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ABSTRACT. — In this paper we study critical points problems for some integral functionals
with principal part having degenerate coerciveness, whose model is

J()—— Vol _ K/WI ve HAQ)
w@erFa 0

with 1 <m < 2*(1 — «). We will prove several existence and nonexistence results depending on
different assumptions on boih andc.
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RESUME. — Dans cet article nous étudions les points critiques de certaines fonctionnelles
intégrales dont la coercitivité de la partie pricipale est dégénérée dont le modele est

|Vv|2

“”ZEQ(Mw+hmh

w
—Z/ww v e HF(R),
Q

avec 1< m < 2*(1 — ). Nous prouvons plusieurs résultats d’existence et de non existence
suivant les hypotheses suret «.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

For a bounded domai? ¢ R" (N > 2), minimization problems in the Sobolev space
H$(Q) for integral functionals whose principal part dependscon andVv as

l/ (x, V)| Vo2
5 a(x,v)|Vvls,
Q

with a(x,s) > oo > 0, (x € 2, s € R), are now classic.

E-mail addressesboccardo@mat.uniroma.it (L. Boccardo), orsina@mat.uniromal.it (L. Orsina).
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Conversely, the study of critical points is quite more recent (see [2,3,6]). In this
framework, the main difficulties are that the functional is not differentiable on the whole
HE(Q), but only in H}(Q) N L>=(R), even ifa(x, s) is smooth, and that the associated
differential operator, that is

10a
; < Vol?
le(a(x,v)Vv)—l—zas(X,Uﬂ vl%,

involves a lower order term with quadratic growth in the gradient, which may not be in
the dual spacél ().

Recently (see [5]), minimization results for integral functionals whose principal part
is

1/( )|Vof?
5 a(x,v)|Vvl|,
Q

under the weak assumptian(x,s) > 0 (that is, of degenerate coerciveness), were
proved. Specifically, the authors considered functionals like

1 |Vv|2 /h c Hl(Q)
- — — v, Vv s
2. (b(x) + |v])> °
Q Q
wherea € (0,1/2), 0 < 1 < b(x) < B andh € HX(Q).
In this paper we shall study critical points problems for some integral functionals with
principal part having degenerate coerciveness, whose model is

1 [Vvl|?

T=3) BT =

1 m 1
——/|v| . ve HAQ),
mQ

with 1 <m < 2*(1 — «). The derivative of/ is given by

, VuVv |Vu|2uv _2
(J'(w),v) = e — e —/Iul’" uv,
J (b(x) + [ul)™ J (b(x) + lu )2 ul J

for everyv € H} () N L>(Q).

This explains our concept afitical point of J, that is a function: € Hg () N L>°(R)
satisfying (J'(u), v) = 0 for everyv € Hol(Q) N L*(). In this way, we can see the
critical points ofJ as solutions of the boundary value problem

. Vu |Vu|? u 2
—div = —« ) — =|u|""u, xe€,
(b(x) + [u)= (O(x) + [u])*+2 |ul

u € Hy(2) N L¥(Q).
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€2 ___ s s not continuous fos = 0, the term

Remark that, even if the functi O i)

|Vul? u
(b(x) + |u) 2 Jul

appearing in the Euler equation &fis well defined and measurable since where 0
we haveVu = 0 almost everywhere (Stampacchia Theorem).

Let us state the precise assumptions on the functidribat we will study below. Let
Q be a bounded, open subsef®f, N > 2.

Leta:Q x R — R be a Carathéodory function (that is, measurable with respect to
in  for everys in R, and continuous with respect toin R for almost everyx in €2)
such that

1
(14 s>
for almost every in 2, for everys in R, wherec; andc, are positive constants, and

<a(x,s) <cy, (1.1)

N
2N -2

O<a<

(1.2)

(note that € (2, 1) for every N > 2). We also assume that the functior> a(x, 5)

is differentiable onR for almost everyx in 2, and its derivativer, (x, s) = g—?(x, s) is
such that
—2Ba(x,s) <as(x,s) (L+[s])sgn(s) <O, (1.3)

for almost every in , for every|s| > so, Whereg is a positive constant such that
O0<B<ac, (1.4)

andsg > 0.
As examples of functions satisfying assumptions (1.1) and (1.3) we can consider
either

