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ABSTRACT . - We consider neutral nearly diagonal n-dimensional sys-
tems of the form E2y’ - ixA(x)y + g(x, ~, y). We study the propagation
of solutions from x = - oc to x = + oo past the complete degeneracy of
the linearized problem at x = 0. Under several conditions on A and g
we show that for small c in n there exists a global solution having the form

y = {expi ~2 0 sl1 (s)ds c near x = - oo and y = {expi ~2 0 sA(s)ds c)

near x = + ~ . Here c) E n is the scattering function. Our main result
is an asymptotic formula for S(E, c). We show that if 0, y) = 0 and
g = ~)yjyk + 0(|y|3 ) then

a~

’l’o establish this tormula we use the Kolmogorov-Arnold-Moser method
and the Moser-Jacobowitz approximation method to obtain a priori
estimates for solutions. These a priori estimates provide a rigorous justi-
fication for our calculation of explicit asymptotic formulas by a technique
of matched asymptotic expansions.

RESUME. - Nous considerons des systemes dinerentiels neutres a
n dimensions presque diagonaux de la forme E2y’ == ixA(x)y + g(x, E, y).

Annales de l’Institut HC’lll’1 Analyse non linéaire - Vol. 3, 0294-1449
86 01 1 53 S 7.30 ~ Gauthier-Villars

© 198 6 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved 



2 J. NARAYAN AND G. STENGLE

Nous etudions la propagation des solutions depuis x = - 00 jus-
qu’a x = + x a travers la degenerescence complete du probleme
linearise a l’origine. Moyennant diverses conditions sur A et g nous

montrons que, pour c assez petit dans il existe une solution glo-

bale de la forme y = exp 2 sA(s)ds c au voisinage de x = -- oo,

et y = { exp 2 E Jo S(8, c) au voisinage de x = +00. Ici c)

est la fonction de scattering.
Notre resultat principal est une formule asymptotique pour S(E, c).
Pour 1’etablir, nous utilisons la methode de Kolmogorov-Arnold-Moser

et la formule d’approximation de Moser-Jacobowitz pour obtenir des
estimations a priori, qui nous permettent de justifier rigoureusement le
calcul des formules asymptotiques par une technique de comparaison.

Mots-elés : Matched asymptotic expansions, scattering function, Kolmogorov-Arnold-
Moser method.
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3A NONLINEAR SCATTERING PROBLEM

PART I

ASYMPTOTIC THEOREMS

1. Introduction.

Our purpose is to determine the asymptotic behavior of certain

systems E2 y’ - f (x, E, y) ; f (x, 8,0) = 0, near the zero solution in some
cases in which the linearized problem is neutral and degenerate. We ask
for results which are global in x, asymptotic as E -~ 0+, and which do
not require that f be holomorphic in x so that we can study the effect of
smooth nonlinearities with compact x-support. We obtain results of two
kinds. First are definite computational procedures for sinning boldly
with the formal apparatus of perturbation theory to obtain explicit asymp-
totic formulas for solutions. Our main tool here is a technique of matched
expansions. Second are existence theorems which vindicate the formal
calculations. Here we need the Kolmogorov-Arnold-Moser technique.
We proceed by supposing that f is holomorphic in y (but not x) and studying
the asymptotics of the linearization problem that is, of reducing the nonlinear
equation to its linear part by a change of dependent variable given by
a convergent power series in y. Hartman [7] ] and Wasow [2 ] give accounts
of this classical method, the latter giving special emphasis to asymp-
totic questions. In this paper we study a problem which in fact lies beyond
a straightforward application of this method. Brjuno [3] ] gives a more
recent account of the linearization problem together with counterexamples
which show the unreliability of purely formal reasoning in this regime.
We consider nearly diagonal n-dimensional systems of the form

wnere g(x, ~, 0) = g(0, o, y) = u, 8, 0) = u, g is a smoom function ot jv
and ~ holomorphic at y - 0, and A is a smooth real diagonal matrix valued
function satisfying certain nondegeneracy conditions to be stated below.
The salient features here are the neutral behavior of the linearized problem
and its complete degeneracy at x = 0. In addition we suppose that g
vanishes for large x ~. We can then formulate the following scattering

f ~ ~
problem. Consider the solution which has the form exp 2 0 s03C3(s)ds} c

for large negative x. If this solution exists for all x then for large positive x

~ -x

it must have the form ( exp  sA(s)ds c) where S(s, c) is a new( F ~ f~~ Jo J t
Vol. 3, n° 1-1986.



4 J. NARAYAN AND G. STENGLE

constant vector. The mapping c ~ S(E, c) is the scattering function which
measures the impact of the perturbation g on the propagation of solutions
from the scattering problem we understand:
find asymptotic formulas for the scattering function.
We have arranged our exposition in three stages of increasing difficulty

and technical complexity. In Sections 1-5 we describe the problem, give
motivating examples, discuss the chief difficulties, and state our main
results (in Section 4). Sections 6-11 present a second level. In Sections 6 and 7
we formulate and state without proof the asymptotic a priori estimates
necessary to prove our main results. In Sections 8-11 we show how these
estimates can be used to derive our asymptotic theorems. With them our
method of matched formal expansions, which often has only heuristic
significance, becomes a rigorous deduction of asymptotic formulas. The
balance of the paper exposes the third level of difficulty. In it we prove
our a priori estimates using the KAM technique [4 ] combined with the
approximation methods of Jacobowitz [5 ].

2. An elementary example.

The following explicitly solvable problem motivates and also delimits
our results. Consider

where g is a smooth function vanishing for large The solution reducing
i

to c exp 2 xm near x 
= - oo is

F.

A simple computation shows that if m > 1

where xm, are certain nonzero constants. This formula shows that y
will not in general be holomorphic in c on a domain independent of E
unless we require that o) = 0 and restrict the degeneracy of the linearized
problem at x = 0 by demanding that In = 2. In this case the solution (2. 2)
can be given in the factored form

Annales de l’Institut Henri Poinoaré - Analyse non linéaire



5A NONLINEAR SCATTERING PROBLEM

where

and

This formula has the curious feature that it expresses the holomorphic
function y as the composition of the discontinuous functions P and S.
However it has the virtue that P and S have simple, regular asymptotic
properties as ~ ~ 0+. This follows easily from the condition g(o, o) = 0
and elementary properties of the integrals in (2 . 3 b) and (2. 3 c). For example
some computation shows

To explain the meaning of the factorization (2. 3) for our subsequent ana-
lysis we distinguish functions of x according to their rapidity of variation,
that is, according to the way in which their x-derivatives are unbounded
in the parameter a. Further simple calculations with (2.3) then reveal the
following.

ix2
1) The solution exp E2 of the linearized equation is rapidly varying

at a rate 0(E ). ~

2) In contrast, the function P exhibits slower variation, 0(E -1 ) at worst,
if we agree to use one sided derivatives at 0. Thus the most rapid variation
of y is accounted for in (2. 3) entirely through dependence on the solution
of the linearized problem.

