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ABSTRACT. — A Goursat flag is a chaiby € Dg_1 C --- C D1 C Do = TM of subbundles of
the tangent bundl&M such thatorankD; =i andD;_; is generated by the vector fields 1y
and their Lie brackets. Engel, Goursat, and Cartan studied these flags and established a norn
form for them, valid at generic points @f. Recently Kumpera, Ruiz and Mormul discovered
that Goursat flags can have singularities, and that the number of these grows exponentially wit
the coranks. Our Theorem 1 says that every coranksoursat germ, including those yet to
be discovered, can be found within thd€old Cartan prolongation of the tangent bundle of a
surface. Theorem 2 says that every Goursat singularity is structurally stable, or irremovable
under Goursat perturbations. Theorem 3 establishes the global structural stability of Gourse
flags, subject to perturbations which fix a certain canonical foliation. It relies on a generalization
of Gray’s theorem for deformations of contact structures. Our results are based on a geometr
approach, beginning with the construction of an integrable subflag to a Goursat flag, and th
sandwich lemma which describes inclusions between the two flags. We show that the probler
of local classification of Goursat flags reduces to the problem of counting the fixed points of
the circle with respect to certain groups of projective transformations. This yields new genera
classification results and explains previous classification results in geometric terms. In the las
appendix we obtain a corollary to Theorem 1. The problems of locally classifying the distribution
which models a truck pulling trailers and classifying arbitrary Goursat distribution germs of
coranks + 1 are the same.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Un drapeau de Goursat est une chaiReC D;_1 C --- C D1 C Dg=TM des
sous-fibres de I'espace tang@iM aveci = corangD; et tels que les champs de vecteurdije
et leurs crochets de Lie engendrdnt 1. Engel, Goursat, et Cartan ont étudié ces drapeaux et
ont établi une forme normale pour elles aux points générique dBécemment, Kumpera,
Ruiz et Mormul ont découvert que les drapeaux de Goursat peuvent avoir des singularités
et que leur nombre grandit exponentiellement avec le cosafdptre théoreme 1 dit qu'on
trouve chaque Goursat germe de corardgdans les-fois prolongation de Cartan de I'espace

“ The work was supported by the Binational Science Foundation grant No. 94-00268. AMS classification:
58A30, 58C27.
E-mail addressesmont@math.ucsc.edu (R. Montgomery), mzhi@techunix.technion.ac.il
(M. Zhitomirskii).
1 Partially supported by NSF grant DMS-9704763.



460 R. MONTGOMERY, M. ZHITOMIRSKII/ Ann. . H. Poincaré — AN 18 (2001) 459-493

tangent d’'une surface. Cela inclut les germes inconnus. Le théoreme 2 dit que chaque singulari
de Goursat est stable. Le théoreme 3 établit la stabilité globale des drapeaux de Goursat a
dessous les perturbations que ne change pas une certaine feuillatage canonique. Cela dép
d’'une généralisation du théoréme de Gray qui concerne les perturbation des structures de conta
La fondation de nos résultats est une approche géométriqgue qui commence avec la constructi
d’'un drapeau des distributions intégrable qui est le sous-drapeau du drapeau de Goursat. |
lemma ‘sandwich’ nons explique les inclusions entre ces deux drapeaux. Nous réduisons |
classification des drapeaux de Goursat au probleme de la classification des points fixés po
certains groupes de transformation projective du cercle. Cela donne des résultats généraux
nouveaux de classification et explique les précédents résultats d’'une maniére géométrique. Da
le dernier appendice nous montrons que ce probleme de classification est le méme problén
que de comprendre toutes les singularités de distribution qui modélent un camion qui tire
remorques.

© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and main results

This paper is devoted to Goursat distributions and Goursat flagsouysat flagof
lengths on a manifoldM™ of dimensionn > 4 is a chain

DsCDS_J_C"'CD3CD2CD1CD0=TM, s =2, (F)

of distributions onM" (subbundles of the tangent bundléM” of constant rank)
satisfying the following (Goursat) conditions:

corankD;, =i, i=12,...,s,

D,_1=D? whereD?:=[D;,D;], i=12,...,s. (G)

The first condition means thaD;(p) is a subspace of,M" of codimensioni, for
any point p € M". It follows that D;,1(p) is a hyperplane inD;(p), for anyi =
0,1,2,...,s —1 and p € M". In condition (G) we use the standard notatibd or
[D, D] for the sheaf of vector fields generated By and the Lie bracket$X, Y],
X, Y e D, of vector fields inD.

By a Goursat distribution we mean any distribution of any corank 2 of any
Goursat flag(F).

An equivalent definition is as follows. A distributio® of coranks > 2 is Goursat

if the subsheave®’ of the tangent bundle defined inductively B! = [D’, D]
(i=12,...,s; D= D) correspond to distributions, i.e., they have constant rank, and
this rank isrank D' =rank D' +1, i =1,...,s.

Since the whole flag (F) is uniquely determined by the distributiba- D, of the
largest corank, we will say thdd = D, generategF). The study of Goursat flags and
Goursat distributions is the same problem.

The name “Goursat distributions” is related to the work [11] in which Goursat
popularized these distributions. Goursat’s predecessors were Engel and Cartan.
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Engel studied the case= 4, s = 2. This is the only case where the Goursat condition
holds for generic germsde proved [4] that the germ of such a distribution is equivalent
to a single normal form without parameters. (See (C) below.)

If (n,s) # (4,2) then the set of germs of Goursat distributions of corankn
M" is a subset of infinite codimension in the space of all germs. Nevertheless,
Goursat distributions appear naturally through Cartan’s prolongation procedure. See, fc
example, [1] and Section 5 of the present paper. The simplest realization of prolongatiol
leads to a canonical Goursat 2-distribution (i.e., distribution of rank 2) orizkes)-
dimensional space ofjets of functionsf (x) in one variable. This distribution can be
described by differential 1-forms

w1 =dy —z1dx, wa=dz1 — z22dx, ..., wy=dz,_1— z;dx, ©

where y represents the value of at x and z; represents the value at of the ith
derivative of f. Cartan proved that generic gernof a Goursat 2-distribution can always
be described by the 1-forms (C). Indeed he proved in [3] the stronger statement:

The germ at a generic point @ny Goursat distribution of corank > 2 on a manifold
M of any dimensiom > s + 2 is equivalent to the germ at the origin of the distribution
described by th&-forms(C).

This theorem together with all the assertions in the present paper hold in both the
smooth ) and real-analytic categories. Two global distributions Mnare called
equivalentf there exists a global diffeomorphism #f sending one of them to the other.
Local equivalence is defined in a usual way: the gernb @it a pointp is equivalent to
the germ ofD at a pointp if there exist neighborhood& of p and U of p and a
diffeomorphism® : U — U, ®(p) = p which sends the restriction db to U onto the
restriction of D to U.

We will say that a pointp € M is a singularity for a Goursat distribution if the
distribution isnot locally equivalent ap to the model distribution described by 1-forms
(C). An equivalent definition in invariant terms is given in Section 2.

Some researchers believe that Cartan missed the singularities in the problem ¢
classifying Goursat distributions. It would be more accurate to say that he was nof
interested in them. Recently there has been interest. Researchers have realized that
number of different singularities grows very fast, indeed exponentially, with the cerank
Recent results on the number of singularities are given in Table 1.d#énedenotes the

Table 1
s 2 3 4 5 6 7 >8
or(s) 1 2 5 13 34 93 00
Author Engel Giaro Kumpera Gaspar Mormul Mormul Mormul
Kumpera Ruiz
Ruiz

Reference [4] [9] [14] [7] [17] [17,18] [18,19]
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number of orbits (inequivalent germs) within the space of all Goursat germs of corank
at the origin ofR” (results are the same for all> s + 2).

Although the entries of Table 1 were obtained originally just for rank two Goursat
distributions onR?** they hold for Goursat distributions of arbitrary rahknd coranks
on R***, with k, s > 2. Indeed, a reduction theorem due to Zhitomirskii [23] implies
that any Goursat distribution of corank is locally equivalent to one of the form
D =W @ R*2 on R¥ = R?** x Rk=2, whereW is a rank two Goursat distribution on
R2+S.

The theorems summarized by the above table are in marked contrast with the spir
of Cartan’s result. This contrast inspired our two main theorems. Theorem 1 says ths
the Cartan prolongation procedure accounts not only for the Cartan normal form (C)
but for all possible singularities. This includes any singularities yet to be discovered,
in addition to the list above. Theorem 2 asserts that every Goursat singularity, howeve
complicated, cannot be perturbed away while keeping the distribution Goursat. In othe
words, Theorem 2 asserts that Goursat singularities are “irremovable”.

THEOREM 1. —Apply the Cartan prolongation procedufsee Sectiorb) s times,
starting with a two-dimensional surface. The resulting “monster Goursat manifold”
of dimension2 4 s is endowed with a Goursat distributioH which is universal in
the following sense. The germ at any point of any rank two Goursat distribution on a
(2+ s)-dimensional manifold is equivalent to the germibft some point o).

In Section 5 the Cartan prolongation procedure is described, the monster manifolc
constructed, and the theorem proved.

THEOREM 2. —Every Goursat singularity is irremovable. Namely, within the space
of all germs of Goursat distributions of corankany germ is structurally stable in the
C**1-topology on the space of Goursat germs. Any such gesatetermined.

Structural stability of the germ of a Goursat distributio® at a point p means
the following. Let Dy be any sequence of Goursat distributions defined in a (fixed)
neighborhood ofp, and such thafs*™* Dy — j5*'D as N — oo. Then there exists a
sequence of pointgy tending top such that for all sufficiently bigv the germ ofDy at
pn is equivalent to the germ atof D. In other words, if we pertur® within the space
of Goursat distributions, then nearby pgathere will be pointspy at which the germ of
the perturbed distributio®y is equivalent to that of the original distribution at

To say that the germ at of D is s-determinedmeans that ifD is another Goursat
distribution defined neap, and if j; D = j;[) then the germs gt of D and of D are
equivalent.

We also have a result on global structural stability, one inspired by works [10] and [16]
on deformations of global Engel distributions.

THEOREM 3. —Any cooriented Goursat flagF) of lengths on a manifold M is
structurally stable with respect to sufficiently Whitr@y-small perturbations within
the space of global Goursat flags, provided these peturbations do not change the
characteristic codimensio8 foliation L(D,).

The characteristic codimensior8 foliation L(D;) is defined in Section 2. It is
invariantly related to the corank one distributidh and generalizes the characteristic
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vector field of an Engel distribution. To say that the flag (F¥d@®rientedmeans that
there exists global 1-formsws, ..., ®, such that the distributioD; can be described

as the vanishing ab1, ..., w;, i =1, ...,s. Theorem 3 says that if two global Goursat
flags F and F is sufficiently close in the Whitneg*t1-topology and ifL(D1) = L(D)

then there exists a global diffeomorphismMfsendingF to F. The conditionZ(D;) =

L(D,) can be, of course, replaced by the condition that the foliatiof3,) and L (Dy)

are equivalent via a diffeomorphism close to the identity. This condition is essential ever
for the case = 2 of Engel distributions, see [8]. The foliatidin(D,), viewed as a global
object, is a complicated, poorly understood topological invariari? ofin particular it is

not known what types of foliations are realizable, even in the simplest case of Enge
distributions.

Outline

To prove Theorems 1-3 we develop a geometric approach to Goursat flags i
Sections 2 and 3. The starting point is the flag of foliations associated to a Goursat flag
The relations between the two flags is described by the sandwich lemma. This allows u
to formulate the Cartan theorem in pure geometric terms, and to define singular points.

