4+ — M
(1161, u2)) = 20y + 268y e+ e My

+ X (0,82 — 3,B1)00,w + A(B2 — 1+ 1/1)9, (0 d0,w). (3.22)
From (3.13) and the Euler condition (iii), we have that
A(8,B2(8,0) — 3,81(5,0))0 (§,0)3,w(£, 0) = —w2(£, 0) + w1(§, 0)

= (0eua(€, 0))° — (du1(&,0)°
=curvl'(¢), (3.23)
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while
3, (0 8,w) (€, 0) = — ¢ (0 0:w) (€, 0) = 9 (268 u1 (£, 0) + 260:15) (£, 0),

where we have used the fact tha? w is divergence free and the definition@fandw.
Putting this last fact together with (3.22), (3.23), and the harmonicity; oive finally
get

3y (0e.n)(§,0) = CUVT(§) = 3,(y)(§, 0). (3.24)
CLAIM 2. —There holds thab?, (|V.,&(W)|?) (€, 0) = 4[curvl(§)]%

Proof of the Claim. -By differentiating with respect tg the expression in (3.20) and
by (3.3), we obtain

02, (IV,, 6 (W)12) = —2[(3:3)% + (3 7)2] " [(0ey )% + 86503, T + (8 9)% + 850, 7]
+ 8[(3:3)% + (3:3)?] (agxagnx + 0507, 5)?
= —2[(3:5)%+ 0:5)%) °[( EEy) + (8§§x) agxagggi 05502 V]
+8[(3:5)2 + (3: )% (- %02, 5 + 0 yassx) .
Note that
—0:R03 ¥ — 05035 = (025)" + (92.%)° - %852&((355)2 + (3:3)%).

Using (2.1), (2.2), and the fact thed; ¥)? + (3: y)? is equal to 1 at&, 0), we obtain the
clam. O

By using Claims 1 and 2, we can conclude that

3 _
07,1 E. 0 = | (V0 )P (3, (V0 (9)P))°

1 _
= 5(IVa&)P) 3/285,,(|vxys<w>|2)} \
¢,0

= [curvI'(§)]1% (3.25)
The second derivative gf. , with respect to; is given by

1
02, (pe.) = ——{[8,(T5 &, m uz, u2))]* + 02, (15 (&, ur, u2)) I (€, 1, ur, u2)

e,n

+ [871(177(59 n,u, MZ))}Z + 8$y)(17](§9 n,uy, MZ))IW(%—’ n,uy, MZ)}

1
[8, (0e.n) 1%

e,n

By equalities (3.16), (3.17), and (3.21), the expression above computgdatreduces
to

02 (o) (£, 0) = [8,(I° (€. 1 us, 1)) | o ) * + 02, (I"(E. 1 ur.u2) | o (3-26)
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By differentiating (3.14) and (3.22) with respectitpwe obtain that

0 (I° (&, m, w1, u2)) (&, 0) = [A(3,B2 — 0,B1)0 0w + 0,0 0w + 0 0Z,w]| o, (3.27)
and

02, (1"(§, m, w1, u2)) (§,0) = §M3 + 1[92, B2(€,0) — 37 B1(€,0)] 0 (€, 003, w(&, 0)
+ 249, B2(§,0) — 9,81(§, 0)]9, (0 9, w) (&, 0)
+92,0(&,009,w(&, 0) + 20,0 (€,0)07, w(&, 0)
+0 (£ 00y, w(E 0, (3.28)
while, by using Eq. (3.13),
(7 (87,2 = 05, B1) 0 8yw] | o,
= [9)1 — 8,2 — 18, (3 B2 — 0 P1)o dgw — 10, (00, w) (3,82 — 9y B)] | ¢ )

4
= —EM3 — A0:(9,B2 — 0,81)00: w + A0 (00 w) (3,82 — 8,,,31)}

(X
Since by (3.23) and by the definition efwe have that

curvl'(§)

1[0nB2(&, 0) = 0,p1(€, 0] = T——

and moreover,
o (£,000;w(&,0) = —2(d:u1(§,0) + dsuz(%, 0)),

we obtain that
(2 (37,82 — a,f,,ﬁl)oa w + 243,82 — 9,B1) 0 (0 0y w)] | ¢ o)

4
:—EM?’—l— T Mag((agul—aguz)curvr)(g 0).
By using the definition of, we can write
/(S)
=—1-2cM
( ) 2(S)
2 WEO? e @) e W6
9p,0 =—(1—2eM) |2 23E) (3,9) +n2(g)(8,,q) 2(&)8’7

In order to compute the derivatives @f we differentiate equality (3.12) with respect to
n:

9,q(&,0)=—0,p(,0) = m(asul(g, 0) 4 0:u2(&, 0)),

02,q(€,0) = —202, p(&.0)9,9(§,0) — 07, p(€, 0)

(ew)? 1
= (;w)3a§n ¥ ——0Zw|(€,0).
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By the definition ofw, we obtain

n'E n'E 4

n®) " nE) A 2ean e® O+ Beualf, 0)°.

92q(£,0) = —
Finally, we have

2 w(&, 0)=—0Zw( 0 = [ (Beuur + dguz) + n (91 + 0Z:u2)]| ¢ o

2¢
1-2eM
03w, 0)=—05d,w(&, 0) = —n"(§).
By substituting all information above in (3.27) and in (3.28), and by using (3.26), we
finally obtain that

92 (pe) (£.0) = —ar(§) ) 4 (s,”@))

e T\ he
n@)) ( n’@)) (n’@))z
ag helé, — ) —a. , 3.29
(S)( ©) TS ) T eOGe ) @)

where

a,(§) > 1 uniformly in [0, I(I")],
(3.30)

he(€,7) — 2t? uniformly on the compact sets (8, /(I")] x R,

ase — 0.

