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ABSTRACT. — We study the lower semicontinuity properties and existence of a minimizer of

the functional
F(u) =esssugf (x, u(x), Du(x))
xeQ2

on W% (Q; R™). We introduce the notions of Morrey quasiconvexity, polyquasiconvexity, and
rank-one quasiconvexity, all stemming from the notion of quasiconvexity (= convex level sets) of
f in the last variable. We also formally derive the Aronsson—Euler equation for such problems
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RESUME. — On examine les propriétés de semi-continuité inférieure et I'existence du

minimizeur de la fonctionnelle
F(u) =esssugf (x, u(x), Du(x))
xeQ2

surwlo°(Q; R™). On introduit les idées du quasi-convexité de Morrey, du polyquasi-convexité,
et du quasi-convexité du rang-un , qui suivent tous de I'idée de quasi-convexité ( = les ensemble
a niveau convexes) dg a la derniére variable. En plus, on en déduit dans les formes I'équation
d’Aronsson-Euler pour de tels problemes.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

The major area of study in calculus of variations in the last thirty years has been the
study of variational problems with vector valued functions and the associated necessat
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and sufficient conditions for lower semicontinuity of integral functionals. It is our goal
to consider this problem for essential supremum functionals.

It is well known that for integral problems these necessary and sufficient conditions
involve notions of convexity in some form. This has led to concepiguaisiconvexity
polyconvexity andrank-one convexity. In this paper we change the terminology slightly
to account for multiple uses of the wogdiasiconvexityln place ofquasiconvexvhen it
relates to vector valued variational problems we use the komey convexn honor of
the founder of this condition. Here is the definition of Morrey convexity which is well
known (see Dacorogna [9] and the references there) to be a necessary and sufficient f
weak WL lower semicontinuity of the integral functional

Fu) = /f(Du)dx.
Q

DEFINITION 1.1. - LetR™ denote the class of all x m matrices with real entries.
A functionf : R™ — R is Morrey convex if for eacld € R

1
@/f(A + Do(x)) dr > f(A),
Q

for each$2, a bounded domain ilR”, ande € W&’OO(Q; R™). Equivalently,
. 1 -~ .
f(A) = mln{@/f(AJqua(x)) dx | @ € Wo™ (2 R )}.
Q

Observe the connection with Jensen’s inequality for convex functions. Indeed, this
inequality has been fundamental to the existence theory in variational problems. Ir
Barron, Jensen, Liu [7] we have derived an extended Jensen inequality which is jus
as fundamental for variational problems/if’. It applies toquasiconvexunctions, i.e.,
functions with convex level sets. In symbo}§js quasiconvex iz, = {x e R" | f(x) <
y}is convex for any € R; equivalently,

fOhx+A=0y) < f@OV ), VYx,yeR" 1e(0D).

Here is our extended Jensen inequality and its short proof.

THEOREM 1.2. — Let f: Q2 Cc R” — R be lower semicontinuous and quasiconvex
and lety be a probability measure oR” supported orR2. Letg € LY(Q2; 1) be a given
function. Then

f(/wdu> < —esssupf(px)).
P xeR
Thepu-essential supremum means we exclude sgisrokasure zero.

Proof. —Definey = u — esssup.,, f(¢(x)) andE, ={q: f(q) < y}. Then forpu-
a.ex € 2,¢(x) € E,. Sincef is Isc and quasiconvex;, is a closed convex set. Hence,
sinceu is a probability measurg, ¢ du € E,, and the theorem is proved.0
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Notice that a quasiconvex function may be neither continuous nor even lower
semicontinuous.

We now introduce a condition similar to Morrey convexity which we will see is
(almost) necessary and sufficient for weak-* lower semicontinuity of functionals of the
form

F(u) = F(u, Q) = esssup (Du(x)).

xeQ

DEFINITION 1.3.—f: R"™ — R is (weak Morrey quasiconvex if for each € R,

f(A) <esssuff (A + Dy), YoeWy®(Q;R").
xeQ

Equivalently,

f(A) = min{esssup’(A + D(p) @€ W(:)L’OO(Q’ Rm)},
xeQ

whereQ = [0, 1]" ¢ R” throughout this paper denotes the standard unit cube.

The space of test functions in the classical definition of Morrey convexity may be
replaced by € C5°(Q; R™). Itis clear that on€annotreplace the class of test functions
in this definition byCg° since we do not have uniform approximation of the derivatives.
The following lemma shows that our definition of Morrey quasiconvexity satisfies the
analogue of the quasiconvexity definition in convex analysis, i.e., that the level sets of ¢
guasiconvex function must be convex.

LEMMA 1.4.— f is Morrey quasiconvex ifE. = {A € R"™: f(A) < ¢} is Morrey
convex for every € R. That is,

0, if AcE,
‘S(A|EC):{+oo, if A¢E,,

is a Morrey convex function for everye R.

Proof. —Suppose thaB(A | E.) is Morrey convex for everye € R. If f is not
Morrey quasiconvex atd € R, there is ane > 0 and ¢e W&’“(Q;R’") so that
f(A)—e>esssup., f(A+ Dg). Choose = f(A) —e. Thens(A | E.) = +oo. Since
3(A | E,) is Morrey convex, we conclude th&€A + D¢ | E.) = 400 on a subset 00
with positive measure. Hence,> esssup,, f (A + Dg) > ¢, a contradiction andf
must be Morrey quasiconvex.