1
A= G+ lsha
with 0 < B; < b(x) < B, OF
1
Let F: Q2 x R — R be a Carathéodory function satisfying the following assumption:

a(x,s) =

K,
|F(x,s)] <?|S|"’+K2, (1.5)

for almost everyx in 2, for everys in R, whereK;, K, are positive constants, and
defining 2 =2N /(N — 2), the Sobolev embedding exponent,

l<m<?2. (1.6)
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In some of our results we need a stronger conditionfothan (1.5); namely, we
assume that the derivative(x, s) = %(x, s) satisfies

|f (x, ) < Kqls|™ ™ + Ko, (1.7)

for almost every in © and for everys in R, whereK, K, are positive constants.
We define, fow in Hol(Q), the functional

J(v):%/a(x,v)lelz—/F(x,v).
Q

Q

Observe that by assumption (1.1)—(1.2) and (1.5)—(L6) well defined onH ().
Furthermore, by the assumptions@and F, J is also differentiable along directions in
HE(Q) N L>°(R), and its derivative is given by

(J'(v),w)= [ a(x,v)Vv-Vw+ [ a;(x,v)|Vv]?w — [ f(x,v)w, (1.8)
/ / /

Q

for everyv in H$(Q2) and for everyw in H}(Q) N L>(RQ).
The behaviour of the functional may be different depending on the assumptions
made onm. If m is “small enough”, ther/ has a global minimum o/ (2).

THEOREM 1.1.— Let us assumgl.1l)—(1.2)and (1.5) with 1 < m < 2(1 — ).
Suppose furthermore that

lim £ 5)

S =+o00, uniformly with respect ta in 2, (2.9)
s— Ky

ThenJ has a global nontrivial minimum in H3(2) N L>(L).

Onthe other hand, it > 2(1— «) the functional is indefinite and global minimization
is no longer possible. In the particular case & < 2*(1 — «), and under some further
assumptions orF we will apply the version of the Mountain Pass Theorem [1] given
in [2] for nondifferentiable functionals, to show the existence of a nontrivial critical
point in HF(Q2) N L™ ().

THEOREM 1.2. — Let us assumél.1)—(1.4)and (1.7) with 2 < m < 2*(1 — ).
Suppose furthermore thdt satisfies

F
Iirr}) (x2, $) =0, uniformly with respect ta in €, (2.10)
s> Ky
F(x, . . .
lim x, ) = +o00, uniformly with respect ta in €2, (.11

§——+00 Ky

and that there exist > 2 andsg > 0 such that

f(x.8)s >rF(x,s), (1.12)
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for almost every in 2, for every|s| > so. ThenJ has at least a nontrivial critical point
u belonging toHZ () N L>(RQ).

In order to prove Theorem 1.2, one of the main difficulties is to check that a suitable
compactness condition of Palais-Smale type holds. Here the keystone in our approac
will be the proof of the boundedness of the cluster points of the Palais-Smale sequence
(see Remark 3.2). An additional difficulty also arises: the degenerate coerciveness i
H$(Q) of the principal part of the differential operator, which will lead us to extend the
functional to a larger space, namé&jé’q(sz) for someg < 2.

The case &l — o) <m <min{2, 2*(1 — «)} is also studied. In this case, however, we
need to study the problem where the nonlinear tévm, s) is exchanged withh F (x, s)

(with A > 0): also in this setting we prove the existence of a nontrivial local minimizer
in HY(Q) N L=(RQ).

THEOREM 1.3.— Let2(1 — o) < m < min{2*(1 — «), 2}, and leta and f satisfy
assumption$l.1)—(1.2) (1.7)and(1.9). Then there exists, > 0 such that the functional

J,\(v)=%/a(x,v)|Vv|2—)»/F(x,v), ve Hy(Q),
Q Q

has at least one nontrivial critical point B/ () N L>°(2) for everyi € (0, Ao).

Finally, by means of a change of variable in a model case, and using a result of [4].
we will prove that it is possible to find a bounded solution of the Euler equatior,for
also in the case*21 — o) < m < 2%, this time withA large. We will also deal with the
casem > 2* showing that, always in the model case, and in a starshaped domain, ther
are no positive solutions of the Euler equation forin order to do that, we will apply
the now standard technique to show that the solutions of this equation satisfy a PohoZas
type inequality.

The plan of the paper is as follows: in the following Section we will prove
Theorem 1.1, while Section 3 will be devoted to the proof of the main result of this
paper, Theorem 1.2. Section 4 will study the problemgrwhile the final Section 5
will contain some remarks about a possible different approach to the stutlyasfwell
as nonexistence of solutions for the Euler equatiot .of

Notation. In the following we will use several times the following functions of a
real variable, depending on a paramdter O:

Ty (s) = max(—k, min(k, s)), Gi(s) =5 — Ti(s).

