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ABSTRACT. – A Goursat flag is a chainDs ⊂Ds−1⊂ · · · ⊂D1⊂D0= TM of subbundles of
the tangent bundleTM such thatcorankDi = i andDi−1 is generated by the vector fields inDi

and their Lie brackets. Engel, Goursat, and Cartan studied these flags and established a normal
form for them, valid at generic points ofM. Recently Kumpera, Ruiz and Mormul discovered
that Goursat flags can have singularities, and that the number of these grows exponentially with
the coranks. Our Theorem 1 says that every coranks Goursat germ, including those yet to
be discovered, can be found within thes-fold Cartan prolongation of the tangent bundle of a
surface. Theorem 2 says that every Goursat singularity is structurally stable, or irremovable,
under Goursat perturbations. Theorem 3 establishes the global structural stability of Goursat
flags, subject to perturbations which fix a certain canonical foliation. It relies on a generalization
of Gray’s theorem for deformations of contact structures. Our results are based on a geometric
approach, beginning with the construction of an integrable subflag to a Goursat flag, and the
sandwich lemma which describes inclusions between the two flags. We show that the problem
of local classification of Goursat flags reduces to the problem of counting the fixed points of
the circle with respect to certain groups of projective transformations. This yields new general
classification results and explains previous classification results in geometric terms. In the last
appendix we obtain a corollary to Theorem 1. The problems of locally classifying the distribution
which models a truck pullings trailers and classifying arbitrary Goursat distribution germs of
coranks + 1 are the same.
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RÉSUMÉ. – Un drapeau de Goursat est une chaineDs ⊂ Ds−1 ⊂ · · · ⊂ D1 ⊂ D0 = TM des
sous-fibres de l’espace tangentTM aveci = corangDi et tels que les champs de vecteurs deDi

et leurs crochets de Lie engendrentDi−1. Engel, Goursat, et Cartan ont étudié ces drapeaux et
ont établi une forme normale pour elles aux points génériques deM. Récemment, Kumpera,
Ruiz et Mormul ont découvert que les drapeaux de Goursat peuvent avoir des singularités,
et que leur nombre grandit exponentiellement avec le corangs. Notre théorème 1 dit qu’on
trouve chaque Goursat germe de corangs dedans les-fois prolongation de Cartan de l’espace

✩ The work was supported by the Binational Science Foundation grant No. 94-00268. AMS classification:
58A30, 58C27.

E-mail addresses:rmont@math.ucsc.edu (R. Montgomery), mzhi@techunix.technion.ac.il
(M. Zhitomirskii).

1 Partially supported by NSF grant DMS-9704763.

© 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



460 R. MONTGOMERY, M. ZHITOMIRSKII / Ann. I. H. Poincaré – AN 18 (2001) 459–493

tangent d’une surface. Cela inclut les germes inconnus. Le théorème 2 dit que chaque singularité
de Goursat est stable. Le théorème 3 établit la stabilité globale des drapeaux de Goursat au-
dessous les perturbations que ne change pas une certaine feuillatage canonique. Cela dépend
d’une généralisation du théorème de Gray qui concerne les perturbation des structures de contact.
La fondation de nos résultats est une approche géométrique qui commence avec la construction
d’un drapeau des distributions intégrable qui est le sous-drapeau du drapeau de Goursat. Le
lemma ‘sandwich’ nons explique les inclusions entre ces deux drapeaux. Nous réduisons la
classification des drapeaux de Goursat au problème de la classification des points fixés pour
certains groupes de transformation projective du cercle. Cela donne des résultats généraux et
nouveaux de classification et explique les précédents résultats d’une manière géométrique. Dans
le dernier appendice nous montrons que ce problème de classification est le même problème
que de comprendre toutes les singularités de distribution qui modèlent un camion qui tires

remorques.

1. Introduction and main results

This paper is devoted to Goursat distributions and Goursat flags. AGoursat flagof
lengths on a manifoldMn of dimensionn � 4 is a chain

Ds ⊂Ds−1⊂ · · · ⊂D3⊂D2⊂D1⊂D0= TM, s � 2, (F)

of distributions onMn (subbundles of the tangent bundleTMn of constant rank)
satisfying the following (Goursat) conditions:

corankDi = i, i = 1, 2, . . . , s,

Di−1=D2
i whereD2

i := [Di, Di], i = 1, 2, . . . , s. (G)

The first condition means thatDi(p) is a subspace ofTpMn of codimensioni, for
any point p ∈ Mn. It follows that Di+1(p) is a hyperplane inDi(p), for any i =
0, 1, 2, . . . , s − 1 andp ∈ Mn. In condition (G) we use the standard notationD2 or
[D, D] for the sheaf of vector fields generated byD and the Lie brackets[X, Y ],
X, Y ∈D, of vector fields inD.

By a Goursat distribution we mean any distribution of any coranks � 2 of any
Goursat flag(F).

An equivalent definition is as follows. A distributionD of corank s � 2 is Goursat
if the subsheavesDi of the tangent bundle defined inductively byDi+1 = [Di, Di]
(i = 1, 2, . . . , s;D1=D) correspond to distributions, i.e., they have constant rank, and
this rank isrank Di+1= rank Di + 1, i = 1, . . . , s.

Since the whole flag (F) is uniquely determined by the distributionD = Ds of the
largest corank, we will say thatD = Ds generates(F). The study of Goursat flags and
Goursat distributions is the same problem.

The name “Goursat distributions” is related to the work [11] in which Goursat
popularized these distributions. Goursat’s predecessors were Engel and Cartan.

© 2001 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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Engel studied the casen= 4, s = 2. This is the only case where the Goursat condition
holds for generic germs.He proved [4] that the germ of such a distribution is equivalent
to a single normal form without parameters. (See (C) below.)

If (n, s) �= (4, 2) then the set of germs of Goursat distributions of coranks on
Mn is a subset of infinite codimension in the space of all germs. Nevertheless,
Goursat distributions appear naturally through Cartan’s prolongation procedure. See, for
example, [1] and Section 5 of the present paper. The simplest realization of prolongation
leads to a canonical Goursat 2-distribution (i.e., distribution of rank 2) on the(2+ s)-
dimensional space ofs-jets of functionsf (x) in one variable. This distribution can be
described bys differential 1-forms

ω1= dy − z1 dx, ω2= dz1− z2 dx, . . . , ωs = dzs−1− zs dx, (C)

where y represents the value off at x and zi represents the value atx of the ith
derivative off . Cartan proved thata generic germof a Goursat 2-distribution can always
be described by the 1-forms (C). Indeed he proved in [3] the stronger statement:

The germ at a generic point ofany Goursat distribution of coranks � 2 on a manifold
M of any dimensionn � s + 2 is equivalent to the germ at the origin of the distribution
described by the1-forms(C).

This theorem together with all the assertions in the present paper hold in both the
smooth (C∞) and real-analytic categories. Two global distributions onM are called
equivalentif there exists a global diffeomorphism ofM sending one of them to the other.
Local equivalence is defined in a usual way: the germ ofD at a pointp is equivalent to
the germ ofD̃ at a pointp̃ if there exist neighborhoodsU of p and Ũ of p̃ and a
diffeomorphismΦ : U → Ũ , Φ(p)= p̃ which sends the restriction ofD to U onto the
restriction ofD̃ to Ũ .

We will say that a pointp ∈ M is a singularity for a Goursat distribution if the
distribution isnot locally equivalent atp to the model distribution described by 1-forms
(C). An equivalent definition in invariant terms is given in Section 2.

Some researchers believe that Cartan missed the singularities in the problem of
classifying Goursat distributions. It would be more accurate to say that he was not
interested in them. Recently there has been interest. Researchers have realized that the
number of different singularities grows very fast, indeed exponentially, with the coranks.
Recent results on the number of singularities are given in Table 1. Hereor(s) denotes the

Table 1

s 2 3 4 5 6 7 � 8

or(s) 1 2 5 13 34 93 ∞
Author Engel Giaro Kumpera Gaspar Mormul Mormul Mormul

Kumpera Ruiz

Ruiz

Reference [4] [9] [14] [7] [17] [17,18] [18,19]
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number of orbits (inequivalent germs) within the space of all Goursat germs of coranks

at the origin ofRn (results are the same for alln � s + 2).
Although the entries of Table 1 were obtained originally just for rank two Goursat

distributions onR2+s they hold for Goursat distributions of arbitrary rankk and coranks
on Rk+s , with k, s � 2. Indeed, a reduction theorem due to Zhitomirskii [23] implies
that any Goursat distribution of coranks is locally equivalent to one of the form
D =W ⊕Rk−2 onRk+s =R2+s ×Rk−2, whereW is a rank two Goursat distribution on
R2+s.

The theorems summarized by the above table are in marked contrast with the spirit
of Cartan’s result. This contrast inspired our two main theorems. Theorem 1 says that
the Cartan prolongation procedure accounts not only for the Cartan normal form (C),
but for all possible singularities. This includes any singularities yet to be discovered,
in addition to the list above. Theorem 2 asserts that every Goursat singularity, however
complicated, cannot be perturbed away while keeping the distribution Goursat. In other
words, Theorem 2 asserts that Goursat singularities are “irremovable”.

THEOREM 1. –Apply the Cartan prolongation procedure(see Section5) s times,
starting with a two-dimensional surface. The resulting “monster Goursat manifold”Q

of dimension2+ s is endowed with a Goursat distributionH which is universal in
the following sense. The germ at any point of any rank two Goursat distribution on a
(2+ s)-dimensional manifold is equivalent to the germ ofH at some point ofQ.

In Section 5 the Cartan prolongation procedure is described, the monster manifold
constructed, and the theorem proved.

THEOREM 2. –Every Goursat singularity is irremovable. Namely, within the space
of all germs of Goursat distributions of coranks, any germ is structurally stable in the
Cs+1-topology on the space of Goursat germs. Any such germ iss-determined.

Structural stability of the germ of a Goursat distributionD at a point p means
the following. Let DN be any sequence of Goursat distributions defined in a (fixed)
neighborhood ofp, and such thatj s+1

p DN → j s+1
p D asN →∞. Then there exists a

sequence of pointspN tending top such that for all sufficiently bigN the germ ofDN at
pN is equivalent to the germ atp of D. In other words, if we perturbD within the space
of Goursat distributions, then nearby top there will be pointspN at which the germ of
the perturbed distributionDN is equivalent to that of the original distribution atp.

To say that the germ atp of D is s-determinedmeans that ifD̃ is another Goursat
distribution defined nearp, and if j s

pD = j s
pD̃ then the germs atp of D and ofD̃ are

equivalent.
We also have a result on global structural stability, one inspired by works [10] and [16]

on deformations of global Engel distributions.

THEOREM 3. –Any cooriented Goursat flag(F) of length s on a manifoldM is
structurally stable with respect to sufficiently WhitneyCs+1-small perturbations within
the space of global Goursat flags, provided these peturbations do not change the
characteristic codimension3 foliation L(D1).

The characteristic codimension3 foliation L(D1) is defined in Section 2. It is
invariantly related to the corank one distributionD1 and generalizes the characteristic
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vector field of an Engel distribution. To say that the flag (F) iscoorientedmeans that
there exists global 1-formsω1, . . . , ωs such that the distributionDi can be described
as the vanishing ofω1, . . . , ωi , i = 1, . . . , s. Theorem 3 says that if two global Goursat
flagsF andF̃ is sufficiently close in the WhitneyCs+1-topology and ifL(D̃1)= L(D1)

then there exists a global diffeomorphism ofM sendingF̃ to F . The conditionL(D̃1)=
L(D1) can be, of course, replaced by the condition that the foliationsL(D̃1) andL(D1)

are equivalent via a diffeomorphism close to the identity. This condition is essential even
for the cases = 2 of Engel distributions, see [8]. The foliationL(D1), viewed as a global
object, is a complicated, poorly understood topological invariant ofD. In particular it is
not known what types of foliations are realizable, even in the simplest case of Engel
distributions.

Outline

To prove Theorems 1–3 we develop a geometric approach to Goursat flags in
Sections 2 and 3. The starting point is the flag of foliations associated to a Goursat flag.
The relations between the two flags is described by the sandwich lemma. This allows us
to formulate the Cartan theorem in pure geometric terms, and to define singular points.

In Section 3 we develop the geometric approach in order to show that:the problem
of classifying Goursat flags reduces to the problem of finding fixed points of the circle
with respect to certain subgroups of the group of projective transformations.Using this
reduction we obtain some general classification results. In Section 4 we use our methods
to explain the recent results, as summarized in Table 1, by purely geometric reasoning.

In Section 5 we present Cartan’s prolongation and deprolongation constructions and
prove Theorem 1.

Theorems 2 and 3 are proved in Section 6. One tool in the proof is a generalization
of Gray’s theorem [12] on deformations of global contact structures. We prove that any
two globalCl+1-close corank one distributions of the same constant class (in Cartan’s
sense) are equivalent via aCl-close to identity global diffeomorphism. This result is of
independent significance, therefore we put it to Appendix A.