In Section 3 we develop the geometric approach in order to showtheaproblem
of classifying Goursat flags reduces to the problem of finding fixed points of the circle
with respect to certain subgroups of the group of projective transformatlgsing this
reduction we obtain some general classification results. In Section 4 we use our methoc
to explain the recent results, as summarized in Table 1, by purely geometric reasoning

In Section 5 we present Cartan’s prolongation and deprolongation constructions an
prove Theorem 1.

Theorems 2 and 3 are proved in Section 6. One tool in the proof is a generalizatior
of Gray’s theorem [12] on deformations of global contact structures. We prove that any
two global C'**-close corank one distributions of the same constant class (in Cartan’s
sense) are equivalent viai-close to identity global diffeomorphism. This result is of
independent significance, therefore we put it to Appendix A.

In Appendix B we prove one of the lemmata used in Section 3.

In Appendix C we explain the canonical meaning of the Kumpera—Ruiz normal
forms and we explain P. Mormul's codes for symbolizing finer normal forms. We
also summarize what is known about when and how the growth vector distinguishe:s
singularities.

Finally, in Appendix D we use our Theorem 1 to give a simple proof that the local
classification of Goursat distributions describing a kinematic model of a truck tawing
trailers and the local classification of arbitrary Goursat flags of lengti are the same
problem.

2. Flag of foliations. Sandwich lemma. Cartan theorem

We start the geometric approach to Goursat distributions by associating a flag o
foliations

L(Dy) C L(Ds_1) C L(Dy_5) C--- C L(Dy) C L(Dy) (L)
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to the Goursat flag
DsCDs_ 1CDs_2C---CDyCD1CDg=TM (F)

generated by the Goursat distributibn= D, of coranks > 2 on a manifoldM .

DEFINITION. —Given any distributionD ¢ TM we denote by.(D) the subsheaf of
D consisting of those vector fields € D whose flows preservB: [X, Y] e D for all
Y € D. We callL(D) the characteristic foliation oD.

The Jacobi identity implies that (D) is closed under Lie bracket. Consequently if
L(D) is of constant rank, then it is a foliation in the standard sense. As we will see
momentarily it does have constant rank in the Goursat case, this rankrbeki@®) — 2.

In other words, if we set

L(D)(p) ={X(p): X € L(D)},

thenL(D)(p) has dimensiomank(D) — 2, independently of the poin.

LEMMA 2.1 (Sandwich lemma). ket D be any Goursat distribution of corank> 2
on a manifoldM. Let p be any point of\/. Then

L(D)(p) C L(D?)(p) C D(p),
with
dimL(D)(p) =dimD(p) — 2, dimL(D?)(p) =dimD(p) — 1.

It follows that the relation between the Goursat flag (F) and its flag of characteristic
foliations (L) is summarized by:

D c D1 ---C D3 C D> C D,
U U U U
L(Dy) C L(Dg_1) C L(Ds_5) --- C L(D2) C L(Dy).

Each inclusion here is a codimension one inclusion of subbundles of the tangent bundle
L(D;) has codimension 2 withi®;, which in turn has corankwithin TM, so thatL (D;)

is a foliation of M of codimension + 2. In particular,L (D;) — the foliation figuring in

our Theorem 3 — is a codimension 3 foliation.

The foliations L(D;) can be described using 1-forms. We will say that an ordered
s-tuplews, ..., w, describeghe flag (F) generated by a Goursat distributidn= D, of
coranks if w; describes the corank one distributién, the formsw; and w, together
describe the corank 2 distributiab,, etc., the tupl€w;, ..., w;_1) describesD,_; and
the tuple(w;, ..., w,) describesD,. (Here “describes” means that the distribution being
described consists of all vectors annihilated by the forms “describing”.) Order matters.
For example, consider the corank 2 Goursat distribufiodefined by the vanishing of
of the 1-formsw; = dy — z1dx andw; = dz; — z2dx. Then the pailw;, ;) describes
the flag generated bl whereas the paifw,, ;) does not.
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Given a tuple of 1-forms, ..., w, describing the Goursat flag (F), denote by

0;(p) = dwi(p)lD,‘(p) (2-1)

the restriction of the 2-forndw; (p) to the spaceDd;(p), p € M. By the kernel of a 2-
form 6 on a vector spac& we mean the space of vectarsuch that (v, Y) = 0 for
anyY € V. The proof of Lemma 2.1 is based on the following statement.

LEMMA 2.2.—Let (F) be the Goursat flag generated by a distributibn= D, and
described by the tuple,, .. ., o, of 1-forms. Define th@-formso; (p) by (2.1). Then for
any pointp of the manifold and for any=1, 2, ..., s we have

ranké; (p) = 2; L(D;)(p) =keré;(p).

Example— Let D be the corank Goursat distribution described by the 1-forms (C).
Then the tupldw,, ..., w,) describes the flag (F) generatedBy= D, and the foliation
L(D;) is described by the 1-forméx, dy, dz, ..., dz;.

Proof of Lemmata 2.1 and 2.2.\We first show that the rank &f(p) is two, fori < s.
Recall thatw; vanishes orD; but not onD;_;, and that its vanishingefinesD; within
D;_1. The identity

doi(X,Y)=—w;([X,Y]), X,YeD, (2.2)

and the fact thaltD; , 1, D; 1] is a subset oD, imply that6; (p) vanishes upon restriction

to the hyperplane; . 1(p) of D;(p) (provided that < s so thatD;,; is defined). The
factthat{D;, D;]1 = D,_; implies tha®; (p) # 0. In other wordsg; (p) is a nonzero skew-
symmetric form which admit®; ., (p) as an isotropic subspace of codimension 1. Basic
linear algebra now implies thaanko; (p) = 2, dimkerg; (p) = 2, and thater6; (p) C
D;1(p). This is valid for all pointsp and alli =1,2,...,5s — 1.

It follows directly from the identity (2.2) thaL (D;)(p) C ker6;(p). To prove that
L(D;)(p) = ker6;(p) we use the constancy of rank of these kernels. Suppgse
kerg;(p). Since the field of kernels of; has constant rank we may exted, to a
vector fieldX tangent to this field of kernels. Now (2.2), together with the fact that the
vanishing ofw; definesD; within D;_,, implies thatX e L(D;) so thatX, € L(D;)(p).
This completes the proof of Lemma2.2fo=1,2,...,5s — 1.

The casei = s remains. We know thatL(D;) is involutive for all i and that
L(D;)(p) =kerdb;(p) is a hyperplane iD;1(p), fori < s. Identity (2.2) now implies
that 6;,, vanishes upon restriction to the hyperplabéD,)(p) of D;,1(p), again for
i <s. Therefore for 1< i < s the form 6;(p) hastwo (possibly equal) isotropic
subspacesD;.1(p) and L(D;_1)(p), whereas the “end” formg,(p) andé6,(p) have
only one isotropic subspace eadh;(p) and L(D,_1)(p) respectively. The fact that
0;(p) hasL(D;_1)(p) C Ds(p) as an isotropic hyperplane implies thanké,(p) <
2. The conditionrank[ Dy, D;1(p) = s — 1 implies thatranké,;(p) > 2. Therefore
ranké,(p) = 2. Repeating the above arguments, we seeltka)(p) = kerd,(p), and
thereforeL (Dy)(p) is a subspace ab(p) of codimension 2. This completes the proof
of Lemma 2.2.
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To prove Lemma 2.1, it only remains to show thatD;) C L(D;_1). Again use the
fact that if a skew-symmetric nonzero 2-form has an isotropic hyperplane then its kerne
belongs to this hyperplane. We have proved th@D;_1)(p) is an isotropic hyperplane
for 6;(p) andL(D;)(p) is the kernel ob; (p). ThereforeL(D;) C L(D;_1). O

By Lemma 2.1 for each= 3,4, ..., s the space);_;(p) has two invariantly defined
hyperplanes:D; (p) and L(D;_5)(p). If the Goursat flag is generic then one expects
that these two hyperplanes will be different. This is indeed the case, and it suggests oL
geometric formulation of Cartan’s theorem on the normal form (C).

PrRoOPOSITION 2.1 (Compare with Cartan’s work [3]). Fhe germ at a poinp of a
Goursat flag(F) of lengths on a manifoldM is equivalent to the germ at the origin of
the flag described by theforms(C) if and only if the condition

L(DI—Z)(p)¢Dl(p)9 1237477S (GEN)

holds. For any Goursat flag the set of points M satisfying(GEN) is open and dense
in M.

The proof of this proposition is in Section 4. Now we can give an invariant definition
of a singular point of a Goursat distributidn or of its flag (F):

DEFINITION. —A point p is nonsingular if(GEN) is satisfied. It is singular i{GEN)
is violated for at least onee {3,4, ..., s}.

We have 272 different types of singularities, which can be call&dimpera—
Ruiz classesThey are parametrized by thé2 subsetsl C {3,4,...,s}. The class
corresponding to the subsétconsists of Goursat germs at a pojmtsuch that the
condition (GEN) is violated fori € I and is valid for alli ¢ I, i € {3,4,...,s}.

A nonsingular point corresponds tb= ¢. Each singularity class is realized. These
realizations correspond to th&2 normal forms found by Kumpera and Ruiz [14], and
described in Appendix C to the present paper.

As soon ag > 3 the Kumpera—Ruiz classificationgéearserthan the full classifica-
tion of Goursat germs into equivalence classes under diffeomorphisms. In other words
for s > 3 there will be Kumpera—Ruiz classes which contain more than one orbit, i.e.,
several inequivalent Goursat germs. See the table in Section 1. For example, wHen
we see thabr(s) =5> 22 =4.

In the next two sections we further develop the geometric approach to Goursal
distributions, obtain general classification results and explain in invariant terms the
classification results by Mormul and his predecessors.

3. Classification of branchesof +/D

The classification of germs of Goursat distributions of arbitrary corank reduces to the
following problem:

Given a Goursat distribution gerr» of coranks, classify the Goursat distributions
of coranks + 1 such thafE, E] = E2= D.
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Notation — The set of all such distribution germisfor a givenD will be denotedy/D.

Imagine the tree whose vertices are equivalence classes of Goursat germs. The root
the tree is the corank 2 distribution germ, which is a single class, according to Engel’s
theorem. The “level” or “height” of a vertex is its corank. Thus thereai@) vertices
at levels. A vertex[E] at levels + 1 is connected to a vertD] at levels if and only
if Ee+/D.

If it were true that each Kumpera—Ruiz class (see the end of the previous section
consisted of a single orbit, then this tree would be a simple binary tree. One branch o
the vertexD would consist of theE for which E(p) # L(D?)(p), and the other for
which E(p) = L(D?)(p). But the table given in Section 1 shows that this is false. There
areD for which |[[v/D]| > 2. Indeed, for = 7 there are) whose\/D contains infinitely
many nonequivalent germs, correspondin@it(8) =

In this section we reduce the problem of classificatiox/@ to classification of points
of the circleS* = R P with respect to the action of a certain grolip= I" (D) C PGL(2)
of projective transformations of the circle. The orbitsviD correspond to thé-orbits
in S1. We will show that the number of orbits is either®4 or oo, according to the
number of fixed points of".

The first step in such reduction is the following proposition (proved in Section 6).

PROPOSITION 3.1. —Let E and E be the germs at a point of Goursat distributions
of coranks + 1 such thatE2 = E2? and E(p) = E(p). Then the germ& and E are
equivalent.

Set
(VD) (p)={E(p): E e VD}.

Recall that the sandwich lemma asserts thaD)(p) C E(p) C D(p) for any
E € v/D. Also recall thattodimL (D) (p) = 2 in D(p). In other words

(vVD)(p) C S} (p) = {subspaceg c T,M: codimV =s+1, L(D)(p) CV C D(p)}.