Furthermore, we will denote witlr, or C1, Co, ..., various constant which may depend
on the data of the problem, whose value may vary from line to line.dfdl< N, we
will denote byg* the real numbeWwg /(N — ¢q), the Sobolev embedding exponent for
the spacéV, ?(Q).
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2. Existence of a global minimum

We begin with a technical result, which we will use several times in the following.
LEMMA 2.1.—Ifx e (0, N/(2N — 2)) and

2N(1— )
=" " 2.1
N — 2« (1)
then for every measurable satc 2, and for everyv € Hol(Q) andu € Wol’q(Q), we
have
|VU|2 >11/2</ >1—q/2
Vol? < 1+ ul)? . 2.2
[19v] ( e L+ Jul) (2.2)
A
Proof. —If v e Hol(Q) andu € Wo’q(Q), we have from the Hoélder inequality that
/ [Vvl|4 . |Vv|2 q/2 L 1-q/2
+u)"‘<< ) (/ +u)2q) ,
VOP= ) Euy A+ fup (Ll

for every measurable set ¢ ©2. We conclude the proof by observing that, by (2.1),
q*=20q/(2—q). O
Remark?2.2. — Observe that € (1, 2) if and only if N > 2.

Proof of Theorem 1.1 Letqg be as in the previous lemma. Reasoning as in [5], let us
define the following functional omvg’qm):

J(U)_{l/a(x v)|Vu|? —/F(x v), if /a(x v)|Vv|? < 400,
+00, otherwise.

We are going to prove thal is both coercive and weakly lower semicontinous on
W&’Q(Q) so that the existence of a minimum will follows from standard results. The
weak lower semicontinuity is a consequence of a Theorem by De Giorgi (see [7]), and th
complete proof of this fact can be found in [5]. As far as the coerciveness is concerned, i
is enough to considerin Wol’q(Q) such that/ (v) is finite. Reasoning as in Lemma 2.1
we obtain, also using Sobolev embedding,

|Vv|2 q/2 q*/q\ 1-q/2
froor<al [aom) (@ ([mer) )
Q

which implies that ifR = ||v||W1,,,(Q), we have from (1.1)
0

q/2 g2
Rq<C2</a(x,v)|Vv|2> (1+RT)V", (2.3)
Q
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On the other hand, singe < 2(1 — @) < 2*(1 — o) = ¢*, one has

. m/q* m/q
/|v|’"<c3(/|v|q) <c4(/|w|q) ,
Q Q Q

that is

/Ivl’” < C4R™.
Q

Thus, by (1.5) and (2.3) we obtain

RZ

J(v) 2 Cs—————
1+ RT)i™t

— CgR" — C7.
Using the definition of, it is easy to check that

2
2—q*(——l> =2(1—a)>m,
q

so that

lim J(v) =400,
R—+o00

that is,J is coercive onivy ().

Let now« be a minimum of/ on W&’Q(Q). Let ¢, be the first eigenfunction of the
Laplacian in$2, which we suppose to have chosen with norm equal to onglif2).
Then, sincep; belongs toH (),

2
(o)) = J (tp1) = %/a(x,wmwnz—/F(x,rm).
Q Q

Using assumption (1.9), it is easy to see that there exist® such that/ (t¢1) < 0, and
sou # 0.

Furthermore, reasoning as in [5], it can be proved th&elongs toL*°(£2). This
implies (by (1.1)) thatx also belongs toHZ (), thus concluding the proof of the
theorem. O

Remark2.3. — We remark explicitly that inequality (2.3) holds under assumptions
(1.1)~(1.2), for every € Wy (22) such thatf,, a(x, v)| Vv|2 < +oc.
3. Mountain Passtype critical points

Ouir first result is the proof that sequences of Palais-Smale typé éoe convergent
to critical points.
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LEMMA 3.1.— Let us assumél.1)—(1.4) (1.7) with 2 < m < 2*(1 — «), (1.12)
and letg as in Lemm&2.1. Then the functional satisfies the following compactness
condition:

(C) Every sequencfu,} C HF(Q2) N L>°(R) satisfying

nﬂrroo J(u,) =c, (3.1)
and, for some sequenge,} C (0, co) converging to zero,

”U”H(:)L(Q) + [vllL=@)

(I ), v)| < &g , Yoe Hy(Q)NL™(Q), (3.2

lnll gy + llunll Lo

possesses a subsequence which is weakly convergmjtqim) to some critical
pointu € Hy(2) N L>®(2) of J with levelJ (u) = c.