In Appendix B we prove one of the lemmata used in Section 3.
In Appendix C we explain the canonical meaning of the Kumpera–Ruiz normal

forms and we explain P. Mormul’s codes for symbolizing finer normal forms. We
also summarize what is known about when and how the growth vector distinguishes
singularities.

Finally, in Appendix D we use our Theorem 1 to give a simple proof that the local
classification of Goursat distributions describing a kinematic model of a truck towings

trailers and the local classification of arbitrary Goursat flags of lengths+1 are the same
problem.

2. Flag of foliations. Sandwich lemma. Cartan theorem

We start the geometric approach to Goursat distributions by associating a flag of
foliations

L(Ds)⊂ L(Ds−1)⊂ L(Ds−2)⊂ · · · ⊂ L(D2)⊂ L(D1) (L)
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to the Goursat flag

Ds ⊂Ds−1⊂Ds−2⊂ · · · ⊂D2⊂D1⊂D0= TM (F)

generated by the Goursat distributionD =Ds of coranks � 2 on a manifoldM .

DEFINITION. – Given any distributionD ⊂ TM we denote byL(D) the subsheaf of
D consisting of those vector fieldsX ∈D whose flows preserveD: [X, Y ] ∈ D for all
Y ∈D. We callL(D) the characteristic foliation ofD.

The Jacobi identity implies thatL(D) is closed under Lie bracket. Consequently if
L(D) is of constant rank, then it is a foliation in the standard sense. As we will see
momentarily it does have constant rank in the Goursat case, this rank beingrank(D)−2.
In other words, if we set

L(D)(p)= {X(p): X ∈L(D)},
thenL(D)(p) has dimensionrank(D)− 2, independently of the pointp.

LEMMA 2.1 (Sandwich lemma). –LetD be any Goursat distribution of coranks � 2
on a manifoldM . Letp be any point ofM . Then

L(D)(p)⊂ L
(
D2)(p)⊂D(p),

with

dimL(D)(p)= dimD(p)− 2, dimL
(
D2)(p)= dimD(p)− 1.

It follows that the relation between the Goursat flag (F) and its flag of characteristic
foliations (L) is summarized by:

Ds ⊂ Ds−1 · · · ⊂ D3 ⊂ D2 ⊂ D1

∪ ∪ ∪ ∪
L(Ds) ⊂ L(Ds−1) ⊂ L(Ds−2) · · · ⊂ L(D2) ⊂ L(D1).

Each inclusion here is a codimension one inclusion of subbundles of the tangent bundle.
L(Di) has codimension 2 withinDi , which in turn has coranki within TM, so thatL(Di)

is a foliation ofM of codimensioni + 2. In particular,L(D1) – the foliation figuring in
our Theorem 3 – is a codimension 3 foliation.

The foliationsL(Di) can be described using 1-forms. We will say that an ordered
s-tupleω1, . . . , ωs describesthe flag (F) generated by a Goursat distributionD =Ds of
coranks if ω1 describes the corank one distributionD1, the formsω1 andω2 together
describe the corank 2 distributionD2, etc., the tuple(ω1, . . . , ωs−1) describesDs−1 and
the tuple(ω1, . . . , ωs) describesDs . (Here “describes” means that the distribution being
described consists of all vectors annihilated by the forms “describing”.) Order matters.
For example, consider the corank 2 Goursat distributionD defined by the vanishing of
of the 1-formsω1= dy − z1 dx andω2= dz1− z2 dx. Then the pair(ω1, ω2) describes
the flag generated byD whereas the pair(ω2, ω1) does not.
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Given a tuple of 1-formsω1, . . . , ωs describing the Goursat flag (F), denote by

θi(p)= dωi(p)|Di(p) (2.1)

the restriction of the 2-formdωi(p) to the spaceDi(p), p ∈M . By the kernel of a 2-
form θ on a vector spaceV we mean the space of vectorsv such thatθ(v, Y )= 0 for
anyY ∈ V . The proof of Lemma 2.1 is based on the following statement.

LEMMA 2.2. –Let (F) be the Goursat flag generated by a distributionD = Ds and
described by the tupleω1, . . . , ωs of 1-forms. Define the2-formsθi(p) by (2.1). Then for
any pointp of the manifold and for anyi = 1, 2, . . . , s we have:

rankθi(p)= 2; L(Di)(p)= kerθi(p).

Example. – Let D be the coranks Goursat distribution described by the 1-forms (C).
Then the tuple(ω1, . . . , ωs) describes the flag (F) generated byD =Ds , and the foliation
L(Di) is described by the 1-formsdx, dy, dz1, . . . , dzi .

Proof of Lemmata 2.1 and 2.2. –We first show that the rank ofθi(p) is two, for i < s.
Recall thatωi vanishes onDi but not onDi−1, and that its vanishingdefinesDi within
Di−1. The identity

dωi(X, Y )=−ωi([X, Y ]), X, Y ∈Di (2.2)

and the fact that[Di+1, Di+1] is a subset ofDi imply thatθi(p) vanishes upon restriction
to the hyperplaneDi+1(p) of Di(p) (provided thati < s so thatDi+1 is defined). The
fact that[Di, Di] =Di−1 implies thatθi(p) �= 0. In other words,θi(p) is a nonzero skew-
symmetric form which admitsDi+1(p) as an isotropic subspace of codimension 1. Basic
linear algebra now implies thatrankθi(p) = 2, dim kerθi(p) = 2, and thatkerθi(p) ⊂
Di+1(p). This is valid for all pointsp and alli = 1, 2, . . . , s − 1.

It follows directly from the identity (2.2) thatL(Di)(p) ⊂ kerθi(p). To prove that
L(Di)(p) = kerθi(p) we use the constancy of rank of these kernels. SupposeXp ∈
kerθi(p). Since the field of kernels ofθi has constant rank we may extendXp to a
vector fieldX tangent to this field of kernels. Now (2.2), together with the fact that the
vanishing ofωi definesDi within Di−1, implies thatX ∈L(Di) so thatXp ∈L(Di)(p).
This completes the proof of Lemma 2.2 fori = 1, 2, . . . , s − 1.

The casei = s remains. We know thatL(Di) is involutive for all i and that
L(Di)(p)= kerdθi(p) is a hyperplane inDi+1(p), for i < s. Identity (2.2) now implies
that θi+1 vanishes upon restriction to the hyperplaneL(Di)(p) of Di+1(p), again for
i < s. Therefore for 1< i < s the form θi(p) has two (possibly equal) isotropic
subspaces:Di+1(p) and L(Di−1)(p), whereas the “end” formsθ1(p) and θs(p) have
only one isotropic subspace each:D2(p) and L(Ds−1)(p) respectively. The fact that
θs(p) hasL(Ds−1)(p) ⊂ Ds(p) as an isotropic hyperplane implies thatrankθs(p) �
2. The conditionrank[Ds, Ds](p) = s − 1 implies that rankθs(p) � 2. Therefore
rankθs(p)= 2. Repeating the above arguments, we see thatL(Ds)(p)= kerθs(p), and
thereforeL(Ds)(p) is a subspace ofD(p) of codimension 2. This completes the proof
of Lemma 2.2.
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To prove Lemma 2.1, it only remains to show thatL(Di) ⊂ L(Di−1). Again use the
fact that if a skew-symmetric nonzero 2-form has an isotropic hyperplane then its kernel
belongs to this hyperplane. We have proved thatL(Di−1)(p) is an isotropic hyperplane
for θi(p) andL(Di)(p) is the kernel ofθi(p). ThereforeL(Di)⊂ L(Di−1). ✷

By Lemma 2.1 for eachi = 3, 4, . . . , s the spaceDi−1(p) has two invariantly defined
hyperplanes:Di(p) and L(Di−2)(p). If the Goursat flag is generic then one expects
that these two hyperplanes will be different. This is indeed the case, and it suggests our
geometric formulation of Cartan’s theorem on the normal form (C).

PROPOSITION 2.1 (Compare with Cartan’s work [3]). –The germ at a pointp of a
Goursat flag(F) of lengths on a manifoldM is equivalent to the germ at the origin of
the flag described by the1-forms(C) if and only if the condition

L(Di−2)(p) �=Di(p), i = 3, 4, . . . , s (GEN)

holds. For any Goursat flag the set of pointsp ∈M satisfying(GEN) is open and dense
in M .

The proof of this proposition is in Section 4. Now we can give an invariant definition
of a singular point of a Goursat distributionD or of its flag (F):

DEFINITION. – A pointp is nonsingular if(GEN) is satisfied. It is singular if(GEN)
is violated for at least onei ∈ {3, 4, . . . , s}.

We have 2s−2 different types of singularities, which can be calledKumpera–
Ruiz classes. They are parametrized by the 2s−2 subsetsI ⊂ {3, 4, . . . , s}. The class
corresponding to the subsetI consists of Goursat germs at a pointp such that the
condition (GEN) is violated fori ∈ I and is valid for all i /∈ I , i ∈ {3, 4, . . . , s}.
A nonsingular point corresponds toI = ∅. Each singularity class is realized. These
realizations correspond to the 2s−2 normal forms found by Kumpera and Ruiz [14], and
described in Appendix C to the present paper.

As soon ass > 3 the Kumpera–Ruiz classification iscoarserthan the full classifica-
tion of Goursat germs into equivalence classes under diffeomorphisms. In other words,
for s > 3 there will be Kumpera–Ruiz classes which contain more than one orbit, i.e.,
several inequivalent Goursat germs. See the table in Section 1. For example, whens = 4,
we see thator(s)= 5 � 2s−2= 4.

In the next two sections we further develop the geometric approach to Goursat
distributions, obtain general classification results and explain in invariant terms the
classification results by Mormul and his predecessors.

3. Classification of branches of
√

D

The classification of germs of Goursat distributions of arbitrary corank reduces to the
following problem:

Given a Goursat distribution germD of coranks, classify the Goursat distributionsE
of coranks + 1 such that[E, E] =E2=D.
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Notation. – The set of all such distribution germsE for a givenD will be denoted
√

D.

Imagine the tree whose vertices are equivalence classes of Goursat germs. The root of
the tree is the corank 2 distribution germ, which is a single class, according to Engel’s
theorem. The “level” or “height” of a vertex is its corank. Thus there areor(s) vertices
at levels. A vertex[E] at levels + 1 is connected to a vertex[D] at levels if and only
if E ∈√D.

If it were true that each Kumpera–Ruiz class (see the end of the previous section)
consisted of a single orbit, then this tree would be a simple binary tree. One branch of
the vertexD would consist of theE for which E(p) �= L(D2)(p), and the other for
whichE(p)=L(D2)(p). But the table given in Section 1 shows that this is false. There
areD for which |[√D]|> 2. Indeed, fors = 7 there areD whose

√
D contains infinitely

many nonequivalent germs, corresponding toor(8)=∞.
In this section we reduce the problem of classification of

√
D to classification of points

of the circleS1=RP 1 with respect to the action of a certain groupΓ = Γ (D)⊂PGL(2)

of projective transformations of the circle. The orbits in
√

D correspond to theΓ -orbits
in S1. We will show that the number of orbits is either 2, 3, 4 or∞, according to the
number of fixed points ofΓ .

The first step in such reduction is the following proposition (proved in Section 6).

PROPOSITION 3.1. –LetE andẼ be the germs at a pointp of Goursat distributions
of coranks + 1 such thatE2 = Ẽ2 and E(p) = Ẽ(p). Then the germsE and Ẽ are
equivalent.

Set (√
D

)
(p)= {

E(p): E ∈√D
}
.

Recall that the sandwich lemma asserts thatL(D)(p) ⊂ E(p) ⊂ D(p) for any
E ∈√D. Also recall thatcodimL(D)(p)= 2 in D(p). In other words

(√
D

)
(p)⊂ S1

D(p)= {
subspacesV ⊂ TpM: codimV = s+ 1, L(D)(p)⊂ V ⊂D(p)

}
.

We use the notationS1
D(p) because this set is topologically a circle. Indeed it can

be canonically identified with the set of all one-dimensional subspaces of the two-
dimensional factor spaceD(p)/L(D)(p), which is to say with the real projective line.
The real projective line is topologically a circle:

S1
D(p)∼= P

[
D(p)/L(D)(p)

]∼=RP 1∼= S1.

LEMMA 3.1. –(
√

D)(p) = S1
D(p) for any Goursat distribution germD such that

rank(D) > 2.