Conversely, suppos¢ is Morrey quasiconvex at € R"" andc € R is arbitrary.
Suppose thaf (A) < c. Thens(A | E.) = 0 and immediately, sincé> 0,§(A | E.) is
Morrey convex. Iff(A) > c thend§(A | E.) = +o0. If §(A | E.) is not Morrey convex,
thereisap W(}""’(Q; R™) so thath 3(A+ Dy | E.))dx = 0. Butthen,f(A+ Dg) <c
a.e.onQ,i.e.,esssup, f(A+ Dg) < c < f(A), acontradiction to the assumption that
f is Morrey quasiconvex. O

For lower semicontinuity of functionals dtf® Morrey quasiconvexity is the analogue
of Morrey convexity, but it turns out that for vector valued problems we need to modify
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the notion toweakand strong Morrey quasiconvexity. We refer to the definition given
above as the weak version. The strong version permits some play in the test fupctions
on the boundary of the domain and this is what we need to get the lower semicontinuity
result we are after. In the scalar case, ime.=1 orn = 1, weak and strong Morrey
guasiconvexity are equivalent. It is an important open problem to determine if they are
also equivalent in the vector case. We conjecture that they are not equivalent.

We also introduce the notions gfolyquasiconvexand rank-one quasiconve®s
generalizations of the classical notions polyconvex and rank-one convex. In the classic:
case we know that we have the implications

f convex= f polyconvex= f Morrey convex= f rank-one convex

It is known that f Morrey convex does not implyf is polyconvex. The famous
counterexample of Sverak [14] shows that

f rank-one convexs f Morrey convex

at least whenm > 3,n > 2. Obviously the question arises as to whether this can be
extended toL > but counterexamples, which are not easy to come by in the classical
cases, are no easier . As is usual in a paper of this type, more questions are
raised than are answered but we hope to return to these questions in a future pap:
In particular we hope to resolve the relaxation question and the use of Young measure
in such relaxations. Excellent references for these and many other considerations a
Dacorogna [9] and Pedregal [13].

The main difficulty in dealing withL*> functionals is the fact that we do not have
available to us the major tool used i functionals, namely, the use of piecewise
affine functions. Approximation of &> function on a domairf2 by piecewise affine
functions leaves a piece of small measure left over. In integral problems this portion
is controlled since it is a small measure set, butZLitty small measure sets cannot
be ignored, and functions on them cannot be controlled easily. Another idea which
one might think of is the use of approximatidg® by L?. In lower semicontinuity
considerations this leads to then studying an iterated limitliglim,_, . — in which
there is no reason to believe that the limits can be reversed.

Variational problems i > were first studied systematically by Aronsson [1-3]. Then
Jensen in [12] considered the uniqueness question for the Aronsson equation arising
the minimization of esssyp,, |Du|? or esssup., |Du|. Barron and Ishii [6] initiated
the study of optimal control via viscosity solutions/ifi® and Barron and Liu [8] studied
calculus of variations ir.* in the scalar case from the point of view of relaxation and
duality. A survey of the foregoing and many other results is in Barron [5].

Finally, the motivation to consideft.> variational problems is provided by simple
examples without simple solutions. A typical vector valued problem arising in elasticity
(see for example [9]) developed by Ball [4] is to minimize the integral

I(u) = / W (x, Du(x)) + ¥ (x, u(x)) dx,
Q
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where @ is the reference configuration of a given elastic material and the
deformation of the body. Usually it is assumed that(@gi(x)) > 0, x € Q. The stored
energy of the configuration is measured in the functi@n= W(x, Du(x)) and the
function v measures the body force per unit volume. It would seem to make sense
that one should replace the integral by the essential supremum in certain bodies i
which cracks are a primary consideration since in fact cracks occur due to pointwise
excessive energy. Pointwise considerations arise in many practical applications includin
temperature distribution, chemotherapy, risk management, etc., and of course it is
fundamental problem in Chebychev approximation of functions.

2. Morrey quasiconvexity and lower semicontinuity in L™

We begin with a precise definition of what we mean by Morrey quasiconvexity. Then
we show that this condition is necessary and sufficient for lower semicontinuity.

DEFINITION 2.1. —-A measurable functionf : R — R is said to bgstrong) Morrey
quasiconvexif for any ¢ > 0, for any A € R™, and anyK > 0, there exists & =
8(e, K, A) > 0 such that ifp ¢ WH>°(Q; R™) satisfies

ID@ll o) < K, Q?gkp(xﬂ <94,

then,
f(A) <esssugf (A + Dg(x)) +e¢. (2.1)
xeQ
DEFINITION 2.2.—A measurable functiorf : R"" — R is said to beweak Morrey
quasiconvexor (0, 0) Morrey quasiconvey, if for any € R"™, andg € W(}""’(Q; R™),
we have
f(A) <esssup (A + Dg(x)). (2.2)
xeQ
Remark2.3. — One can easily check from the definitions thatf ifR"™ — R is
Morrey quasiconvex then it is automatically weak Morrey quasiconvex. In Section 3 we
prove that for either = 1 orm = 1 weak Morrey quasiconvexity also implies Morrey
gquasiconvexity. However, it is an open question whether Morrey quasiconvexity and
weak Morrey quasiconvexity are equivalent ieyn > 1.
Throughout this papévlorrey quasiconvexityvill mean strong Morrey quasiconvex-
ity.
Recall from Definition 1.1 that if a measurable functign R"” — R is Morrey
convexthen for anyA € R,

1

A=
f(A) 0]

[ rca+perdx. vpewge(o:R"). (2.3)
0

Just as a convex function is always quasiconvex, a Morrey convex function with
appropriate growth conditions is always Morrey quasiconvex. In fact, we have
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PROPOSITION 2.4. —Let f:R"™ — R be Morrey convex. For any > 0 there exists
a § > 0, depending only orr and the Lipschitz constant of on Q, such that if
@ € WL°(Q; R™) satisfiesmax, ;o [¢(x)| < § then

f(A) < ﬁ f(A+ Do)dx + ¢ <essturf(A+D<p(x)) + e. (2.4)
Q xe

Proof. —Let § > 0 be chosen later. Lep € WH>°(Q; R™) with MaX.esp @ (x)] <
8. Then there exists) = n(4, [|[DellL~p)) > 0 such that|e(y)| < 26 for any y =
(31, -+, yn) € Q With |y;| > 1 — n for some 1< i < n. Let & € C3(R") be such that
E=1forye(1l—n)Q,e=0fory¢ Q, and|D&| < 4/n. Then the Morrey convexity
condition implies

1
< — dx.
r< Q/f(A + D))

However,

1
@Q/f(A+D($<p))dx

1
o
=1+1l.