Proof. —The proof is divided into 5 steps:

— Step 1: The sequenée, } is bounded im)Vol’q(Q).

— Step 2: Up to a subsequendg,,} weakly converges irW(Jl’q(Q) to someu €
L>*(Q2).

— Step 3: The functiom € H}(Q).

— Step 4: For fixedt > ||u| 1~ ), the following convergences hold:

/a(x, )|V G2 = 0, (3.3)
Q
/ ay (e, un)| VG2 — 0, Vv e HA(Q) N L¥(Q), (3.4)
Q
| Ty (uy) — M”HOl(Q) — 0, (35)

asn tends to infinity.
— Step 5: Conclusion is a critical point ofJ.

Remark3.2. — The main difference of our proof with respect to the standard proof

of compactness conditions in theorems of Mountain Pass type is Step 2. Indeed, in th
standard cases, the compactness condition is proved without the need of proving th

the limit points (the critical points) are ih*°(£2); their boundedness (as well as other

regularity properties) is in general recovered from the equation they satisfy by standar
bootstrap arguments. Conversely, in our case it is crucial to prove that the limit point is

bounded in order to prove the compactness condition. Note also that the proof of Step
holds (in a much simpler way!) in the cage= 0 (i.e., in the “classical” case).

Proof of Step 1. — Taking = u,, in (3.2), we get

&n = [(J'(un), un)|

1
:‘/a(x,un)|wn|2+§/as<x,un>un|wn|2—/f(x,un)un
Q Q Q
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1
- ‘21<un) +3 / g (X, 1y it | Vit | + / [2F (x. tty) — £ Oxtt)ity] |-
Q Q
Using (3.1), we thus have

lim [ [f(x, un)u, — 2F (x, u,)u,| — % /as(x, Uiy |V |? = 2c. (3.6)
Q

n—+00
Q

Sincea,(x, s)s < 0 for |s| > sg by (1.3), and since, by assumption (1.12) one has
f O up)uy — 2F (x,u,) 2 (r —2)F(x, u,) — Cy,

we obtain from (3.6) thatF (x, u,)} is bounded in.%(2) and thus, by (3.1), that there
exists a positive constaut, such that

/a(x,un)|Vun|2§C2, Vn e N. (3.7)
Q

Now, by Lemma 2.1 (withv = u = u,,, A = Q) and the Sobolev embedding,dfis as
in (2.1),

*

1-3 L 1-%)

% 2
/|Vun|‘f<cz(/<1+|un|>‘f) <cs+c4(/|wn|q>q
Q Q Q

Observing tha%*(l — %) € (0,1), we obtain thafu, } is bounded inW(jl"’(Q).

Proof of Step 2. — SinckG (i, (x))| < |u,(x)| andV Gy (u,, (x)) = Vu, (x) for almost
everyx in A} = {|u,| > k}, we deduce by taking = G, (u,) as test function in (3.2)
that

2 l 2
/ a(x, ) IV G ltn) 2+ / s (X, 1) G (1) |V G ()|
i i
< [ fO,un)Gir(uy) + &,

/

k

Observe now that, fot > so, and by (1.3), the derivative, (x, s) is negative ifs > k and
positive if s < —k. Hence, again by (1.3)

(3.8)

as(x, 5)Gi(s) = as(x, s)(s —k) = a,(x,s)(s + 1) = —2Ba(x,s), Vs=k,
and

as(x, $)Gi(s) = as(x, 5)(s + k) = as(x,5)(s — 1) > —2Ba(x,s), Vs=k.
Thus,

%as(xv “n)Gk(Mn) = —IBG(X, ”n)-
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We obtain from (3.8) that

(l_ﬂ)/a(xaun)|VGk(un)|2</f(x’un)Gk(Mn)+8. (3.9)
Q

A%

Thus, using (1.1) and (1.7), and the fact tha@it (u,,)| < |u,l,

VGy(uy,
c1(1— ﬂ)/ll:'(” ))la C5/|un|’”+an.
Ay

By Lemma 2.1 (withv = G4 (u,,), u = u, andA = A}) and sincek > 1,

% ANz
[ Vi < Cs(/ " +an) (/ 0 )
Q A Al

Now, Step 1 and the Hdélder inequality (observe that g*) imply that

1—
[ VG <cs(sn+ (/wm*) | An* _*) (/wm )
Q AZ
2q* l——(l— ) q m
<C783/2+—</|Mnlq) IAZIZ(1 ),
11—«
Ay