3) The function P is a generalized (discontinuous at 0) solution of the
partial differential equation E2Px + ix(w P w - P) = gP2 which (by remark 2)
satisfies the qualitative subsidiary condition of non-rapid variation. Such
solutions are far from unique but we show later that a properly formulated
version of this condition uniquely determines the asymptotic properties of P.

4) Dependence of y on the data c is entirely through the piecewise
constant scattering function which is holomorphic in c on a neighborhood
of c = 0 independent of E.

If we bear these four properties in mind we can give another description
of this paper. It is devoted to obtaining analogous representations of solu-
tions for a class of general systems.

Vol. 3, n° 1-1986.



6 J. NARAYAN AND G. STENGLE

3. Hypotheses.

We suppose that the system

satisfies the following.

H .1. Regularity conditions.

On ( - cc, oo ) x [0, so] ] x ~ ~ y ~  ro ~ g is jointly infinitely differen-
tiable in (x, E) and holomorphic in y. The matrix A is real, diagonal and
infinitely differentiable.

H. 2. Eigenvalue conditions.

On the x-support of g, for each j and each n-tuple of nonnegative integers
... , mn) with 2, the diagonal elements of A satisfy

H. 3. Small perturbation conditions.

The perturbation g vanishes for large x ~ ] and satisfies

We remark that in the case that the are constant the eigenvalue
conditions H. 2 are familiar sufficient conditions for linearizing a vector
field (Hartman [1 ]). It is also possible in this case to relax H. 2a at the cost
of profound complications. Likewise in our problem this raises new diffi-
culties which we avoid in the present investigation. The eigenvalue condi-
tions ensure that the linearized problem is nondegenerate except at x = 0
where it is instead completely degenerate. However we emphasize that
even if we restrict our results to a closed x-interval not containing 0 (in
which case the factor x can be absorbed into A without altering the eigen-
value conditions, and the condition o, y) = 0 is vacuous) we obtain
results about a delicate problem, namely

The E-asymptotics of this problem also demand the full power of the KAM
method and are not covered by classical techniques such as those appearing
in Wasow’s treatise [2 ]. We therefore also give a result (Theorem 3 below >
about this problem as a simple byproduct of our work.

Annales de l’Institut Henri Poinoaré - Analyse non linéaire



7A NONLINEAR SCATTERING PROBLEM

4. Solution of the scattering problem.

By a linearizing function we mean a piecewise solution P(x, E, w) of the
linearizing problem

.,_ . _ _ .. _.

If P = w + Q we call Q a linearizing perturbation. An invertible solution
of this equation defines a change of variable y = P(x, E, w) which linearizes
problem (1.1). The following theorems justify a qualified reliance upon
the far simpler problem of finding formal E-power series solutions of (4.1)
(strictly speaking, solutions of the equation resulting when g is replaced
by its formal ~-y-Taylor series at E = 0, y = 0). Specifically we use the
following method of matched formal expansions.
By a formal solution of the linearizing problem we mean a formal E-power

series solution w) of (4.1). We will find that this solution is

k=0

unique but fails, in general, to be defined at x = 0. In the technique of
matched formal solution we augment the previous procedure to obtain
formal results at x = 0 in the following way. Let

Then

We note that our hypothesis g(o, o, w) = U ensures that this problem
is regular in E. Formal E-power series solutions of (4.3) are determined
by a recursive set of equations with polynomial data. We will show that
there are solutions LEkpk(S, w) in which pk =0(1 - |s|)k on the real s-axis.
We will also show that these conditions uniquely specify p. The matched
formal solution is then the pair (P, p).
The main content of the following theorems is that the above formal

procedure can be carried through and that it actually yields asymptotic
formulas for a linearizing transformation.

THEOREM 1 (Factorization of solutions). - Suppose the system
satisfies conditions H .1-H . 3. Then for small c ~ n

there exist solutions of the form v == p(x, E, exp i ~2x0 s(s)dsS(x, E, c)

Vol. 3, n° 1-1986.



8 J. NARAYAN AND G. STENGLE

The functions P and S are holomorphic at 0 E çn and have uniform asymp-
totic expansions given by the unique matched formal solution (P, p)
of the linearizing problem according to

for any 0  6  1 and

By carrying out the calculations described in Theorem 1 we obtain a
solution of the scattering problem. This we express in terms of the w-series

expansion of the perturbation g(x, E, w) = where q indicates~ n

a multi-index ofintegers q = (q 1, ... , qn), wq = wq11 ... wnn, and |q| = 03A3qj.
;_ i

THEOREM 2 (Scattering formula). - Suppose the system ~2 y’ - ixAy + g
satisfies conditions H .1-H . 3. Then for small c E ~n the solution which

~ -x

has the form |exp i ~2 x0 s(s)ds} c near x = - oo exists for all x and

has the form exp i 2 x s(s)ds} S(E, c) near x = + oo where/ £ o / .- -

Finally our analysis justifies the simplest methods in the nondegenerate
case.

THEOREM 3 (Parametric asymptotic linearization of neutral systems). 2014

Suppose the system Ey’ - y) 2), has smooth data
on ] and satisfies the eigenvalue condition. Then for small c E Q‘n
there exist solutions of the form y = P 1, E, exp - The func-

tion P(x, 8, w) is holomorphic at w = 0 and has a uniform asymptotic
expansion given by P, the unique formal solution of the associated problem

Annales de l’Institut Henri Poincaré - Analyse non linéaire



9A NONLINEAR SCATTERING PROBLEM

5. A remark on the role of power series expansions.

We call special attention to the fact that Theorems 1-3 make no direct men-

tion of convergent w-power series expansions w) = w + / wqPq(x, s)
for the linearizing function P. Existence of this expansion together with
asymptotic expansions for its coefficients are consequences of our conclu-
sions. However a converse implication is not usually true. The existence
of a convergent w-series expansion for P(x, E, w) together with asymptotic
formulas for the Pq(x, E) does not entail asymptotic information about
the sum unless the asymptotic formulas are uniform in the multi-index q.

00

For example the series G(a, w) = ~ wk(l + is uniformly conver-
k=0

1
gent for w ~ ]  1 - 6. But even for w = - we have

e

30

Here the limiting behavior of the sum simply cannot be described by E-power
series even though the behavior of each summand can be. Now it happens
that in our investigation the uniformity in q of the asymptotic behavior
of Pq(x, E) is an exceedingly subtle problem. It is one of the difficulties
that we overcome with the KAM method. This explains why, although
we use w-power series expansion to compute individual terms in the

matched formal expansions (P, p), we never use the w-expansion as a direct
analytical tool for solving the linearizing problem itself.
These difficulties have been sometimes overlooked in the literature.