CLAIM 3. —There existg > 0 such that for every € (0, ), we can find an analytic
functionn : [0, [(I")] — (O, +00) satisfying

2

7T n'(§)
162(T)

n&)

whereN =1+ max{ﬁ, k(T)} andk(T") = |lcurvl || .

32 (Pen — ¥)(E,0) = — <N YEe[0 ()],  (3.31)

Proof of the Claim. -Sett :=n’/n; in order to prove the claim, by (3.29) and (3.25)
we study the Cauchy problem

2

_ ’ 2 2__7[7

{ cg(é)r +he(§,7) — 2 — [cunvl(§)]° = 162(I)’ (3.32)
t(0) =

and we investigate for which valuesoit admits a solution defined in the whole interval
[0, 1(T")], with L*°-norm less thaV. As ¢ — 0, by (3.30) we obtain the limit problem

/ 2 2 7[2
{ —1' 4+ 1% —(curvl)< = T16R()’ (3.33)
7(0) =
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By comparing with the solutions; andr, of the Cauchy problems

T 7

2

o 2 _ 4 2 _ 2 —_

{ EEE TN { = =0 ey (3.34)
71(0) =0, ©2(0) =0,

one easily sees that the solution of (3.33) is defind®,iiT")], with L>°-norm less than

the maximum betweeiit: | and| 2], Which is, by explicit computation, less than
max{r /(41(T")), k(I")}. By the theorem of continuous dependence on the coefficients
(see [6]), we can find@ such that, for every € (0, ), the solution of (3.32) is defined in

[0, I(I")] with L*®-norm less thav. O

For everye € (0, %), we set

no() = e v (3.35)

wherer, is the solution of (3.32).
From now on we will simply writeo, andé, instead ofp. ,, andé; ,, .
We now want to estimate the andlgé, n) by a quantity which is independent of
Since by (3.14) and (3.15)
tano,
B 2e0zu1 + 2e05up + A(B2 — P1+ 1o dsw
N 2e0,u1 + 260,up + Me?(e + Mn)~t 4+ Me?(e — Mn) "1 + A (B2 — B1+ %)aanw’

we have

9,0:(§,0)
2¢ n,(§) n;(§)
= —m(agul + aguz) (CUI'VF — 28(8&'1/[1 + aguz) ng(é)) + (1 - 28M) ns(g) y
and so, by Claim 3, it is sufficiently small,
[0,0:(5,0)| <N V& el[O0,[(IN)]. (3.36)
Letd(n) be an arbitrary continuous function with
6(0)=0 and 6'(0)=N; (3.37)
by (3.36), it follows that
16: (€, | < 6(m)signn (3.38)

for every (&, n) € V, providedV is sufficiently small.
Givenh > 0, we consider the vectors

P&, 1, 8) = (0, —2(s — ur(£, ) dyu1(&, n) — h(s —us(&,n)?),
bhE, m, 1) := (0, 2(t — ua(&, n))duz2(&, n) — h(t — uz(&,n))?)
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for (¢,n) € V ands, t € R. We denote byB(r) the open ball centred &0, —r) with
radiusr.

Let us definerg’ (&, 7, s,t) as the maximum radiussuch that the set

(p:(&, ) SINO (), pe(&, ) COSA()) + b (E, 1, 5) +bh(E, n, 1) + B(r)

is contained in the ball centred @, 0) with radiusy (¢, n).
CLAIM 4. —If we define

1
d:= ,
1+ 16R(T)N2/m?

(3.39)

whereN is the constant introduced in the previous claim, then there ekist® such
that for everye € (0, ) (see ClainB), there exist$ € (0, ¢) so that, ifV is small enough,

. d
inf{2r"(&,n,5,0): (E,n) €V, |s —ur(E, n)| <8, |t —ua(&, )| <8} > 5 (3.40)

Proof of the Claim. tet p"(&,n,s,1) > 0 and—7/2 < 5?(5, n,s,t) < m/2 be such
that

(pe(E, 1) SING (), pe(&, ) COSA(n)) + bE(E, 1, 5) + bh(E, 1, 1)
= (p"(E.n.5.0)SING" (&, 0, 5.0), I (€. . 5.1)COSH. (£, n,5,1)).  (3.41)

To prove Claim 4, it is enough to show that, for everg (0, ), there exists € (0, ¢)
with the property that

d - d
(l_ E COS@?(S’ n,s, t))ﬁ?(‘§9 n,s, t) < (1_ E)y(év 77) (342)

for |s —u(&, )| <8, |t —uaxé,n)| <8, and (§,n) € V with n £ 0, providedV is
sufficiently small. Indeed, if (3.42) holds, it follows in particular that(£, n, s, t) <
y (&, n), and this inequality with some easy geometric computations implies that

VZ(%-, 77) - (ﬁ?(gv n,s, t))2

2,50 =—— = :
Y — Pe (59 n,s, t) COS@@ (‘i:’ n,s, t)

at this point, it is easy to see that,Wf is small enough, inequality (3.42) implies that
2r'(&,m,s,1t) > d/2, that is Claim 4. So let us prove (3.42).
We set

d d
fd’h(‘§9 n,s, t) = (l_ Ecoseg(éa n,s, t))ﬁil(‘§9 n,s, t) - (1_ E)y(év 77)

and we note thaf?" (&, 0, uy(£, 0), u(£, 0)) = 0. We will show that
1. Vi f"(,0,u1(8,0),u2(5,0) =01if (§,0) € V,
2. VZ, f"(&,0,u1(€, 0), uz(&, 0)) is negative definite if£,0) e V,
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whereV,,, f*" and V%, " denote respectively the gradient and the hessian matrix of