Since f is Morrey convex and hence convex in each component variable as well as
locally Lipschitz, it follows that| Df || .~y < C. Therefore,

|0

1
/f(A+D<p)dX+—| / (f(A+ D)) — f(A+ Dg))dx
0 o\(1-nQ

ni<c / |Do| + |DE gl dx < C (I D@liLg)yn +8).
0\(1-n)Q

Choose nows < ¢/2C and n = n(e, | Dyl L~(p)) sufficiently small so thatll| < e.
Hence,
1

AT+ < —
f(A) + ol

/fM+D@m+a
o

Since

1
0l f(A+ Dg)dx < esstupf(A + Do (x)),
0

we conclude that

f(A)<|—£12| f(A+ Dy)dx + e <esssupf (A+ Do(x)) +e. O
xeQ
0

One key property we need for Morrey quasiconvex functions is the following.
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PROPOSITION 2.5. -Let f:R™ — R be Morrey quasiconvex. Lefu;} C
Wi>(Q; R™) be a sequence converging to zero, weakWih>(Q; R™). Then,

f(A) <liminf esssupf (A + Duy(x)), VA ER™. (2.5)
—00  xeQ

Proof. —Sinceu,; converges to 0 weak-* ifi’->(Q; R™), we have the existence of a
finite constantKo = sup, || Duk || L~(g), andu; — O uniformly on Q. For anye > 0 and
A e R, it then follows from the definition of Morrey quasiconvexity that there exists a
8§ =48(¢g, Ko, A) such that

f(A) <esssupf (A + Do(x)) + ¢, (2.6)
xeQ

for anyp € WL°(Q; R™) satisfying|| Dol 1= (0) < Ko @and maxesp l¢(x)| < 8. On the
other hand, we know that there exist&é@= ko(§) > 0 so that max.o |u| < 6 for all
k > ko. Therefore, we have

f(A) <esssupf (A+ Dui(x)) +&, Vk >ko.
xeQ

This implies
f(A) < Iikminf esssupf (A + Dug(x)) + . (2.7)
—>00 XEQ
Sincee > 0 is arbitrary, (2.7) gives (2.5).0

Now, we are ready to prove the first main result of our paper. It says that Morrey
quasiconvexity gives a sufficient condition for lower semicontinuity.

THEOREM 2.6 (Sufficient condition). -Let f:R" x R” x R" — R satisfy

(i) Forany(x,s) e R* x R™, f(x,s,-):R"™ — R is Morrey quasiconvex;

(i) There exists a function: R, xR, — R, which is continuous in its first variable
and non-decreasing in its second variable, such that

| f(x1, 51, A) — f(x2,52, A)| < o(|x1 — x2| + [s1 — 52/, |1A]), (2.8)

for any (xq, s1), (x2, 52) e R" x R™ and A € R"™.
Then for any bounded domasa c R” the functional

F(u, ) =esssupf (x,u(x), Du(x))

xeQ

is sequentially weak* lower semicontinuous > (Q; R™).

Proof. —Let ¢, converge to 0 weak* i1 (Q2; R™). In particular, we may assume
that g, — 0 uniformly onQ and Dy, — 0 weak* in L*°(2, R™). Setu, = u + ¢,. We
need to prove

esssupf (x, u(x), Du(x)) < Ii][n inf esssupf (x, ug(x), Duy(x)). (2.9)

xeQ xeQ
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Let {u;} denote a subsequence so that

lim esssupf (x, ux(x), Dug(x)) = Ii][n inf esssupf (x, ug (x), Duy(x)). (2.10)

k=00 e xeQ

Sinceu is Lipschitz continuous 012, it follows from Rademacher’s theorem and the
Lebesgue density theorem that there existarr 2, with |2\ Q¢| = 0, such that: is
differentiable at anyg € Q¢ andxg is a Lebesgue point adbu, namely

L Ju(x) —ulxo) — Dulxo)(x — xo)| _

lim 0, (2.11)
x> lx — xol
and
lim —* / |Du — Du(xg)|dr = 0 2.12)
u — ux = U .
o100l S °
r{xo

Here Q. (xo) = {xo + rx: x € Q} denotes the cube with side lengtland center at,.
Forr > 0 small, we define the rescaling maps:

v () = %(u(xo +rx) —u(xg)): Q — R™,
and

1
wi,xo(x) = ;((pk(xo +rx) — ‘/’k(xo)) ‘0 — R™,
Then (2.11) and (2.12) imply

Iri?g rpean\v;o(x) — Du(xo)x| =0 and rlirpHDv;o — Du(x0)|;19,=0.  (2.13)

Notice also that; is bounded inwL(Q; R™). Hence (2.13) implies that! (x) —
Du(xg)x weak* in Wt (Q; R™).
For any fixedr > 0, we observe that

supmax|g; . (x)| < supll Dyl L=(o) < 00,
k>1 xeQ k>1

=

and

|0k 56 (X) — @, (V)
Sup Sup -0 10 < Sup”D(pk”Loc(Q) < Q.
k=1 {x,yeQ.x#y) lx — ¥l k>1

Hence, by the Arzela—Ascoli theorem, we may assume that, for an small,<p,t’x0
converges t@ uniformly on Q. Moreover, sinceDg; , (x) = Dgi(xo + rx) for x € Q
and D¢, — 0 weak* in L*°(2, R™), we have that, for any > 0 small, Dyp ., — 0
weak* in L*(Q, R™). ThereforeDy = 0 andy = constant orD. Sincecp,ﬁ’xo(O) =0we
havey =0 on Q.