Proof. –We must show that everyV ∈ S1
D(p) can be realized asV = E(p) for some

E ∈ √D. Sincerank(D) > 2 and consequentlydimV > 1 we can fix a nonvanishing
1-form ω which annihilates the involutive distributionL(D), and for whichω(p)

annihilatesV , and for whichdω(p) restricted toV is nonzero. DefineE to be the
subdistribution ofD annihilated byω. We claim thatE2 = D, and consequently
V ∈√D(p).
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We first show thatE2 ⊂ D. Take two vector fieldsX, Y ∈ E, and any 1-formµ

annihilatingD. We must show thatµ annihilates[X, Y ] or, equivalently thatdµ(X, Y )=
0. L(D2) is a corank one subdistribution ofE. Pick any nonvanishing vector fieldZ
tangent toE such thatZ modL(D) spansE/L(D) (nearp). Then there are functions
k1, k2 such thatX = k1Z moduloL(D) andY = k2Z moduloL(D). SinceL(D)⊂D

andL(D) is involutive any vector field inL(D) belongs to the kernel ofdµ. Therefore
dµ(X, Y )= dµ(k1Z, k2Z)= 0.

The fact thatdω|V �= 0 implies that the rank ofE2 is greater than that ofE. But
rank(E)= rank(D)− 1 andE ⊂E2⊂D. ConsequentlyE2=D. ✷

Consider the groupDiffp of all local diffeomorphisms with fixed pointp and its
subgroupSymmp(D) consisting of local symmetries of the germ atp of D:

Symmp(D)= {Φ ∈Diffp: Φ∗D =D}.
Any Φ ∈ Symmp(D) automatically preserves the canonical foliationL(D), and conse-
quently it preservesL(D)(p). Its derivativedΦp thus acts on the two-dimensional factor
spaceD(p)/L(D)(p) by a linear transformation, and consequently defines a transfor-
mation

gΦ : S1
D(p)→ S1

D(p); gΦ.V = dΦp(V ), V ∈ S1
D(p).

This defines a group homomorphism

Φ �→ gΦ; Symmp(D)→ PGl(2)= PGl
(
D(p)/L(D)(p)

)
.

We denote the image of this homomorphism by

Γp(D)= {
gΦ, Φ ∈ Symmp(D)

}
.

Remark. – PGl(2) is the standard notation for the group of all invertible linear
transformations of a two-dimensional vector space modulo scale. Elements of this group
map lines to lines, and hence define transformations ofRP 1= S1. These transformations
are sometimes calledprojectivities. SoΓp(D) is a group of projectivities.

Proposition 3.1 and Lemma 3.1 imply:

PROPOSITION 3.2. –Let D be the germ at a pointp of a Goursat distribution of
coranks. Let E and Ẽ be the germs atp of Goursat distributions of coranks + 1 such
thatE2= Ẽ2=D. The germsE andẼ are equivalent if and only if the pointsE(p) and
Ẽ(p) of the circleS1

D(p) belong to a single orbit with respect to the action of the group
Γp(D).

The rest of this section is devoted to understanding the orbit structure of the action of
Γp(D) on the circle.

To understand the orbit structure we should first understand the fixed points of the
action. By afixed pointV ∈ S1

D(p) we mean a point that is fixed byeverytransformation
in the groupΓp(D). The set of all fixed points will be denotedFixp(D):

Fixp(D)= {
V ∈ S1

D(p): g.V = V for anyg ∈ Γp(D)
}
.



R. MONTGOMERY, M. ZHITOMIRSKII / Ann. I. H. Poincaré – AN 18 (2001) 459–493 469

To reiterateV ⊂D(p) is a codimension 1 hyperplane which contains the codimension 2
hyperplaneL(D)(p), andg.V = dΦp(V ) whereg = gΦ , with Φ ∈ Symmp(D).

The setFixp(D) is never empty. Indeed,Symmp(D) preservesD2, and henceL(D2).
But L(D2)(p)⊂D(p) is a codimension 1 hyperplane, as we saw in the previous section
(see the sandwich lemma). Consequently

L
(
D2)(p) ∈ Fixp(D)

for any Goursat distributionD.
On the other hand,if Fixp(D) contains more than two points then Fixp(D)= S1

D(p)

– every point is a fixed point, andΓp(D)= {id} consists of the identity transformation
alone. This follows immediately from what is sometimes called “the fundamental
theorem of projective geometry”: any projectivity of the projective line which fixes three
or more points is the identity. At the level of linear algebra, this is the assertion that if
a linear transformation of the planeR2 has three distinct eigenspaces (the three alleged
fixed points of the projective line) then that transformation is a scalar multiple of the
identity.

We thus have the following possibilities.
• #(Fixp(D)) = ∞, in which caseΓp(D) = {id}, and the number of inequivalent

germsE ∈√D is infinite;
• #(Fixp(D))= 1, in which case that single fixed point must beL(D2)(p);
• #(Fixp(D))= 2, in which case the fixed points areL(D2)(p) and one other point.
The following proposition explores the middle possibility.

PROPOSITION 3.3. –If #(Fixp(D))= 1 then Fixp(D)= {L(D2)(p)}. In this case the
action ofΓp(D) is transitive away from the fixed point. That is to say, for any two points
V, Ṽ ∈ S1

D(p) different fromL(D2)(p) there exists ag ∈ Γp(D) such thatg.V = Ṽ .
Consequently, the circleS1

D(p) consists of two orbits with respect to the groupΓp(D):
the fixed pointL(D2)(p) and all other points.

The proof of this proposition, and the one following (Proposition 3.4) are based on
the Lemma 3.2 immediately below. To appreciate the lemma, notice that the connected
part ofPGL(2) consists of projective transformations of the formexp(v) for some linear
transformationv of R2=D(p)/L(D)(p). Such a linear transformation can be viewed as
a linear vector field on the plane, and hence a vector fieldv on the circleS1. (The vector
fields arising in this way are precisely the infinitesimal projective transformations.) The
flow exp(tv) of this vector field is a one-parameter group of projectivities connecting the
identity toexp(v). The set of suchv forms the Lie algebra ofPGl(2), denotedpgl(2).

LEMMA 3.2. –The square ofΓp(D) is connected. In other words, ifg ∈ Γp(D),
then g2 = g ◦ g = exp(v) for some vector fieldv ∈ pgl(2) on the circleS1

D(p) with
the property that exp(tv) ∈ Γp(D) for all t ∈R.

The proof of the lemma is postponed to Appendix B.
We will now investigate the case in whichFixp(D) consists of two points:L(D2)(p)

and someV �= L(D2)(p).
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DEFINITION. – If V �=L(D2)(p), let

σ = σ (D, V, p) : S1
D(p)→ S1

D(p)

denote the projectivity induced by a reflection in the planeD(p)/L(D)(p) whose fixed
point set consists of the two pointsV andL(D2)(p) (modL(D(p)).

We explain. Letα, β ∈ RP 1 be two distinct points of the projective line. Choose
coordinates for the planeR2 so thatα andβ are thex andy coordinate axis, and let
[x, y] be the standard homogeneous coordinates forRP 1 with respect to these axes.
Thenσ ([x, y]) = [x,−y], which corresponds to reflection about thex-axis. Note that
[x,−y] = [−x, y] so that we can also think ofσ as reflection about they-axis,β. One
can characterizeσ as the unique projectivity whose fixed point set is{α, β} and whose
square is the identity.

If Fixp(D) = {L(D2)(p), V } with V �= L(D2)(p) then there are three alternative
possibilities:

(a) Γp(D) contains at least one more projectivity in addition to the identity and the
reflectionσ ;

(b) Γp(D) does not containσ ;
(c) Γp(D)= {id, σ }.
PROPOSITION 3.4. –Suppose that#(Fixp(D))= 2, with Fixp(D)= {L(D2)(p), V }.
(a) If Γp(D) satisfies(a) above then it acts transitively onS1

D(p) \ Fixp(D). The
action has precisely three orbits,{L(D2)(p)}, {V }, andS1

D(p) \ Fixp(D).
(b) If Γp(D) satisfies(b), then it acts transitively on each of the two connected

components ofS1
D(p)\Fixp(D), but does not mix points from the two components.

The action has precisely4 orbits, namely{L(D2)(p)}, {V } and the two connected
components ofS1

D(p) \ Fixp(D).
(c) If Γp(D) satisfies(c) then the number of distinct orbits is infinite. The orbit space

is RP1 modulo the action of the reflectionσ , which is topologically a closed
interval.

We summarize the results obtained so far into 5 cases:
(1) Fixp(D) consists of the single pointL(D2)(p).
(2) Fixp(D) consists of two points,L(D2)(p) and some other pointV . Then we have

the following three subcases.
(2a) σ ∈ Γp(D) andg ∈ Γp(D) for someg �= σ, id.
(2b) σ /∈ Γp(D).
(2c) Γp(D)= {id, σ } is the two-element group .

(3) Γp(D)= {id} is the identity group. Every point of the circleS1
D(p) is fixed.

We reiterate that case (3) holds if and only ifFixp(D) contains at least 3 distinct
points.

We recall that
√

D denotes the set of all germs of Gours at distributionsE of corank
s+1 such thatE2=D, whereD is a given coranks Goursat distribution. The following
statement is a corollary of Propositions 3.1–3.4.
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PROPOSITION 3.5. –Let D be the germ at a pointp of a Goursat distribution,
rank(D) > 2. Then one of the5 cases(1), (2a), (2b), (2c), or(3) listed above holds. In
each of these cases two germsE, Ẽ ∈√D are equivalent provided thatE(p)= Ẽ(p).

In the case(3) E andẼ are equivalentonly if E(p)= Ẽ(p).
Assume now thatE(p) �= Ẽ(p). In cases(1) and (2a) the germsE and Ẽ are

equivalent if and only ifE(p), Ẽ(p) /∈ Fixp(D). In case(2b) these germs are equivalent
if and only if E(p) and Ẽ(p) belong to the same connected component of the set
S1

D(p) \ Fixp(D). In case(2c) the germs are equivalent if and only if the reflectionσ

above takesE(p) to Ẽ(p).
Write #

√
D for the number of distinct equivalence classes of germs forE ∈ √D.

Consequent to the above analysis we have: #
√

D = 2 in case(1), #
√

D = 3 in case(2a),
#
√

D = 4 in case(2b), and#
√

D =∞ in cases(2c) and(3).

This proposition does not solve the problem of classifying all Goursat distributions of
any corank. Rather it reduces this problem to the problem of distinguishing among the
5 cases listed above. This reduction sheds light on the pre-existing classification results,
as summarized in Table 1. We expand on this theme in the next section.

We end this section by showing that Propositions 3.3 and 3.4 follow from Lemma 3.2.
Consider the following subsets ofS1(D)(p):

T = {
α ∈ S1(D)(p): g2.α = α for anyg ∈ Γp(D)

}
,

T1= {
α ∈ T : g.α ∈ T for anyg ∈ Γp(D)

}
.

Lemma 3.2 implies the following corollary.

COROLLARY TO LEMMA 3.2. –If β /∈ T1 then there exists a neighborhoodU of β in
S1(D)(p) such that all points ofU are Γp(D)-equivalent.

Note that Fixp(D) ⊂ T1 ⊂ T and that if T contains three different points then
T = S1(D)(p). To prove Propositions 3.3 and 3.4 we consider the following cases.

1. Assume thatT �= S1(D)(p) andFixp(D)= {α, β}. ThenT = T1= {α, β}. By the
corollary of Lemma 3.2 the groupΓp(D) either acts transitively onS1

D(p) \ Fixp(D) or
acts transitively on each of the two connected components of this set, but does not mix
points from the two components. The first case holds if and only if the groupΓp(D)

contains the reflectionσ = σ (α, β) which fixesα andβ. This corresponds to (2a) and
(2b) of Proposition 3.4.

2. Assume thatT �= S1(D)(p) and Fixp(D) = {α}. If T = {α, α1}, whereα1 �= α

thenT1 = {α} since there existsg ∈ Γp(D) such thatg.α1 �= α1 andg.α1 �= α for any
g ∈ Γp(D). Thus T1 = {α}. By the corollary of Lemma 3.2 the action ofΓp(D) is
transitive away fromα. This corresponds to Proposition 3.3.

3. Assume thatT = S1(D)(p) andFixp(D) = {α, β}. In this case the groupΓp(D)

consists of the identity transformation and the reflectionσ . The orbit space is the interval
S1/σ . This corresponds to (2c) of Proposition 3.4.

4. Finally, let us show that the caseT = S1(D)(p) andFixp(D)= {α} is impossible.
Assume that this case holds. Then any projectivityg ∈ Γp(D) has a fixed pointα and
satisfies the conditiong2 = id. It is easy to see that these conditions imply that any
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nonidentyg ∈ Γp(D) is a reflection with two fixed points (one of them isα). Γp(D)

is a commutative group sinceg2 = id for any g ∈ Γp(D). Now if two reflections with
a common fixed point commute then they coincide. ThereforeΓp(D) consists of the
identity transformation and a single reflection. This contradicts the assumption that
Fixp(D) consists of a single point.

Propositions 3.3 and 3.4 are proved.

4. Examples

We give examples illustrating the notions of Sections 2–3 and the classification table
of Section 1. Throughout this section all Goursat flags are germs at the origin inRn.

Example1. – LetDs ⊂Ds−1⊂ · · · ⊂D1 be the Goursat flag described by 1-forms

ω1= dy − z1 dx, ω2= dz1− z2 dx, . . . , ωs = dzs−1− zs dx. (C)

Using Lemma 2.2 we find:

L(Ds)= (dx, dy, dz1, . . . , dzs)
⊥, L(Ds−1)= (dx, dy, dz1, . . . , dzs−1)

⊥.