We use the notatiors},(p) because this set is topologically a circle. Indeed it can
be canonically identified with the set of all one-dimensional subspaces of the two-
dimensional factor spacB(p)/L(D)(p), which is to say with the real projective line.
The real projective line is topologically a circle:

Sh(p) = P[D(p)/L(D)(p)] = RP*= S

LEMMA 3.1.—(v/D)(p) = S}(p) for any Goursat distribution gernD such that
rank(D) > 2.

Proof. —We must show that every € S3(p) can be realized ag = E(p) for some
E € /D. Sincerank(D) > 2 and consequentlgdimV > 1 we can fix a nonvanishing
1-form » which annihilates the involutive distributioh (D), and for whichw(p)
annihilatesV, and for whichdw (p) restricted toV is nonzero. DefineE to be the
subdistribution of D annihilated byw. We claim thatE? = D, and consequently

Vex/ﬁ(p).
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We first show thatE? ¢ D. Take two vector fieldsX,Y € E, and any 1-formu
annihilatingD. We must show that annihilated X, Y] or, equivalently that/ . (X, Y) =
0. L(D?) is a corank one subdistribution @&. Pick any nonvanishing vector field
tangent toE such thatZ mod L (D) spansk/L(D) (nearp). Then there are functions
k1, ko such thatX = k;Z moduloL(D) andY = k,Z modulo L(D). SinceL(D) C D
and L (D) is involutive any vector field irl.(D) belongs to the kernel afu. Therefore
du(X,Y)=dwu(k1Z,k,Z) =0.

The fact thatdw|, # 0 implies that the rank of? is greater than that of. But
rank(E) =rank(D) — 1 andE C E? ¢ D. ConsequenthE?>=D. 0O

Consider the groupiff, of all local diffeomorphisms with fixed poinp and its
subgroupSymm (D) consisting of local symmetries of the germaof D:

Symm (D) = {® € Diff ,: &,.D = D}.

Any @ € Symm(D) automatically preserves the canonical foliatibtD), and conse-
quently it preserves (D)(p). Its derivatived @, thus acts on the two-dimensional factor
spaceD(p)/L(D)(p) by a linear transformation, and consequently defines a transfor-
mation

8o :Sp(p) = Sh(p): 8o.V =d®,(V), VeSi(p).
This defines a group homomorphism

D gop; Symm(D) — PGI(2) = PGI(D(p)/L(D)(p)).
We denote the image of this homomorphism by
Iy(D)={go,® € Symm(D)}.

Remark—PGI(2) is the standard notation for the group of all invertible linear
transformations of a two-dimensional vector space modulo scale. Elements of this grou
map lines to lines, and hence define transformatiorgf = S*. These transformations
are sometimes callggojectivities SoI", (D) is a group of projectivities.

Proposition 3.1 and Lemma 3.1 imply:

PrROPOSITION 3.2. —Let D be the germ at a poinp of a Goursat distribution of
coranks. Let E and E be the germs ap of Goursat distributions of corank+ 1 such
that E2 = E2 = D. The germsE and E are equivalent if and only if the poini8(p) and
E(p) of the circleS%,(p) belong to a single orbit with respect to the action of the group
I, (D).

The rest of this section is devoted to understanding the orbit structure of the action o
I, (D) on the circle.

To understand the orbit structure we should first understand the fixed points of the
action. By dfixed pointV € S3,(p) we mean a point that is fixed lgverytransformation
in the groupl™, (D). The set of all fixed points will be denotétix, (D):

Fix,(D) ={V € Sh(p): g.V =V foranyg € I',(D)}.
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To reiterateV C D(p) is a codimension 1 hyperplane which contains the codimension 2
hyperplaneL(D)(p), andg.V = d®,(V) whereg = go, With @ € Symm(D).

The setFix, (D) is never empty. Indeedymm (D) preservesD?, and hence.(D?).
But L(D?)(p) C D(p) is a codimension 1 hyperplane, as we saw in the previous section
(see the sandwich lemma). Consequently

L(D?)(p) € Fix,(D)

for any Goursat distributio.

On the other handf Fix, (D) contains more than two points then F(D) = SH(p)
—every point is a fixed point, anfl, (D) = {id} consists of the identity transformation
alone. This follows immediately from what is sometimes called “the fundamental
theorem of projective geometry”: any projectivity of the projective line which fixes three
or more points is the identity. At the level of linear algebra, this is the assertion that if
a linear transformation of the plar®? has three distinct eigenspaces (the three alleged
fixed points of the projective line) then that transformation is a scalar multiple of the
identity.

We thus have the following possibilities.

o #(Fix,(D)) = oo, in which casel,(D) = {id}, and the number of inequivalent

germsE € /D is infinite;

e #(Fix,(D)) = 1, in which case that single fixed point mustbeD?)(p);

o #(Fix,(D)) = 2, in which case the fixed points akg€D?)(p) and one other point.

The following proposition explores the middle possibility.

PrROPOSITION 3.3. —If #(Fix, (D)) = 1 then Fix,(D) = {L(D?(p)}. Inthis case the
action of I, (D) is transitive away from the fixed point. That is to say, for any two pomts
V,Ve S})(p) different fromL(D?)(p) there exists & € I',(D) such thatg.V = V.
Consequently, the circl§,(p) consists of two orbits with respect to the grolip(D):
the fixed pointL (D?)(p) and all other points.

The proof of this proposition, and the one following (Proposition 3.4) are based on
the Lemma 3.2 immediately below. To appreciate the lemma, notice that the connecte
part of PGL(2) consists of projective transformations of the foerp(v) for some linear
transformatiorv of R?2 = D(p)/L(D)(p). Such a linear transformation can be viewed as
a linear vector field on the plane, and hence a vector fied the circles®. (The vector
fields arising in this way are precisely the infinitesimal projective transformations.) The
flow exp(zv) of this vector field is a one-parameter group of projectivities connecting the
identity toexp(v). The set of such forms the Lie algebra dPGl(2), denotedogl(2).

LEMMA 3.2. -The square ofl,(D) is connected. In other words, i € I',(D),
then g2 = g o g = exp(v) for some vector field € pgi(2) on the circle S} (p) with
the property that ex@v) € I',(D) for all t € R.

The proof of the lemma is postponed to Appendix B.
We will now investigate the case in whiéfix,, (D) consists of two pointsL (D?)(p)
and som&V # L(D?)(p).
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DEFINITION. —If V % L(D?)(p), let
o=0(D,V,p):Sp(p)— Sp(p)

denote the projectivity induced by a reflection in the pldng)/L(D)(p) whose fixed
point set consists of the two poiritsand L(D?)(p) (modL(D(p)).

We explain. Leta, 8 € RP! be two distinct points of the projective line. Choose
coordinates for the plan®? so thato and g are thex andy coordinate axis, and let
[x, y] be the standard homogeneous coordinatesrfBf with respect to these axes.
Theno ([x, y]) = [x, —y], which corresponds to reflection about thexis. Note that
[x, —y] = [—x, y] so that we can also think ef as reflection about the-axis, 8. One
can characterize as the unique projectivity whose fixed point sefds 8} and whose
square is the identity.

If Fix,(D) = {L(D?(p),V} with V # L(D?(p) then there are three alternative
possibilities:

(a) I',(D) contains at least one more projectivity in addition to the identity and the

reflectiono;

(b) I,(D) does not contaiwr;

(c) Iy(D)={id,o}.

PROPOSITION 3.4. —Suppose tha#(Fix, (D)) = 2, with Fix, (D) = {L(D?(p), V}.

(@) If I,(D) satisfies(a) above then it acts transitively ofiy,(p) \ Fix,(D). The
action has precisely three orbite. (D?)(p)}, {V}, and S (p) \ Fix,(D).

(b) If I',(D) satisfies(b), then it acts transitively on each of the two connected
components of},(p) \ Fix, (D), but does not mix points from the two components.
The action has preciselorbits, namely{L(D?)(p)}, {V} and the two connected
components a3, (p) \ Fix, (D).

(c) If I',(D) satisfieqc) then the number of distinct orbits is infinite. The orbit space
is RP* modulo the action of the reflection, which is topologically a closed
interval.

We summarize the results obtained so far into 5 cases:
(1) Fix,(D) consists of the single poirit(D?)(p).
(2) Fix, (D) consists of two pointsL.(D?)(p) and some other poirit. Then we have
the following three subcases.
(2a) o € I',(D) andg € I',(D) for someg # o, id.
(2b) o ¢ I',(D).
(2c) I',(D) ={id, o} is the two-element group .
(3) I',(D) = {id} is the identity group. Every point of the circi, (p) is fixed.
We reiterate that case (3) holds if and onlyFik,(D) contains at least 3 distinct
points.
We recall thaty/D denotes the set of all germs of Gours at distributiéhef corank
s+ 1 such thatt? = D, whereD is a given corank Goursat distribution. The following
statement is a corollary of Propositions 3.1-3.4.
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PrRoOPOSITION 3.5. —Let D be the germ at a poinp of a Goursat distribution,
rank(D) > 2. Then one of thé cases(1), (2a), (2b), (2c), o(3) listed above holds. In
each of these cases two gerfisk € /D are equivalent provided that (p) = E(p).

In the casg3) E and E are equivalenpnly if E(p) = E(p).

Assume now thaE(p) # E(p). In cases(l) and (2a) the germsE and E are
equivalent if and only iE (p), E(p) ¢ Fix, (D). In case(2b) these germs are equivalent
if and only if E(p) and E(p) belong to the same connected component of the set
St(p) \ Fix,(D). In case(2c) the germs are equivalent if and only if the reflection
above takesZ(p) to E(p).

Write #/D for the number of distinct equivalence classes of germsFfer +/D.
Consequent to the above analysis we h#éD = 2 in case(1), #V/D = 3in case(2a),
#J/D = 4 in case(2b), and#v/D = oo in caseq2c) and (3).

This proposition does not solve the problem of classifying all Goursat distributions of
any corank. Rather it reduces this problem to the problem of distinguishing among the
5 cases listed above. This reduction sheds light on the pre-existing classification result
as summarized in Table 1. We expand on this theme in the next section.

We end this section by showing that Propositions 3.3 and 3.4 follow from Lemma 3.2.
Consider the following subsets §t(D)(p):

T ={aecSYD)(p): g>.a=aforanyge I,(D)},

={aeT: gaeTforanyge I',(D)}.
Lemma 3.2 implies the following corollary.

COROLLARY TO LEMMA 3.2. —If 8 ¢ T; then there exists a neighborhodtiof 8 in
S1(D)(p) such that all points ot/ are I',(D)-equivalent.

Note thatFix,(D) C 71 C T and that if T contains three different points then
T = SY(D)(p). To prove Propositions 3.3 and 3.4 we consider the following cases.

1. Assume thal" # SY(D)(p) and Fix,(D) = {a, B}. ThenT =T, = {a, B}. By the
corollary of Lemma 3.2 the group, (D) either acts transitively o83 (p) \ Fix,(D) or
acts transitively on each of the two connected components of this set, but does not mi
points from the two components. The first case holds if and only if the group)
contains the reflection = o («, B) which fixeso and 8. This corresponds to (2a) and
(2b) of Proposition 3.4.

2. Assume tha # SY(D)(p) and Fix,(D) = {a}. If T = {0, a1}, whereo; # «
then T, = {«} since there existg € I',(D) such thatg.a; # o1 andg.ay # « for any
g € I'y(D). ThusT; = {«a}. By the corollary of Lemma 3.2 the action dt,(D) is
transitive away fromx. This corresponds to Proposition 3.3.

3. Assume that" = S*(D)(p) and Fix,(D) = {«, B}. In this case the group’,(D)
consists of the identity transformation and the reflectioithe orbit space is the interval
S'/o. This corresponds to (2c) of Proposition 3.4.