Taking into account that

/|un|q*=/|un—k+k|q* /|Gk<un)|q + Cek"| A7

Ay Ay Ay

4
2

*

<cg(/|vck(un)|‘f*) " Cek| AL,

A

we get

*

T-50-25)] o
/ VG (u)|? <& + clo< / |VGk(un)|q) A
Q AR

+ ok R Ay,

Denotingd = 1 — (1 — %) we have thab < (0, 1), sincem < ¢* = 2*(1 — @) and
N > 2. In addition, using 2 — «) < 2 < m we also get

*

Qq—>1,

q

and thus
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*

/WGk(un)rf <clo(/|vck<un>|‘f) (/|VGk<un>|q>|Az| i
Q Al Al

k k
+ &) + Ciok™7|AL|.
Since{u,} is bounded inW&’q(Q) there exist%q € N such that
8q" _q

ClO(/|VGk(“n)|q> ,, AL <12 Yk >k

Ay

Therefore, fork > kg,

[ IVG I < e+ ok ).

DenoteK = {k > 0/|{u = k}| = 0}. Then, observe that lettingtend to infinity, for every
k € K, |A}| converges tgA,| with A, = {|u| > k}. Hence, since the norm W&’Q(Q) is
weakly lower semicontinuous,

/ IVGLa)|” < CLik® | Al, Yk € K.

Noting also that

. 1 " 1 « _C
k? g_/kq <—/|“|q <£’ VkEKv
| Akl | Akl | A
Ak A

we obtain

1-6+-4
/|VGk<u>|q < Crgk?| AT ke K.

Since|R \ K| =0, applying Lemma 5.2 of [9], we deduce that L>*(R).
From now on we will restrict ourselves to the ca&se ||u|| = (q).
Proof of Step 3. — Remark that, by (1.1) and (3.7),

VT ()P

2 20 ]
/|VTk(Mn)| S@A+4) L+ |u, )

Q {lun <k}
2 |2 2
<1+k)°‘/7(1 e Seb,

which means tha{7,(u,)} is bounded inHO(Q). By this, it possesses a subsequence,
still denoted by{T,(u,)}, converging toT; (u) € Hol(Q) (asn goes to infinity). Since
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k > ||ull =), We have that
Ti(u) =u € H}(Q). (3.10)

Proof of Step 4. — Using (1.7), we observe that, by the Rellich Theorem (recall that
k> llullLe @),

Jim a6k @) = [l 6wl =0.
Q Q

Thus, formula (3.3) is deduced from (3.9).
With respect to the proof of (3.4), note that by (1.3)

as(xaun)v:as(xv“n)(l-i' |Mn|)sgn(”n)1 | |Sgn(“n)
0]
> —2Ba(x, Mn)l+| o
and so
vl ,
/a (%, )0V G (112 Zﬂ/a(x un>1+| VG ()
Q n

1]l ,
<oprl / a (. 1)V Gy (1) 2,

Jun|>
which, by (3.3), implies (3.4).
On the other hand, to prou&.5) we consider the functiop(s) = se® with A > 0
chosen in such a way that

=

@'(s) — 4Bl (s)| = > Vs e R. (3.11)
Definev}; = (Ty(u,) — u). Note that
le @) = / |V (T () — ) [* [ (TicCu) — u))?
Q

< L' @) [lunll g ) + lanllFe ).
and

o) lle@) < @(2k).
Then, puttingy = ¢(v}) as test function in (3.2), we get

/a(x, un) Vi, - Vo' (T (uy) — u)
Q

1
+3 / a1y (6. )V | Vit 2o () < €, + / £ o), (3.12)
Q Q
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with ¢, tending to zero. Now observe that, by Rellich Theorem, and sin@g)
converges t@(0) =0,

im_ [ f e upa =0 (3.1
Q
Using also thaVu,, = VT (u,) + VG (u,), we have

/a(x, uy) Vi, - Vi o' (T (u,) — u)
Q

- / a(x, 1) VTi(ty) - Voo (T () — u)
Q

- / a(x, un)V Gy (ttn) - V0! (T () — )

Q
= [ atou) V(T — 1) Y (Tewn) = ) (Tewn) — u)
{lun|<k}
+ / a(x,u,)Vu - Vol @' (T (u,) — u)
{lun <k}
- /a(x, un) VG (uy) - Vug' (Ti(u,) — u).
Q

In virtue of (1.1),a(x, u,,) is bounded inL*°(2) and thus:(x, u,,) Vu strongly converges
toa(x, u)Vu in L?(22, RY), which together to the weak convergencd Bif(is,,) }nen t0 u
in Hg($2) and theL>(2) weaks and almost everywhere convergenceaffy (u,,) — u,)
to ¢’'(0) =1, yields

lim / a(x,u,)Vu - (VT (uy) — u)@' (Ti(uy) —u) =0.