In particular, we obtain that, for any > 0 small, ¢; .= converges to 0 weak* in
Wwi>(Q; R™). By the Cauchy diagonal process, we have that foragy0 there exists
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k; 1 oo such that
v (x) = Du(xo)x and <pk 2o =0,
weak* in Wt (Q; R™). Applying Proposition 2.5, we can conclude

f (xo0, u(xo), Du(xg)) < IImTInf ess sup’ (xo, u(xo), D(v + o xo) (x))

kitoo  xeQ
On the other hand, by (2.8), we have
esssupf (x, u(x), Duy, (x))

x€Qy, (xo)

=esssup (xo+ r;y, u(xo+riy), Duy, (xo +r;y))
yeQ

< esssup (xo, u(xo), Duy, (xo +riy))
yeQ

+ f;ﬂeaQXw(Vi)’l + [u(xo 4 r;iy) — u(xo)l, |Duyg, (xo + i y)|)
=1+Il.
It is easy to see that

I = esssupf (xo, u(x0), D (v + ¢ ) (x)).
xeQ

Since

TeagxlDuk" (xo +riY)| < |[Duy, |l 1= < C < 00, Vk;,
whereC = sup, || Duy, ||~ ), we have

< Q%Xw(lriyl + [u(xo +riy) —u(xo)l, C).

Combined with the continuity af andw in its first variable, yields

limll =0.
r,-LO

Therefore, we obtain
I|m|nf esssup’ (x, ug(x), Dug(x))

k=oo  yeq

I|m esssupf (x, ug(x), Dug(x))

k=00 yeq

> liminf esssupf (x, ug, (x), Duy, (x))
kitoo  yeq
> liminf esssupf (x, u, (x), Duy, (x))
ril0 xeQ,; (xo)

= Iimj(l)’lf esssupf (xo + riy, u(xo + riy), Duy, (xo +r;y))
Ti yeQ

503

(2.14)

(2.15)
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= liminf ess sugf (xo, u(xo0), D (v + @5l ) ()
r[_i(o yeQ 0 i
> f(xo0, u(xo), Du(xg)) by (2.15)
Since this holds for any, € ¢ and |2 \ 2| = 0, we have proved (2.9) and the proof
of Theorem 2.6 is complete.O

Now we prove that Morrey quasiconvexity is also a necessary condition for the
sequential weak* lower semicontinuity of the functiod@u, ) on W= (Q; R™).

THEOREM 2.7 (Necessary condition). et f:R" x R”" x R"™ — R satisfy the
condition(2.8). For any bounded2 C R”, let F'(u, Q) = esssup.q, f (x, u(x), Du(x)).
Assume thafF (-, Q) is sequentially weak* lower semicontinuousWh>(2; R™). Then
p+ f(x,u, p)is Morrey quasiconvex for anyx, u) € R” x R™.

To prove Theorem 2.7 we first need the following lemma. The second part of this
lemma exhibits the importance of the extended Jensen inequality.

LEMMA 2.8.— Let f:R" x R" x R"™ — R satisfy(2.8). If F(-, Q) is sequentially
weak* lower semicontinuous dii->(Q; R™), then
(i) For any (xg, sg) € R" x R™, f(xo, S0, -) : R — R is lower semicontinuous.
(i) Forany(xg, so) € R" x R™, we have

1
f (xo, 50, ol / Du(x) dx) < esssupf (xo, so, Du(x)) (2.16)
0 xeQ
for anyu € WH>(Q; R™) with Du Q-periodic.

(iii) For any (xq,s0) € R" x R™, f(xq, 50, ) :R"™ — R satisfies the weak Morrey
quasiconvexity property

f (x0, s0, A) = inf{ess sugf (xo, s0, A + Dg(x)): ¢ € W(}""’(Q; R™)}. (2.17)
xeQ
Proof. —(i) For (xo, s0) € R" x R™. Let{A;} C R satisfyA; — A. Thenu;(x) =
so+ A (x — xo) converges ta(x) = so+ A(x — xo) in WH(B, (xo); R™) for anyr > 0.
Hence we have
esssupf (x, u(x), Du(x)) = esssupf (x, so + A(x — xg), A)

x€By(xo0) x€By(xo)

< liminf esssupf (x, u;(x), Duj(x))

J=% xeB,(xp)

=liminf esssupf (x,s0+ A;(x —x0), A;). (2.18)

J=% xeB,(xp)

On the other hand, sincg satisfies (2.8) we have

lim esssupf (x, so + A(x — x0), A) = f (xo, 50, A),

r—~0xeB, (x)

and
lim esssupf (x, so+ Aj(x — x0), Aj) = f(x0, 50, A;),

r=0xeB, (xo)
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uniformly in j. Hence, sending to zero, (2.18) implies

f (xo, s0, A) < liminf f(xo, 50, Aj).
J—>00

(ii) For (xo, so) € R* x R™. We first extend: € W (Q; R™) to R" with Du as aQ-
periodic function. Define ; (x) = u(j (x — xo))/j + so:R" — R™. Then we have

u;j(x) — so+ (|—;|Q/Dudx>(x — Xp),

weak* in W (B, (xo); R™), for anyr > 0. In particular,Du; — ﬁ j’Q Du dx weak*
in L*(B,(xg), R™). Hence we have

1 1
, —— | Dudx — ,— | Dudx
555,339[()‘ S°+(|Q|Q/ g )(X *o) IQIQ/ g )

< liminf esssupf (x, u;(x), Du;(x))

Jj— o0 X € By (xq)
o u(j(x —x
= liminf esssup’ (x, so+ u

J=0 xeB,(x0)

,Du(j(x—xo))>. (2.19)
Since f satisfies (2.8) we know, settingj= |_é| fQ Du dx

lim esssupf (x, so + A(x — x0), A) = f (x0, 50, A),

r—~0xeB, (xp)

and

M, Du(j(x — Xo)))

lim esssupf (x, so+

r=0xeB, (xo)

= lim ess supf (xo, 5o+ %O) Du(j(x — xO))),

r=0xeB, (xo)

uniformly in j. Here we have used the fact that

i supl“U & =30~ _

X=X0 J

0.