SinceDs(0) = (dy, dz1, dz2, . . . , dzs−1)
⊥, the circleS1(Ds)(0) can be identified with

the set of lines (1-dimensional subspaces) in the 2-spacespan( ∂
∂x

, ∂
∂zs

)⊂ T0Rn/L(Ds)(0).

The linespan( ∂
∂zs

) corresponds to the spaceL(Ds−1)(0) and therefore it is a fixed point

of S1(Ds)(0) with respect to the groupΓ0(Ds). We show that this line is the only fixed
point. The flag admits the local symmetry:

Φ : zs−i+1→ zs−i+1+ xi/i!, i = 1, 2. . . , s,

y→ y + xs+1/(s + 1)!, x→ x.

This symmetry induces the projective transformationgΦ of the circleS1(Ds)(0) which
takes the linespan(a ∂

∂x
+ b ∂

∂zs
) to the linespan(a ∂

∂x
+ (b − a) ∂

∂zs
). These lines are

different lines whenb �= 0.
This example, together with Proposition 3.3 has two immediate corollaries. Firstly,

Proposition 2.1 (the geometric formulation of the Cartan theorem) follows by induction
on s, with the Engel theorems = 2 as the base of induction. Secondly, by restricting
Example 1 to the cases = 2, and using Proposition 3.3 we can classify Goursat flags
D3⊂D2⊂D1 of length 3. Any such flag can be described either by the 1-forms

ω1= dy − z1 dx, ω2= dz1− z2 dx, ω3= dz2− z3 dx (4.1)

or by the 1-forms

ω1= dy − z1 dx, ω2= dz1− z2 dx, ω3= dx − z3 dz2. (4.2)

The normal form (4.1) holds ifD3(0) �= L(D1)(0) and the normal form (4.2) holds if
D3(0)= L(D1)(0).
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Example2. – Consider the Goursat flagD3 ⊂ D2 ⊂ D1 described by 1-forms (4.2).
We have

L(D3)= (dx, dy, dz1, dz2, dz3)
⊥, L(D2)= (dx, dy, dz1, dz2)

⊥,

D3(0)= (dy, dz1, dx)⊥.

Therefore the circleS1(D3)(0) can be identified with the set of lines in the 2-space
span( ∂

∂z2
, ∂

∂z3
) ⊂ T0Rn/L(D3)(0). The line span( ∂

∂z3
) corresponding toL(D2)(0) is a

fixed point with respect to the groupΓ0(D3). Let Singbe the set of all singular points.
We use the coordinate-free definition of a singular point from Section 2. In this example
Singconsists of pointsp such thatD3(p)= L(D1)(p) and it is a smooth hypersurface
given by the equationz3= 0. The spaceT0Singcontains the spaceL(D3)(0), therefore
the intersectionD3(0) ∩ T0Sing is a point of the circleS1(D3)(0). This point is the line
span( ∂

∂z2
). Since it is defined canonically, it is a fixed point with respect to the group

Γ0(D3). We have proved that the setFix0(D3) contains at least two points –span( ∂
∂z2

)

and span( ∂
∂z3

). We show that there are no other fixed points. This follows from the
existence of the local “scaling” symmetry

Φ : z3→ k−1z3, x→ kx, z1→ kz1, y→ k2y, k ∈R, k �= 0.

This induces the projective transformationgΦ of S1(D3)(0) which takes the line
span(a ∂

∂z2
+ b ∂

∂z3
) to the linespan(a ∂

∂z2
+ kb ∂

∂z3
). These two lines are different provided

a, b �= 0, andk �= 1. Finally, we note that the groupΓ0(D3) contains the reflectionσ with
fixed pointsspan( ∂

∂z2
) andspan( ∂

∂z3
). Indeed,σ = gΦ whereΦ is the scaling symmetry

for k =−1.

Examples 1, 2 and Propositions 3.3–3.5 imply a complete classification of Goursat
flags D4 ⊂ D3 ⊂ D2 ⊂ D1 of length 4: there are exactly 5 orbits with respect to the
group of local diffeomorphisms corresponding to the following cases:

(A) D3(0) �= L(D1)(0), D4(0) �= L(D2)(0),

(B) D3(0) �= L(D1)(0), D4(0)= L(D2)(0),

(C) D3(0)= L(D1)(0), D4(0) �= L(D2)(0), D4(0) �⊂ T0Sing,

(D) D3(0)= L(D1)(0), D4(0)⊂ T0Sing,

(E) D3(0)= L(D1)(0), D4(0)= L(D2)(0).

These cases do not intersect since the above coordinate computation showed that
L(D2)(0) �⊂ T0Sing. The orbit (A) is open and corresponds to Cartan’s normal form.
Orbits (B) and (C) have codimension 1. Orbits (D) and (E) have codimension 2. The
adjaciences are:

A

↗ ↖
C B

↗ ↖ ↗
D E
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Given a global Goursat flag of length 4 on a manifold, denote bySingA, . . . , SingE the
set of points at which the corresponding singularity holds. It follows from Examples 1
and 2 that for any (not necessarily generic) global Goursat flag of length 4 on a manifold
M the setSingA is open and dense, thatSingB andSingC are smooth hypersurfaces in
M which intersect transversally formingSingE , and thatSingD is a smooth surface of
codimension 1 withinSingC and disjoint fromSingE .

The orbits A–E can be easily described by normal forms, using Lemma 2.2. Any
Goursat flag of length 4 can be described locally by 1-formsω1, . . . , ω4, where
ω1, ω2, ω3 have the form (4.1) for A- and B-singularities and the form (4.2) for the 3
other singularities, and where the 1-formω4 has the form

dz3− z4 dx, dx − z4 dz2, dz3− (1+ z4) dz2, dz3− z4 dz2, or dz2− z4 dz3

for the A-, B-, C-, D-, E-singularities, respectively.

Example3. – To classify Goursat flagsD5⊂D4⊂D3⊂D2⊂D1 we find the set of
fixed points of the circleS1(D4)(0) under the action ofΓ0(D4). We start by assuming that
the flagD4 ⊂D3⊂ D2⊂ D1 has one of the 5 normal forms described above. Arguing
in the same way as in Examples 1 and 2 we come to the following conclusions.

1. If the flagD4 ⊂ D3 ⊂ D2 ⊂ D1 has singularity A or singularity C then the set of
fixed points ofS1(D4)(0) consists of the single pointL(D3)(0) and therefore the space
of germs of flagsD5⊂D4⊂D3⊂D2⊂D1 consists of two orbits corresponding to the
cases

(A1 andC1) D5(0) �=L(D3)(0),

(A2 andC2) D5(0)=L(D3)(0).

2. If the flag D4 ⊂ D3 ⊂ D2 ⊂ D1 has the singularity B (respectively D, E) then
the setFix0(D4) consists of the pointL(D3)(0) and the pointα = D4(0) ∩ T0SingB

(respectivelyα = D4(0) ∩ T0SingD, α = D4(0) ∩ T0SingE). The hypersurfaceSingB

and the codimension two submanifoldsSingD, SingE are tangent to the foliationL(D4),
therefore the pointα is a well-defined point of the circleS1(D4)(0). The pointsα and
L(D3)(0) are always different, and the groupΓ0(D4) admits the reflection with these
two fixed points. Therefore the space of germs of flagsD5⊂D4⊂D3⊂D2⊂D1 such
that the flagD4⊂D3⊂D2⊂D1 has a fixed singularity within the singularities B, D, or
E consists of 3 orbits corresponding to the cases

(B1, D1, E1) D5(0) �= L(D3)(0), D5(0) �⊂ T0SingU , U = B, D, E,

(B2, D2, E2) D5(0)⊂ T0SingU , U = B, D, E,

(B3, D3, E3) D5(0)= L(D3)(0).

Thus the space of germs of Goursat flags of length 5 consists of 13 orbits. The A-
and C-singularity each “decompose” into two new singularities. The B-, D- and E-
singularities each decompose into three. The orbitA1 is open. OrbitsA2, B1, C1 have
codimension 1. OrbitsB2, B3, E1, C2, D1 have codimension 2. The deepest singularities
areE2, E3, D2, D3. They have codimension 3. The graph of adjaciences can be easily
derived. It is rather complicated and we do not present it here.
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Examples + 1. – Of course, we could continue to get the classification of flags of
length 6 or longer, or to get the classification of flags of any length satisfying certain
genericity assumptions. The principle remains the same. If we know the normal form
for a certain orbitOrs of flagsDs ⊂ Ds−1⊂ · · · ⊂ D1 of lengths then we should find
the setFix0(Ds) ⊂ S1(Ds)(0). If this set consists of two points, we should determine
whether or not the groupΓ0(Ds) admits the reflectionσ with these two fixed points.
This information together with the results of Section 3 would then yield the classification
of all flagsDs+1 ⊂Ds ⊂ · · · ⊂ D1 of lengths + 1 for which the subflagDs ⊂Ds−1 ⊂
· · · ⊂ D1 belongs to the orbitOrs . In many cases the necessary information regarding
fixed points can be obtained without using normal forms for the orbitOrs. This was
the case in the description of Goursat flags of length� 5 given above in Examples 1, 2
and 3.

As an example of results for general lengths, assume that the circleS1(Ds−1)(0)

hax exactly two fixed pointsL(Ds−2)(0) and α. Suppose thatDs(0) = α. Then the
next circleS1(Ds)(0) contains at least two fixed points, namelyL(Ds−1)(0) together
with the intersection ofDs(0) with T0Sing∗, whereSing∗ is the subvariety of points
where the germ of the flagDs ⊂ Ds−1 ⊂ · · · is equivalent to its germ at the origin.
Sing∗ is a smooth submanifold which is tangent toL(Ds) and transversal toL(Ds−1) as
well as toDs(0), consequently this second fixed point is is well-defined and distinct
from L(Ds−1)(0). Therefore, upon “prolonging” theDs flag in order to investigate
flags of length s + 1, the resulting longer set of flags decompose into either 3,
4 or an infinite number of singularities. There are 3 if these two fixed points are
the only two fixed points and if the groupΓ0(Ds) admits the reflectionσ . There
are 4 if they are the only two fixed points but the reflection is not inΓ0(Ds).
There are an infinite number of different germs if there is at least one more fixed
point.

Unfortunately, for Goursat flags of arbitrary length we do not know of a general
way of distinguishing the cases with of 1, 2, or an infinite number of fixed points,
nor of determining the presence or absence of the reflection in the case of 2 fixed
points. If we knew such a method, then the whole “Goursat tree” would be completely
classified.

The examples show that for flags of lengths � 4 the number of fixed points of
S1(Ds)(0) is either 1 or 2. In the latter case the groupΓ0(Ds) admits the reflection
σ with these two fixed points. This corresponds to the cases (1), (2a) in Section 3.
Interpreting Mormul’s results [17–19] in our language (see Appendix C) we see that
the same holds for flags of length 5. The case (2b) of exactly two fixed points but no
reflection is realized for a unique singularity of flags of length 6. This decomposes into
4 singularities of flags of length 7. The case (3) in which the groupΓ0(D) consists of
only the identity transformation is realized for at least one singularity of flags of length
7. It follows that upon prolongation of such flags to length 8,the pointD8(0) of the circle
S1(D7)(0) is a continuous modulus.This accounts for the entryor(8)=∞ in the table
of Section 1.

We do not know if the case (2c) in Section 3 is realized. According to Mormul it is.
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5. Prolongation and deprolongation. Monster Goursat manifold

5.1. Prolongation

Prolongation builds new distributions from old. LetD be a rank 2 distribution on a
manifoldM . Its prolongation is a distribution on the new manifold

PD := ⋃
m∈M

P
(
D(m)

)
,

whereP (D(m)) is the projectivization – the set of lines through the origin – of the
two-planeD(m). If D is a Goursat distribution of any rank we set

PD := ⋃
m∈M

S1
D(m),

where theS1
D(m) = P (D(m)/L(D)(m)) are the circles of Section 2. IfD is a rank 2

Goursat distribution thenL(D)= 0 so thatS1
D(m)= P (D(m)) which shows that these

two definitions match up.PD is a circle bundle overM .
We endowPD with a distributionE as follows. It is enough to describe what it

means for a curve inPD to be tangent toE. A curve in PD consists of a moving
pair (m(t), V (t)) wherem(t) is a point moving onM , and whereV (t) is a moving
family of hyperplanes inD(m(t)), sandwiched as in the sandwich lemma in Section 2:
L(D(m(t)))⊂ V (t)⊂D(m(t)). We declare the curve to be tangent to the distribution if
and only if dm

dt
∈ V (t). Equivalently, let

π : PD→M

be the projection anddπ be its differential. Then

E(m, V ) := dπ−1
q (V ), q = (m, V ).

DEFINITION. – The manifold PD with distributionE is the prolongation of the
distributionD on M .