4. Finally, let us show that the cage= S*(D)(p) and Fix,(D) = {«a} is impossible.
Assume that this case holds. Then any projectigity I',(D) has a fixed pointr and
satisfies the conditiog? = id. It is easy to see that these conditions imply that any
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nonidentyg € I',(D) is a reflection with two fixed points (one of themds. I',(D)
is a commutative group singg = id for any g € I',(D). Now if two reflections with
a common fixed point commute then they coincide. TherefdyeD) consists of the
identity transformation and a single reflection. This contradicts the assumption tha
Fix, (D) consists of a single point.

Propositions 3.3 and 3.4 are proved.

4. Examples

We give examples illustrating the notions of Sections 2—3 and the classification table
of Section 1. Throughout this section all Goursat flags are germs at the origih in

Examplel. —LetD; C D,_1 C --- C D1 be the Goursat flag described by 1-forms
w1=dy —z1dx, wp=dz1—z2dx, ..., ws=dz;,_1— z5dx. ©
Using Lemma 2.2 we find:
L(Dy) = (dx,dy,dz1,...,dz)",  L(Ds_1) = (dx,dy,dz1,...,dzs_1)".

Since D,(0) = (dy, dz1,dzo, ..., dzs_1)", the circle S1(D;)(0) can be identified with
the set of lines (1-dimensional subspaces) in the 2-spzae-, %) C ToR"/L(D,)(0).
The Iinespar(%) corresponds to the spaé€D;_,)(0) and therefore it is a fixed point
of S1(Dy)(0) with respect to the groupp(D;). We show that this line is the only fixed

point. The flag admits the local symmetry:

D Zip1—> Lo+ X /i), =120,
y—>y+xt s+, x— x.

This symmetry induces the projective transformatignof the circle S*(D;)(0) which
takes the linespana + bzL-) to the linespan(a: + (b — a);%). These lines are
different lines wherb £ 0.

This example, together with Proposition 3.3 has two immediate corollaries. Firstly,
Proposition 2.1 (the geometric formulation of the Cartan theorem) follows by induction
on s, with the Engel theorem = 2 as the base of induction. Secondly, by restricting
Example 1 to the case= 2, and using Proposition 3.3 we can classify Goursat flags
D3 C D, C D; of length 3. Any such flag can be described either by the 1-forms

w1=dy — z1dx, wy =dz1 — z2dx, w3 =dzp — 73dx (4.2)
or by the 1-forms
w1=dy —z1dx, wr =dz1 — z2dx, w3z =dx — z3dz>. (4.2)

The normal form (4.1) holds iD3(0) # L(D;)(0) and the normal form (4.2) holds if
D3(0) = L(D1)(0).
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Example 2. — Consider the Goursat fla@s C D, C D, described by 1-forms (4.2).
We have

L(D3) = (d-xa d% dZ]_, dZZa dZ3)J_9 L(DZ) = (d-xv dya lea dZZ)J_a
D3(0) = (dy, dz1, dx)".

Therefore the circleS'(D3)(0) can be identified with the set of lines in the 2-space
spar(%, %) C ToR"/L(D3)(0). The Iinespar(%) corresponding td.(D,)(0) is a

fixed point with respect to the grouf;,(Ds3). Let Singbe the set of all singular points.
We use the coordinate-free definition of a singular point from Section 2. In this example
Singconsists of pointy such thatDsz(p) = L(D1)(p) and it is a smooth hypersurface
given by the equations = 0. The spacd,Singcontains the spack(D3)(0), therefore

the intersectionD3(0) N TSingis a point of the circleSt(D3)(0). This point is the line

spar(%). Since it is defined canonically, it is a fixed point with respect to the group
I'o(D3). We have proved that the sEixq(D3) contains at least two pointsspar(a%)

and spar{%). We show that there are no other fixed points. This follows from the
existence of the local “scaling” symmetry

cD:z3—>k_113, x —> kx, 71— kz1, y—>k2y, keR,k+#0.

This induces the projective transformatiqn, of S*(Ds3)(0) which takes the line
spar(a%2 + baizs) to the Iinespar(a% + kbaizs). These two lines are different provided
a,b #0,andk £ 1. Finally, we note that the groufh(D3) contains the reflectioa with
fixed pointsspar{a%) andspar(aizs). Indeed,oc = g¢ Whered is the scaling symmetry
fork = —1.

Examples 1, 2 and Propositions 3.3-3.5 imply a complete classification of Goursal
flags D4, C D3 C D, C D, of length 4: there are exactly 5 orbits with respect to the
group of local diffeomorphisms corresponding to the following cases:

(A)  D3(0) # L(D1)(0), Da(0) # L(D2)(0),

(B)  D3(0) # L(D1)(0), D4(0) = L(D2)(0),

(©  D3(0)=L(D1)(0), D4(0) # L(D2)(0), D4(0) Z ToSing
(D) D3(0)=L(D;1)(0), D4(0) C ToSing

(B)  D3(0) =L(D1)(0), D4(0) = L(D2)(0).

These cases do not intersect since the above coordinate computation showed th
L(D)(0) ¢ TpSing The orbit (A) is open and corresponds to Cartan’s normal form.
Orbits (B) and (C) have codimension 1. Orbits (D) and (E) have codimension 2. The
adjaciences are:
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Given a global Goursat flag of length 4 on a manifold, denot8ibg,, ..., Sing; the
set of points at which the corresponding singularity holds. It follows from Examples 1
and 2 that for any (not necessarily generic) global Goursat flag of length 4 on a manifolc
M the setSing, is open and dense, th&ing, and Sing. are smooth hypersurfaces in
M which intersect transversally formirging;, and thatSing,, is a smooth surface of
codimension 1 withirSing- and disjoint fromSing; .

The orbits A—E can be easily described by normal forms, using Lemma 2.2. Any
Goursat flag of length 4 can be described locally by 1-forms..., ws, Where
w1, wy, w3z have the form (4.1) for A- and B-singularities and the form (4.2) for the 3
other singularities, and where the 1-fotsg has the form

dzz—z4dx, dx —zadzo, dzz— (1+2z4)dze, dzz—z4dzp, OF dzo— z4dz3

for the A-, B-, C-, D-, E-singularities, respectively.

Example 3. — To classify Goursat flaghs ¢ D4 C D3 C D, C D; we find the set of
fixed points of the circles* (D) (0) under the action of (D). We start by assuming that
the flagD4 C D3 C D, C D7 has one of the 5 normal forms described above. Arguing
in the same way as in Examples 1 and 2 we come to the following conclusions.

1. If the flag D4 € D3 C D, C D1 has singularity A or singularity C then the set of
fixed points ofS*(D,4)(0) consists of the single poirit(D3)(0) and therefore the space
of germs of flagsDs ¢ D4 C D3 C D, C D, consists of two orbits corresponding to the
cases

(ApandCy)  Ds(0) # L(D3)(0),
(A2andCz) Ds(0) = L(D3)(0).

2. If the flag D4, C D3 C D, C D; has the singularity B (respectively D, E) then
the setFixo(D4) consists of the poinL(D3)(0) and the pointe = D4(0) N TpSingg
(respectivelya = D4(0) N TpSing,, o = D4(0) N TpSing;). The hypersurfaceing,
and the codimension two submanifoldig,, Sing, are tangent to the foliatioh (D,),
therefore the poink is a well-defined point of the circl§'(D,)(0). The pointsa and
L(D3)(0) are always different, and the group(D,) admits the reflection with these
two fixed points. Therefore the space of germs of flBgs- D, C D3 C D, C D1 such
that the flagD, C D3 C D, C D; has a fixed singularity within the singularities B, D, or
E consists of 3 orbits corresponding to the cases

(B1, D1, E1) Ds(0) # L(D3)(0), Ds(0) ¢ ToSing;,, U=B,D,E,
(B, D, E5) Ds(0) C TOSing,, U=B,D,E,
(B3, D3, E3) Ds(0) = L(D3)(0).

Thus the space of germs of Goursat flags of length 5 consists of 13 orbits. The A.
and C-singularity each “decompose” into two new singularities. The B-, D- and E-
singularities each decompose into three. The afhiis open. OrbitsA,, B;, C; have
codimension 1. Orbit®,, B3, E1, C,, D1 have codimension 2. The deepest singularities
are E,, E3, Dy, D3. They have codimension 3. The graph of adjaciences can be easily
derived. It is rather complicated and we do not present it here.
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Examples + 1. — Of course, we could continue to get the classification of flags of
length 6 or longer, or to get the classification of flags of any length satisfying certain
genericity assumptions. The principle remains the same. If we know the normal form
for a certain orbitOr, of flags D, € D,_1 C --- C D; of lengths then we should find
the setFixo(D;) C S1(D,)(0). If this set consists of two points, we should determine
whether or not the groupp(D;) admits the reflectiom with these two fixed points.
This information together with the results of Section 3 would then yield the classification
of all flags D1 C Dy C --- C D7 of lengths + 1 for which the subflagd, € D;_; C
.-+ C D1 belongs to the orbiOr,. In many cases the necessary information regarding
fixed points can be obtained without using normal forms for the @it This was
the case in the description of Goursat flags of length given above in Examples 1, 2
and 3.

As an example of results for general lengthassume that the circl§*(D,_1)(0)
hax exactly two fixed pointd.(D;_»)(0) and «. Suppose thaD,(0) = «. Then the
next circle S*(D,)(0) contains at least two fixed points, namelyD;,_;)(0) together
with the intersection ofD,(0) with ToSing,, where Sing, is the subvariety of points
where the germ of the flagp, C D,_1 C --- is equivalent to its germ at the origin.
Sing, is a smooth submanifold which is tangentZteD;) and transversal th (D,_;) as
well as to D, (0), consequently this second fixed point is is well-defined and distinct
from L(D;_1)(0). Therefore, upon “prolonging” thé, flag in order to investigate
flags of lengths + 1, the resulting longer set of flags decompose into either 3,
4 or an infinite number of singularities. There are 3 if these two fixed points are
the only two fixed points and if the groupy(D,) admits the reflectioro. There
are 4 if they are the only two fixed points but the reflection is not/y(D;).
There are an infinite number of different germs if there is at least one more fixed
point.

Unfortunately, for Goursat flags of arbitrary length we do not know of a general
way of distinguishing the cases with of 1, 2, or an infinite number of fixed points,
nor of determining the presence or absence of the reflection in the case of 2 fixe
points. If we knew such a method, then the whole “Goursat tree” would be completely
classified.

The examples show that for flags of length< 4 the number of fixed points of
S1(Dy)(0) is either 1 or 2. In the latter case the grofip(D,) admits the reflection
o with these two fixed points. This corresponds to the cases (1), (2a) in Section 3
Interpreting Mormul’s results [17-19] in our language (see Appendix C) we see that
the same holds for flags of length 5. The case (2b) of exactly two fixed points but no
reflection is realized for a unique singularity of flags of length 6. This decomposes into
4 singularities of flags of length 7. The case (3) in which the groy@) consists of
only the identity transformation is realized for at least one singularity of flags of length
7. It follows that upon prolongation of such flags to lengtith®, pointDg(0) of the circle
S1(D7)(0) is a continuous moduludhis accounts for the entryr(8) = oo in the table
of Section 1.

We do not know if the case (2c) in Section 3 is realized. According to Mormul it is.
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5. Prolongation and deprolongation. Monster Gour sat manifold
5.1. Prolongation

Prolongation builds new distributions from old. LBt be a rank 2 distribution on a
manifold M. Its prolongation is a distribution on the new manifold

PD:= J P(D(m)),

meM

where P(D(m)) is the projectivization — the set of lines through the origin — of the
two-planeD(m). If D is a Goursat distribution of any rank we set

PD:= [ J Sp(m),

meM

where theS}, (m) = P(D(m)/L(D)(m)) are the circles of Section 2. b is a rank 2
Goursat distribution the (D) = 0 so thatS} (m) = P(D(m)) which shows that these
two definitions match upgPD is a circle bundle oveM .