On the other hand, sind@u is Q- periodic we have

, u(0) .
lim esssup‘<xo, 5o+ T, Du(j(x — xo))) = esssuf (xo, so, Du(x)).

J=00 xeB,(x0) xeQ

Putting these together and sendintp zero in (2.19), we obtain

f (xo, 50, |—;| / Du dx) < esssupf (xo, so. Du(x)).
xeQ
o
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Observe that if we were to assume the conditftmg, so, p) = f (xo, so, —p) We could
drop the assumption th&lu is Q-periodic.
(iii) Notice we can rewrite (2.16) as

£ (x0, 50, A) = inf{ esssupy (xo, so, De(y)): ¢ € Wl’OO(R”; R™),
yeQ

1
Dy is Q-periodic @ / Dodx = A}
0

=inf{esssup (xo. 50, A + DY (»)): ¥ € Wy (Q:R™)}. (2.20)
yeg
In fact, givenyr € W01’°°(Q; R™) sete(y) = Ay + ¥ (y). This shows the first infimum
in (2.20) is not greater than the second. For the reverse, givep anyy > (R"; R™)
with D¢ Q-periodic and 1)Q| fQ Dgdx = A, takey = 0. Then, by (ii), we have

inf{ess supf (xo, s0, A + DY ()): ¥ € Wo'™®(Q; R™)}
yeQ

< f(xo, 50, A) < esssupy (xo, so, De()).
yeQ

This shows that the second infimum in (2.20) is not greater than the first and hence the
are equal. This gives the weak Morrey quasiconvexity af its last variable. O
Now we can return to the proof of Theorem 2.7.

Proof of Theorem 2.7 We prove it by contradiction. Suppose thats not Morrey
quasiconvex in its last variable. Then there exist, so) € R x R™, g9 > 0, Ko > 0,
Ao € R and sequencegy;} C W (Q; R™) such that

S]l;lp”D(,bk”Loc(Q) < Ko, Q?gkﬂk(xﬂ =0 — 0 ask— oo, (2.21)
but
f (xo0, S0, Ag) > €SS SUQC(X(), 50, Ag + D(pk(x)) + &o, (222)
xeQ

for all £ > 1. It follows from (2.21) that we may assume that there exisig @
Wa>°(Q; R™) such thaip, — ¢ weak* in WL (Q; R™). For anyr > 0, we see that

X X0 X — X0
S0+A0(X—X0)+V§0k( >—>S0+A0(X—X0)+"§0( . )»

weak* in W*(Q,(xo); R™), ask — oo. Since F(-, Q,(xg)) is sequentially weak*
lower semicontinuous oW >, we have

esssupf (xo+ry, so+rAoy +r¢(y), Ao+ Do(y))
yeQ

X — X0 X — X0
= esssupf (x,so+A0(x — X0) +r<p(—),A0+D<p< ))
r

xeQ,(x0) r
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N X X0 X — X0
< liminf esssug‘(x, S0+ Ag(x — xg) +rey (—) , Ao+ D(pk( >>
r r

k=00 1 e, (xp)

=liminf ess sugf (xo +ry, so+rAoy +ree(y), Ao+ Dgi(y)).

k—o00 VEQ

Notice that
Ilin maxlxo +ry —xo| =
I'in maXISo +rAoy +re(y) —sol =
and

I'En SUpmaXIsO +rAoy +rex(y) — sol =
r k ye

Since f satisfies (ii) of Theorem 2.6, we have, by sendirig zero,

ess supy (xo, so, Ao+ De(y)) < I|m |nf ess supy (xo, so, Ao + Dy (y)). (2.23)
yeQ yeQ

This, combined with (2.22), implies

esssupf (xo, so, Ao + De(y)) + €0 < f (xo, So, Ao). (2.24)
yeQ

On the other hand, singee W01’°°(Q; R™), it follows from (iii) of Lemma 2.8 that

f(x0, s0, Ag) < essgsup‘(xo, 50, Ao+ Do (y)).
ye

This contradicts (2.24). The proof is completen
We finish this section with an existence theorem for minimizing problenisin
THEOREM 2.9. —If, in addition to the conditions iTheorem 2.6let f:R"” x R™ x
R™ — R satisfy the following coercivity condition
f(x,s,A) > C1]A|P — Cy, V(x,s,A) €R" x R™ x R"™ (2.25)

for someC; > 0, C; > 0, and p > 0. Then for any bounded domafa Cc R" and y
Who(Q; R™) there exists at least one functiane W= (Q; R™), with u|yo = ¥ |yq, SO
that

esssupf (x, u(x), Du(x))
x€eQ

=inf{esssupf (x, v(x), Dv(x)): v € W (2 R™), vlaq = ¥laa }-

xeQ

Proof. —First notice that
c=inf{esssupf (x, v(x), Dv(x)): ve WH(Q;R™), v|sq = V]sa }
xef

<esssupf (x, ¥ (x), DY (x)) < oo.

xeQ
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Moreover,c > —Cs > —0o0.
Let {u;} ¢ W (Q; R™) be a minimizing sequence with|yo = |3, and

lim esssupf (x, ug(x), Dug(x)) =c.

k=00  1ecq

It follows from the coercivity condition (2.25) thatDuyll .~ is bounded. By the
Poincare inequality we see thity, || < ||¥ | + || Dug|l in the L*°(22) norm and so
{uz} is bounded inW1>(Q; R™). Therefore, we may assume that there exists

W2 (Q; R™) with u|yq = ¥ |yq SO thatu, — u weak* in WH>(Q; R™). It then follows
from Theorem 2.6 thai is a minimizer and esssuR, f (x, u(x), Du(x)) =c. O

Remark2.10. — The coercivity condition of the theorem is essential for the existence
of a minimizer. Indeed, considet(u) = €sSSup, (g 47 |x u'(x)|, Withu(0) =1, u(1) = 0.
Clearly this is not coercive. Consider the sequence

() = 1, if 0<x<1/n,
Un{X) = —logx/logn, if 1/n<x<1.