The main theorem on solution of nonlinear equations with a small para-
meter in Wasows’ book [2 ], Theorem 36 . 2, falls short in this way. Although
this theorem is correct as stated it does not strictly contain asymptotic
information about solutions of the nonlinear equation to which it refers.

6. A measure of perturbation strength.

We now introduce a collection of norms which measure the strength
of the perturbation g(x, s, w). We study perturbations more general than
these described in conditions H. 1 and H. 3 above because this added

generality is essential for our proofs. We consider perturbations which
are piecewise smooth in x with possible discontinuities at x = 0. In the

Vol. 3, n° 1-1986.



10 J. NARAYAN AND G. STENGLE

following formulas we suppose that suprema over function values range
over both right and left limits at 0.

and |q = q 1 + ... + qn. Also let |w| = max Then to each real
1 l n

r > 0 and each convex function § : ~ ( - oo, oo) we associate
the norms (possibly infinite) defined by

We also define the corresponding unit balls by

The ball consists of perturbations g(x, E, w) which are holomorphic
for ( w ~  r with a sequence of progressively higher x-derivatives growing
no more rapidly than e~~r~. The ball is similar but embodies estimates
which allow non uniformities in x and a (of the kind appearing in the example
of Section 2). We make exacting use of the spaces in our existence argu-
ments. However for the derivation of asymptotic results less precision
is required and it suffices to consider the spaces .

~P

Our analysis requires perturbations which are 0( I x + s) in the following
sense.

H . 3’. Alternate small perturbation condition.

For some r > 0

However we prefer the simpler hypotheses H. 3 for the statement of our
theorems.
We emphasize that the condition g E Br is not numerical in character.

Each ball embodies numerical derivative estimates. But the union

Br instead embodies the existence of ~-independent estimates.

We refer to the containment of a linearizing perturbation in some Br or B0r
as an asymptotic a priori estimate. The term « asymptotic » indicates the

Annales de l’Institut Henri Poincaré - Analyse non linéaire



11A NONLINEAR SCATTERING PROBLEM

non-numerical nature of the relation. The term « a priori » is generally
used for estimates which are established prior to existence. In this investi-
gation the basic existence problem is to find a linearization which depends
regularly on the singular parameter E. We will see that we find linearizing
perturbations in Br by powerful existence arguments which nevertheless
entirely preceed the resolution of this more delicate existential question.
It is with respect to this latter asymptotic problem that our estimates are
« a priori ».
The following shows that our hypotheses H. 1 and H. 3 imply that each

perturbation g belongs to some Br.

PROPOSITION 6.1. - If g satisfies H .1, g = o( ~ w ~ 2), and g vanishes for
large x, then g E B~ for some r > 0. If also g(o, o, w) = 0 then ge( I x + E)Br.

Proof - Let g(s, E, w) be the x-Fourier transform of g(x, E, w). Since g
has compact support, g is rapidly decreasing as a function of s. Moreover
if g = for w ~ ]  r then g Since is holomorphic
in w ~ _ r and continuous in E for 0  E  Eo this implies 5 ] M«
for a > 0. Define

- /- M

We claim that log § is a convex function of x. For

Thus log l~ 
% 

[ s [a [ E) [ ds is a convex function of a. Moreover
- x~

/’ m

if we suppose that g vanishes outside [ - Xo, xo]. Hence log ~(oc) is the

supremum of a pointwise upper bounded family of convex functions and
is therefore also convex.

We next show 
’ 2n - x

Hence r|q||Dkxgq(x, ~)| 1 H 03C6(k). Thus g E If

Vol. 3. n° 1-1986.



12 J. NARAYAN AND G. STENGLE

in addition g(o, o, w) = 0 then g has the form xh(x, E, w) + Ek(x, E, w). Hence
1 g - x h + E k = sgnx h + E ( k-s g nx h). By the argu-

[x[+E [x[+E [x[+E
ment above we can suppose that hand k belong to next show that h,
k E for some ~ 1. Computing recursively we find

t/ -*-

where = 1 and = These inequalities imply
~ k! (a very crude estimate but sufficient for our purposes). It follows

easily that r|q||[(|x|+~)d dx]khp(x,~) ~ (k+1)!(|x0)+1)k max e03C6(j). Now

we can suppose (~ is an increasing function so that

This shows h E _ ~(a) + (a + 1) log (a + 1) + a log ( [ xo [ -+-1).
Similarly Finally an application of the Leibniz rule for the

derivation to the product B (h-k) implies
dx + G

Hence if ~2(a) _ ~ 1{a) + (k + 1) log 2 then ( x ~ + E)-lg E B~2,r E Br.
We make two comments about the preceeding proof. First our hypotheses

permit the definition of derivatives for real a > 0 by means of

the Fourier transform. Accordingly we invariably suppose that the func-
tion ~(k) describing the growth of successive x-derivatives is a convex
function of a real argument as in formula (6.4). For convenience we also
define ~(~) = + oo for x  0. Secondly we call attention to the tedious
character of the preceding calculations with elementary derivative for-
mulas. Since we must perform numerous far more complicated estimations
of derivative growth rate, an essential part of our subsequent analysis will
be an effective and systematic technique for doing this.

7. Statement of a priori estimates.

In this section w e state our main analytic results in the form required
to prove the asymptotic conclusions of Theorems 1-3. The proofs of these

Annales de l’lnstitut Henri Poinoaré - Analyse non linéaire
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first. We believe that our method of separating these is itself a valuable
tool which can be applied to many other problems. We have therefore
tried to give a reasonable account of our asymptotic reasoning to a reader
who is willing to take the results of this section for granted.
We first state the main linearization theorem.

PROPOSITION 7.1 (Linearization with derivative estimates). - Suppose
(g E Then for each r’  r and for 6 sufficiently small

there is a linearizing transformation w + Q for Problem (1.1) (Problem 3 .1 )
satisfying Q E (Q E ~B ° ).
We also require similar results for certain reduced linearizing problems

in the « outer scale », I x ] > 0 and the « inner scale » x = 8.s.

PROPOSITION 7. 2 A. - Suppose Then for each r’  r and for 03B4 suffi-

ciently small there is a unique solution Q of - iAQ + w + Q)
satisfying Q E ~B° .
The following proposition provides solutions to the reduced linearizing

problem in the inner scale x = as.

PROPOSITION 7.2B. - Suppose g(s, w) is holomorphic for  r

and Im log (1 + s)  9  03C0 2 and satisfies (1 + s)- lg (  6. Then for 03B4

sufficiently small the problem

Im log (I + s)  8’  8 satisfying Q ~  M(r’, 8’)~ ~ 
We also require similar (but much easier) results about linearized forms

of the preceedings propositions.

PROPOSITION 7 . 3. - Suppose g E ( I x + E)Br. Then the linear problem
~2Qx - ixAQ + ixQwAw = g(x, s, w) has a solution in Br’ for any r’  r.