Example. – Let M be a surface and letD = TM, the whole tangent bundle toM .
ThenPD= PTM consists of the space of tangent lines. Letx, y be local coordinates
on M near a pointm. Then a line= ⊂ TmM is described by its slope:dy = z dx. The
new coordinatez is a fiber affine coordinate onPTM→M . The distribution onPTM is
defined bydy− z dx = 0. This is the standard contact form in three-dimensions. Indeed,
PTM is canonically isomorphic toP T ∗M , which has a well-known contact structure,
and which is this prolongation.

Returning to the general rank 2 prolongationPD, let ω1, . . . , ωs be one-forms whose
vanishing definesD. Complete these forms to a local co-framing of all ofT ∗M by
adding two other one-forms, saydx and dy. Restricted toDm, the formsdx and dy

form a linear coordinate system. Then any line= ⊂ Dm can be expressed in the form
a dx − b dy = 0, with (a, b) �= 0. Thus[a, b] form homogeneous coordinates on the
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projective linePDm. One obtains a fiber affine coordinate by writing[a, b] = [z, 1].
This z is defined away from the “vertical line”dx = 0 and is the slope:z = dy/dx.
Thereforez forms an affine fiber coordinate for the bundlePD→ M . The Pfaffian
system describing the prolonged distribution onPD is π∗ωi, i = 1, . . . , s, together with
ωs+1 = dy − z dx. The coordinatez breaks down in a neighborhood of the vertical
lines. There we must switch to the other affine coordinatez̃ which is related toz by
z̃= dx/dy = 1/z in their common domain. In such a “vertical” neighborhood we must
use the formdx − z̃ dy instead ofdy − z dx.

PROPOSITION 5.1. –The prolongationE of a Goursat distributionD of rankk and
coranks on a manifoldM is a Goursat distribution of rankk and coranks + 1 on the
manifold PD. It satisfiesE2= π∗D. If rank(D)= 2 thenL(E2)= ker(dπ), the vertical
space for the fibration PD→M .

Proof. –We only give the proof in the caserank(D) = 2. E is rank 2, soE2 has
rank at most 3. NowE ⊂ π∗D, whereπ∗D is the rank 3 distribution onPD defined
by the vanishing of theπ∗ωi as above. Indeed, in terms of our coordinatesE = {v ∈
π∗D: ωs+1(v) = 0} with ωs+1 = dy − z dx as above.E2 = π∗D becausedωs+1 =
dz ∧ dy �= 0 mod ωs+1. (See the proof of Lemma 2.2.) NowEj = π∗Dj−1, j = 3, . . . ,

and they have the right rank, so the rest of the Goursat conditions follow.E is Goursat.
By definition, the vertical spaceker(dπ) belongs toπ∗D, and is involutive. Thus

ker(dπ) ⊂ L(E2). The equalityker(dπ) = L(E2) now follows from the sandwich
lemma and a dimension count. Alternatively, to get equality, use the fact thatE = π∗D
is defined by the vanishing of theπ∗ωi, and these forms are independent of the vertical
direction. ConsequentlyL(E2)= ker(dπ). ✷
5.2. Deprolongation

The reverse of prolongation is deprolongation. Suppose thatE is a distribution on a
manifold Q, and thatL(E2) is a constant rank foliation. Let us suppose that the leaf
space

M =Q/L
(
E2)

is a manifold, and that the projection

π : Q→M

is a submersion. In this case we will say that the foliationL(E2) is nice. Since the vector
fields inL(E2) leaveE2 invariant, the distributionE2 pushes down toM . Set

D = π∗E2

meaning thatDπ(q) = dπq(E2(q)), q ∈Q. To reiterate, the fact that the flows ofL(E2)

are symmetries ofE2 implies that the value ofD at m = π(q) is independent of the
representativem ∈ π−1(q) which we choose. Note that we have a natural identification:

Dπ(q) =E2(q)/L
(
E2(q)

)
,
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sinceker(dπq)= L(E2(q)).
Suppose now thatE is Goursat. ThenL(E2) has codimension two withinE2, so that

D is a two-plane field onM .

PROPOSITION 5.2. –Assume thatE is a Goursat distribution on a manifoldQ with
coranks + 1 and arbitrary rank, and whose leaf space with respect toL(E2) is nice in
the sense above. Then its deprolongationD = π∗E2 is a coranks Goursat distribution
of rank2 on the quotient manifoldM =Q/L(E2).

Proof. –The distributionsEk , k � 2, defined by the inductive relationEk+1 =
[Ek, Ek], also are invariant under the flows ofL(E2), sinceL(E2)⊂ L(Ek) for k � 2.
It follows that theseEk push down toM . One easily checks thatDj = π∗Ej+1 and that
rank(Dj )= 2+ j . ✷

Local deprolongation. – If the foliation byL(E2) is not nice, we can still deprolong
locally. To proceed, restrictE to a small enough open subset ofU ⊂Q. For example
we could takeU to be a flow-box forL(E2), in which caseU ∼= U1 × U2 with the
leaves ofL(E2) corresponding toU1× {m}. (U1 is an interval whendim(L(E2))= 1.)
The restriction ofL(E2) to U is nice, so that we can proceed with deprolongation.
We will call the deprolongationπ∗E2 of E|U a local deprolongation. The germ of a
local deprolongation near a particular leaf ofL(E2) is independent of the choice of
neighborhoodU since the flows alongL(E2) preserveE2. Thus we can speak of the
deprolonged germof any Goursat distribution.

5.3. Prolongation and deprolongation are inverses

Deprolongation changes rank fromr to 2, whereas prolongation preserves the rank of
the distribution, so these two constructions cannot literally be inverses. Rather they are
inverses “modulo trivial factors”. We say that two distribution germsD on M andD̃ on
M̃ arethe same modulo trivial factorsif there are integersk, m such that the distribution
germsD × Rk on M × Rk and D̃ × Rm on M̃ × Rm are diffeomorphic. Recall that
Zhitomirskii’s theorem (Section 1, following the table) asserts that any Goursat germ is
the same, modulo a trivial factor, to one of rank 2.

PROPOSITION 5.3. –The deprolongation of the prolongation of a rank2 distribution
is diffeomorphic to the original. The converse is true locally: modulo trivial factors, the
germ of the prolongation of the deprolonged germ of a Goursat distribution of any rank
is diffeomorphic to the original.

Proof. –Let E be the prolongation of the Goursat distributionD on M . The leaves of
L(E2) are the fibersPDm of the fibrationπ : PD→M , so thatM itself is canonically
identified with the leaf spacePD/L(E2). Now π∗D = E2 by the previous proposition,
andπ∗π∗D =D. This proves that the deprolongation of the prolongation is the original.

Conversely, suppose thatπ : U →M is a local deprolongation, whereE is the rank
2 Goursat distribution onU , and D = π∗(E2) is its deprolonged distribution. Write
m= π(u), with u ∈U . Thendπu(Eu)⊂Dm is a one-dimensional subspace – an element
of PDm. Thus u→ dπu(Eu) defines a mapΦ : U → PD from the original Goursat
manifold to the prolongationPD of its (local) deprolongation. We claim thatΦ is a
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local diffeomorphism. Indeed,Φ is a fiber bundle map overM , so all we need to check
is that the restriction of its differential toL(E2)u, the tangent space to the fiber of
π : U →M at u is onto. Moving along the leaf= = π−1(m) of L(E2) corresponds to
flowing with respect to a nonzero vector fieldW ∈ L(E2). So we want to show that
dΦu(Wu) �= 0. CompleteW to a local frame{W, X} for E nearu. Then[W, X](u) �= 0,
modEu sinceE2

u �= Eu. This is equivalent to the condition thatdΦu(Wu) �= 0. Finally,
one easily checks thatΦ mapsE to the prolongation ofD. ✷
5.4. Monster Goursat manifold. Proof of Theorem 1

Suppose that we had a Goursat distribution of coranks on a manifoldM with
the property thateverycoranks Goursat germ was represented by some point of the
manifold. Then the prolongation ofM would enjoy the same property, but now among
coranks + 1 Goursat distribution germs! For if we are given any coranks + 1 Goursat
distribution, its deprolongation is represented by some point ofM , by hypothesis.
And by Proposition 5.3, upon prolonging this deprolongation we arrive at a germ
diffeomorphic to the original.There is such anM in the corank2 case.Indeed, in this
case, there is only one corank 2, rank 2 Goursat germ up to diffeomorphism. This is
the Engel germ. Thus any Engel distribution on a 4-manifold will serve forM , with
s = 2. It follows thatevery Goursat germ of coranks + 2 is realized within thes-fold
prolongation of an Engel distribution!

Now an Engel distribution can be obtained by prolonging a contact structure on a
three-manifold. And a contact three-manifold can be obtained by prolonging the tangent
bundle to a surface (see the example of Section 5.1). We have proved that

every coranks Goursat germ can be found, up to a diffeomorphism, within thes-fold
prolongation of the tangent bundle to a surface.

We have called thiss-fold prolongation the “monster manifold”. It is a very tame
monster in many respects. Theorem 1 is proved.

Remark. – The direction of this section is in some sense opposite to that of Sections 3
and 4. In this section we imagine building Goursat distributions up from below by
prolonging, beginning with a surface. In Sections 3 and 4 we think of building Goursat
distributions “down from above” by taking a coranks Goursat flag, beginning withs = 2,
and examining all possible “extensions” or “square roots” of its coranks generatorDs ,
thus filling out out the Goursat flag to one of lengths + 1. Now, the prolongationE
of a Goursat distributionD is a square root ofπ∗D (see Proposition 5.1), so the two
approaches are really the same.

6. Proof of Theorems 2 and 3

In this section we prove Proposition 3.1 and Theorems 2 and 3. We will use the
following notation. Given a distributionD and 1-formω on a manifoldM , with ω|D �= 0,
(D, ω) will denote the subbundleE ⊂D for which E(p)= {Xp ∈D(p): ω(Xp)= 0}.
(If ω|D is allowed to vanish at some points, then(D, ω) is not a subbundle, but rather a
subsheaf.)
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The proof of Theorem 3 is based on our generalized Gray’s theorem (Theorem A.2 in
Appendix A) and the following proposition.

PROPOSITION 6.1. –Let F : Ds ⊂ Ds−1 ⊂ · · · ⊂ D1 and FN : DN,s ⊂ Ds−1 ⊂ · · · ⊂
D1 be two Goursat flags on the same manifold whose distributions agree except at the
largest corank, coranks. Suppose thatDs = (Ds−1, ω) and thatDN,s = (Ds−1, ωN), for
1-formsω andωN . Assume thatωN → ω in theCl-Whitney topology,l � 1. Then there
exist global diffeomorphismsΦN such thatΦN → id in the Cl-Whitney topology and
(ΦN)∗FN = F for sufficiently bigN .

We also need the following local version of this proposition.

PROPOSITION 6.2. –
Part 1 (For germs at a nonfixed point). Assume the flagsF and FN are the same as

in Proposition6.1, but the conditionωN → ω is replaced by the conditionj l
pωN →

j l
pω, l � 1 for some pointp. Let U be any neighbourhood of the pointp. Then for

sufficiently largeN there exist open sets(possibly disjoint) UN
1 , UN

2 ⊂ U with p ∈ UN
1

and a diffeomorphismΦN : UN
1 → UN

2 which sends the flagFN restricted toUN
1 to the

flag F restricted toUN
2 , and satisfiesj l

pΦN → j l
p id asN→∞.

Part 2 (For germs at a fixed point). FixN and assume that the Goursat flagsF and
FN are the same as in Proposition6.1. Assume also thatj l

pωN = j l
pω for some pointp

and l � 0. Then there exists a local diffeomorphismΦ preserving the pointp, sending
the germ atp of FN to the germ atp of F and such that ifl � 1 thenj l

0Φ = id.

Remarks. –
1. Note that in part 1 we may haveΦN(p) �= p for all N . To make sense of the

condition j l−1
p ΦN → j l−1

p id one should takeU to be a coordinate neighborhood and
identify the=th jet with the=th order Taylor expansion ofΦN .

2. Proposition 6.1 and the first part of Proposition 6.2 hold forl � 1 whereas the
second part of Proposition 6.2 also covers the casel = 0. This difference is essential. The
casel = 0 is necessary for the proof of Proposition 3.1 and the proof ofs-determinacy
in Theorem 2.