We endowPD with a distribution E as follows. It is enough to describe what it
means for a curve ilPD to be tangent taE. A curve in PD consists of a moving
pair (m(t), V(t)) wherem(t) is a point moving onM, and whereV (¢) is a moving
family of hyperplanes iD(m(t)), sandwiched as in the sandwich lemma in Section 2:
L(D(m(t))) Cc V(¢t) C D(m(t)). We declare the curve to be tangent to the distribution if
and only ifdd—’;’ € V(¢). Equivalently, let

7.PD—>M
be the projection andr be its differential. Then
E(m,V):=dn,*(V), q=(m.V).

DEFINITION. —The manifold PD with distributionE is the prolongation of the
distribution D on M.

Example— Let M be a surface and leb = TM, the whole tangent bundle t&f.
ThenPD = PTM consists of the space of tangent lines. key be local coordinates
on M near a pointrz. Then a line¢ C T,,M is described by its slopely = zdx. The
new coordinate is a fiber affine coordinate dATM — M. The distribution orPTM is
defined bydy — zdx = 0. This is the standard contact form in three-dimensions. Indeed,
PTM is canonically isomorphic t®7*M, which has a well-known contact structure,
and which is this prolongation.

Returning to the general rank 2 prolongatieB, letw?, ..., »* be one-forms whose
vanishing definedD. Complete these forms to a local co-framing of allofM by
adding two other one-forms, salx anddy. Restricted toD,,, the formsdx anddy
form a linear coordinate system. Then any lihe D,, can be expressed in the form
adx — bdy = 0, with (a, b) # 0. Thus[a, b] form homogeneous coordinates on the
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projective linePD,,. One obtains a fiber affine coordinate by writipg 5] = [z, 1].
This z is defined away from the “vertical linex = 0 and is the slopez = dy/dx.
Thereforez forms an affine fiber coordinate for the bundd® — M. The Pfaffian
system describing the prolonged distributionRD is 7*w’, i =1, ..., s, together with
o'+t = dy — zdx. The coordinatez breaks down in a neighborhood of the vertical
lines. There we must switch to the other affine coordirfatehich is related taz by
Z=dx/dy = 1/z in their common domain. In such a “vertical’ neighborhood we must
use the formix — zdy instead ofdy — zdx.

PROPOSITION 5.1. —The prolongationE of a Goursat distributionD of rank k and
coranks on a manifoldM is a Goursat distribution of rank and coranks + 1 on the
manifold PD. It satisfie€? = 7*D. If rank(D) = 2 then L (E?) = ker(dr), the vertical
space for the fibration PB> M.

Proof. —-We only give the proof in the casank(D) = 2. E is rank 2, soE? has
rank at most 3. NowE' C 7#*D, wherex*D is the rank 3 distribution of?D defined
by the vanishing of ther*«’ as above. Indeed, in terms of our coordinaigs- {v €
7*D: »'tl(v) = 0} with 't = dy — zdx as above.E? = n*D becausedw’ ™ =
dz Ady #0 mod &1, (See the proof of Lemma 2.2.) Nol/ =n*D/71,j =3, ...,
and they have the right rank, so the rest of the Goursat conditions fdilasvGoursat.

By definition, the vertical spacker(dsz) belongs tor*D, and is involutive. Thus
ker(dm) C L(E?). The equalityker(dn) = L(E?) now follows from the sandwich
lemma and a dimension count. Alternatively, to get equality, use the facEthat* D
is defined by the vanishing of the*w’, and these forms are independent of the vertical
direction. Consequentli(E?) =ker(dr). O

5.2. Deprolongation

The reverse of prolongation is deprolongation. SupposeBhata distribution on a
manifold Q, and thatZ (E?) is a constant rank foliation. Let us suppose that the leaf
space

M = Q/L(E?
is a manifold, and that the projection

T:0—->M

is a submersion. In this case we will say that the foliatiaqiE?) is nice. Since the vector
fields in L(E?) leave E? invariant, the distributior£? pushes down td/. Set

D =m,E?
meaning thatD, ;) = dr,(E?(q)), g € Q. To reiterate, the fact that the flows bf £2)

are symmetries of:? implies that the value oD at m = 7 (g) is independent of the
representativen € 7 ~1(g) which we choose. Note that we have a natural identification:

Dn(p) = E*(q)/L(E?*(q)),
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sinceker(dr,) = L(E?*(q)).
Suppose now thak is Goursat. Therd (E?) has codimension two withi&?, so that
D is a two-plane field or/.

PROPOSITION 5.2. —Assume thakF is a Goursat distribution on a manifol@ with
coranks + 1 and arbitrary rank, and whose leaf space with respeck {&@?) is nice in
the sense above. Then its deprolongatidr= 7, E? is a coranks Goursat distribution
of rank 2 on the quotient manifold/ = Q/L(E?).

Proof. —The distributions EX, k > 2, defined by the inductive relatioE*+! =
[EX, EF], also are invariant under the flows bf E?), sinceL(E?) C L(E*) for k > 2.
It follows that theseE* push down taV/. One easily checks thd?/ = 7, E/*! and that
rank(D/) =2+ j. O

Local deprolongation— If the foliation by L(E?) is not nice, we can still deprolong
locally. To proceed, restrick to a small enough open subset@fc Q. For example
we could takeU to be a flow-box forL(E?), in which caseU = U; x U, with the
leaves ofL(E?) corresponding td/y x {m}. (U is an interval wherim(L(E?)) = 1.)
The restriction ofL(E?) to U is nice, so that we can proceed with deprolongation.
We will call the deprolongationr, E2 of E|; alocal deprolongation. The germ of a
local deprolongation near a particular leaf bfE?) is independent of the choice of
neighborhood! since the flows alond.(E?) preserveE?. Thus we can speak of the
deprolonged gernof any Goursat distribution.

5.3. Prolongation and deprolongation are inver ses

Deprolongation changes rank fromo 2, whereas prolongation preserves the rank of
the distribution, so these two constructions cannot literally be inverses. Rather they ar
inverses “modulo trivial factors”. We say that two distribution germsn M and D on
M arethe same modulo trivial factoi§there are integers, m such that the distribution
germsD x R* on M x R* and D x R™ on M x R™ are diffeomorphic. Recall that
Zhitomirskii's theorem (Section 1, following the table) asserts that any Goursat germ is
the same, modulo a trivial factor, to one of rank 2.

PrRoPOSITION 5.3. —The deprolongation of the prolongation of a ra2klistribution
is diffeomorphic to the original. The converse is true locafhodulo trivial factors, the
germ of the prolongation of the deprolonged germ of a Goursat distribution of any rank
is diffeomorphic to the original.

Proof. —Let E be the prolongation of the Goursat distributibnon M. The leaves of
L(E?) are the fiber®D,, of the fibrations : PD — M, so thatM itself is canonically
identified with the leaf spacBD/L(E?). Now 7*D = E? by the previous proposition,
andn,m*D = D. This proves that the deprolongation of the prolongation is the original.

Conversely, suppose that: U — M is a local deprolongation, whet& is the rank
2 Goursat distribution o/, and D = n,(E?) is its deprolonged distribution. Write
m = (u), withu e U. Thendr,(E,) C D,, is a one-dimensional subspace —an element
of PD,,. Thusu — dn,(E,) defines a mapb .U — PD from the original Goursat
manifold to the prolongatioPD of its (local) deprolongation. We claim that is a
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local diffeomorphism. Indeedp is a fiber bundle map ove¥, so all we need to check
is that the restriction of its differential té.(E?),, the tangent space to the fiber of
m:U — M atu is onto. Moving along the leaf = 7 —1(m) of L(E?) corresponds to
flowing with respect to a nonzero vector field € L(E?). So we want to show that
d®,(W,) # 0. CompleteW to a local framg W, X} for E nearu. Then[W, X](u) # 0,
mod E, sinceEf # E,. This is equivalent to the condition thdtp, (W,) # 0. Finally,
one easily checks th@ mapsFE to the prolongation ob. O

5.4. Monster Goursat manifold. Proof of Theorem 1

Suppose that we had a Goursat distribution of corantn a manifold M with
the property thateverycoranks Goursat germ was represented by some point of the
manifold. Then the prolongation @ff would enjoy the same property, but now among
coranks + 1 Goursat distribution germs! For if we are given any coranrkl Goursat
distribution, its deprolongation is represented by some poinMofby hypothesis.
And by Proposition 5.3, upon prolonging this deprolongation we arrive at a germ
diffeomorphic to the originalThere is such a/ in the corank2 case.Indeed, in this
case, there is only one corank 2, rank 2 Goursat germ up to diffeomorphism. This is
the Engel germ. Thus any Engel distribution on a 4-manifold will serveMomwith
s = 2. It follows thatevery Goursat germ of corank+ 2 is realized within the-fold
prolongation of an Engel distribution!

Now an Engel distribution can be obtained by prolonging a contact structure on a
three-manifold. And a contact three-manifold can be obtained by prolonging the tangen
bundle to a surface (see the example of Section 5.1). We have proved that

every coranks Goursat germ can be found, up to a diffeomorphism, withinstfad
prolongation of the tangent bundle to a surface.

We have called thig-fold prolongation the “monster manifold”. It is a very tame
monster in many respects. Theorem 1 is proved.

Remark— The direction of this section is in some sense opposite to that of Sections 2
and 4. In this section we imagine building Goursat distributions up from below by
prolonging, beginning with a surface. In Sections 3 and 4 we think of building Goursat
distributions “down from above” by taking a coranksoursat flag, beginning with= 2,
and examining all possible “extensions” or “square roots” of its cosag&neratorD;,
thus filling out out the Goursat flag to one of length- 1. Now, the prolongatiorE
of a Goursat distributiorD is a square root off *D (see Proposition 5.1), so the two
approaches are really the same.

6. Proof of Theorems 2 and 3

In this section we prove Proposition 3.1 and Theorems 2 and 3. We will use the
following notation. Given a distributio® and 1-formw on a manifoldM, with w|p # 0,
(D, w) will denote the subbundl& C D for which E(p) = {X, € D(p): w(X,) =0}.
(If w|p is allowed to vanish at some points, th@d, w) is not a subbundle, but rather a
subsheaf.)
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The proof of Theorem 3 is based on our generalized Gray’s theorem (Theorem A.2 ir
Appendix A) and the following proposition.

PrRoOPOSITION 6.1. —Let F: Dy C Ds_1 C---C DiandFy: Dy, CDs_1C--- C
D be two Goursat flags on the same manifold whose distributions agree except at th
largest corank, corank. Suppose thab; = (D;_1, w) and thatDy ; = (D;_1, wy), for
1-formsw and wy. Assume thaby — w in the C'-Whitney topology] > 1. Then there
exist global diffeomorphisme&, such that®y — id in the C'-Whitney topology and
(®y)«Fy = F for sufficiently bigh.

We also need the following local version of this proposition.

PROPOSITION 6.2. —

Part 1 (For germs at a nonfixed poin§ssume the flagg and Fy are the same as
in Proposition 6.1, but the conditionwy — w is replaced by the conditiorj[ﬁa),\, —
jf,w,l > 1 for some pointp. Let U be any neighbourhood of the poipt Then for
sufficiently largeN there exist open setpossibly disjoint U)Y, UY c U with p € U}
and a diffeomorphisn®@y : U¥ — UJ which sends the flagy restricted toU;" to the
flag F restricted toU,', and satisfieg!, @y — j/id asN — oc.

Part 2 (For germs at a fixed point). FiX and assume that the Goursat flagsand
Fy are the same as in Propositidhl. Assume also thaf,a)N = jllja) for some pointp
and!/ > 0. Then there exists a local diffeomorphisbnpreserving the poinp, sending
the germ atp of Fy to the germ ap of F and such that if > 1 then j{® =id.