4" with respect to the variables, s, ¢). Equality 1 follows by direct computations and
by (3.24). Using (3.41), the equality in (3.31), and (3.37), we obtain

0z, f"" (§,0,u1(€,0), u2(5,0) = —”—2(1— f) N2,
i P TS L TS 162(I") 2) 27
then by the definition o,
2
02 f" (£, 0, ua(, 0), us(&, 0)) = —#(F) <0. (3.43)

Moreover we easily obtain that

d
82 f44 (8.0, u1(£. 0), ua(&. 0)) = 82 f4 (£, 0, us(€. 0), ua(€. 0)) = —2h (1 - 5),

d
02, f " (&,0,u1(€,0), ua(&, 0)) = —2(1 - E) 02, u1(&,0),

d
02 f1" (5,0, us(8. 0, ua(,0)) = 2(1— 5)85,,@(5, 0),

Of f"" (5,0,u1(&,0),ua(&,0)) =0.
By the expressions, it follows that
det( oF, f4h % fe
83nfd,h 83sfd,h
2
=h@—-d)——
@ Dapm)
and that the determinant of the hessian matrixf at (&, 0, u1(£, 0), u»(£, 0)) is given
by

> (S? 0’ Ml(év O)= u2(‘§’ 0))

— @-d)?[82u1(5, 0%,

detvZ, f*"(&,0,u1(€, 0), uz(,0))
2
aap T @ D@, 0)® + (62 ua(&, 0))7).

By the definition ofd, if 4 satisfies

=—h?(2—-d)?

32 2
h > ;(2 — d)I*(I") Z |’a§n“i ||i°°(l")’ (3.44)
i=1

then for every(&, 0) € V we have

2 fdh 42 gdh
et< O f 5 f

B fih g rin ) (£.0,u1(£, 0), u2(§. 0)) > O, (3.45)
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and
detV2, f4"(&,0,us(€, 0), up(&,0)) <O. (3.46)

nst

By (3.43), (3.45), and (3.46), we can conclude that the hessian matrigd-6f at
(&,0,u1(&¢,0), us(&, 0)) is negative definite: both (3.42) and Claim 4 are proved.

CLAIM 5. —For everyr > 0 and > 0, there existg > 0 with the property that, if
£ € (0, &), one can find € (0, ¢) so that

1(5,n,u2(5,m),1) € B(r) + b3 (&, . 1),
1(5,n,5,u1(§,m) € B(r) + bL (5, m, ),
providedV is small enough, for every — ux(&, n)| <38, |s — u1 (&€, n)| <34.
Proof of the Claim. -By the definition of¢p in Ag, we obtain that

15(&, n,u2(€,m), 1) = 2(t — ua(&, ) deuz(&, 1),

1" (&, n,uz(8, ), 1) = 2(t — uz(8, 7)) dyuz(E, ) — M(e — M) (1 — ua(&, n))z-
To get the claim, we need to prove that
(20t — u)Beuz)” + (=M (e — M) "2t —u2)® + h(t —up)?+71)° <12,
which is equivalent to

(2(t — up)deuz)” + (=M (e — My) ™+ h)2(t — up)®
+2r (=M (e — M)t +h)(t —up)? <O0.

The conclusion follows by remarking that,Vif is small enough, the left-handside is less
than

2M
(4(35M2)2 + 2hr — 3—r>52 +0(8%),
&
which is negative it is sufficiently small. The proof fai; is completely analogous. O

Let us conclude the proof of the step. By Claim 4, we can find O such that (3.40)
is satisfied fors € (0,%). If we chooser such that 2 < d/4, by Claim 5 there exists
£ > 0 such that for every € (0, ¢) there iss € (0, ¢) so that

1(&,n,s,u1(E, ) +1(&,n,u2E,m),t) € BQ2r) +bl(E, n,s) +b5(E, n,t)  (3.47)

foreveryls —ui(&,n)| <6, [t —u2(&,n)| <8, and(&, n) € V. If we takee < min{g, g},
then by Claim 4 we have that the set

B(2r) + (p:(&, ) SiNA(n), pe (&, ) COSO(n)) + bi(E, 1, 5) + ba(E, n, 1)

is contained in the ball centred &, 0) with radius y (§, 7). Some easy geometric
considerations show that the relation betwégrand 6 (see (3.38)) implies that also
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the set

B(2r) + (p: (&, n) SINB.(n), pe (€, n) COSO () + Dy (&, 1, 5) +b3(E, n, 1)  (3.48)

is contained in the ball centred @, 0) with radiusy (&, n), if the condition

|bi(&,n,s) + baE, n, )| <2r

holds (to make this true, takkeand V smaller if needed). Since

I(S! n,s, t) = I(‘i:’ n,s, Ml(‘i:’ 77)) + I(Sv n, ul(‘§9 77), MZ(‘E’ 77)) + I(Sv n, u2(‘§’ 77)9 t)’

by (3.47), (3.18), and (3.19), it follows thdi, n, s, t) belongs to the set (3.48), and
then to the ball centred ai, 0) with radius y (&, n) for every |s — ui(&,n)| < 8,
|t —us(&,n)| < 8, and(&, n) € V. This concludes the proof of Step 1.