PROPOSITION 7 . 4 A. - Suppose Then

’A !l ~ I _!’1 A . ~/__ _ ___B

PROPOSITION 7.4 B. - Suppose g(s, w) is holomorphic for w ~  r

nd - 8  Im log ( 1 + s)  8, 0  9 (I + 
rhen given r’  r the problem 

~

l. 3, n° 1-1986.



14 J. NARAYAN AND G. STENGLE

has a unique solution Q satisfying Q ~  M(1 + I s w ~ 2 for w ~  r’,

In our reasoning we operate on Br with the common operations of
analysis. To express compositions of small perturbations of the identity
map we find the following notation for composition convenient (Stern-
berg [4 ]).

DEFINITION 7.5. - Q o R(w) = R(w) + Q(w + R(w)).

DEFINITION 7. 6. - If Q  R = 0 then we write R = Q # and we call R
the quasi-inverse of Q.

The operations o and # are local in character and in general do not
carry Br x Br or Br into Br. The following proposition lists some closure
properties of the as substitutes.

PROPOSITION 7. 7 (Closure properties of 5B~). If g, h belong to ~Br then

Moreover if 03B4 is sufficiently small then the following belong to 

We summarize the conclusions of this section broadly. They show that
our linear operations lead from data in Br to results in Br. for any r’  r.

Moreover the same is true for our nonlinear operations if the operands
are small.

8. Proof of Theorem 3.

We begin with the proof of Theorem 3 which shows our reasoning in
a relatively uncluttered form. We subdivide the proof into two parts.
The first shows the existence of an asymptotic linearization; the second
shows its uniqueness.

PROPOSITION 8.1. - Assume the hypotheses of Theorem 3. Then pro-
blem (3 .1) has a linearizing transformation w + Q where Q E B? for some

x

r > 0. Also Q has a uniform asymptotic expansion Q(x, B, w) ~ BkQk(X, w)
k=0

Annales de l’Institut Henri Poincaré - Analyse non linéaire



15A NONLINEAR SCATTERING PROBLEM

~K C ~’~ ’ A~H’3 ~~~L~t~~~J~~~~~ A- ~~1 

term by term any number of times.

Proof - Suppose g E B~. We observe that the change of variable w --~ ~w

replaces g(x, E, w) ~w~) in the linearizing problem (4 . 8). Since
g = 0( ~ w /2) we have ~- lg(_x, 8, ~w) E ~B°,a c if 5  s. Thus at the

cost of shrinking the w’-domain we can suppose that (However
it is vital that such shrinkage be controlled in later steps.) Then Propo-
sitions (7.1) and (7.2) provide a solution w + Q of the linearizing pro-
blem (4.8) and a solution w + Qo of the corresponding reduced problem
- iAQo + Q0wAw = g(x, 0, w + Qo), where Q, Qo E 03B4B01/2 if 03B4 is small.
Also by Proposition 7. 7 we can suppose that Qo ,

h = (I + [g(x, ~, > ) g( 0, w)] - Qox and w + Qo" o Q)

all belong to 03B4B01/2 if 6 is small.
Let ER = Qt 0 Q, that is Q = Q0  BR. Then R satisfies

wnere n is aennea aoove ana n E w e snow tnat K E by an
argument which exploits the fact that R is the « compositional » remainder
of a solution Q satisfying the a priori asymptotic estimates Q E ~B°~2-
Equation (8.1) implies that R satisfies the linear problem

which must be R. Thus we find Q = Q0  ER where Q, Qo and R belong
to ~B°~3. This implies that Q = Qo + ER1 where

,

sion of Q with remainder, Q = Qo + ER 1.
Obtaining higher order finite expansions with remainder is easier (the

reasoning illustrates further use of our a priori estimates). Let be the

unique solution of - iAQ + iQww = g(x, ~, w), Q = 0(| w |2). Then

equation 8.1 can be transformed into

( where R’ = j~ ~ - [~ ~ > w+~R)-~, c, Y~’)]-R~ ~ ). Moreover, simple

Vol. 3, n° 1-1986.



16 J. NARAYAN AND G. STENGLE

iteration leads to higher order formulas with terms in B~ for any r  ~
if ~ is sufficiently small. For example 3

Thus the functional equation (8.1) and the estimate Re B°~3 together

imply that R has an asymptotic expansion for, say, w  1 . The same
will be true of the composition Q = Q0  sR for 8 sufficiently small and

1
I w  5 . This establishes the proposition.
We next show that the expansion of Proposition 8 .1 is the unique formal

solution of the linearizing problem (4.8). This fact is well known and is,
so to speak, the basis of the formal utility here of perturbation methods
(see Wasow [2 ], p. 218-219). We give an alternate proof.

PROPOSITION 8 . 2. - The formal series of Proposition 8 .1 is the unique
formal solution of the linearizing problem (4. 8).

Proof. - Let w + Q be the given formal solution. Suppose w + Q’ is an-
other. Then Q’ is a formal solution of iAR + Hence

R = - where  is the linear solution operator of - iAQ + = g.

Iteration gives R = - which shows R = 0 on any domain
| w  r’  r, supposing that the terms of R belong to Br.

Propositions 8.1 and 8.2 together establish Theorem 3. We remark
that all our derivations of asymptotic expansions are variants of the argu-
ment of 8.2 which appears here in its purest form.

9. A proof of asymptotic uniqueness. 
’

Our proof of Theorem 1 will use the ideas of Section 8 but will require
separate arguments in the inner scale x ~ and the outer scale [ x ~ >- a~a.
A new difficulty arises in the inner scale where the reduced linearizing
equation (set 8 = 0 in problem 4. 3) no longer has a unique solution.
We also note that in the proof of Proposition 8.1 in the previous section
we estimated the remainder R by alternately representing it as the unique
solution of equation (8.2). Our next result provides a substitute for this
uniqueness. We show that our qualitative estimates Q E are suffi-

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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certain problems. -

PROPOSITION 9.1. - Suppose Q and Q’ are solutions of
f ,~~ 2014L n~

)elonging to Br. Then Q’ ~ Q unitormly in some domain w ~  r’  r.

r 2014 ~ ~ .

1is implies that R can be represented in the form
... ~ r - ~- *B v

has a similar representation for x  0.)
/ ~ Y

The idea of the proof is that implies 2014 ) R = 

vhile the preceeding representation implies 2014 ) R = 0(c~-(2 - 03B4)k).
rhese estimates are compatible only if c = 0(~2(1 - 03B4)k), that is, if c -v 0.
Co make this precise we again use ~f, the linear solution operator of the
~roblem

- iAR + R,.,Aw = h ; R = 0( ( w I 2 ) .

Then R = 20142014201420142014 J~() ~ + ~)RJ. Since (by Proposition 7.7) (~ ~ + 
~( j ~ ~ + s)

this representation immediately shows that c(e,w)=R~=~d=08~’~.
Moreover, iterating the representation gives

~2 / r ~2 ~ B

m_ .s, nv 
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Again setting x = a~a we find c(s, w) = 0(E4~ 1- a~). An elementary induction
argument shows similarly that w) = O(E2N( 1- a~) for each N, establishing
the proposition.