Proof of Proposition 3.1. –This is the casel = 0 of Proposition 6.2 (part 2). ✷
Proof of Theorem 3. –Let F : Ds ⊂ Ds−1 ⊂ · · · ⊂ D2 ⊂ D1 and F̃ : D̃s ⊂ D̃s−1 ⊂

· · · ⊂ D̃2 ⊂ D̃1 be Goursat flags on manifoldM described byCs+1-close tuples
ω1, . . . , ωs and ω̃1, . . . , ω̃s of 1-forms. Assume that the foliationsL(D1) and L(D̃1)

are the same. By Theorem A.2 (Appendix A) there exists aCs-close to the identity
diffeomorphismΦ1 of M which bringsD̃1 to D1. This diffeomorphism brings the flag
F̃ to the flag(Φ1)∗F̃ : (Φ1)∗D̃s ⊂ (Φ1)∗D̃s−1 ⊂ · · · ⊂ (Φ1)∗D̃2 ⊂ D1 described by the
tuple of 1-formsω1, Φ∗1ω̃2, . . . , Φ∗1ω̃s which is Cs−1-close to the tupleω1, ω2, . . . , ωs .
Now we apply Proposition 6.1 withs = 2 there and the= there equal to the current
s − 1. It guarantees the existence of aCs−1-small diffeomorphismΦ2 which brings
the length 2 flag(Φ1)∗D̃2 ⊂ D1 to the flagD2 ⊂ D1. This diffeomorphism brings the
flag (Φ1)∗F̃ to the flag(Φ2Φ1)∗F̃ : (Φ2Φ1)∗D̃s ⊂ (Φ2Φ1)∗D̃s−1⊂ · · · ⊂ (Φ2Φ1)∗D̃3⊂
D2 ⊂ D1 described by the tuple of 1-formsω1, ω2, (Φ2Φ1)∗ω̃3, . . . , (Φ2Φ1)∗ω̃s which
is Cs−2-close to the tupleω1, ω2, ω3, . . . , ωs . Continue applying Proposition 6.1(s − 3)
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times more we to obtain a sequence of diffeomorphismsΦ3, . . . , Φs−1 for which the
compositionΦs−1Φs−2 · · ·Φ1 brings the flagF̃ to the flag F̂ described by 1-forms
ω1, ω2, . . . , ωs−1, ω̂s, whereω̂s = (Φs−1Φs−2 · · ·Φ1)∗ω̃s . The 1-formsω̂s andωs areC1-
close. Using Proposition 6.1 for one last time we obtain a diffeomorphismΦs which
brings the flagF̂ to the flagF . The diffeomorphismΦsΦs−1Φs−2 · · ·Φ1 brings the flag
F̃ to the flagF .

Proof of Theorem 2 – structural stability. –This follows from Theorem A.3 (part
1) and the Proposition 6.2 (part 1) in the same way that Theorem 3 followed from
Theorem A.2 and Proposition 6.1.

Proof of Theorem 2 –s-determinacy. –The proof is essentially the same as the proof
of Theorem 3 above, except we use Theorem A.3 (part 2) instead of Theorem A.2, and
the second part of Proposition 6.2 instead of Proposition 6.1. Namely, we start with two
germsF and F̃ at a fixed pointp of Goursat flags of lengths described bys-tuples
of 1-formsω1, . . . , ωs−1, ωs and ω̃1, . . . , ω̃s−1, ω̃s as in the proof of Theorem 3 above,
and having the sames-jets atp. Using Theorem A.3 (part 2) and then Proposition 6.2
(part 2),s − 2 times we conclude that̃F is equivalent to the germ of another Goursat
flag F̂ at p, whereF̂ is described by the tuple of 1-formsω1, . . . , ωs−1, ω̂s and where
ω̂s(p)= ω(p). Now apply Proposition 6.2 (part 2) withl = 0 to conclude that the germ
of F̂ is equivalent to the germ ofF .

Proof of Proposition 6.1. –The proof will consist of three steps.
First step.We will show that for sufficiently largeN the flag

FN,t : Ds,N,t ⊂Ds−1⊂ · · · ⊂D1, Ds,N,t = (Ds, ωN,t ), ωN,t = ω+ t (ωN −ω)

is a Goursat flag for anyt ∈ [0, 1]. To show this we have to check the following
statements:

(a) ωN,t |Ds,N,t (p) is a nonzero 1-form for anyp ∈M , t ∈ [0, 1] and sufficiently large
N ;

(b) dωN,t |Ds,N,t (p) is a nonzero 2-form for anyp ∈M , t ∈ [0, 1] and sufficiently large
N ;

(c) if µ is a 1-form annihilating the distributionDs−1 thendµ|Ds,N,t (p) = 0 for any N,
anyp ∈M andt ∈ [0, 1].

The statements (a) and (b) follow from the fact that they are valid fort = 0, the
condition thatωN tends toω in the C1-Whitney topology (here we use thatl � 1 in
the formulation of Proposition 6.1), and the observation that the hyperplaneDs,N,t (p)

as well as the restrictions of the formsωN,t anddωN,t to this hyperplane depend on the
1-jet atp of the formωN,t only.

To prove (c) we consider the spaceL(Ds−1)(p). By the sandwich Lemma 2.1 it
is a codimension 2 subspace ofDs−1(p) and the 1-formsω and ωN annihilate this
space. ThereforeωN,t annihilatesL(Ds−1)(p) for all t , i.e.,L(Ds−1)(p) is a hyperplane
in Ds,N,t (p), independent ofN . BecauseL(Ds−1)(p) is the kernel of the 2-form
dµ restricted toDs−1(p), whereµ annihilatesDs−1 but not Ds−2 (see Lemma 2.2),
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any hyperplane inDs−1(p) containingL(Ds−1)(p) is isotropic fordµ. In particular,
Ds,N,t(p) is isotropic fordµ.

Second step.We have proved thatFN,t is a Goursat flag for sufficiently largeN
and all t ∈ [0, 1]. In what follows assume thatN is sufficiently large. Now we start
to construct a pathΦN,t of global diffeomorphisms such that(ΦN,t )∗FN,t = FN,0 = F

and in particular(ΦN,1)∗FN = F . We use the homotopy method. The second step of the
proof is to reduce the construction ofΦN,t to the construction of a pathXN,t of global
vector fields satisfying the linear equations

(XN,t$dωN,t + ωN − ω)|Ds,N,t
= 0, XN,t ∈L(Ds−1). (6.1)

Assume thatXN,t satisfies (6.1). Consider the following ordinary differential equation
and the initial condition with a parameterp ∈M :

dΦN,t (p)

dt
=XN,t

(
ΦN,t (p)

)
, ΦN,0(p)= p, p ∈M. (6.2)

SinceM is a compact manifold andt varies on the compact segment[0, 1], the solution
of (6.2) is a pathΦN,t of global diffeomorphisms onM . Let us show that(ΦN,t )∗FN,t =
FN,0. The conditionXN,t ∈ L(Ds−1) implies thatΦN,t preserves the distributionDs−1.
Therefore to show that(ΦN,t )∗Ft = F0 it is suffices to show that there exists a pathHN,t

of nonvanishing functions such that

(HN,tΦ
∗
N,t ωN,t − ω0)|Ds−1 ≡ 0. (6.3)

We will seek forHN,t in the formHN,t = ehN,t , wherehN,0 is a function identically equal
to 1. LetAN,t = HN,tΦ

∗
N,tωN,t − ω0. ThenAN,0 is the zero 1-form and therefore (6.3)

can be replaced by the equation(
dAN,t

dt
)|Ds−1 ≡ 0. We have

dAN,t

dt
=HN,t

dhN,t

dt
Φ∗N,t ωN,t +HN,tΦ

∗
N,t

(
LXN,t

ωN,t + dωN,t

dt

)
,

where LXN,t
is the Lie derivative along the vector fieldXN,t . Let qN,t be a path

of functions onM such that dhN,t

dt
= qN,t (ΦN,t ). Then equation( dAN,t

dt
)|Ds−1 ≡ 0 is

equivalent to the equation

(qN,tωN,t +LXN,t
ωN,t + ωN −ω)|Ds−1 = 0 (6.4)

with respect to the path of functionsqN,t . By the sandwich lemmaL(Ds−1) is a
subset ofDs,t for all t . ThereforeωN,t annihilatesXN,t ∈ L(Ds−1). It follows that
LXN,t

ωN,t =XN,t$dωN,t . Then (6.4) can be written in the form

(qN,t ωN,t +XN,t$dωN,t + ωN −ω)|Ds−1 = 0.

This equation has a solutionqN,t due to relation (6.1), and the definition ofDs,N,t .
Third step.Note that the diffeomorphismsΦN,t defined by the ordinary differential

equation (6.2) tend to the identity diffeomorphism asN →∞ in the same topology in
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whichXN,t → 0. Therefore to finish the proof of Proposition 6.1 it suffices to prove that
(6.1) has a solutionXN,t tending to the zero vector field asN →∞ in theCl-Whitney
topology. The third step of the proof is to construct suchXN,t .

Fix a Riemannian metrics onM . Let VN,t (p) ⊂ Ds,N,t (p) be the orthogonal com-
plement toL(Ds,N,t)(p) within Ds,N,t (p) with respect to this metric. By Lemmata 2.1
and 2.2dimVN,t (p)= 2 andrank(dωN,t )|VN,t (p) = 2. Therefore there is a unique vector
Xp,N,t ∈ VN,t (p) such that

(Xp,N,t$dωN,t + ωN −ω)|Vt (p) = 0, p ∈M, t ∈ [0, 1]. (6.5)

SetXN,t (p)= Xp,N,t . SinceωN − ω tends to 0 in theCl-Whitney topology,XN,t → 0
asN →∞ in the same topology. We will show that the pathXN,t satisfies (6.1). This
will complete the proof of Proposition 6.1.

SinceL(Ds,t) ⊕ Vt = Ds,N,t the first condition in (6.1), which is to say the validity
of equation there, follows immediately from (6.5) once we have shown that all the
forms in that equation, namelydωN,t , ωN andω annihilateL(Ds,t). The fact thatdωN,t

annihilates any vector inL(Ds,t) is contained in Lemma 2.2. To prove thatω andωN

annihilate, use the sandwich Lemma 2.1 twice to conclude thatL(Ds−1)(p) is contained
in both Ds(p) and inDs,N(p). Thereforeω andωN annihilate the spaceL(Ds−1)(p).
But the sandwich lemma also givesL(Ds,t)(p)⊂ L(Ds−1)(p), and therefore these forms
annihilateL(Ds,t)(p).

It remains to prove the inclusionXN,t ∈L(Ds−1) of Eq. (6.1). The validity of the first
equation (6.1) and the fact thatω andωN annihilate the spaceL(Ds−1)(p) imply

(Xp,N,t$dωN,t )|L(Ds−1)(p) = 0. (6.6)

By the sandwich lemmaL(Ds−1)(p) is a hyperplane inDs,N,t . Every such hyperplane is
isotropic, so (6.6) implies that eitherXp,N,t ∈ L(Ds−1)(p) or thatXp,N,t is a nonzero
vector in the kernel of the 2-form(dωN,t )|Ds,N,t

. The latter possibility is excluded
by the conditionXp,N,t ∈ VN,t (p), the orthogonal complement toL(Ds,N,t)(p) =
ker(dωN,t )|Ds,N,t

. Proposition 6.1 is now proved.✷
Proof of Proposition 6.2. –The proofs of the statements of Proposition 6.2 with= > 0

are almost the same as as the proof we have just given. The difference occurs mainly
in the construction of the diffeomorphismΦN,t by the ordinary differential equation
(6.2). Concerning the case of part 1, the problem is that ifXN,t is a time-dependent
vector fields on a neighborhoodU of a point p then its flow will typically map out
of that neighborhood – hence the business with domainsUN

i in part 1. Although there
may be no single flowΦN,t , t ∈ [0, 1] of diffeomorphisms on a single neighborhood of
p, nevertheless, forN large the vectorXN,t (p) is sufficiently close to zero so that the
solution of (6.2) defines diffeomorphismsΦN,t : UN

1 → UN
2,t , t ∈ [0, 1], whereUN

1 is a
neighbourhood ofp contained inU andUN

2,t is an open subset ofU (which may or may
not containp).

In the case of part 2 we have to show thatΦt(p)= p andU2,t containsp. This follows
becauseXN,t (p)= 0 for all t .
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The proof of Proposition 6.2 (part 2) withl = 0 is also the same, except that we
meet a difficulty in the first step of the proof. We have to show that the restriction
θt (p) of the formdω + t (dω̃ − dω) to the spaceDs(p) = D̃s(p) does not vanish for
all t ∈ [0, 1]. This is true fort = 0 and t= 1, but if l = 0 thendω(p) might not be
close todω̃(p) even in theC0-topology and consequentlyθt (p) might vanish for some
t ∈ (0, 1). Sinceθt (p) depends linearly ont , this is impossible ifθ0 andθ1 define the
same orientation of the 2-spaceDs(p)/L(Ds)(p) (the orientations are well-defined since
L(Ds)(p) is the kernel ofθ0(p) andθ1(p)). If the orientations are different then we have
to show the existence of a symmetry of the germ atp of the distributionDs−1 which also
preservesω(p) and the foliationL(Ds)(p) and changes the defined above orientation.
We can find local coordinates centered atp such thatL(Ds−1) = (dx1, . . . , dxs+1)

⊥
andL(Ds)= (dx1, . . . , dxs+1, dxs+2)

⊥, and such that the forms defining theDi can be
taken to be independent ofxj , j � s + 2. It follows from the sandwich lemma that the
diffeomorphismxs+2→−xs+2 is a symmetry of the required type.
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Appendix A. Generalization of the Gray theorem

Gray’s theorem [12] states that for any path of global contact structuresDt, t ∈ [0, 1],
on an odd-dimensional manifoldM there exists a family of global diffeomorphisms
Φt : M → M such that(Φt)∗Dt = D0, t ∈ [0, 1]. It follows that two global contact
structuresD and D̃ are equivalent provided that̃D is sufficiently close toD in the
WhitneyC1-topology.