Thenu, € W>([0, 1]) and

, _ /0, if 0<x<1/n,
Xy (x) = —1/logn, if 1/n<x<1.

Hence F(u,) = 1/logn — 0. The infimum of F is therefore zero, but clearly no
Lipschitz function assuming the boundary data can give) = 0.

On the other hand if we consider insteddu) = esssup. g q; [u'(x)| with u(0) =
1, u(1) = 0 there is a unique minimizer and itig(x) =1 — x. Indeedu(1) — u(0) =
01 u'(x)dx implies that F (1) > 1 for any Lipschitzu with ©(0) = 1,u(1) = 0, and
F(u*) = 1. The unigueness of the minimizer follows from the fact that

esssup(u®)’'(x)]=1 forany 0< xg <x; < L.

x€[xg,x1]

This is Theorem 1 of [1].

Remark2.11. — This theorem establishes the existence of a minimizer but not an
absoluteminimizer, i.e., a function which minimizes on any subdomain. This is what
we need to use the Aronsson—Euler equation derived in the last section. In a companic
paperThe Euler equation and absolute minimizersIgf functionals (to appear in
Archives Rat. Mech. Anal.), we do establish the existence of an absolute minimizer
for problems withu : R” — R.

3. Various classes of quasiconvex functions

In this section, we introduce various classes of functions, which are natural extension:
to L* of the well-known concepts of convexity, polyconvexity, Morrey convexity, and
rank one convexity. For convenience we rewrite the definition of quasiconvexity.
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DEFINITION 3.1 (Quasiconvexity). A measurable functiorf :R" — R is called
guasiconvey, if

f(tA+@Q—1)B) <max{f(A), f(B)}, VA,Be R™, 0<r<1l (3.1)

Remark3.2. — Is every quasiconvex function Morrey convex? Deffii@/) = O for
IM| < 1landf (M) = 2 otherwise. Therf is quasiconvex, but not continuous. Therefore
f is not Morrey convex (since every Morrey convex function must be locally Lipschitz).
Quasiconvex or even Morrey quasiconvex functions need not be continuous.

We first prove that the stronger and easier to check condition of quasiconvexity is
enough for weak* lower semicontinuity i1, We restrict ourselves to the simpler
case f = f(Du), with the extension tof (x,u, Du) causing only minor technical
difficulties.

THEOREM 3.3. — Let f:R"™ — R be quasiconvex and lower semicontinuous. Then,
for any bounded domaift C R”, F(u, 2) = esssup.q f (Du(x)) is sequentially weak*
lower semicontinuous oW (Q; R™).

Proof. —For anyr € R, let E, = {A € R"™: f(A) < r}. Then sincef is lower
semicontinuous and quasiconvéx is a closed convex set. Let(-, E,): R"™ — R
denote the distance function 19, i.e.,

d(A,E,)= inf |[A—B|= inf 8(B|E,)+|A—B|,
BeE, BeRnmm

where| - | is a norm onR™. Then sinceE, is closed and convex|(-, E,) is Lipschitz
continuous and convex. Hence it is well-known (see, [9] for example) that

Gu, Q)= /d(Du(x), E,)dx
Q

is sequentially weak* lower semicontinuous B> (Q; R™). Thus, ifu; converges to
u € W (Q; R™) weak* in Wt (Q; R™), we have

/d(Du(x), E) dx < liminf /d(Duk(x), E,) dx. (3.2)
Q Q

Let

ro = Iimkinf esssupf (Dui(x)) = lim esssugf (Duy, (x)).
1—>00 .X'EQ

xeQ
Then for anye > 0, there existgy = ig(¢) > 0 such that foi > i

f(Duy,(x)) € E;yre, forae.xeq,

so that
d(Duy,(x), E;pre) =0, a.ex €.
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Hence (3.2) implies

/d(Du(x), E, ) dx =0.

Q
This implies
f(Du(x)) <ro+e aexef.

Sincee > 0 is arbitrary, this gives

esssupf (Du(x)) < liminf ess supf (Dug(x)),

xeQ xe

and completes the proof.0

The proof of this theorem can be used to extend a result of loffe [1@tan the
scalar case. In particular, we will consider

F(u,v) = p —esssupf (x, u(x), v(x)), (3.3)

xeQ2

where (€2, A, u) is a measure space wifh nonnegative and finite angl: Q x R™ x
R" — [0, 00] is A x B,, x B, measurable, wherB,, denotes the Borel subsetskf.

THEOREM 3.4. —Assume that fop-a.e.x € Q f(x, -, -) is lower semicontinuous on
R™ x R" and for everyu € R™ f(x,u,-) is quasiconvex ofiR"”. Then the functional
in (3.3) is sequentially lower semicontinuous &3°(€2; R™) x L°(2; R") using the
strong topology orL;7(2; R™) and the weak* topology oh{? (2; R").

Proof. —The proof is similar to that of the previous theorem but here we can use the
indicator function

S(x,u(x),v(x) | E,) wWithE, ={(y.§,7) € QxR" xR"| f(y,&,n) <r}.

With our hypotheses oyf the indicator function satisfies all of the hypotheses of loffe’s
theorem [10] and so we can complete the proof as before using the integral functional

G (x,u(x),v(x)) :/5(x,u(x), v(x) | E,) dx.
Q

The proof is simplified by use of the indicator function which can be used due to the fact
that loffe’s theorem permits extended real valued integrands.

Naturally, this theorem includes as a special case the variational prablam=

1 —esssup.q f(x, u(x), u'(x)).
Now we turn to an extension of the idea of a polyconvex function.

DEFINITION 3.5 (Polyquasiconvexity). A measurable functionf:R"™ — R is
called polyquasiconvex if there exists a quasiconvex fungtidk ™ — R such that
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f(A) =g(T(A)), wherec(n, m) is given by

min(n,m) m'n!

c(n,m)= Z s12(m —s)! (n—s)!

s=1

and T(A) :R"™ — R¢m js the map consisting of and all of itss x s minors for
s <min(n, m).