10. Proof of Theorem 1.

We roughly follow the pattern of Section 8. The following is a two-scale
analog of Proposition 8.1.

PROPOSITION 10.1. - Assume the hypotheses of Theorem 1. Then
Problem (1.1) has a linearizing transformation w + Q where Q E Br
for some r > 0. Moreover, 0 has outer and inner expansions

uniformly valid for any 0 ( 5 ( 1 where xkRk and ( I x + E) - kSk belong to Br
_These expansions can be x- or w-differentiated any number of times

Proof. - We begin with the outer expansion. As in the proof of Propo-
sition 8.1 we can suppose g E by a preliminary shrinking of thE
w-domain. Since g(o, o, w) = 0 we have g = xh + Ek where h, k E bB2r
Let Qo(x, w) be the solution in ~B_3

2

provided by Proposition 7 . 2 if 03B4 is small. Let Q E 03B4B3 be the linearizing

perturbation given by Proposition 7 .1 and let Q = Q0  U where alsc
U ~ 03B4B3. Then

where

For small 6 we can also suppose that f E dB 3 . Moreover, g has a uniform
2r

asymptotic expansion in E since k and h do. In a word we have normalized
the problem to the case in which the perturbation has the form Ef
We now establish that Qo is the leading term of the outer expansion.
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Let U = - V. Then
x

This shows that tor ) sufficiently small (so that the composition f (x, ~, w+ ~)

can be estimated) we have V e 03B4B4 . Hence Q = Q0  - V == Qo + Oj - ).
-3’ -~ W

~
To obtain higher expansions we replace U by - V in the previous relation
obtaining 

~

r / ~ B ~2 ~

right hand side are all small. Once again iteration can be seen to yield finite
expansions with remainder of any order for V. Hence we omit further

details. Finally the composition Q = Qo 8 - V also has an outer expansion.
x

To obtain the inner expansion we return to the original linearization
problem (4.1) and its rescaled form (4.3). Its derivation is slightly more
complex. In the preceeding argument x played the role of an inert para-
meter because the reduced problem (set £ = 0 in (4.1)) is no longer a diffe-
rential equation in x. However here the reduced problem (set E = 0 in (4. 3))
has the same character as the full problem. We therefore require a somewhat
more elaborate argument although the general idea is the same.

Since the first transformation Q = Q0  U is valid in both scales it will
suffice to establish an inner expansion for the solution U = Q of
(10. 2). Let Uo be a solution of the leading part of ( 10 . 2) in the inner scale

(10.3) E2Vox - ixA(0)Uo + = w + Uo).

We can suppose that Uo E 03B4B4 for small 5. Let U = U0  Ri. Then

wnere

4r
is the last shrinkage of d. We prevent further shrinkage of the w-domain
by choosing a sufficiently small.) By Proposition 7.1, for a sufficiently
small, problem ( I O . 4) has a solution Q i e ~B 6 . However since the solution

=r

Vol, 3. n° 1-1986.



20 J. NARAYAN AND G. STENGLE

to this problem is not unique it need not be true that R~ == Ri. We therefor
appeal to the asymptotic uniqueness result, Proposition 9.1, which show
that, as elements of B ~ , R I ’" R i . It follows that Ri E EB 7 . Let Ri = ET]
Then 6 r 6’ r

This is an equation in which the occurrence of T1 in the right hand side
is small and which therefore can be used for an iterative derivation of
finite asymptotic expansions with remainder. To elaborate this proce-
dure it is convenient to introduce the « inner » variable s = x into (10.5)

E

and to separate out the « intermediate » and « slow » x dependences of fi
in the following way. As a function of s, our solution Uo of 10.3 satisfies
dUo

+ = f (o, o, w + Uo). By Proposition 7 . 2 B

we can choose Uo to be of the form Uo(s, w). The perturbation f, of (10. 5)
can then be expressed

We can then express (10. 5) in the form

where ~s2k(~s)T1 = ix(x) - (0)T1 - ixT1w((x) - (0))w. If we regard
~’ 

’ 

E

the right hand side as a given element of ( [ x [ + ~)B 8 then we have a
~r

linear problem which by Proposition 7 . 3 has a solution T i E B 9 which
we indicate by s r

We cannot assert that T i - Tl , but by Proposition 9 .1 T i Tl 1 as ele-
ments of B10 . Hence

9 r

where Z ~ 0. This relation implies immediately that
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of the form

+ E)kB11 + E)N + 1 B_11 . The expan-
x 1 p r 

" 

1 Or

sion T1 "- / thus is an asymptotic expansion in the inner region
k=0

where ( ~ x ~ + E) = It is not however strictly the desired
inner expansion since it is obtained by using a uniform solution operator ~’1
provided by Proposition 7.1. This 21 is not the simpler holomorphic
solution operator of the reduced problem in the inner scale analysed in
Proposition 7 . 4. B. For this reason the functions are, in principle,
functions of (s, E, w) rather than (s, w) as required in our inner expansion.
However the are solutions of the recursive system of linear equations
obtained by expanding (10.6) in powers of s. These problems have poly-
nomial data, and Proposition 7 . 4 B ensures their recursive solubility for
functions w) obtained by separately solving the system on the com-

8
plex domains - 8  Im log (1 + s)  e and - 0  Im log (1 - s)  9, ~ w )  7 r
and piecing together at s = 0 their restrictions to the real s-axis. These solu-

tions satisfy our derivative estimates and by Proposition 9 .1

we have w) -v as elements of B 12 . Hence
E TV

,x

wmch gives us tne required inner expansion.
Finally, the composition Q = Qo 0 ETl has a similar expansion

with terms in Br which we obtain by combining the above expansion of Ti
with Taylor expansions of Qo(ES, w) in both arguments and of Uo(s, u:)
in its second argument.

This establishes the existence of a matched asymptotic expansion ( 10 .1 ).
To establish its identity with the matched formal solution (P, p) we observe
that the reasoning of Proposition (8.2) applies separately in each scale
and we easily obtain the corresponding result here which, as a parallel
to Proposition 8 . 2, we state as :
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22 J. NARAYAN AND G. STENGLE

PROPOSITION 10.2. - The matched expansion (10.1) is the unique
matched formal solution of the linearizing problem (4.1).

Propositions 10.1 and 10.2 together establish relation (4.5) of Theo-
rem 1. To obtain (4. 6) we observe that if y = z + Q(x, E, z), then z is a
solution of E2z’ - ixA(x)Z with a possible discontinuity at x = 0. Sup-
pose for x  0

In any case for x > 0 z is given by

But y is an ordinary solution of the full problem, that is, y is continuous
at zero. Hence

Solving for z(0+, 8) and using

gives us formula (4.6). This completes the proof of Theorem 1.

This result fully justifies more conventional calculations with formal
series to which we now turn.