Step2. If ¢ is sufficiently small and < (0, ¢), condition (d) holds fots —u1(§, n)| > 8
or|t —uy(&,n)| =48, and(&, n) € V, providedV is small enough.
Let us fix$ € (0, ¢) and set

ma(&,n) :=max{|1&, n,s, 0| ur(E,n) —e <s <t <uz(k,n)+e, |t —uaé, )| =8}

It is easy to see that the function; is continuous. Let us prove that,(&,0) <

y(,0 =1
Fixed(€,0) € V, u1(€,0) —e <s <t <uy&,0) +¢&, with |t —us(&,0)| > 8, we can
write

1(5,0,5,0)=1(§,0,5,u1(§,0)) +1(§,0,u1(§,0), u2(§,0)) + 1(§,0,uz(§,0),1).
(3.49)
CLAIM 6. —For everyr > 0 there exists > 0 such that

I(£,0,ux8,0),1) € B(r),  1(£,0,5,u3(€,0) € B(r)

forO<|s —u1(§,0)<e,0< |t —uz,0)[<e,and(§,0 e V.
Proof of the Claim. -See the similar proof of Claim 5 above

By (3.49), (3.16), (3.17), and Claim 6, it follows that

1(£,0,5,1) € (0,1) + B(r) + B(r) = (0, 1) + B(2r) (3.50)

forO<|s —u1(§,0) <e,8 < |t —u2§,0)| <e. If r <1/4, the set(0,1) + B(2r) is
contained in the open ball centred(8f 0) with radius 1.

It remains to study the cage— u1| > ¢ and the cas@ — u,| > <. Let us consider the
latter; the former would be completely analogous. We can write

I(évoasaul(‘i:’o)) :I(S,O,S/\ (Ml(r‘;:,O)—i-S), I/l]_(é,O))
+1(£,0,5V (u1(6,0)+¢), u1(£,0) + ),
1(£,0,u2(8,0),¢) =1(§,0,u2(8,0), u2(§,0) — &) + 1(§,0,u2(8,0) —&,1).
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Therefore, by (3.49)

1(£,0,5,1)=1(£,0,u1(£,0), u2(5,0)) + 1(£,0,5 A (u1(§,0) + &), u1(£, 0))
+1(£,0,u2(5,0), up(8,0)—¢) + 1(£,0,5 v (u1(£,0) +¢),1)
—1(£,0,u1(€,0) + &, uz(§,0) — ¢). (3.51)
If —2e(d:u1(§,0)+ d:u2(£,0)) >0, we define

C := [0, —2¢(3:u1(§,0) + d:u2(£,0))] x [0,1—2eM];

if —2¢(0gu1(&,0)40:u2(£,0)) <0, we simply replac€d, —2¢(d:u1 (&, 0)+d:u2(£, 0))]
by [—2¢(d:u1(€, 0) + d:u2(£, 0)), O]. From the definition of in A3U A4U As, it follows
that

1(£.0,u1(8,0) + &, uz(8,0) — &) = (—2¢ (deua(€, 0) + deuz(£,0)), L — 26 M) (3.52)

and
I1(£,0,5,1)eC (3.53)

for us(£,0) +& <s <t <up((,0) —e. Let D := C — (—2e(Beus (£, 0) + d:u2(€, 0)),
1—2¢M). Sincel"(&,0,ux(&,0),u(8,0) — &) = —Me, from (3.51), (3.16), (3.17),
Claim 6, (3.52), and (3.53), we obtain

1(£,0,5,0)€[(0,2)+ B(r) + B N{(x,y) eR% y<1l—eM}+ D
=[0,)+ B2 N{(x,y) eR* y<1l—eM}+D.

If r <1/4 and if ¢ is sufficiently small, the set(0, 1) + B(2r)] N {(x,y) e R% y <
1—eM} + D is contained in the open ball centred(@t0) with radius 1 and this means
thatmq(&,0) < y (&, 0).

Analogously we define

mZ(%—’ 77) = maX{lI(%_, U,S,f)|3 Ml(g’ 77)—8 < N < t < MZ(%—v 7’))+8, |S—M1(§, 77)| 25}

Arguing as in the case @i, we can prove that:, is continuous and:, (¢, 0) < y (€, 0).
By continuity, if V is small enoughmi(&,n) < y(&,n) andma(&,n) < y (&, n), for
every(&,n) € V: Step 2 is proved.

By Step 1 and Step 2, we conclude that, choosisgfficiently small and: = n, (see
(3.35)), condition (d) is true fos (&, n) — e <s,t < ux(§,n) + ¢ and in fact for every
s,t € R, from the definition ofp in A; andA;. O

4. Thegraph-minimality
We start this section with a negative result: if the dom@ins too large, the Euler

conditions do not guarantee the graph-minimality introduced in Definition 1.3, as the
following counterexample (suggested by Gianni Dal Maso) shows.
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PROPOSITION 4.1. —Let R be the rectanglél, 1 + 4]) x (—I,1) and let

S if y>0,
M(x’y)‘_{—x if y<O.

Then,u satisfies the Euler conditions for the Mumford—Shah function&l,ibut it is not
a local graph-minimizer inR for [ large enough.

Proof. —The Euler conditions are obviously satisfied:bin R.

Let Ry be the rectangl€0, 4) x (—1, 0) and letw be any function inf*(Rg) such that
w(x,0) =x for x € (0, 2), andw(x, y) =0 for (x, y) € 3Ro \ ((0, 4) x{0}).