n——+00
{lunl <k}

Moreover, since

‘ / a(x, un)V Gy (ttn) - Vg (T (ttn) — 1)
Q

12 12
<c<o/<2k>( a(x,un>|VGk<un>|2) ( |w|2) ,
/ /

(3.3) and (3.10) imply that

lim [ a(x,u,)VG(uy,) - Vug' (T (u,) —u) =0.

n—+00

Q

Hence
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lim [/a(x, un)Vity - Vi @' (Ti(uy) — u)

n—400

- / a(x, un) |V (Te(uy) — u) 29 (T, — u))} =0. (3.14)
Recalling (1.3) al::ncllgt;king into account thaty) = ¢(0) =0 if |u,| <k, one has
as (X, ) (V) = as (x, un) (L4 |un|) SGN(u,) % sgn(u,)
> ~2Bate, )|

Thus,

/ s (5, ) (V)| Vit |2
Q

< 2ﬂ/a<x,un>|wn|2\<p<vz)\
Q

=28 / a(x, u,) |V Ti(u) Plop)| + Zﬂ/a(x, ) IVG () P (v})|
Q

{lun|<k}

<4p / a(x,un)\V(Tk(un)—M)\2|</)(U';Z)|+4ﬂ02 / Vul?lop)]
{en] <) (e <k

+281p(@0)| [ at.u,)|VGeun)I?
Q
so that from (3.3), (3.10), and the fact that}) tends to zero we get

im [ a;Ce, wn) Vi 2o — 48 / a(r, 1) | Vit 2|0 = 0.

n——+00
Q {lun| <K}

Therefore the above estimate and (3.13) and (3.14) allows to conclude from (3.12) that

n——+00
{lun| <k}

lim / ae., )|V (Ti(n) — u) [0/ W) — 48| 0o} =0,

which implies by (3.11) and (1.1) that

N2
/ V(L) — 0P _

lim
(L4 fu, )%

n—-+00

’

{lun|<k}
that is
lim / IV (Ti(u) — ) =0,

n—-+00
{lun |<k}
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Using the fact that: belongs toH1(£2), we thus have

T~ ulfyge = i [ V(@) —w)*+ im [ vaP=o0,

n——+00
{lun| <k} {lunl>k}

lim |
n—+400

which proves (3.5).
Proof of Step 5. — The functiomis a critical point ofJ with level J (u) = c.
In fact, by using thaVu,, = VT, (u,) + VG, (u,,), we have that

/a(x,un)vn(un)-w —/as<x,un>v|VTk<un)|2—/f(x,un)v
Q

Q Q

= (J(up), v) — /a(x,unWGk(un) Vv /asoc,un)vNGk(un)F,
Q Q
for everyv € H}(2) N L>(RQ). By (3.2), (3.4) and (3.3) we then obtain that

{/a(x,un)VTk(un)-Vv —/as(x,un)UIVTk(un)lz—/f(x,un)v} — 0.
Q Q Q

Since by (3.5) the limit can be explicitely computed, we deduce

/a(x,u)Vu-Vv—/as(x,u)v|Vu|2—/f(x,u)v:O,
Q

Q Q

for every v € H () N L>(L2). Moreover, a similar argument as that used in Step 4
and (3.1) imply that

J(u) = nﬂrroo J(u,) =c. O
Proof of Theorem 1.2- We apply the version of the Mountain Pass Theorem [1] given
in [2] (see also [3]). In order to do this, letbe in H3(£2), and setR = ”M”W(:)L"’(Q) where

g isasinLemma 2.1. Then by (2.3) (see Remark 2.3) we have

C1R?

2 _—
Jatwivul>

Q

On the other hand, using the growth condition (1.5) and (1.10), we observe that for even
e > 0 there existX, > 0 such thatF (x, s) < es? + K,s™ for everys in R. Therefore,
we have

C]_Rz &
A+ RO i
from which, by choosing sufficiently small and using that > 2 andg* =2*(1—«) >
2, itis easily deduced the existencemt (0, 1) andé > 0 such that

J(u) > R? — CoR™,

Jw) =26 >0=J(0),

for everyu in Hy(€2) such that1|u||W§.q(Q) =R.
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In addition, from (1.1) and (1.11) it follows
F(x,t
Jagn <2 [1ve - [ 25722 <o
Q Q

provided that > O is large enough. Hence we can chogse R/||¢1ll,, such that

)
J(top1) <O.
Consider now the set
I'={y eC%I0,1], Hy(Q) N L>(R)): y(0) =0, y (1) = tog1 }.