11. Proof of Theorem 2.

By Theorem 1 there is a linearizing transformation w + Q holomor-
phic at w = 0 with a matched asymptotic expansion. Let

I

Then the Qq must satisfy

for I q = 2. Moreover the Qq’s inherit matched asymptotic expansions
from Q. For example it follows that for I x we have
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Similarly for x ~ ~ aE~ we have
-

x > 0 and

~~

u.

The scattering function S is determined by
~ ) I n~n - " ~ ~ - C ~  n~n + "

Comoming tms with tne preceeaing formulas for Q we nna

n rx ;-2

tvaluanng tne mtegrais explicitly we oDtain (4. /j.

PART II

LINEARIZATION WITH DERIVATIVE ESTIMATES

12. A sketch of some analytical methods.

The balance of our analysis is essentially devoted to proving Propo-
sition 7.1 which establishes the existence of a linearizing perturbation
satisfying our derivative estimates. Most of the other propositions of
Section 7 will appear in the course of proving this main analytical result.
We shall be operating with the collection of spaces { B~,r ~ keeping much
more careful account of ~ and r than was necessary in our asymptotic
analysis. We find a powerful tool for manipulating the necessary deri-
vative estimates here by combining the ideas of Jacobowitz [J] ] with some

Vol. 3, n° 1-1986.
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simple resources from the theory of convexity in a form which the second
author has used previously in [6 ].
The method of Jacobowitz is to represent differentiable functions g

on a real domain Q by a sequence of functions holomorphic on nested
complex domains QN in such a way that the convergence of to g as QN
converges to Q accurately reflects the differentiability properties of g.
For holomorphic functions h the problem of obtaining derivative estimates
is simple since the Cauchy integral formula gives estimates in terms of
sup h f for all derivatives of h on a slightly smaller domain. In the next
section we show how to obtain from data g in a sequence of approxi-
mations holomorphic in x so that the rate of convergence of the 
is governed by the convex conjugate function or Young transform of the
convex function ~. This is defined by

We show roughly that if g E then we can find and nested domains ON
so that on 1 we have g~N~ - gcN+ 1 ~ ~ exp - ~ *(N). Conversely we
find that if is holomorphic on QN and 1 ~ 

- e- ~~cN~ on ON + I
then B~,Y . We thus have a duality between smoothness properties
and approximability properties corresponding to duality of conjugate
convex functions. Here we require the simple fact that our growth moduli
are closed convex functions [7] ] so that invariably we have ~** == (~.
Our main use of this technique is to solve

by choosing a sequence of approximating problems

with data holomorphic on an x - w domain QN (which we do not describe
yet). We then solve ( 12 . 2)~ on a smaller domain ON by the KAM method,
obtaining a sequence of holomorphic approximate linearizing per-
turbations. Finally we deduce the differentiability properties of Q = lim 
from the convergence properties of the sequence and ON. A notable
advantage of this procedure is that it permits us to use the rather arduous
KAM procedure only in the simple case of holomorphic data.
We have relied on Sternberg’s account of the KAM method [4 ], speci-

fically his lucid and technically complete exposition of holomorphic pro-
blems admitting the action of a group nucleus. However his treatment of
problems with ex data is now technically obsolete. In any case since no
general theorems obtained by this method appear to come within light-
years of our higly idiosyncratic application we are forced to give a self-
contained analysis. This proceeds along the following lines.
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in section u we soive me linear problem

_ i v A (N)l v~1 1~~~ _L A Y

demands some delicate analysis of paths of integration in the complex
x-plane to obtain a solution which depends regularly on E. A most
characteristic feature here is that Qo ~ ~ We give up an ~~;-derivative
in passing from g~~~ to in exchange for estimating uniformly
in the singular parameter E. This is the famous « loss of derivatives » phe-
nomenon which precludes the use of ordinary successive approximation
methods in solving the full linearization problem. This difficulty requires
Kolmogorov’s idea of quadratic convergence which we next describe.

In Section 17 we introduce the change of variable = 

into (12.2)N obtaining
___ ~ lNli__~nlN) ~ ___n(N) ~ lN)~__~.....,.(N)~__ ~ ... B

wnere gi w = y -t- ~ow) i ~ g._.,~x, E, ~, -f- ~o ~’) -g’-~‘lx~ E~ w) ~. w e mus nave a

problem of precisely the form (12.2)N in which 
if is small. Since is holomorphic in (x, w) we have the vital qua-
dratic estimate ~~ ~ (~~)~ on a suitably smaller (x, w) domain. Now
let be a solution of

_ 2 ~-~IN~ _ _ _ ~ fN)~ (Nl ~ _ _ _~(N1 ~ lNl~ __~_ .. ~N)/-. ~ ...B

Let = Qi C etc. We obtain a sequence t,~i’~, ... OJ successive

approximate linearizing perturbations which (because of quadratic conver-
gence) converge rapidly to zero on some fixed smaller (x, w) domain QN
and there give a linearizing perturbation in the form of an infinite compo-
sition

O~N~ = 

that the can be found converging to a linearizing perturbation Q
belonging to some 

13. Piecewise holomorphic approximation in B~.

In characterizing functions by membership in some B,.~ we find it neces-
sary to avoid the use of small which can impose very subtle condi-
tions on g. (e. g. cp(k) = k implies g is an entire function of s of exponential
type) to which our methods are insensitive. Since ~/ > 0 implies c 

we can always choose a larger § if we please. Actually a decisive condi-
tion (Carleman [8]) is that should grow rapidly enough so that

e k  r . This ensures the existence of partitions of unity obeying
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the corresponding derivative estimates. However we easily pass over these
refined questions by agreeing to use only ~’s which permit partitions
of unity and which even satisfy log k -~ oo as k - oo .

Now suppose that g belongs to some and vanishes for ) x) [ >_ xo.
The norm II [ g I [ ~,r defined by (6 .1. b) can be expressed in terms of the
variable

in the simple form

Let g+ = g if z > 0 and g + - 0 if z  0. Let g - g+ = g _ . We assume
(choosing § larger if necessary) that g- (that g+) has a smooth extension
to ( - vanishing identically for z > 1 (for z  - 1) and satisfying
the same bounds. Then

(13.2) II g = sup rlql exp - max { I DZg_ ~, ~ 
z,q,l l

In terms of (13.2) we now construct a pair of sequences of holomorphic
functions converging to g± . The functions will be holomorphic
on domains of the form where r’  r and

The functions will be holomorphic on - The domains QN are
simply rectangles in the z-plane

corresponding to truncated sectors
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In the x-plane. As N ~ 30 these latter domains converge to the inter-
val [0, xo ]. Our construction of the approximating sequences appears
in the proof of the following result.