In this section we generalize Gray’s theorem to corank one distributionsD of any
constant class. Let ω be any nonvanishing 1-form describingD nearp. By the class
of D at p we will mean the odd number 2r+ 1 such thatω ∧ (dω)r(p) �= 0 and
ω ∧ (dω)r+1(p)= 0. The even integer 2r is the rank of the restriction of the two-form
dωp to Dp.

A corank one distribution hasconstant classif this class 2r + 1 does not depend on
the pointp ∈M . The definition of the class is due to Frobenius [6] and Cartan [2].

For example, the class of a contact structure is the dimension of the underlying
manifold. The maximal possible class of a corank one distribution on a manifold of even
dimension 2k is 2k − 1. Such a distribution is called a quasi-contact, or even-contact,
structure. A foliation of codimension one has class 1, the minimal possible class. In
Section 2 we proved that the corank one distributionD1 of a Goursat flag has constant
class 3.

Recall that thecharacteristic foliationL(D) of the distributionD is the foliation
generated by vector fieldsX ∈D such that[X, D] ⊂D, i.e.,[X, Y ] ∈D for anyY ∈D.
The characteristic foliationL(D) ⊂ D for a corank 1 distributionD of constant class
2r + 1 has codimension 2r within D. It is the kernel of the 2-formdω|D(p), whereω

is as above. (See the proof of Lemma 2.2.) This kernel coincides with the kernel of the
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(2r + 1)-form ω ∧ (dω)r(p) on the spaceTpM . (By the kernel of an exteriorq-form on
a vector space we mean the subspace of vectorsv such that the form annihilates every
q-tuple of vectors containingv.)

For example, the characteristic foliation of a quasi-contact structure is a line field.
The characteristic foliation of a contact structure is trivial: it is the zero section of the
tangent bundle. The characteristic foliation of an involutive corank one distribution is the
distribution itself. The characteristic foliation of the corank one distribution of a Goursat
flag has codimension 3 within the manifold.

The following theorems generalizes Gray’s theorem. By acooriented corank one
distributionwe mean a distribution which can be globally described by a 1-form.

THEOREM A.1. – Let Dt be a path of cooriented corank one distributions on a
compact manifoldM of constant class2r +1 such thatL(Dt)= L(D0), t ∈ [0, 1]. Then
there exists a pathΦt of global diffeomorphisms ofM such that(Φt)∗Dt =D0, t ∈ [0, 1].

For quasi-contact structures Theorem A.1 is known to specialists, although is
unpublished to our knowledge.

Using Theorem A.1 we obtain Theorem A.2 below. We need it for our proofs of
Theorems 2 and 3 in the body of the present paper, where it is applied to the case of
corank one distributions of constant class 3.

THEOREM A.2. – Let D andDN, N = 1, 2, . . . , be cooriented corank one distribu-
tions on a compact manifoldM of constant class2r + 1 such thatDN →D asN→∞
in the Cl+1-Whitney topology,l � 1, and L(DN) = L(D) for all N . Then there exists
a sequenceΦN of global diffeomorphisms ofM such thatΦN → id as N →∞ in the
Cl-Whitney topology and(ΦN)∗DN =D0 for sufficiently bigN .

Proof of Theorem A.1. –Fix a Riemannian structure onM . For p ∈ M , denote
by Vt(p) ⊂ Dt(p) the 2r-dimensional subspace ofDt(p) which is the orthogonal
complement toL(Dt)(p) with respect to this metric. Letωt be the path of 1-
forms describingDt . The form 2-formdωt |Vt (p) is nondegenerate becauseL(Dt) =
kerdωt |Dt (p). Therefore the equation(Xt(p)$dωt)|Vt (p) = µt(p) has a unique solution
Xt(p) ∈ Vt(p) for any 1-form µt(p) on Vt(p). We need this solution whenµt =
− dωt

dt
|Vt (p). The solutionXt(p) depends smoothly (analytically) on the pointp and

on t , and so defines a smooth (analytic) pathXt of vector fields onM . The relation
Xt$dωt =− dωt

dt
in fact holds upon restriction to the entire spaceDt(p). This is because

L(Dt)(p) = kerdωt(p) and because the 1-formdωt

dt
vanishes onL(Dt)(p). The latter

fact is a consequence of the condition thatL(Dt)= L(D0) does not depend ont . This is
the only place in the proof where this condition is used.

Now define the pathΦt of global diffeomorphisms to be the solution to the ordinary
differential equationdΦt

dt
=Xt(Φp) with the initial conditionΦ0= id. We will show that

(Φt)∗Dt =D0. We haved
dt

((Φt )
∗ωt)=Φ∗t (LXt

ωt + dωt

dt
), whereL is the Lie derivative

alongXt . SinceXt is annihilated byωt the Lie derivative is equal toXt$dωt . We showed
that (Xt$dωt + dωt

dt
)|Dt (p) = 0 for any pointp. This implies thatXt$dωt + dωt

dt
= htωt

for some path of functionsht . Therefore the path of 1-formsAt = (Φt )
∗ωt satisfies the

linear ordinary differential equationdAt

dt
= h̃tAt with h̃t = ht(Φt ) with initial condition

A0= ω0. We can integrate this equation. Indeed the ansatzAt =Htω0 yields the scalar
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differential equationdHt

dt
= h̃tHt with solutionHt = exp{∫ t

0 h̃s ds}. We have shown that
At :=Φ∗t ωt =Htω0 which means that(Φt )∗Dt =D0. ✷

Proof of Theorem A.2. –Let ω be a global 1-form describingD, and letω̂N be global
1-forms describingDN and such that̂ωN → ω in the WhitneyCl+1-topology. Since the
(2r + 1)-forms ω̂N ∧ (dω̂N)r andω ∧ (dω)r have the same kernelL(DN) = L(D) of
codimension 2r+ 1 thenω̂N ∧ (dω̂N)r = HNω ∧ (dω)r , whereHN is a nonvanishing
function. ReplacêωN by ωN = ω̂N

H r+1
N

. The formsωN also describe distributionsDN , and

we have

ωN ∧ (dωN)r = ω ∧ (dω)r. (A.1)

The value ofHN at any point depends on the values ofω, ω̂N and their differentials
at the same point only, thereforeHN → 1 in the WhitneyCl-topology. Consequently
ωN → ω in the same topology.

Define the path

ωN,t = ω+ t (ωN −ω), t ∈ [0, 1],
of one-forms. LetDN,t be the field of kernels ofωN,t . We show that for sufficiently big
N the distributionDN,t is a corank one distribution of the same constant rank 2r+1 and
with the same characteristic foliationL(DN,t ) = L(D) for all t ∈ [0, 1]. This follows
immediately from the following two statements:

(a) ωN,t ∧ (dωN,t )
r (p) �= 0 (for sufficiently bigN , anyt ∈ [0, 1], and anyp ∈M);

(b) dωN,t (Z, YN,t ) = 0 for any vector fieldZ ∈ L(D) and any vector fieldYN,t ∈
DN,t .

Statement (a) follows from theCl-closeness ofωN,t to ω, the compactness of the
segment[0, 1] and the conditionl � 1.

To prove the second statement we use equality (A.1). Fix a vector fieldZ ∈L(D). We
know thatZ(p) belongs to the kernel ofdω(p)|D(p) for any pointp of the manifold.
This condition implies thatZ$dω = hω for some functionh. Similarly Z$dωN = hNωN

for some functionhN . To prove (b) it suffices to show thathN = h. Indeed, ifhN = h

then for any vector fieldYN,t ∈DN,t we have:

dωN,t (Z, YN,t )= (1− t) dω(Z, YN,t )+ t dωN(Z, YN,t )

= (1− t)hω(YN,t )+ thωN(YN,t )= hωN,t (YN,t )= 0.

To prove thathN = h we take the Lie derivativeLZ of the relation (A.1) along the
vector fieldZ. SinceZ belongs to the kernel of each of the(2r + 1)-forms in (A.1),
we obtainLZ(ω∧ (dω)r)= Z$(dω)r+1= (r +1)(dω)r ∧ (Z$dω)= (r +1)hω∧ (dω)r

and, in the same way,LZ(ωN ∧ (dωN)r)= (r+1)hNωN ∧ (dωN)r . But (A.1) holds, and
hence so does the Lie derivative of (A.1) with respect toZ. We conclude thathN = h.

We have proved that the path of distributionsDN,t satisfies the conditions of Theorem
A.1. By this theorem there exists a diffeomorphismΦN sendingDN = DN,1 to D =
DN,0. Tracing the proof of Theorem A.1 we see that asN →∞ the diffeomorphism
ΦN tends to the identity diffeomorphism in the same topology in which the 1-formdωN,t

dt

tends to zero 1-form. SincedωN,t

dt
= ωN − ω andωN → ω in the Cl-Whitney topology,

we have thatΦN → id in the same topology. ✷
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We also need the following local version of Theorem A.2. Its proof is the almost the
same.

THEOREM A.3. –
Part 1 (For germs at a nonfixed point).Let D and DN be corank one distributions

on a manifoldM of constant class2r + 1 described by1-forms ω and ωN such that
j l

pω̃N → j l
pω for some pointp ∈ M , and for l � 1. Let U be any neighborhood

of the pointp. Then for sufficiently largeN there exist open sets(possibly disjoint)
UN

1 , UN
2 ⊂ U with p ∈ UN

1 and a diffeomorphismΦN : UN
1 → UN

2 which sends the
distribution DN restricted toUN

1 to the distributionD restricted toUN
2 , and satisfies

j=−1
p ΦN → j=−1

p id asN→∞.

Part 2 (For germs at a fixed point).Let D andD̃ be germs at a pointp of corank one
distributions of constant class2r + 1 with the samel-jets atp, l � 1. Then there exists
a local diffeomorphismΦ such thatj l−1

p Φ = j l−1
p id andΦ∗D̃ =D.

Note that in part 1 in generalΦN(p) �= p. To make sense of the conditionj l−1
p ΦN →

j l−1
p id one should takeU to be a coordinate neighborhood and identify the=th jet with

the=th order Taylor expansion ofΦN .

Appendix B. Proof of Lemma 3.2

This lemma is based on the following statement.

PROPOSITION B.1. –Let D be any Goursat distribution of coranks � 2. All eigen-
values of the linearization atp of any local symmetryΦ ∈ Symmp(D) are real.

We prove this proposition at the end of this appendix. To show how it implies Lemma
3.2 we need several reduction steps.

Step 1.The projectivitygΦ of the circleS1(D)(p) depends onj1
pΦ only. Therefore to

prove Lemma 3.2 it suffices to prove the following statement:

R1. –LetΦ ∈ Symmp(D). Then we can expressΦ2 in the formΦ2= Ψ1exp(V ) where
Ψtexp(tV ) ∈ Symmp(D), V is a vector field germ atp, vanishing atp andΨt is a family
of local diffeomorphisms such thatj1

pΨt = id, t ∈R.

Note that we are not asserting thatΨt or exp(tV ) lie in Symmp(D).
Step 2.Proof of (R1). Fix anyk > s = corank(D). It follows from Proposition 6.2,

part 2 that ifD̃ is a germ atp of a Goursat distribution such thatjk
pD̃ = jk

pD̃ then

there exists a local diffeomorphismΦ such thatΦ∗D̃ =D andjk−s
p Φ = id. In particular

j1
pΦ = id. Therefore to prove (R1) it suffices to prove the following statement:

R2. –Let Φ ∈ Symmp(D). Then there exists a local vector fieldV such that:

jk+1
p Φ2= jk+1

p exp(V ), (B.1)

jk
pexp(tV )∗D = jk

pD, t ∈ R. (B.2)

Step 3.We show that (B.1) implies (B.2). It is clear that (B.1) implies (B.2) for all
integert . By Proposition B.1, the eigenvalues ofj1

pΦ are real, therefore the eigenvalues



488 R. MONTGOMERY, M. ZHITOMIRSKII / Ann. I. H. Poincaré – AN 18 (2001) 459–493

of j1
pΦ2 are positive and consequently those ofj1Vp are real. Therefore the relation

(B.2) can be expressed in the formF1(t)≡ · · · ≡ Fm(t)≡ 0, where each of the functions
F1, . . . , Fm is a linear combination of real exponential functions with polynomial
coefficients. SinceFi(t)= 0 for any integert thenFi(t)≡ 0 and (B.2) holds.