Then, by the embedding &f}(Q) into W(}’q(sz) and standard connectedness arguments,
we get

c= }',er [rerggiu(y(t)) >8> 0=min{J(0), J (fop1) } .

Take now a sequendeg,} of paths inI" such that

1
< < — .
c trrggli(J(yn(t)) c+ o VneN

For fixedn € N, consider

M, = maX[II)/n(t)IIm(Q) F 17O llie@] = 10(14 lpillie@).

and observe thdat| - |||, = (]| - ||H(}(Q) + 11 - o))/ M, is @ norm inHF(Q) N L>®(R)
which is equivalent tdj - g+ 1 lz>@)- Then, applying [2, Theorem 2.1], we deduce
the existence of a pa@i, € I' and a functiory, =¥, (t,) € ¥, ([0, 1]) satisfying

< maxJ (7, (1) < max J () !
¢ < max 7,(0) < (vu(0)) <c+

2n
ma. — 1
teOi(]myn(t) y’l()w n’

1<J( ) < —|—1
T X n) XC P!
¢ n " 2n

[(J (un), v)] < \/glllvllln, Vv € Hy(Q) N L™(R),
and forn € N large enough,
lnll gy + lunllLoe) = 17, @) g1y + 17, (t) | 2@
SV t) = Vo)l gy + 17, () = va(ta) | L@

17 @l gy + 1V @) L)
<2M,,.
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Therefore,

2 vl + IvlliLe@)
T (1), v)] < \ﬁ Bo® . Vue H{(Q)NLX(Q),
1 ltll ey + a2

From Lemma 3.1 it then follows the existence of a critical pairt Hg ($2) N L>°(RQ) of
J with critical levelc > 0. Clearly,u £ 0 and the proof is finished. O
4. Existence by local minimization

In the sequel we will prove Theorem 1.3, that is, the existence of critical point for the
functional J, defined inH}(Q2) by setting

Jw)= [ aCe,w)|Vul?> =1 | F(x,u)
/ /

for everyu € H}(R), with » small enough.

Proof of Theorem 1.3-1If ¢ is as in Lemma 2.1, we consider, as in the proof of
Theorem 1.1, the extensiof) of J, to Wy (2) defined by

. /a(x,u)qulz—k/F(x,u), if /a(x,u)qu|2<+oo,
L) =144 Q Q

400, otherwise.

Recall that for: € Wy () satisfying

/a(x, u)qul2 < 400,
Q

we have from (2.3) that there exiBt, 6o > 0 such that

Callul2,
wyd(Q
[ atwivui= >,
J A+ 1l o)

provided thatul| 1 o =R
0

On the other hand, since (1.7), condition (1.5) is fulfilled with< ¢* and we also
have that

< " < m
[Fen <& [+ Ko [1ul < Calluls, g
Q Q Q
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Consequently, if. € (0, 8o/(CoR?)), we deduce for suchawith norm ||u||W1,,,(Q) =R,
0
that
Callull? .,
~ Wi (R
o0 > Jy(u) > =3 Callul g ) > b0, (4.)
)i 0

q*
Lt Nl g

In addition, as in the proof of Theorem 1.2, using now (1.9) and sjideelongs to
Hy(R),
T.(tg1) = Jy(t91) <O,

for r > 0 small enough. Hence, taking into account thais weakly lower semicontinu-
ous onW, ?(Q) (see again [5]) we deduce the existenca®& B(0, R; Wy (Q)) such
that

Juo)=min J(u) < Ji(tgr) < 0= J;(0) = J,(0).
el 1 g =R
0
Thusu £ 0 and by (4.1) we also get thﬁmuwol,q(m <R.
We claim thatg € H3(Q)NL>®(RQ). Indeed, foik > 0, we have that 7 (uo) || W (@) <
||M0||W(:)L,q(9) < R and so, by (1.1),

1 VT (uo)l? 1 [ |VTi(ug)|? 1 |Vuol|?
5| Ta o= =5 Az <5 damnm =T
2) A+ |Te(uo)l) 2 (1+uol) 2) (14 luol)

'[hus, we can test the minimality ab with T, (1), obtaining the inequalityl}(uo) <
J,.(Ty (ug)), which implies by (1.7)