PROPOSITION 13.1 (Conjugate duality between smoothness and holo-
morphic approximability). - Suppose g E and satisfies ( 13 . 2) where

log k - oc as k - oc. Then there exist sequences of approxi-
mations to g± which are holomorphic on + for any r’  r and there

satisfy estimates of the form
__ . , / r’ 1-n

Conversely it the are sequences of functions holomorphIc on _~ 

~ h(°) I  1 and
sup |h(N + 1) - h(N)|  exp - 03C6*(N)

then the limits h ± - hm h~+’ exist and satisfy- 

iui t aiiy r ~ i" emu any 9 > u.

Proof g T be the z-Fourier transform of the smooth extensions
of g + appearing in (13 . 2). Let 0  o(z)  1 be a smooth function vanishing
identically for z ~ > 1 and identically 1 for z ~ _ e -1. We choose

1 rx

i nen it is easy 10 verny mat

/~j-~-i~ B B

. .~a. ~r. aa 
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For we can estimate this by

Hence on ~N + 1,r’ ~ where r’  r, we can estimate

B

which proves (13.4).
Similarly on QO,r’ we can estimate

by

This implies that on flo,r’ we have

Hence on QN,r’

This establishes 13.3.
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the converse part of the argument If h‘1’’’ satisfy |h]  1 and

~ 1 ~ _ hc~’> ~ ]  e-~’~c’~~ then we can estimate D‘__~hq + 1 ~ - hq~~) on 5~,~+ ,_r.
by the Cauchy integral formula. Since each z in the projection of 03A9N + 2 ,r’

is the center of a disc of radius e -’~ - 2 contained in the projection of S2N + 1,r.
we have

_ . 1 I n . 1 / ~ !1T n v v _ imv n 1 ! 
..

M(03B4)e-N exp (1 + 03B4)03C6(l + 1)

This combined with the easily obtained similar estimates for h~"’
! ~-~ y~/~~t 1 n ~ 1 ~’~fB v i ~ . t ~B v

metrically in the norm )) specified by (1 + + 1).
We remark that the shifts of argument 1 -~ 1 + 1, N --~ N - 1 and

the factor 1 + 5 in our conclusions produce « loss of derivatives » so that
at our level of formulation we have only an approximate duality. We have
not attempted to minimize loss of derivatives although for other appli-
cations it would be valuable to do so.

14. Closure properties of the 

We now use Proposition 13 .1 of the previous section to establish closure
properties of the kind given in Proposition 7. 7. We obtain most of these
properties from the following simple principle.

PROPOSITION 14.1. - Let F be a mapping from + ON,r (from
+ ± into ± SZ,~ + 1,r~ for r’  r satisfying F(o) = 0 (F(o, 0) = o)
which is Lipschitzian in the sense that

..__~ B Z’l ~ 1 I ~ l~ .( ---- I ~ ~ t

~~ v...Y ‘ 

1 Vr
from Br (from Br x Br) into 
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30 J. NARAYAN AND G. STENGLE

Proof - Suppose g E Let g~+’ be the sequence of approximations
of Proposition 13.1. Then for r’  r"  r

This implies that

and f  1 - - exp c’. Hence by the converse part of Pro-

position 13.1 the restrictions of to z > 0 converge to functions f±
satisfying the estimates of II where

.. . ,_ ~....._ _ _. _ _ ...._ ~.. " ., - , .

We define F(g) to be f+ for + z > 0. The case of the binary mapping is
similar.

Parts (a)-(e) of Proposition 7.7 follow easily from this. To establish
part ( f ) suppose g E and choose r"  r’  r. Let be the approxi-
mations to g given by Proposition 13.1. Then finding (,ug)* is equivalent
to finding ph where h is the solution of g(w + + hew) = 0. For y
sufficiently small (depending only on the common upper bound for the

~ g~N~ ~ ) the approximating problems have solu-

tions holomorphic in satisfying estimates of the form (13 . 3 )
and (13.4). By the converse part of Proposition 13.1 these converge to h ~
in Br..,~. for a suitably larger ~/. Then (,ug) # - for + x > 0 esta-
blishes ( f ).

15. The linear problem with holomorphic data.

We next confront a main difficulty: to solve the linear equation

supposing that A and g are holomorphic in x on a narrow domain about
the interval [0, xo ]. Formally all solutions can be obtained by w-series
expansion and quadratures. However it requires delicate analysis to show
that any one of these solutions has the properties we require. In particular
this solution must involve only a small shrinkage in the domain of ana-
lyticity in passing from g to Q. The following family of exponential horns x
is a suitable family of x-domains for our purposes. Our reasons for this
unusual choice will appear soon.
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The curve AED is an arc of the circle ~ = Curves AB and DC

have the parametric form
/ n B

where E is a large parameter. A property of ~°,~ which is essential tor our
purposes is illustrated in Figure 15. A, namely that the domains ~,~ can
be estimated from above and below by domains QN of the kind appearing
in our method of holomorphic approximation in Section 13. This section
is devoted to proving the following result.

PROPOSITION 15.1 (Solution of the linearized problem on an expo-
nential horn). - Suppose A(x) is holomorphic for |Re x|  xo + e-03B3,
~ Im x ~ _ and satisfies sup ( i~~ ~, ~  M and I I

x,j

for I q > 2. Suppose g is holomorphic on 03B3 x (| w  r). Then there
exist constants M) and Co(/l, M) such that for y > yo the problem

has a solution satisfying

tor any 7 > y and r’  r.

Proof - We have the following explicit general solution. Let

Let 1 be rectifiable paths in ~03B3 ternunatmg at x. 
c-~ . r m . 

is a solution for w ]  j-’  r. The basic problem here is to find paths 
Vol. 3, n° 1-1986. ~
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along which the integrals can be bounded and which cover the expo-
nential horn ~~, suitably for each J, q). It is in constructing such paths
that we indicate our rather unusual choice of the exponential horn as
a solution domain. We require some lemmas which like Proposition 15.1
establish certain conclusions for sufficiently large y, that is, for sufficiently
narrow horns.
We introduce for each J, q) the auxiliary variables

We will show that there exists M) such that if y > y 1 then the i~q
are holomorphic and univalent for |Im x|  e-Y. Assuming this for the
moment let

We can then express (15.2) componentwise (indexed by j) as .

where T~q(x) _ ~~q(T~q(x)). To carry out our estimates in this parameteriza-
tion we require lemmas for establishing the collective univalence of the
mappings of ( 15 . 2).

LEMMA 15.2. 2014 Suppose h(x) is holomorphic on the rectangle
[ Im x [ _ e-’’, |Re x|  xo + e-’’ where [ h(x) [ >_ m > 0 |h’|  M
and h is positive on the real axis. Then there exists a yi(m, M) such that
-X

03B6h(03B6)d03B6 is univalent provided y > yi.

Proof. 2014 We show that on the rectangle of the form indicated

which implies univalence. Let x = p + ia. Then
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Since h is real on the real axis and I h >_ m, for y > y 1 we can estimate
, "__ . 

’ 

!