A polyconvexunction satisfies the same definition except that the fungtiorust be
convex, and not just quasiconvex. These types of functions are important in variationa
problems arising in elasticity.

It is clear from the definition that every quasiconvex function is polyquasiconvex and
any polyconvex function is also polyquasiconvex.

PROPOSITION 3.6. — Let f:R"™ — R be polyquasiconvex and lower semicontinu-
ous. Then, for any bounded dom&c R", F (u, Q) = esssup.,, f (Du(x)) is sequen-
tially weak* lower semi-continuous o> (Q; R™).

Proof. —Let g : R — R be quasiconvex so that(A) = g(T (A)). Assume thatz;
converges ta weak* in W= (Q; R™). It is well-known (see [9] for example) that
T(Duy) — T(Du), weak*in W (Q; R™).

Now we can apply the same argument of Proposition 3.3 to show that

esssug (7T (Du(x))) < Iilgn inf esssug (7 (Duy(x))). (3.4)
=0 xeQ

xeQ

This finishes the proof. O
The last notion of convexity we extend is rank one convexity:

DEFINITION 3.7 (Rank one quasiconvexity).A-measurable functiorf : R™ — R
is rank one quasiconvex (8.1) holds for anyA, B € R* with rank(A — B) < 1.

Rank oneconvexitymeansf (tA + (1 —t)B) <tf(A)+ (1 —t) f(B), for rank A —
B) < 1.

It is clear that any quasiconvex function is rank one quasiconvex and any rank one
convex function is also rank one quasiconvex.

PROPOSITION 3.8. —Let f:R"™ — R satisfy the weak Morrey quasiconvexity prop-
erty:

f(A) <esssuf (A + Do(x)), foranyA eR™ andp e Wy ™(Q; R™).
xeQ

Thenf is rank one quasiconvex.

Proof. —Aresult in Dacorogna [9] asserts that for aiyB € R™" with rank(A — B) <
1, anye > 0, andt € [0, 1], there exist two subdomain@j, 03, with 03 N Q5 =9, and
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1,00 . Tom
@ € Wy'™(Q; R™) such that

101l =110 <, 1051 — 1 =0IQl| <e,

1-0n(A-B) in Q7
D‘/’f:{—z(A—B) in 05,

and
D@L~y < K(A, B) < o0.

Moreover, it follows from the construction in [9] tha®] and Q5 are increasing as
decreases. Letting| 0, we may assume that; =lim. 0 Q7, i =1, 2, exists, and there
exists apy € Wy ™ (Q; R™) such thatDg, — Dgo weak* in L*(Q, R™).

Furthermore, we know that the interiors ¢f; and Q, have empty intersection,
|01l =1|0l, |Q2l = (L= 1)|Ql, Dpo= (1 —1)(A — B) in Q1, andDgo = —t(A — B)
in 0,. Notice also thatQ, U Q,| =|0|.

Now we apply the weak Morrey quasiconvexity pto obtain

f(tA+ 1 —1)B) <esssup (tA+ (1—1)B + Dgo(x))
xeQ

= esssupf (tA+ (1—1)B + Dgo(x))

x€Q1UQ2
=max{esssupf (A + (1 —t)B + Dgo(x)),
xe€Q1
esssupf (tA+ (1—1)B + Dyo(x)) }
x€Qz

=max{ f(A), f(B)}.
This shows thatf is rank one quasiconvex.O
Summarizing our results we have proved the following corollary.

COROLLARY 3.9.- Let f:R"™ — R lower semicontinuous be given. Then the
following holds

(1) If £ is quasiconvex, thelf is polyquasiconvex.

(2) If f is polyquasiconvex, thefiis Morrey quasiconvex.

(3) If f is Morrey quasiconvex, thefiis weak Morrey quasiconvex.

(4) If fis weak Morrey quasiconvex, thegnis rank one quasiconvex.

(5) If eithern =1 or m = 1, then all these notions are equivalent.

Thus,
f quasiconvex= f polyquasiconvex
f Morrey quasiconvexs f weak Morrey quasiconvexs f rank one quasiconvex

Given an arbitrary functionf :R"™ — R we could define the greatest Morrey
gquasiconvex minorant, greatest polyquasiconvex minorant, etc., as the relaxafion of
These considerations will be addressed later.
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4. Convex propertiesdo not carry over

Lemma 1.4 of the introduction is useful primarily in that it gives us a tool to prove
theorems about Morrey quasiconvex functions and functionals<roy reducing them
to Morrey convex functions and associated integral functionals. Unfortunately, this
generally does not work in the vector valued case because most of the results in th:
case need a growth condition on the integrand, which, of course, the indicator functior
does not satisfy.

One might think that the way to get around the extended real valued problem is tc
take the inf convolution of the indicator function. This procedure then will satisfy the
growth conditions, but then a new problem arises in the vector valued case. While the
inf convolution of a convex function is convex, it is not true, as we will verify in this
section, that the inf convolution of a Morrey convex function is Morrey convex. Hence,
for vector valued problems we would convert the Morrey convex fundien| E.) into
a function which is not Morrey convex and so lower semicontinuity theorems would not
apply.

Recall that for a given functiorf : R"™ — R, say lower semicontinuous and bounded
from below, thes-inf convolution of f is defined by

. 1 ,
ru) = int {£®)+ 5 14~ BE}.

It is well known that if f is convex, theny. is convex for any > 0. Furthermore, iff
iS quasiconvex, i.e., has convex level sets, tlieis also quasiconvex. In the following
example we will show that iff is Morrey convex, or even polyconvex, th¢gnmay fail
to be even rank one convex.

Define f :R>2 — R by f(A) = det(A). SetA = (a;;), B=(b;j), i,j=1,2.