C / _Vuol® / a(x, uo)|Vuol? < A / [F(x, u0) — F(K)]
A+ Juoh 2
{lugl>k} {lugl>k} {lugl>k}

<AC / o™ G (uo) -
{luol>k}

By a similar argument to that of the Step 2 of Lemma 3.1 we haveutfhat L>(R2).
Moreover,

20 |Vu0|2
Vol = (14 [luoll oo
9/ ( @) J @+ lluollzw@)®

20 |VM0|2
< (3 + lluollze - < +09,
( @) J (L4 luol

so thatug also belongs td73(2). Finally, we conclude noting that the regularity uof
implies that it is a critical point of;,. O
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5. Change of variable and nonexistence

In this section we will use a particular form of the functiogland show how some
of the results we have obtained in the previous sections can be recovered starting frol
standard, known results on functionals of the Calculus of Variations.

We will consider the following (model) functional

1 |Vul|? 1 "
J (1) 7—E/|u| .
Q

T2 A
We define
O )
and observe that
IV u)|? = %,
L+ [uh?

so that the functional can be rewritten, defining (s) = ®~(s), andv = ®(u) as

1 1
1<v)=§/|Vv|2—Z/|H<v>|"’.
Q Q

The functionH can be explicitly written:
1
H(s)={[(1—a)s + 1] 7 — 1} sgr(s).

Since H'(0) = 1, H(s) behaves likes close to the origin, while it behaves like™s at
infinity. Thus, in order forH (v)™ to be a subcritical nonlinearity, it is necessary that
m < 2*(1 — «), which is exactly one of the assumptions we made in Theorem 1.2. This
means that the critical point we found by means of Mountain Pass techniques can be se
as the “counterpart” of the critical point fdrwhich can be found applying the standard
Mountain Pass Theorem. It is also clear thauik 2(1 — «), then the termH (v)™ is
subquadratic, so that existence of critical pointd &y minimization is easily obtained
(in this case, the minima af correspond exactly to the minima dfvia the change of
variable).

However, the fact thatH (v)™ behaves likev™ close to the origin, allows us to find
existence of critical points of also in the case*21l — o) < m < 2*. Indeed, let us
introduce a positive parameteras follows:

1 A
Ik(u):§§2/|vU|2—Z/|H(v)|m, v e Hy(Q).
Q

The function H (v) then satisfies, fov close to zero, the assumptions of Theorem 8
of [4]. Thus, fora large, there exists critical points of Mountain Pass typelfomwith
norm in L*°(£2) which tends to zero astends to infinity.
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What happens iin > 2*? In this case, a slightly modified version of the Pohozaev
technique (see [10]) applies, yielding the following result.

THEOREM 5.1. —Let Q2 be a starshaped, smooth domain, andrel 2*. Then the

problem
. Vu |Vul|? PR
—div — =u""", InQ,
((1+u)2a) Tarwte "

u>0, in Q. (5.1)

ue Hy ()N L¥(Q) N HA(Q),
has no nontrivial solutions.

Remark5.2. — Up to now, we have always considered solution&JitQ2) N L>(2),
so that the assumption afin H?(2) may seem too strong. This is not the case, since
by a result of [8] every solution of (5.1) belongs HF($2).

Proof. —Let u be a nonnegative solution iR1(2) N L>(Q) N H3(Q) of (5.1).
Multiplying by x - Vu, and integrating o2 yields, after some integrations by parts,
and throwing away the integral on the boundanfoivhich has the right sign sinc@ is

starshped,
1 |Vul|? /
J A+ A4 <

On the other hand, choosing

_l+u—(l+u)°‘
o j— ’

as test function in the Euler equation (5.1) yields

|Vul|? (It u—A+uw) "
A+u)> l1-«a ’
Q Q

so that we have

1 1
1 —(1 o "1_1<—/ m
2*(1—0{)![ +u—( +u)}u mQu

To prove that: = 0 and to conclude the proof, it is sufficient to show that the function

1
1 —(1 al m—=1 _ — m’
2*(1—05)[ +s5s—A+s) ]s ms

is positive onR*. Dividing by s”~1, this is equivalent to the positiveness of

1 o
G(s)=m[l+s—(l+s) 1-=
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We haveG(0) =0, and

/ _ 1 _ a—l_i
G(s)_iz*(l_a)[l a(l+s5)*1 -

SinceG'(0) = = — 1, the assumptiom > 2* yields G'(0) > 0. Moreover,

G/ (s) = %(1+ §)* 20,

so thatG’(s) is increasing, hence positive. Th@sis increasing, hence positive @™
and the proof is concluded.
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