The idea is to perturb by the rescaled function(x, y) := lw(xl‘l, 2. We define the
perturbed function

X on R\ T¢,
u(x,y):=<¢ —x+nkx-1 onT,
—x +nv(x,y) o0nNRy,

where n is a positive parameter and the rectangles R, and the triangleT, are
indicated in Fig. 1. We want to show that, if we set= fRO |[Vw(x, y)|?dx dy, for every
[ > ¢ and for everyyg, ng > 0 there exist < go andn < ng such that

/|W<x, W2 drdy + HY(S,) > /|Vﬁ<x, )2 dx dy + H(Sh).
R R

By definition, # satisfies the boundary conditions. Since by the constructiantioé
function is continuous on the interface betweEnand R, then

2
HY(S,) — HASq) =2 — 2112+ 62 = —87 +0(e?). (4.1)
y
B 2
i L
x=1 X
21
l12
4

Fig. 1. The region®;, R2 andT,.
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On the triangleT,, we obtain

/|W<x,y)|2dxdy—/|Vﬁ<x,y)|2dxdy=218n—lsn2. (4.2)

T: T,

Finally, since we have thaWi|?> = 1 + 5?|Vv|? — 299, v in Ry, taking into account the
boundary conditions of, we get

/|Vu<x, W2dvdy - / Vi (x, y)[2dedy = —172/ IVo(x, )2 dedy
Ry Ry R>

:—lzn2/|Vw(x,y)|2dxdy. 4.3)
Ro

In order to conclude, by (4.1), (4.2), and (4.3), we have to show thdtlézge we can
chooses andy arbitrarily close to 0 such that

2
—87 — cl?n? + 2len — len? 4+ 0(e?) > 0.
If we choosen = ¢/(cl), then the equality above reduces to

g2 g2

—T+?+0(82) >O,

whichistrueifl >c. O
4.1. Proof of Theorem 1.5

From the definition ot/ and N (see (3.39) and Claim 3 in the proof of Theorem 1.2)
it follows that there is an absolute constant 0 (independent of2g, 2, I, andu) such
that

(14 PMHKAD)) > g’. (4.4)
The absolute constant which appears in (1.3), is defined by
4
c:= max{E, 6—2} (4.5)
T

Actually, to avoid problems of boundary regularity, we shall work not exactlg jn
but in a little bit larger set. Le®’ be aI"-admissible set such th& € Q' € Qq, and

min,’:172 KT N, Q;)
1+2CNQY+ 12T NRHKAT N

2
2
> Y 10 12 gy
=1

where; denote the connected component€f, I'. This is possible by (1.3) and by
the continuity properties ok .
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The idea of the proof is to construct first a calibratiom a cylinder with base an open
neighbourhood of" N 2/, and then to extend in a tubular neighbourhood of graph

Construction of the calibration around T’

We essentially recycle the construction of Theorem 1.2, but we need to slightly modify
the definition around the graph af, in order to exploit condition (1.3) and get the
extendibility.

To define the calibratiop(x, y, z) we use the same notation and the coordinate system
(&,n7) on U (open neighbourhood df N €') introduced in the proof of Theorem 1.2.
The vector field will be written as

P(x,y,2)= d(E(x, y),n(x, y),2), (4.6)

Y2(E(x, y), n(x,y))

where¢ can be represented by

(€, 1, 2) =5 (€, 1, 2)Te + " (E, 1, )Ty + $°(E, 1, 2e.

Given suitable parametees> 0 andA > 0, we consider the following subsets of
V xR

Ap:={(E.n.2) €V xR: us(€, n) — ev1(€, n) < 2 < us (€. n) + eva (€. )}
Az:={(&,n,2) €V xR us(§,n) +evi(§, n) <z <ui€, n)+ 2},
Az:={(En2)eV xR us(¢,n)+2 <z < pa, n},

Ay:={E n.2) eV xR: f1E,n) <z < P&, 1) + 1/1},

As:={(, n,2) €V xR: Ba(&,m) + 1/ <z <uz(&,n) — 2¢},

Ag:={(. 1,20 €V xR up(§,n) — 26 <z <uz&,n) —eva(§, M},

Ar:={E n.2) eV xR ua(&,n) —eva(€, n) <z <u2€,n) +eva(§, 0},
where the functions; are defined as

vi(§,n) =14+ Mn, v2(§,n):=1—Mn

with M positive parameter such that

2
c(1+P2TNQ)+ AT NQKATNR)) D 10 2arngy
j=1

<M < _minzK(FﬂQ/,Q;), 4.7)
J=4
while 8, and 8, are the solutions of the Cauchy problems (3.13). Since we suppose
uy > 0onV,if ¢ is small enough, while. is sufficiently large, then the seffs, ..., A7

are nonempty and disjoint, providédis sufficiently small.
The vectorp (&, 1, z) introduced in (4.6) will be written as

. n,2) = ($*"(€, 1, 2), $°(E. 1, 2)),
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whereg®" is the two-dimensional vector given by the pa#f, ¢"). We definep (£, 1, z)
as follows:

(2Vuy — 2"V vy, [Vug — ";;Zwlﬁ) in Ay,
(2V(uy +evy) —Z%Vﬁl» [V(uy +ev1) — %Vﬁﬂz) in A,
(0, w1(&, 1)) in Az,
(Ao, mMVw, n) in Ag,
(0, w2(&. 1)) in As,
(2V(up — evp) — 2" 2=V i, |V (up — £v2) — %vazﬁ) in Asg,
(2Vup — 272V, [Vup — ug—jvmz) in Az,

whereV denotes the gradient with respect to the varialtfes), the functionsy; are
defined by
U1(5,n) =2+ M'n, Uo(E,n) =26 — M'n

while

Vi (év ’7)
vi (€, 1)

fori =1, 2, and for every&, n) € V; we take the constant sufficiently large in order

to get the required inequality between the horizontal and the vertical components of th
field (see condition (b) of Section 2), aid’ so large thaty; is positive inV, provided

V is small enough. We define as the solution of the Cauchy problem

2
(. 1) = €2 (M M ) (B 6. ) = (s (€. )’

Aw =0,

£
4¢
w(,0) =— T oM — 6e2M O/n(s)(agul(s, 0) + 0z uo(s, O)) ds, (4.8)
pw(§, 0 =n(§),

wheren is a positive analytic function that must be chosen in a suitable way. We define

1
) i=———(1—eM' —6°M),
oEm n(q(é,n))( ’ e M)

where the functiory is constructed in the same way as in (3.12).