We computef, from

. 1[ &
fe(A) = “;f <b11b22 — b1obr1 + % l Z (aij — bij)zl ) .

ij=1

The necessary conditions for a minimum point become the system of equations

Solving these equations we obtain

by = &(Clll — € app), b = &(Clzz —¢&an),

1 1
bip = &(6112 + € an), by = &(021 + € ap),
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wherea = 1 — ¢2. Hence,
1 €/ 2 2 2 2
fe(A) = 2 det(A) — > (i1 + aipy+ a3 +a3,) |

We claim thatf, is not Morrey convex. Indeed, is not rank-one convex. In fact,
setting
10
(5 o)

1 € 5
fg(A+tI)=f8(A)+—2(——t +(azz—8(111)f)-
£ 2

we have

This is clearly not convex with respect o

5. Euler Lagrange equation

In this section we derive the necessary conditions foalsolute minimizeof the
functional

F(u, Q) =esssupf (x, u(x), Du(x))
xeR

with conditionu = v on3Q2. Herey is a given Lipschitz function o2 and an absolute
minimizer is defined precisely in:

DEFINITION 5.1.—A function u* € WH>(Q;R™) is an absolute minimizer of
F(u, Q) if, for any openQ’ ¢ Q' C @, u* is a minimizer ofF (u, Q'), whereu*|;o =
ulye . That is,u™ minimizesF on every subdomain.

The concept of absolute minimizer localizes the problem and this is necessary
since the essential supremum function is a global operator. In integral problems th
concept of absolute minimizer is not needed. To see this, suppose ithatminimizer
of [, f(x,u, Du)dx with given boundary datg. Let @' C @ C Q be any given
subdomain and let be an appropriate function @’ with v =u on 9Q’. Definev =u
onQ\ . Then,

Q//f(x,u,DM)Ci)c:Q/f(x,u,Du)dx— / f(x,u, Du) dx

Q\Q

< | f(x,v, Dv)dx — f(x,v, Dv)dx
[ s mace |

Q\@

:/f(x, v, Dv) dx.
Q/

Hence any minimizer for an integral problem is immediately an absolute minimizer. It
is easy to see that the preceding argument failLfémproblems.
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Aronsson [1] derived the Euler equation faf° by using L? approximations. He
noticed that the property of absolutely minimizing is critical in stating that the candidate
function satisfies the Euler equation and in all subsequent results depending on the Eul
equation. In this section we will not uge’ approximations to derive the Aronsson—Euler
equation. Instead we will directly calculate the directional derivative of the functional
and then directly use the absolute minimizing property to get the equation we are aftel
This formal proof, which was carried out in [5] and [8] for the scalar case, distills the
critical property of absolute minimizing.

We use the notation

of of of
duy dp1n  Opia
Sulxsu,p)y=1 1 |, Sp(x,u, p) = : :
af af of
M apm,l o apm,ﬂ

THEOREM 5.2. —Let Q C R" be open with compact closure and igte C2(Q2, R™)
be given. Supposg(x, u, p) and f., f., f, are continuous. li* € C3(Q,R™) is an
absolute minimizer with = v on 92, thenu* must satisfy the system

fp(x, u*(x), Du*(x)) - Dy (f (x,u*(x), Du*(x))) =0, x€Q. (5.1)

Formal proof — First, observe that we may replace the essential supremum by
maximum since we assuna is smooth.
Define

S={xeQ|Fu", Q) = f(x,u*(x), Du*(x))}.
If xo € S is an interior point of2 then we immediately have the condition
Df(x, M*(X), ”*(x)) |x:x0 =0.
Under our assumption oif, F is directionally differentiable for every directiop €
W&"’"(Q; R™) and, by Danskin’s theorem [11], for example,
0=DF(u* 48y, Q) ls=0
=max{ f, (x, u*(x), Du*(x))y (x) + f,(x, u*(x), Du*(x)) Dy (x) | x € S}.

For anyxg € 2\ S, we choose > 0 sufficiently small s&2’ = B, (xg) C 2. Now we
need the absolute minimizing propertyof. We know that:* minimizesF (u, B, (xo))
and hence for any € Wy (B, (xo); R™)

0=DFu*+ 8y, ) ls=o
=max{ f, (x, u*(x), u*(x))y (x) + f,(x,u*(x), Du*(x)) Dy (x) | x € So}, (5.2)
where

So={x € B:(xo) | F(u*, Be(x0)) = f (x,u*(x), Du*(x))}.
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Let us choose the direction e W§’°°(Bs (x0); R™)

g2 |x —xo|?

Yilx) =—

> > , =12 ...,m.

Then, from (5.2) we get for somee B, (xp) N Sp, assumingy is an interior max,

0= fu(y, u* (), Du*(y)y (y) — fr(y, u*(y), Du*(y))) - (y — x0).

Notice thaty — xg ase — 0 and

Therefore dividing by and then sending — 0 we get

fp(xo0, u*(x0), Du*(x0)) = 0.
We conclude tha&* must be a solution of the problem

folx,u*(x), Du*(x))D, f (x,u*(x), Du*(x)) =0, x €L,
{uix):g(x), x € 0Q2. = (5.3)

The equation reduces ,.u = 0 in the casef (x, u, p) = |p|>.

Remark5.3. —In the papeiThe Euler equation and absolute minimizers IoP
functionalswe prove the existence of an absolute minimizer for the ca®® — R,
i.e.,m = 1. We also prove that an absolute minimizer is a viscosity solution of (5.3). The
existence and uniqueness of an absolute minimizer in thencasé is open.

Remark5.4. — The special cas¢(x, u, Du) = |Du| andu:R" — R was studied
extensively in Jensen [12] extending ttié approach of Aronsson [1-3] to th&1 >
case. In this case, the necessary conditions for an absolute minimizer results in the Eul
equation

Acu=Du'-D?*u-Du=0, xeQ, ux) =y(), xecdQ,

whereDu' is the transpose of the vectd:. This equation is referred to as the Aronsson
equation or thexo-Laplace equation and plays the same rold.fA as the Laplacian
plays in the integral minimum problem fgr| Du|? dx.
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