Remarks. —

1. Note that in part 1 we may havey(p) # p for all N. To make sense of the
condition j, '@y — j~tid one should take/ to be a coordinate neighborhood and
identify thefth jet with thefth order Taylor expansion @b .

2. Proposition 6.1 and the first part of Proposition 6.2 hold/for 1 whereas the
second part of Proposition 6.2 also covers the ¢as8. This difference is essential. The
casel = 0 is necessary for the proof of Proposition 3.1 and the progfadterminacy
in Theorem 2.

Proof of Proposition 3.1. Fhis is the casé= 0 of Proposition 6.2 (part 2). O

Proof of Theorem 3. tet F: D, C D,_1 C---C D, C DyandF: Dy C Dy_1 C

. C D, c D, be Goursat flags on manifold/ described byCs+!-close tuples
w1, ..., w5 and @y, ..., &, of 1-forms. Assume that the foliations(D;) and L(D;)
are the same. By Theorem A.2 (Appendix A) there existS*eclose to the identity
diffeomorphism®; of M which brlngle to Dl This diffeomorphism brings the flag
F to the flag(®1).F: (@1).D; C (®1).D,_1 C --- C (®1). D> C D, described by the
tuple of 1-formsw;, ®; @y, ..., o, Which is C*~ Lclose to the tuplevs, w, ..., ws.
Now we apply Proposition 6.1 with = 2 there and the there equal to the current
s — 1. It guarantees the existence ofC& !-small diffeomorphism&, which brings
the length 2 flag@,). D> C D1 to the flagD, C Dy. This dlffeomorphlsm brings the
flag (®1).F to the flag(®2®1).F: (®281). Dy C ($2P1),Ds-1 C -+ C (P2P1). D3 C
D, C D1 described by the tuple of 1-forms,, w;, (P2P1)* @3, ..., (P2P1)*d; which
is C*~?-close to the tupl@s, wo, ws, . . ., ws. Continue applying Proposition 6( — 3)
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times more we to obtain a sequence of diffeomorphighgs. .., &, 1 for which the
composition®,_,®,_,--- @, brings the flagF to the flag F described by 1-forms
w1, W, . .., ws_1, O5, Whered, = (@,_1P,_»- - - P1)*@,. The 1-formsd, andw, areC?*-
close. Using Proposition 6.1 for one last time we obtain a diffeomorplisnavhich
brings the flagF' to the flagF. The diffeomorphismd, ®,_1®,_,- - @, brings the flag
F to the flagF.

Proof of Theorem 2 — structural stability. Fhis follows from Theorem A.3 (part
1) and the Proposition 6.2 (part 1) in the same way that Theorem 3 followed from
Theorem A.2 and Proposition 6.1.

Proof of Theorem 2 s-determinacy. The proof is essentially the same as the proof
of Theorem 3 above, except we use Theorem A.3 (part 2) instead of Theorem A.2, an
the second part of Proposition 6.2 instead of Proposition 6.1. Namely, we start with twc
germsF and F at a fixed pointp of Goursat flags of lengtl described bys-tuples
of 1-formswy, ..., w,_1, w, anday, ..., @,_1, @, as in the proof of Theorem 3 above,
and having the samejets atp. Using Theorem A.3 (part 2) and then Proposition 6.2
(part 2),s — 2 times we conclude thall is equivalent to the germ of another Goursat
flag F at p, whereF is described by the tuple of 1-forms, .. ., w_1, &, and where
@s(p) = w(p). Now apply Proposition 6.2 (part 2) with=0 to conclude that the germ
of F is equivalent to the germ of.

Proof of Proposition 6.1. Fhe proof will consist of three steps.
First step.We will show that for sufficiently largev the flag

FN,t: Ds,N,t CDs_1C---CDy, Ds,N,t = (Dy, CUN,t), Wy =0+ t(wy — )

is a Goursat flag for any € [0, 1]. To show this we have to check the following
statements:
(@) on.:lp,y,p) Is @ nonzero 1-form for any € M, t € [0, 1] and sufficiently large
N;

(b) dwn lp, v, p is @nonzero 2-form for any € M, ¢ € [0, 1] and sufficiently large
N;

(c) if uis a 1-form annihilating the distributioR_; thendu|p,  ,(,» = 0 forany N,
any p € M andr € [0, 1].

The statements (a) and (b) follow from the fact that they are valids terO, the
condition thatwy tends tow in the C1-Whitney topology (here we use that: 1 in
the formulation of Proposition 6.1), and the observation that the hypergane (p)
as well as the restrictions of the formg, ; anddwy , to this hyperplane depend on the
1-jet atp of the formwy , only.

To prove (c) we consider the spadgD;_1)(p). By the sandwich Lemma 2.1 it
is a codimension 2 subspace Df_;(p) and the 1-formsw and wy annihilate this
space. Thereforey , annihilatesL (D;_1)(p) for all ¢, i.e., L(Ds_1)(p) is a hyperplane
in D; y,(p), independent ofN. BecauseL(D;_1)(p) is the kernel of the 2-form
du restricted toD;_1(p), where . annihilatesD,_1 but not D;_, (see Lemma 2.2),
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any hyperplane inD;_;(p) containing L(D,_1)(p) is isotropic fordu. In particular,
D; n.(p) is isotropic ford .
Second stepWe have proved thafy, is a Goursat flag for sufficiently larg&/
and allz € [0, 1]. In what follows assume thaV is sufficiently large. Now we start
to construct a patl®py , of global diffeomorphisms such th&a®y ). Fy, = Fyo=F
and in particula®y 1) Fy = F. We use the homotopy method. The second step of the
proof is to reduce the construction &y, to the construction of a patkiy , of global
vector fields satisfying the linear equations

Xy ldoy, +oy —o)lp,y, =0, Xy, €L(Ds_1). (6.1)

Assume thatXy , satisfies (6.1). Consider the following ordinary differential equation
and the initial condition with a parametgre M:

d(pN,z(P)

= Xy (®Pni(p)), Pno(p)=p, peM. (6.2)

SinceM is a compact manifold andvaries on the compact segmégft 1], the solution
of (6.2) is a pathdy , of global diffeomorphisms oM. Let us show that®y ;). Fn.; =
Fy 0. The conditionXy , € L(D_1) implies that®y , preserves the distributio;_;.
Therefore to show thaty ;). F; = Fp it is suffices to show that there exists a péath ,;
of nonvanishing functions such that

(HN,té;tl’[wN,t - 600)|DS,1 =0. (6-3)

We will seek forHy ; in the formHy , = €'~ whereh y ¢ is a function identically equal
tol. LetAy, = Hy Py oy, — wo. ThenAy o is the zero 1-form and therefore (6.3)

can be replaced by the equatioht)|, , = 0. We have
dAN,l th’[

* * dwN,f
7 :HN,t7¢N,;wN,t+HN,z(pNJ Lxy, on:+ )

where Ly, , is the Lie derivative along the vector fieldfy,. Let gy, be a path

of functions onM such that?s — gy (@y,). Then equation(“2%)|, =0 is
equivalent to the equation
(gnion; + Ly, on: + oy —o)|p,_, =0 (6.4)

with respect to the path of functiongy,. By the sandwich lemmad. (D,_;) is a
subset ofDy, for all r. Thereforewy, annihilatesXy, € L(D;_;). It follows that
Lxy oy = Xn:ldoy,. Then (6.4) can be written in the form

(gnon: + Xy ]doy, + oy —o)|p, , =0.

This equation has a solutigpy , due to relation (6.1), and the definition D y ;.
Third step.Note that the diffeomorphisme@, , defined by the ordinary differential
equation (6.2) tend to the identity diffeomorphismMs— oo in the same topology in
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which Xy ; — 0. Therefore to finish the proof of Proposition 6.1 it suffices to prove that
(6.1) has a solutioX v, tending to the zero vector field & — oo in the C!-Whitney
topology. The third step of the proof is to construct sigh;.

Fix a Riemannian metrics oM. Let Vi ,(p) C D ny.(p) be the orthogonal com-
plement toL (Dy y,)(p) within D; y,(p) with respect to this metric. By Lemmata 2.1
and 2.2dimVy ,(p) = 2 andrank(dwy ;)|vy ,») = 2. Therefore there is a unique vector
Xp Nt € Vn,(p) such that

(Xp’N’tJdCL)N’;—l-CL)N —w)lvt(p):O, pEM, te[O, 1] (65)

SetXy . (p) =X, n:. Sincewy — w tends to 0 in theC’-Whitney topology, Xy, — O
asN — oo in the same topology. We will show that the paily , satisfies (6.1). This
will complete the proof of Proposition 6.1.

SinceL(Dy ;) ® V, = Dy y, the first condition in (6.1), which is to say the validity
of equation there, follows immediately from (6.5) once we have shown that all the
forms in that equation, namebiwy ,, oy andw annihilateL(D; ;). The fact thatiwy ,
annihilates any vector ik (D; ) is contained in Lemma 2.2. To prove thatandwy
annihilate, use the sandwich Lemma 2.1 twice to concludeltbBt_1)(p) is contained
in both D(p) and in D, x(p). Thereforew andwy annihilate the spacé(D;_1)(p).
But the sandwich lemma also givesD; ;)(p) C L(D,_1)(p), and therefore these forms
annihilateL(Dy ,)(p).

It remains to prove the inclusiokiy , € L(D;_1) of EqQ. (6.1). The validity of the first
equation (6.1) and the fact thatandwy annihilate the spack(D;_1)(p) imply

(X nildon )i, o =0. (6.6)

By the sandwich lemma (D;_;)(p) is a hyperplane iD, y ,. Every such hyperplane is
isotropic, so (6.6) implies that eitheéf, v, € L(D,_1)(p) or thatX, 5, is a nonzero
vector in the kernel of the 2-fornidwy ,)Ip, ,,. The latter possibility is excluded
by the conditionX, v, € Vy,(p), the orthogonal complement th(D, ) (p) =
ker(dwy ;)|p, v, - Proposition 6.1 is now proved.0

Proof of Proposition 6.2. Fhe proofs of the statements of Proposition 6.2 with 0
are almost the same as as the proof we have just given. The difference occurs main
in the construction of the diffeomorphisiy , by the ordinary differential equation
(6.2). Concerning the case of part 1, the problem is tha&i,if, is a time-dependent
vector fields on a neighborhood of a point p then its flow will typically map out
of that neighborhood — hence the business with dom&ijfisn part 1. Although there
may be no single flow ,, t € [0, 1] of diffeomorphisms on a single neighborhood of
p, nevertheless, foN large the vectoX y ,(p) is sufficiently close to zero so that the
solution of (6.2) defines diffeomorphisnay , : UY — Uy, t € [0, 1], whereU}" is a
neighbourhood ofy contained inU andU2, is an open subset @f (which may or may
not containp). '

In the case of part 2 we have to show thatp) = p andU;, containsp. This follows
becauseXy ;(p) =0 for all .
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The proof of Proposition 6.2 (part 2) with= 0 is also the same, except that we
meet a difficulty in the first step of the proof. We have to show that the restriction
6,(p) of the formdw + t(d& — dw) to the spaceD,(p) = D,(p) does not vanish for
all # € [0,1]. This is true forr =0 and =1, but if / = 0 thendw (p) might not be
close toda(p) even in theC®-topology and consequenty(p) might vanish for some
t € (0,1). Sinced,(p) depends linearly om, this is impossible i#y and6; define the
same orientation of the 2-spafe(p)/L(D;)(p) (the orientations are well-defined since
L(Dy)(p) is the kernel oby(p) andb,(p)). If the orientations are different then we have
to show the existence of a symmetry of the germ af the distributionD,_1 which also
preserveso(p) and the foliationL (Dy)(p) and changes the defined above orientation.
We can find local coordinates centeredpasuch thatL(D,_,) = (dxq, ..., dxs11)*
andL(Dy) = (dxa, ...,dxs,1, dx,.2)*, and such that the forms defining tiie can be
taken to be independent of, j > s + 2. It follows from the sandwich lemma that the
diffeomorphismx,,», — —x,.5 is a symmetry of the required type.
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Appendix A. Generalization of the Gray theorem

Gray’s theorem [12] states that for any path of global contact struciygse [0, 1],
on an odd-dimensional manifoltf there exists a family of global diffeomorphisms
@, M — M such that(®,),D; = Dg,t € [0, 1]. It follows that two global contact
structuresD and D are equivalent provided thad is sufficiently close toD in the
Whitney C*-topology.