Let us prove that for a suitable choice of the involved parameters the vector field is &
calibration in a suitable neighbourhoadof I' N ', which is equivalent to prove that
satisfies (a), (b), (c), (d), and (e) in Section 2. The proof of conditions (a), (b), (c), and
(e) is the same of Theorem 1.2. The proof of (d) is split again in two steps.

Stepl. For a suitable choice ef and of the functiom (see (4.8)) there exists> 0
such that condition (d) holds fas — u1(&€,n)| < 8, |t —u2(&,n)| <8, and(E,n) e V,
providedV is small enough.
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We essentially repeat the proof given in Theorem 1.2: Claims 1, 2, 3, and 4 are still
valid with the same proof (up to the obvious changes due to the different definition of
¢). Claim 5 must be modified as follows.

CLAIM 5.—Forh = %fz(r‘) 2 18w 121 ney)» there exist € (0,d/8) ands >0
such that for every < (0, §)
I(&,n,u2(5,m).1) € B(r) + by(&. 0. 1),
I(&,n,s.us(E.m)) € B(r) + b1 (5. 1. 5),
providedV is small enough, for every — ux(&, n)| <38, |s —ui(&€, n)| <6.
Proof of the Claim. -UJsing the definition ofs in A7, the claim is equivalent to prove
(21 — u2)Beuz)” + (~M QL — M)~ + 1)t — up)*
+2r (=M1 — Mn) "+ h)(t —u2)? <0
note that fora,; € (0, 1) the left-handside is less than

2
2r
<4Z 1924 G2y + 27 — 1 M) 82 +0(8?),

i=1 ta
providedV is small enough. To obtain the claim, it is sufficient to prove that

2 & ) 1
;;naéuincl(rm,) < mM—h. (4.9)

Since by (4.7), (4.4), and (4.5) we can write

16+a, 64 S
M — ( - 2 4+ ;12(1“ nQ )) > 13etilIEa g
i=1

with a, > 0, the inequality (4.9) is equivalent to

2 1 64 16+a>, 1
- —1)=”rne ,
r<<1+a1 )712 ( )+ d 14+a

which is true ifa; is sufficiently small and is sufficiently close ta//8. The proof for
uy is completely analogous.O

To conclude the proof of the step, leind/ be as in Claim 5. If we choose< g and
8 < min{s, e}, by Claim 5 we have that

1(g,n,s,ur(E, ) + (&, n,u2E, m), t) € B(2r) +bi(E,n,5) +ba(E, n,t) (4.10)

for every|s —ui(&,n)| <6, |t —uz(&,n)| <8, and (&, n) € V; sinceh satisfies (3.44)
and 2r < d A, we can apply Claim 4 to deduce that the set

B(2r) + (p:(&, ) SiNA(n), pe (&, ) COSO(n)) + bE(E, 1, 8) + A(E, n, 1)
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is contained in the ball centred &, 0) with radius y (§, 7). Some easy geometric
considerations show that the relation betwégrand 6 (see (3.38)) implies that also
the set

B(2r) + (pe (&, ) SiNG.(n), p: (&, 1) COSB (1)) + bL (&, m,5) + ba(E, n, 1) (4.11)

is contained in the ball centred @, 0) with radiusy (¢, n), if the condition

|bi(E, n,5) + ba(E, n, )] <2r

holds (to make this true, takkeand V smaller if needed). Since

I(S! n,s, t) = I(‘i:’ n,s, Ml(‘i:’ 77)) + I(Sv n, ul(é? 77), MZ(‘E’ 77)) + I(Sv n, u2(‘§’ 77)9 t)’

by (3.47), it follows that/ (&, n, s, t) belongs to the set (4.11), and then to the ball
centred at(0, 0) with radiusy (¢, n) for every |s — ui(&,n)| < 8, |t — ux(&,n)| < 6,
and(&, n) € V. This concludes the proof of Step 1.

Step2. If ¢ is sufficiently small and < (0, ¢), condition (d) holds fots —u1(§, n)| > 8
or |t —uy(&, n)| =8, and(&, n) € V, providedV is small enough.

By using condition (4.7), arguing as in the proof of Claim 5, we can prove the
following claim.

CLAIM 6.—There exist < 1/4 ande > 0 such that

I(S, 0, uy(&,0), t) € B(r), I(S, 0,s,ui(§, 0)) € B(r)

forO<|s —ui(§,0)|<¢,0<|t —uz(§,0) <¢,and(,0 e V.

We can conclude the proof of Step 2 in the same way as in Theorem 1.2, with the
minor changes due to the different definition of the field.

By Step 1 and Step 2, we conclude that, choosingufficiently small and: in a
suitable way, condition (d) is true fary(&,n) — e < s,t <uz(€,n) + €. So,¢ is a
calibration.

Construction of the calibration around the graph of u

Now the matter is to extend the field in a tubular neighbourhood of the graph of
From now on, we reintroduce the Cartesian coordinates.