Step 4.We have reduced Lemma 3.2 to the proof of the existence of a vector fieldV

satisfying (B.1). LetJ k+1
p be the space of the(k+1)-jets atp of functions vanishing atp.

Consider the linear operatorA : J k+1
p → J k+1

p such thatA(f ) = jk+1
p f (Φ2), f ∈ J k+1

p .
To prove that (B.1) holds for some vector fieldV it suffices to show that the operator
A admits a logarithm, i.e., that there exists a linear operatorB : J k+1

p → J k+1
p such that

A= exp(B). To show this it suffices to prove that the eigenvalues ofA are real positive
numbers. It is known that the eigenvalues ofA have the formλ

α1
1 · · · · · λαn

n , where
λi are eigenvalues of the linearization ofΦ2 at p, and where theαi are non-negative
integers which sum tok + 1. By Proposition B.1 theseλi ’s are real positive numbers.
Therefore the same is true for the eigenvalues of the operatorA. The proof of Lemma 3.2
is completed.

Proof of Proposition B.1. –To prove Proposition B.1 we will show that in suitable
coordinate system the matrix ofj1

pΦ is triangular. LetD =Ds ⊂Ds−1⊂ · · · ⊂D2⊂D1

be the Goursat flag generated byD. Take a local coordinate systemx1, . . . , xn centered
at the pointp such that the Engel subflagD2 ⊂ D1 is described by 1-formsω1 =
dx1 − x2 dx3 and ω2 = dx2 − x4 dx3 and the characteristic foliationsL(Di) have the
form (dx1, . . . , dxi+2)⊥, i = 1, . . . , s. DenoteΦi =Φ(xi). The form of the characteristic
foliations and the fact that they are preserved byΦ implies that∂Φi

∂xj
(0)= 0 for j > i and

j > 3. To show that the matrix of the linear approximation ofΦ is triangular in the
chosen coordinate system we have to prove that

∂Φ1

∂x2
(0)= ∂Φ1

∂x3
(0)= ∂Φ2

∂x3
(0)= 0. (B.3)

To prove (B.3) we use the relationsΦ∗ω1=Hω1 andΦ∗ω2=H1ω1+H2ω2 that hold
for some functionsH, H1, H2. Write these relations in the coordinate systemx1, . . . , xn.
We obtain

dΦ1−Φ2 dΦ3=H(dx1− x2 dx3),

dΦ2−Φ4 dΦ3=H1(dx1− x2 dx3)+H2(dx2− x4 dx3).

SinceΦ2(0)=Φ4(0)= 0 we obtain (B.3). ✷

Appendix C. Kumpera–Ruiz normal forms, Mormul’s codes, and growth vector

The Kumpera–Ruiz normal forms are preliminary normal forms for coranks Goursat
flags. They are parametrized by a subsetsI ⊂ {3, 4, . . . , s} and provide representatives
for the Kumpera–Ruiz singularity classes

Di(0)= L(Di−2)(0), i ∈ I ; Di(0) �=L(Di−2)(0), i /∈ I,
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described in Section 2. Using Proposition 3.1, Lemma 2.2 and arguing by induction, it
is easy to prove that any such flag germ can be described bys 1-formsω1, . . . , ωs of the
type

ωi = dfi − gi dhi, i > 2,

together with

ω1= dy − z1 dx, ω2= dz1− z2 dx,

where the functionsfi, gi, hi, i > 2, are as follows:

fi = gi−1, hi = hi−1, gi = zi + ci if i /∈ I,

fi = hi−1, hi = gi−1, gi = zi if i ∈ I.

The constantsci, i /∈ I , are real parameters arising in the Kumpera–Ruiz normal forms.
The number of these parameters is equal tos minus the cardinality of the setI . These
parameters are not invariants in general. For example whenI is the empty set all of the
parameters can be reduced to zero according to the Cartan theorem.

P. Mormul treats the problem of local classification of Goursat distributions onRn

of rank 2 as the problem of normalizing the parametersci by changes of coordinates.
To systematize his results Mormul introduced the following codes. The Kumpera–Ruiz
normal form corresponding to a subsetI ⊂ {3, 4, . . . , s} is coded by the tuple ofs − 2
digits, where theith digit is a 2 ifi+2 /∈ I and is a 3 ifi+2∈ I . The digit 2 acts like an
indeterminant: if the constantci+2 in the Kumpera–Ruiz normal form can be normalized
to 0 then Mormul changes it to 1, ifci+2 cannot be normalized to 0 but can be normalized
to either 1 or to−1 then Mormul replaces the 2 by either abold 2 or a2-. However, if
i+2 /∈ I , but one does not know, or does not want to specify whether or not theci+2 can
be normalized, then Mormul leaves it as a 2.

These codes allow Mormul to formulate his results in a very compact way. For
example the assertion “3.3.1.2.2≡ 3.3.1.2.1” in [18, p. 15] means that in the Kumpera–
Ruiz normal form for Goursat flags of length 7 corresponding to the setI = {3, 4} ⊂
{3, 4, . . . , 7}, one can reduce the constantc7 to 0 provided that the parametersc5, c6 have
been normalized to 0 and 1 respectively. Translating this result to our language we obtain
the following. If D is a Goursat distribution of corank 6 onRn (any n � 8) generating
the flagD =D6⊂ · · · ⊂D1 with singularityD3(0)= L(D1)(0), D4(0)= L(D2)(0) and
such thatD5(0) is tangent to the submanifold of points at which this singularity holds
whereasD6(0) is generic, then the spaceL(D5) is the only fixed point of the circle
S1(D)(0) and therefore the set

√
D consist of two orbits.

The Cartan theorem admits an alternative formulation in terms of thegrowth vector.
The growth vector at a pointp of a distributionD (not necessarily Goursat) is the
sequenceg1, g2, . . . , where gk is the dimension of the space spanned by all vectors
of the form [X1, [X2, [X3, . . . , Xj ]]] . . .](p) with X1, . . . , Xj ∈ D, and j � k. For
nonholonomic distributions on ann-manifoldgl = n for some finitel and so the growth
vector is anl-tupleg = (r, . . . , n) starting with the rankr of D and ending withn. The
numberl as well as the growth vectorg may depend on the pointp. At generic points
of a Goursat distribution, as described by Cartan’s normal form (C) of Section 1, this
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Table 2

s 2 3 4 5 6 7 8 9

or(s) 1 2 5 13 34 93 ∞ ∞
gr(s) 1 2 5 13 34 89 not known not known

growth vector isg = (r, r + 1, r + 2, r + 3, . . . , n). This is the growth vector with the
fewest number of components (s = n− r), or fastest growth, given the constraint that it
is that of a Goursat distribution. Murray [20] proved the converse: a point of a Goursat
distribution with this growth vector is a nonsingular point.

This, together with other computations, suggested the conjecture that the growth
vector is a complete invariant of Goursat distributions, i.e., that two germs of Goursat
distributions at a pointp are equivalent if and only if they have the same growth vectors
at p. Mormul showed [17,18] that this conjecture is false fors > 6, although it is valid
for s � 6. The growth vectors of Goursat distributions can be quite complicated. For
example using normal forms Mormul found a Goursat 2-distributions onR9 whose
growth vector at the origin is 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, . . . , 7, 8, . . . , 8, 9 where 7
is repeated 8 times and 8 is repeated 13 times.

The numbergr(s) of all possible growth vectors for Goursat distributions of a
fixed corank s is finite. (Computing the growth vector from the normal form is
a straightforward tedious job.) Mormul obtained [18] the following table (Table 2)
comparinggr(s) with the numberor(s) of orbits in the space of germs of Goursat
distributions of the same coranks.

The tuplegr(2), gr(3), . . . , gr(7) is the list of the first 6 odd Fibonacci numbersF2s−3.
Conjecturally, this pattern continues:gr(s) is the (2s − 3)d Fibonacci number for all
s. In particulargr(8) = 233,gr(9) = 610. Results in this direction have been obtained
by Jean [13], Sordalen [21,22] and Luca and Risler [15] for the Goursat distribution
corresponding to the kinematic model of a truck pullings − 1 trailers.

In the next appendix we use our Theorem 1 to give a simple proof thatthe local
classification of Goursat distributions corresponding to the model of a truck withs

trailers and the local classification of arbitrary Goursat flags of lengths + 1 are the
same problem. This allows us to extend some of these truck-trailer results ongr(s) to
arbitrary Goursat distributions.

Appendix D. The kinematic model of a truck with trailers

In this appendix we use Theorem 1 to give a simple proof that

the local classification of Goursat distributions corresponding to the model of a truck
with s trailers and the local classification of arbitrary Goursat flags of lengths + 1 are
the same problem.
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The kinematic model of a truck towings trailers can be described by a 2-distribution
on R2× (S1)s+1 generated by vector fields

Xs
1=

∂

∂θs

,

Xs
2= cosθ0f

s
0

∂

∂x
+ sinθ0f

s
0

∂

∂y
+ sin(θ1− θ0)f s

1

∂

∂θ0
+ · · ·

+ sin(θs − θs−1)f
s
s

∂

∂θs−1
,

where

f s
i =

s∏
j=i+1

cos(θj − θj−1), i � s − 1, f s
s = 1,

(x, y) are the coordinates of the last trailer (trailer numbers), θs is the angle between the
truck and thex-axis, andθi is the angle between the trailer numbers − i and thex-axis.
See the works by Fliess et al. [5], Sordalen [21,22] and Jean [13]. This representation
holds under the condition that the distance between the truck and the first trailer is
equal to the distance between theith and the(i+ 1)st trailers. The distribution(Xs

1, Xs
2)

generated byXs
1 andXs

2 satisfies the Goursat condition, see [13].

PROPOSITION D1. –The Goursat distribution spanned byXs
1, Xs

2 and defining the
kinematics of a truck pullings trailers is diffeomorphic to the(s + 1)-fold Cartan
prolongation of the tangent bundle to the Euclidean plane.

Combining this proposition with Theorem 1 and the reduction from Goursatk-
distributions to Goursat 2-distributions given in Section 1, we obtain the following
corollary.

COROLLARY D1. –All corank s + 1 Goursat germs occur within the truck-trailer
model withs trailers. Namely, any germD of any Goursat2-distribution onRs+3 is
equivalent to the germ of the distribution spanned by(Xs

1, Xs
2) at some pointp = p(D)

of R2× (S1)s+1. More generally, any germ of any rankk Goursat distribution onRk+s+1

is equivalent to the germ of the distribution span{Xs
1, Xs

2} ⊕ Rk−2 on R2 × (S1)s+1 ×
Rk−2.

Remark. – We now can state Theorem 1 in the following picturesque way. Every
singularity for a coranks Goursat distribution corresponds to some way of jacknifing
a truck towings − 1 trailers.

Proof of Proposition D1. –We show that the distribution spanned by(Xs+1
1 , Xs+1

2 )

on R2 × (S1)s+2 is the Cartan prolongation of the distribution spanned by(Xs
1, Xs

2)

on R2 × (S1)s+1. Let p ∈ R2 × (S1)s+1. The set of directions in the space spanned
by Xs

1(p) and Xs
2(p) is parametrized by an angleφ ∈ [0, π) by representing each

direction by the span of the vector cosφXs
1(p)+ sinφXs

2(p). The Cartan prolongation
of the distribution spanned by(Xs

1, Xs
2) is the distribution onR2 × (S1)s+2 spanned

by Y s+1
1 = ∂

∂φ
and Y s+1

2 = cosφXs
1 + sinφXs

2. Replaceφ by the angleθs+1 =
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φ + θs . In the new coordinatesx, y, θ1, . . . , θs, θs+1 we haveY s+1
1 = ∂

∂θs+1
= Xs+1

1 and

Y s+1
2 = Xs+1

2 modXs+1
1 . Therefore(Y s+1

1 , Y s+1
2 ) and (Xs+1

1 , Xs+1
2 ) span the same 2-

distribution. ✷
Now we can extend known results on the growth vector of the truck-trailer

distributionsTs = span{Xs
1, Xs

2} to arbitrary Goursat flags. Jean [13] proved that the
number of distinct growth vectorsg(p) for Ts , as p varies over the truck-trailer
configuration spaceR2 × (S1)s+1, does not exceedF2s−1. Here Fi denotes theith
Fibonacci number. Sordalen [21,22] and Luca and Risler [15] estimated the degree of
nonholonomy of theTs from above. Recall that this is the length== =(p) (the number
of components) of the growth vectorg(p) at p. They proved=(p) � Fs+3 at any point
p ∈ R2× (S1)s+1 and that there exist certain points where equality is achieved. (These
certain points correspond to the case where each trailer, except the last, is perpendicular
to the one in front of it.) These results, combined with Corollary D1 have the following
corollaries.

COROLLARY D2. –LetD be a Goursat distribution of coranks on ann-dimensional
manifoldM . Then the degree of nonholonomy ofD at any point ofM does not exceed
the Fibonacci numberFs+2.

COROLLARY D3. –The number gr(s) of all possible growth vectors of Goursat
distributions of coranks does not exceed the Fibonacci numberF2s−3.
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