In this section we generalize Gray’'s theorem to corank one distributibrd any
constant classLet w be any nonvanishing 1-form describirg near p. By the class
of D at p we will mean the odd number 2¢ 1 such thatw A (dw)"(p) # 0 and
o A (dw) Y (p) = 0. The even integerr2is the rank of the restriction of the two-form
dw,t0D,.

A corank one distribution hasonstant clas# this class 2 + 1 does not depend on
the pointp € M. The definition of the class is due to Frobenius [6] and Cartan [2].

For example, the class of a contact structure is the dimension of the underlying
manifold. The maximal possible class of a corank one distribution on a manifold of even
dimension 2 is 2k — 1. Such a distribution is called a quasi-contact, or even-contact,
structure. A foliation of codimension one has class 1, the minimal possible class. Ir
Section 2 we proved that the corank one distributlenof a Goursat flag has constant
class 3.

Recall that thecharacteristic foliationL (D) of the distribution D is the foliation
generated by vector field$ € D such tha{X, D] c D, i.e.,[X,Y] e D foranyY € D.

The characteristic foliatio.(D) C D for a corank 1 distributionD of constant class
2r + 1 has codimensionr2within D. It is the kernel of the 2-forndw|p (), Wherew
is as above. (See the proof of Lemma 2.2.) This kernel coincides with the kernel of the
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(2r +D-form w A (dw)"(p) on the spacé, M. (By the kernel of an exteriay-form on
a vector space we mean the subspace of veetsrigch that the form annihilates every
q-tuple of vectors containing.)

For example, the characteristic foliation of a quasi-contact structure is a line field.
The characteristic foliation of a contact structure is trivial: it is the zero section of the
tangent bundle. The characteristic foliation of an involutive corank one distribution is the
distribution itself. The characteristic foliation of the corank one distribution of a Goursat
flag has codimension 3 within the manifold.

The following theorems generalizes Gray’s theorem. Bgoariented corank one
distributionwe mean a distribution which can be globally described by a 1-form.

THEOREM A.1l.—Let D, be a path of cooriented corank one distributions on a
compact manifoldV of constant clas@r + 1 such thatL(D,) = L(Dy), t € [0, 1]. Then
there exists a pattp, of global diffeomorphisms @ such that®;). D, = Dg, t € [0, 1].

For quasi-contact structures Theorem A.l is known to specialists, although is
unpublished to our knowledge.

Using Theorem A.1 we obtain Theorem A.2 below. We need it for our proofs of
Theorems 2 and 3 in the body of the present paper, where it is applied to the case ¢
corank one distributions of constant class 3.

THEOREM A.2.—LetD and Dy, N=1,2,..., be cooriented corank one distribu-
tions on a compact manifolsif of constant clas@r + 1 such thatDy — D asN — oo
in the C'*1-Whitney topology! > 1, and L(Dy) = L(D) for all N. Then there exists
a sequenceby of global diffeomorphisms oW/ such that®y — id as N — o in the
C!-Whitney topology and®y ). Dy = Dy for sufficiently bign .

Proof of Theorem A.l.Fix a Riemannian structure oM. For p € M, denote
by Vi(p) € D;(p) the Z-dimensional subspace db,(p) which is the orthogonal
complement toL(D,)(p) with respect to this metric. Leto, be the path of 1-
forms describingD,. The form 2-formdw;|y,,) is nondegenerate becaus€D,) =
kerdw,|p,p). Therefore the equatio(X,(p) |dw,)|v,» = u:(p) has a unique solution
X:(p) € Vi(p) for any 1-form u,(p) on V,(p). We need this solution whep, =
—%M(m- The solution X;(p) depends smoothly (analytically) on the poiptand
on ¢, and so defines a smooth (analytic) path of vector fields onM. The relation
X, |ldw, = —% in fact holds upon restriction to the entire spdeg p). This is because
L(D))(p) = kerdw,(p) and because the 1—for|%j—' vanishes orL(D,)(p). The latter
fact is a consequence of the condition thaD,) = L (Dg) does not depend anThis is
the only place in the proof where this condition is used.

Now define the path®, of global diffeomorphisms to be the solution to the ordinary
differential equatior% = X,(®,) with the initial condition® = id. We will show that
(D))« D; = Dg. We have%((qb,)*wl) =@ (Lx,w + %), where/ is the Lie derivative
alongX;. SinceX, is annihilated byw, the Lie derivative is equal t&, |dw,. We showed
that (X, Jdw, + %) p,(» = 0 for any pointp. This implies thatX, |dw, + 42 = h,w,
for some path of functions,. Therefore the path of 1-form$, = (®,)*w, satisfies the
linear ordinary differential equatiod2: = i, A, with /, = h,(®,) with initial condition
Ag = wg. We can integrate this equation. Indeed the andatz H,;wq yields the scalar
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differential equationdd% = h, H, with solution H, = exp{fg h,ds}. We have shown that
A, := @ w, = H,wo Which means that®;).. D, = Dg. O

Proof of Theorem A.2. ket w be a global 1-form describingy, and letoy be global
1-forms describingDy and such thaby — w in the WhitneyC!*+*-topology. Since the
(2r + 1)-forms oy A (doy)” andw A (dw)” have the same kernél(Dy) = L(D) of
codimension 2#+ 1 thenaoy A (doy)" = Hyw A (dw)”, where Hy is a nonvanishing
function. Replacéy by wy = % The formswy also describe distributiond,, and
we have '

oy A ([doy) =o A (do)". (A.1)

The value ofHy at any point depends on the valueswgfoy and their differentials
at the same point only, therefordy — 1 in the WhitneyC’-topology. Consequently
oy — w in the same topology.

Define the path

oy =w+t(wy —w), te]0,1],

of one-forms. LetDy , be the field of kernels aby .. We show that for sufficiently big
N the distributionDy , is a corank one distribution of the same constant rank 2 and
with the same characteristic foliatiab(Dy ;) = L(D) for all ¢ € [0, 1]. This follows
immediately from the following two statements:

(@) wn.: A (doy,) (p) # 0 (for sufficiently bigN, anyr € [0, 1], and anyp € M);

(b) doy,(Z,Yy,) = 0 for any vector fieldZ € L(D) and any vector field’y , €

DN,t-
Statement (a) follows from th€’-closeness ofvy; to w, the compactness of the
segmen{0, 1] and the conditiord > 1.

To prove the second statement we use equality (A.1). Fix a vectotZield.(D). We
know thatZ(p) belongs to the kernel alw(p)|p(,) for any pointp of the manifold.
This condition implies thaZ |dw = hw for some functiom:. Similarly Z |dwy = hywy
for some functionzy. To prove (b) it suffices to show thaty = &. Indeed, ifhy =h
then for any vector field’y , € Dy, we have:

doy(Z,Yy)=A—-t)dw(Z,Yn,) +tdon(Z,YN,)
=A-hoYy,) +thoy(¥Yn,;) =hoy,(¥Yn,) =0.

To prove thathy = h we take the Lie derivativel ; of the relation (A.1) along the
vector fieldZ. SinceZ belongs to the kernel of each of tkigr + 1)-forms in (A.1),
we obtainlz (w A (dw)") = Z|(dw) ! = (r + D)(dw)" A (Z]dw) = (r + Dho A (do)"
and, in the same way, 7 (wy A (dwn)") = (r + Dhyoy A (doy)”. But (A.1) holds, and
hence so does the Lie derivative of (A.1) with respecZ t&We conclude thak y = &.

We have proved that the path of distributiabg ; satisfies the conditions of Theorem
A.1. By this theorem there exists a diffeomorphighy sendingDy = Dy 1 t0 D =
Dy o. Tracing the proof of Theorem A.1 we see thatMs— oo the diffeomorphism
@y tends to the identity diffeomorphism in the same topology in which the 1—f’éjé}n

tends to zero 1-form. Sinc@’;’j—*‘ =wy — w andwy — o in the C'-Whitney topology,
we have thatby — id in the same topology. O
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We also need the following local version of Theorem A.2. Its proof is the almost the
same.

THEOREM A.3. —

Part 1 (For germs at a nonfixed pointtet D and Dy be corank one distributions
on a manifoldM of constant clas®r + 1 described byl-forms e and wy such that
j},ch — jlljw for some pointp € M, and for! > 1. Let U be any neighborhood
of the pointp. Then for sufficiently largeV there exist open setgossibly disjoint
UY, Uy c U with p € UY and a diffeomorphisn®y : U — U) which sends the
distribution Dy restricted toU;" to the distributionD restricted toU2', and satisfies
jﬁ_léN — jf;_lid asN — oo.

Part 2 (For germs at a fixed point)et D and D be germs at a poinp of corank one
distributions of constant clas? + 1 with the samé-jets atp, [ > 1. Then there exists
a local diffeomorphism® such thatj’ '@ = j’~%id and®,.D = D.

Note that in part 1 in generaby (p) # p. To make sense of the conditiglj *®y —
jll,‘lid one should také/ to be a coordinate neighborhood and identify tkiejet with
the ¢th order Taylor expansion @b .

Appendix B. Proof of Lemma 3.2

This lemma is based on the following statement.

PROPOSITION B.1. —Let D be any Goursat distribution of corank> 2. All eigen-
values of the linearization gt of any local symmetrg € Symm(D) are real.

We prove this proposition at the end of this appendix. To show how it implies Lemma
3.2 we need several reduction steps.

Step 1The projectivityg, of the circleS*(D)(p) depends orj[}cb only. Therefore to
prove Lemma 3.2 it suffices to prove the following statement:

R1.-Let® € Symm(D). Then we can expregs” in the form®? = w;exp(V) where
Y,exprV) € Symm(D), V is a vector field germ ap, vanishing atp and ¥, is a family

of local diffeomorphisms such th@%llf, id, 7 € R.

Note that we are not asserting thitor exp(z V) lie in Symm (D).
Step 2.Proof of (R1). Fix anyk > s = corank(D). It follows from Proposition 6.2,
part 2 that if D is a germ atp of a Goursat distribution such thaij = jkD then

there exists a local diffeomorphisd such that®, D = D and]I’,‘ ‘@ =id. In particular
=id. Therefore to prove (R1) it suffices to prove the following statement:

R2. -Let® € Symm (D). Then there exists a local vector fiellsuch that
Iyt = jitexpv), (B.1)
Jyexp(tV),D=jD, t€R. (B.2)

Step 3.We show that (B.1) implies (B.2). It is clear that (B.1) implies (B.2) for all
integerz. By Proposition B.1, the eigenvaluesj;}fcb are real, therefore the eigenvalues



488 R. MONTGOMERY, M. ZHITOMIRSKII/ Ann. . H. Poincaré — AN 18 (2001) 459-493

of jjcbz are positive and consequently those jo¥/, are real. Therefore the relation
(B.2) can be expressed in the foifp(r) = - - - = F,,(t) = 0, where each of the functions
Fi,..., F, is a linear combination of real exponential functions with polynomial
coefficients. Since;(r) = 0 for any integer then F; () = 0 and (B.2) holds.