Let I'; be the curve; = (—1)'k, wherek > 0. If k is sufficiently small, fori = 1,2
the curvel’; connects two points 0§<2;, divides ©2; (and theng2) in two connected
components, and the normal vectgrto I'; which points towardd™ coincides with
(=D*IVy/|Vy|. SetU’ :=U N{(x,y) € Q" |nx,y)| <k} andU” := U’ N Q. Since
[Vnll=1onT, by (4.7) we can suppose that

N i QNT
Tk E%HV”]”L T < irglng(Fl, Q\U). (4.12)



430 M.G. MORA, M. MORINI/ Ann. |. H. Poincaré — AN 18 (2001) 403—-436

Chosers so small thatgraphu)s N ((U"N Q1) x R) € Ay and(graphu)s N (U7 NQy) x
R) C A7, we define the vector field

G(x,y,2) = (¢ (x,y,2), ¢°(x, y,2)) € R,
as follows:
p(x,y,2) in{(x,y,2): (x,y)eU”,
ug(x,y) —8 <z<uz(x,y) + 6}
(2Vu — 2'52V 0y, [Vu — 2V 01 %) in (graphu)s N (21\ U") x R,
(2Vu — 2"V 0y, |Vu — —V1)2|2) in (graphu); N (22 \ U”) x R.

The functiony; is the solution of the problem

min{
(4.13)

Let us show that the problem (4.13) admits a solutiofu/J# is a minimizing sequence,
then

. 1
veH (Q;\U/)’vb(ﬁl/\ﬁ)\r,:l}
Q\U’

sup / |Vv,|?dx dy —

-/
Q\U

1
1= Mk/lV;ﬂv dH"* < 4o0. (4.14)

We have only to show thdt,} is bounded inHl(Q;. \ U). If we putv, :=v, — 1, by
(1.2) for everyr € (0, 1) we have

/|an|2dxdy= / |VT,|?dx dy

QAU AV

= (f70e) [ [7(G )|

i Q\U’

dx dy

P (/(vn _1)2dH1>K(Fl’Q: \7)
r;

>(1-0)K(T, Q\T) /u,del
T

+K(F,~,Q§\7)<1— %)Hl(r,.), (4.15)

where we used Cauchy Inequality. By (4.12), we can chacs@ small that

QL-0)K(, QN\U) > 1= Mk IVallLem,,
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and substituting (4.15) in (4.14), we obtain

sup/ v2dH* < +oo.
n P

Using again (4.14) and Poincaré Inequality, we conclude {thatis actually bounded
in HY(Q\T).
The solution of (4.13) satisfies

Aﬁ,:O |nQ;\7,
a0; M

L= vn|0; r;, 4.16
oy = 1 mi Vo onTy (4.16)
v =1 ona(Q\U)\ Ty,

and so, in particular, belongs €5°(€2; \ U”). By a truncation argument, it is easy to see
thatv; > 1, sog is well defined.

Sinceg is a calibration in{(x, y,2): (x,y) € U”, ui(x,y) —8 <z < uz(x,y) + 68},
it remains to prove only that the field is globally divergence free in the sense of
distributions and that conditions (b), (c), (d) are verified in the regigraphu)s N ($2; \
U") x R. First of all, note that by Lemma 3.1 the figlds divergence free in the regions
(graphu)s N (2; \ U") x R, since it is constructed starting from the family of harmonic
functionsu(x, y) — t0;(x, y). To complete the proof, we need to check that the normal
components of the traces ¢f and of the extension field are equal on the surface of
separation, i.e.,

u-—z

A

Vi

(/)Xy V= <2Vu -2 Vﬁl> v on Fi, (417)
wherev; = (—1)"*1V5/|Vn]|. Using the definition ofy, we obtain that

u-—=z
1-— Mk

o vy = ((—1)i+18,7u - M) Vil:

sinceVu - v; = (—1)*19,u| Vn|, equality (4.17) is equivalent to

M
1- Mk

1_.,
IVn|=—Vu; -y,
Vi

which is true by (4.16).
Conditions (b) and (c) are obviously satisfied, while condition (d) is true if we dake
satisfying

Vo 7t
5<SUp{(4|Vu|+2| Av l) C(x,y) e \U", i:l,Z}.
U.

1

Therefore, with this choice df, the vector fieldp is a calibration. O
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4.2. Some propertiesof K(T', A)

In this subsection we investigate some qualitative properties of the quantityA)
and we shall compute it explicitly in a very particular case. Let us start by a very simple
result.

PROPOSITION 4.2. — Let T' be a simple analytic curve anfl an extension of’,
whose endpoints do not coincide with the endpoints.df 'y are the two connected
components of s \ I" (which are well defined i is sufficiently small, then

lim K (T,Ty) = +oo.

§—0t

Proof. —For convenience we set

WE(S) = {veHl(rgt): /vde1=1, v=00na(rgt)\r}.
r

Suppose by contradiction that there exists a sequé)gedecreasing to 0 such that
sup, K (T, F(g’;) = ¢ < 400, this implies the existence of a sequereg} such that

v, € WH(8,) and /|wn(x,y)|2dxdy<c

T
Ty,

for every integem. From now on, we regard, as a function belonging thl(Fgg)
which vanishes of’y, \ T'5. By Poincaré Inequality it follows immediately that,} is
bounded inHl(F;;), and so admits a weakly convergent subsequé¢ngé. Let us call
v the limit of the subsequence; since for every,, vanishes or]“;; \ r;k , thenv must

vanish a.e.; on the other hand, sinﬁ;evfk dH! = 1, by the compactness of the trace
operator, we have thgt v2dH! = 1, and this is clearly impossible.0

We remark that by Theorem 1.5 and Proposition 4.2/4fis a neighbourhood of
I' andu € SBMUp) satisfies the Euler conditions iy with S, = T", then there exists
a neighbourhood’ of T contained inUp such thatu is a local graph-minimizer in
U. Actually, taking U smaller if needed, by Theorem 1.2 we get also the Dirichlet
minimality.