Step 4We have reduced Lemma 3.2 to the proof of the existence of a vectoifield
satisfying (B.1). Let/;** be the space of thé + 1)-jets atp of functions vanishing gp.
Consider the linear operator: Ji™ — J¥+! such thatA(f) = ji* f(@?), f € JiH.

To prove that (B.1) holds for some vector fidldit suffices to show that the operator
A admits a logarithm, i.e., that there exists a linear operAtof;** — J¥+! such that
A = exp(B). To show this it suffices to prove that the eigenvalued @fre real positive
numbers. It is known that the eigenvalues Afhave the formij* - --- - A%, where
A; are eigenvalues of the linearization @f at p, and where they; are non-negative
integers which sum té + 1. By Proposition B.1 thesg;’s are real positive numbers.
Therefore the same is true for the eigenvalues of the opesatdne proof of Lemma 3.2
is completed.

Proof of Proposition B.1. Fo prove Proposition B.1 we will show that in suitable
coordinate system the matrix g)]fqb is triangular. LetD =D, Cc D,_1C---C D, C Dq
be the Goursat flag generated by Take a local coordinate syster, ..., x, centered
at the pointp such that the Engel subflab, c D; is described by 1-forms; =
dx1 — xodx3 andws = dxo — x4dx3 and the characteristic foliations(D;) have the
form (dxy, ...,dxiz2)*, i =1,...,s. Denoted; = @ (x;). The form of the characteristic
foliations and the fact that they are preservedZbynplies that% (0)=0forj >iand
J > 3. To show that the matrix of the linear approximation]@fis triangular in the
chosen coordinate system we have to prove that

0P 0P 0P
—0)=—(0)=—2(0)=0. (B.3)
aX2 aX3 aX3

To prove (B.3) we use the relatiods w, = Hw, and ®*w, = Hiw; + How, that hold
for some functiongd, Hy, H,. Write these relations in the coordinate system . ., x,,.
We obtain

d@l — @261@3 = H(dxl — X2dX3),
d®y, — PydP3 = Hi(dx1 — xp2dx3) + Ho(dxy — x4dx3).

Sinced,(0) = @4(0) = 0 we obtain (B.3). O

Appendix C. Kumpera—Ruiz normal forms, Mormul’s codes, and growth vector
The Kumpera—Ruiz normal forms are preliminary normal forms for cosa@kursat
flags. They are parametrized by a subdets {3, 4, ..., s} and provide representatives

for the Kumpera—Ruiz singularity classes

D;(0)=L(D;-2)(0), iel; D;(0) # L(D;2)(0), i¢l,
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described in Section 2. Using Proposition 3.1, Lemma 2.2 and arguing by induction, it
is easy to prove that any such flag germ can be describedldprmswy, ..., w, of the

type
w; =df; — gidh;, i>2,
together with
w1=dy —z1dx, wo=dz1 — z2dx,

where the functions;, g;, h;, i > 2, are as follows:

fi=gi-1, hi=hi_1, g=zi+c¢ fi¢l,

fi=hi—1, hi=gi—1, g=2z Iifiel

The constants;, i ¢ I, are real parameters arising in the Kumpera—Ruiz normal forms.
The number of these parameters is equal toinus the cardinality of the sdt These
parameters are not invariants in general. For example whethe empty set all of the
parameters can be reduced to zero according to the Cartan theorem.

P. Mormul treats the problem of local classification of Goursat distribution®’on
of rank 2 as the problem of normalizing the parameterBy changes of coordinates.
To systematize his results Mormul introduced the following codes. The Kumpera—Ruiz
normal form corresponding to a subdet {3,4, ..., s} is coded by the tuple of — 2
digits, where théth digitisa 2 ifi +2¢ I andisa 3 ifi + 2 € I. The digit 2 acts like an
indeterminant: if the constaat,, in the Kumpera—Ruiz normal form can be normalized
to 0 then Mormul changes it to 1,df,» cannot be normalized to 0 but can be normalized
to either 1 or to—1 then Mormul replaces the 2 by eithebald 2 or a2-. However, if
i +2¢ I, but one does not know, or does not want to specify whether or nef thean
be normalized, then Mormul leaves it as a 2.

These codes allow Mormul to formulate his results in a very compact way. For
example the assertion “31B2.2=3.3.1.2.1” in [18, p. 15] means that in the Kumpera—
Ruiz normal form for Goursat flags of length 7 corresponding to thd set{3, 4} C
{3,4,...,7}, one can reduce the constanto O provided that the paramete«s cg have
been normalized to 0 and 1 respectively. Translating this result to our language we obtai
the following. If D is a Goursat distribution of corank 6 a@tr' (anyn > 8) generating
the flagD = Dg C - - - C Dy with singularity D3(0) = L(D1)(0), D4(0) = L(D;)(0) and
such thatDs(0) is tangent to the submanifold of points at which this singularity holds
whereasDg(0) is generic, then the spade(Ds) is the only fixed point of the circle
$1(D)(0) and therefore the sefD consist of two orbits.

The Cartan theorem admits an alternative formulation in terms afrtwsth vector
The growth vector at a poinp of a distribution D (not necessarily Goursat) is the
sequencegy, g2, ..., Where g; is the dimension of the space spanned by all vectors
of the form [X1, [X2, [X3, ..., X;11]...1(p) with X;,...,X; € D, and j < k. For
nonholonomic distributions on anmanifold g; = n for some finite/ and so the growth
vector is an-tuple g = (r, ..., n) starting with the rank of D and ending withz. The
number! as well as the growth vect@g may depend on the point. At generic points
of a Goursat distribution, as described by Cartan’s normal form (C) of Section 1, this
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Table 2
s 2 3 4 5 6 7 8 9
or(s) 1 2 5 13 34 93 00 00

ar(s) 1 2 5 13 34 89 not known not known

growth vector isg = (r,r + 1,r + 2,r + 3, ..., n). This is the growth vector with the
fewest number of components£ n — r), or fastest growth, given the constraint that it

is that of a Goursat distribution. Murray [20] proved the converse: a point of a Goursat
distribution with this growth vector is a nonsingular point.

This, together with other computations, suggested the conjecture that the growtl
vector is a complete invariant of Goursat distributions, i.e., that two germs of Goursat
distributions at a poinp are equivalent if and only if they have the same growth vectors
at p. Mormul showed [17,18] that this conjecture is false §of 6, although it is valid
for s < 6. The growth vectors of Goursat distributions can be quite complicated. For
example using normal forms Mormul found a Goursat 2-distributionsR8rwhose
growth vector at the origin is,3,4,4,5,5,5,6,6,6,6,6,7,...,7,8,...,8,9 where 7
is repeated 8 times and 8 is repeated 13 times.

The numbergr(s) of all possible growth vectors for Goursat distributions of a
fixed coranks is finite. (Computing the growth vector from the normal form is
a straightforward tedious job.) Mormul obtained [18] the following table (Table 2)
comparinggr(s) with the numberor(s) of orbits in the space of germs of Goursat
distributions of the same corank

The tuplegr(2), gr(3), ..., gr(7) is the list of the first 6 odd Fibonacci numbdrs _.
Conjecturally, this pattern continuegr(s) is the (2s — 3)d Fibonacci number for all
s. In particulargr(8) = 233,gr(9) = 610. Results in this direction have been obtained
by Jean [13], Sordalen [21,22] and Luca and Risler [15] for the Goursat distribution
corresponding to the kinematic model of a truck pulling 1 trailers.

In the next appendix we use our Theorem 1 to give a simple prooftiieatocal
classification of Goursat distributions corresponding to the model of a truck with
trailers and the local classification of arbitrary Goursat flags of length- 1 are the
same problemThis allows us to extend some of these truck-trailer resultgrgs) to
arbitrary Goursat distributions.

Appendix D. The kinematic model of atruck with trailers

In this appendix we use Theorem 1 to give a simple proof that

the local classification of Goursat distributions corresponding to the model of a truck
with s trailers and the local classification of arbitrary Goursat flags of length 1 are
the same problem
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The kinematic model of a truck towingtrailers can be described by a 2-distribution
on R? x (S1)**+1 generated by vector fields

0 . 0 . 0
X;:cos@ofga +sm<90f35 +sm(01—«90)ff8—90 + -

ol
30,1

+sin; — 6,-1) f;

where

=] cos6; —0;-1), i<s—1, fi=1,
j=i+1l

(x, y) are the coordinates of the last trailer (trailer numdjed; is the angle between the
truck and thex-axis, and; is the angle between the trailer number i and thex-axis.
See the works by Fliess et al. [5], Sordalen [21,22] and Jean [13]. This representatiol
holds under the condition that the distance between the truck and the first trailer i
equal to the distance between ftle and the(i 4+ 1)st trailers. The distributioiX;, X%)
generated by; andX? satisfies the Goursat condition, see [13].

PropPosITIOND1. —The Goursat distribution spanned B/, X5 and defining the
kinematics of a truck pulling trailers is diffeomorphic to the&s + 1)-fold Cartan
prolongation of the tangent bundle to the Euclidean plane.

Combining this proposition with Theorem 1 and the reduction from Goutsat
distributions to Goursat 2-distributions given in Section 1, we obtain the following
corollary.

COROLLARY D1.—All corank s + 1 Goursat germs occur within the truck-trailer
model withs trailers. Namely, any gernD of any Goursat2-distribution onR**3 is
equivalent to the germ of the distribution spanned Ky, X3) at some poinp = p(D)
of R? x (§1H)**1. More generally, any germ of any rakkGoursat distribution orR*+s+1
is equivalent to the germ of the distribution spa®, X3} & R =2 on R? x (S1)**+ x
Rk-2,

Remark—We now can state Theorem 1 in the following picturesque way. Every
singularity for a corank Goursat distribution corresponds to some way of jacknifing
a truck towings — 1 trailers.

Proof of Proposition D1. We show that the distribution spanned byi*l, X%*l)
on R? x ($1)*+2 is the Cartan prolongation of the distribution spanned(ly, X3)
on R? x (S1)*+1. Let p € R? x (SH)**1. The set of directions in the space spanned
by Xj(p) and X5(p) is parametrized by an angl¢ € [0, =) by representing each
direction by the span of the vector epX(p) + sing X5(p). The Cartan prolongation
of the distribution spanned bgX3, X3) is the distribution onR? x (S1)**2? spanned

by vitt = 5 and Y5 = cospX] + singXs. Replace¢ by the angle6,.; =
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¢ + 6,. In the new coordinates, y, 61, .. ., 6,, ;.1 we havey;™ = 39?% = x5 and

Y5 = x5 modx;t. Therefore(y;™, v3™™) and (X;™, X5™) span the same 2-
distribution. O

Now we can extend known results on the growth vector of the truck-trailer
distributions 7, = spar{X3j, X5} to arbitrary Goursat flags. Jean [13] proved that the
number of distinct growth vectorg(p) for T,, as p varies over the truck-trailer
configuration spaceR? x (S1)°*!, does not exceedy,_ ;. Here F; denotes theth
Fibonacci number. Sordalen [21,22] and Luca and Risler [15] estimated the degree G
nonholonomy of thel; from above. Recall that this is the length= £(p) (the number
of components) of the growth vectg(p) at p. They provedi(p) < F,,3 at any point
p € R? x (§1)**! and that there exist certain points where equality is achieved. (These
certain points correspond to the case where each trailer, except the last, is perpendicul
to the one in front of it.) These results, combined with Corollary D1 have the following
corollaries.

COROLLARY D2. —Let D be a Goursat distribution of corankon ann-dimensional
manifold M. Then the degree of nonholonomyfat any point ofM does not exceed
the Fibonacci numbeF; .

COROLLARY D3.-The number gis) of all possible growth vectors of Goursat
distributions of coranls does not exceed the Fibonacci numigy_s.
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