PrRoOPOSITION 4.3 (Characterization oK (I", A)). — Let A be an open set with
Lipschitz boundary and™ be a subset 06 A with nonempty relative interior idA.
The constank (T, A) is the first eigenvalue of the problem

du/ov=Aiu onT, (4.18)

Au=0 ONnA,
u=20 OonoA\T.

Moreover, it is the unique eigenvalue with a positive eigenfunction.
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Proof. —If u is a solution of (1.2), then it is harmonic and there exists a Lagrange
multiplier A such that

2/Vu-V<pdxdy=k/u<del Vo e C*(A): ¢ =00ndA\T, (4.19)
A r

which means, by Green Formula, that/dv = Au on T'. Using (4.19), one can easily
see thatk (T, A) is in fact the minimal eigenvalue of (4.18) and that it has a positive
eigenfunction (indeed, if is a solution alsdu| is). Letu be a positive function belonging

to the eigenspace & (I', A) andv another positive eigenfunction associated with the
eigenvalueu; by Green Formula we have

0 0
v—MdHl — /u—UdHl =0,
v J ov

r
therefore

(K(T, A) — ) /uvdHl =0.
r
Since both: andv are positive, from the last equality it follows that= K(I', A). O

PROPOSITION 4.4. —If A= (0,a)x(0,b) andT" = (0, a) x {0}, then

Proof. —The function

v(x,y) = Sin<5x> Sinh(z(b — y))
a a

is positive and satisfies (4.18) with= 7t /(atanh(wb/a)). Then, by Proposition 4.3, this
guantity coincides wittk (I', A). O

PROPOSITION 4.5. — Let g: [0, ag] — [0, +00) be a Lipschitz function and denote
the graph ofg by I'. Given0 < a; < ax < ag and b > 0, if we setl'(as, ap) =
graphg|,.«,) and

R(ay, az,b) ;= {(x,y): x € (a1,a2), y € (g(x),g(x) +b)},
then

lim K (T(a1,a2), R(ax, az,b)) = +oo uniformly with respect td.

laz—a1|—0

Proof. —The idea is to transform the regiaR(ay, ao, b) into the rectangl€0, a, —
a1) x (0, b) by a suitable diffeomorphism in order to use (4.20).
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Letyr: (0, a2 — ay) x (0, b) — R(ay, az, b) be the map defined by (x, y) = (x + az,
y+g(x +ay)). Letv € HY(R(a1, as, b)) be such that =0 on dR(a, ay, b) \ T'(ay, as)
and

az—ai

/ V2 dHt = / (Y (x, 0) /14 (g'(x)2cx = 1. (4.21)

[(a1,a2) 0

If we call 3(x,y) := v(¥(x,y)), thent € H*((0,a, — a1) x (0,b)), v = 0 on the
boundary of the rectangle exceffi, a, — a;) x {0}, and by (4.21) there exists > O
such that? < /1 + ||g’|I2, and

az—ai
A2 / 7%(x,0)dx = 1.
0

Therefore, sincd ¢ =1,

|Vu(x, y)|? dx dy
R(ay,az,b)
2

- / Vo(v (x, ) [Pdx dy

(0,a2—aq) x(0,b)

’ / -1 -
> (14 gl + 1€'12) / Vi, y)[2dx dy
(0,a2—ay) x(0,b)

_ ’ ’ -1

>A 21+ 118l + 11g'M12,) K ((0, a2 — a1) x {0}, (0, az — az) x (0, b))

_ T
> (14 1g12) >

2(az — ap) tanh(=Z2-)’

az—ai

where the last inequality follows by the estimateioand by (4.20). Since is arbitrary,
using the fact that & tanhr < 1 for everyr > 0, we obtain that

—3/2 T

K(F(alva2)9R(alaa27b)) 2 (1+I|g/”00) m»

so, the conclusion is clear..o

We have already remarked (see Proposition 4.2) that the graph-minimality is
guaranteed in small neighbourhoods of the discontinuityIseAs consequence of
Proposition 4.5, we obtain that the graph-minimality holds also in the open sets, which
are narrow along the direction parallel fband may be very large along the normal
direction. This is made precise by the following corollary.

COROLLARY 4.6.— Let g be a positive function, analytic ofD, ag], that is g
admits an analytic extension, and denote the graplg dy I'. For every M > 0O
there existsh = h(M,T") such that, ifQ2 is I'-admissible(see Definition1.4) and
Q C (ay,a1 + h) x R with a; € [0, a9 — k], and if u is a function in SBVQ) with
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h

Fig. 2. If the thickness of2 is less thark, thenu is a local graph-minimizer ig2.

S, = I' N Q, with different traces at every point BfN €2, satisfying the Euler conditions
in 2, and Ziz:l 10-uillcrrne) < M (Whereu; is as above the restriction of to the
connected componefit; of @ \ I'), thenu is a local graph-minimizer irf2 (see Fig.2).

Proof. —By Proposition 4.5 there exists> 0 such that for every, a, € [0, ag] with
0<ay —a; < hand for everyp > 0,

K (I’ (a1, a2), R(ay, az, b))
1+ 12(T) +12(T)k2(T)

> cM?.

If @ C (a1,a1+ h) x R, then we can choosk > 0 so large that, assuming th@t is
the upper componenf2; C R(az, a1 + h, b). Then by the monotonicity properties of
K (T, A), it follows that

KT NQ, Q)
15 12(0) 1 2Dk

2
2 E 2
cM 2 c ”arui ”Cl(er)-
i=1

Applying the same argument @,, the conclusion follows from Theorem 1.50
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