Choosing yi so that 1 - m e -’’ 1 > - we obtain the required inequality.

LEMMA 15 . 3. 2014 Assuming the hypotheses of Lemma 15.2 yi can be
-x

choosen so that ~ h(~)ds >_ m ( x. ~ 2.

Proof. - Since the rectangle is convex we can parameterize 

in the form x2 10 th(xt)dt=x2 10 th(03C1t + i03C3t)dt. Using the estimates

| h | ~ m, |h’ I  M, for. y > 03B31 we find that

our previous choice of yi gives - e- Y’  - which implies the ,conclusion.
m .2

LEMMA 1 5 . 4. - There exists 03B32( , M) such that for 03B3 > 03B32 each mapping
x - is univalent on Moreover there is a bound C2( , M) for
the moduli of the first two derivatives of the inverse mapping t - 
on i 

’

Proof. - For
. - . - , - . - ,,

Also by hypothesis mk [ > [ q ) p. By.Lemma 15 . 3 we can choose yi

so that for y > 03B31 we have x0 03B6 j,q(03B6)d03B6 / ~  4 ] q ) ) ,r |2. Then
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can be estimated from above and below by
/ B i / ~

or more crudely by

Hence for y > 03B31 we can estimate = 
x jq(x) from above and below

bY 

or

By Lemma 15.2 there exists a 03B32 such that for y > 03B32 the mapping 03C4j,q

is univalent. The lower bound t - 2014 j for gives an upper bound

for ~ = -~-. Similarly ~~ = and some calculation shows that
~ ~j~

giving us an upper bound for ~~q also. This completes the proof of the lemma.
This lemma allows us to parameterize each curve rjq (yet to be deter-

mined) by its image in the t-plane under the mapping t = To deter-
mine Qo (given by 15.1) it is usual to seek paths of integration along which

the exponents E2 in this formula have preponderantly nega-

tive real parts. The geometry of our problem precludes this. Instead we
rely upon paths along much of which these integrals are purely imaginary.
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However if x = 0(E) and ( = 0(E) these integrals are bounded in E. This
permits us to choose the innermost portions of our paths freely (and accounts
for the more or less arbitrarily chosen inner circular portion of our expo-
nential horn). The most decisive property of this domain is described in
the following lemma.

LEMMA 15.5. - There exist a constant M) in the parameterization
(15.1) of the curves AB and DC and a M) such that for y > yo each
image of these curves and the vertical segment CB under a mapping r
is transverse to the family of hyperbolas, Im t2 = constant. 

Proof - Let ~(x) = -1jq (0) jq(x). Then our hypotheses imply
__ ~ _ ~ ~,fi i i . ,~ ~ ~, ~ , -,

so that -   2 M and ~’|  2M For the image of the parametric2M p 
- 

~

curve x( p) = p + ia(p) under 03C4jq(x) = (2 jq(0) x0 03B6 jq(03B6)d03B6)1/2 to be trans-
versal to Im t2 = constant, it suffices that

Estimating q(p + ia) - q(p) )  2M a we find that it suffices that (for
P

p > 0, a > 0, a’ > 0) q(p)(pa’ + a) > 2M a [ 1 + ia’ ) I [ p + i03C3| or even

P

q( p)( pa’ + a) > 
2M 

( p + a)(I + a’). Since [ q [ > p this will be a conse-
. 

p 2M

quence of / p - + a)a ) a’ > + a)a. In the para-

meterization ( 15 , I ) we have a  e-03B3 03B3  1 so it suffices that
.ro + e ’ 

(2M)2 
-,’0 1

Choosin g 03B30 so lar g e that ?M 2 ( x o + 1 ) e 
- 

03B3

o  1 we find that it suffices that
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To check this it suffices to substitute 6= 03C1eE03C1 yielding 1 + E p > 
8M2 /~o + 1B 

P Y g + P P~

whence E = 2 (2014201420142014 ) is a suitable choice of E. Transversality of

the image of CB for large y is much easier to check along similar lines
and we omit the verification.
We now construct curves I;q(x) on ~,~ by utilizing properties of the

image (See figure 15 B.)
., , "

The paths in the t-plane are of two kinds. If x lies inside the curve
OABCDO then we follow the level curve Im i~ = constant through x
until it intersects the segment BC. This is possible since the hyperbola
Im t2 = Im 1:Jp(x) does not intersect the real axis at all and can intersect
the curve O’B’ (or O’C’) only once (by the global monotonicity of 
along O’B’ established in the previous lemma). Thus the hyperbola must
intersect B’C’. Since B’C’ is transverse to the hyperbolas, Im t2 is mono-
tonic along B’C’. We complete rjq(x) by following CB to either B or C

in the direction along which the imaginary part of = 

is decreasing. If x lies outside OABCDO we joint x to the origin by a line
segment and then complete the curve as in the previous case. This completes
our definition of the solution operator given by equation (15.2). It remains
to verify that the resulting Qo satisfies the conclusions of Proposition 15.1.
We must estimate integrals of the form

LEMMA 15. 6. - For y > the integral I~q defined by equa-
tion (15.6) satisfies [ _ M) sup ( ).

Ey

Proof - Depending on the location of x in Ey the curve rjq(x) consists
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of one, two, or three different pieces : a segment through the origin of
length less than h2, a vertical segment on the right edge of Er, ; and I"3, a

x 
’ ’

level curve of Im We let Ii, I2, and Is be the integrals along

these subcurves respectively. Ii is present only if x = Es where |s|  
In this case

, l’~ _ rss

We next estimate 12. Suppose x lies on r3 and  0. In this case

the level curve of Im through x meets r2 in a point x’. We
estimate Jo

~ . h,r

very crudely (using Re i xx’ 03C3 jq(03C3)d03C3 = 0) to obtain

Now parameterize the segment by (, == xo + e + it) ana estimate

+ e -’’( 1 + it )) - q ~ + 1). Then for large y we
~nr~

In case x E ri the estimation of I2 requires a simple combination of the
two preceeding arguments which we omit.
The integral I3 has an oscillatory kernel and requires more delicate
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reasoning. Again we suppose We use the parameterization in th
t-plane

Let

Then

To estimate this we must estimate ~3. Let t = pi + f~i == po + ~o-

0=p+fr. Then, since along F3, we have ~ ==2014 and
o

It therefore suffices to bound the integral

Suppose c > 0. Then letting p = Cl/2t and E’ === ~ c"2 we find

It suffices here to consider to = 1 since J3 can be represented as the sum
of two such integrals. Suppose ti > 1. t2 2014 ~ ). ThenB " /

This integral is easily estimated by the method of stationary phase. We find

In case Im t2 = c  0 or c = 0 the argument is similar and we omit further
details.

Returning to Equation (15.7) and using Lemma 15.4 which ensures
that ( and ( ~~q ~ I have bounds on we conclude that
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Since we now have estimates of this form for Ii, 12 and 13 the conclusion
of the lemma follows.
We now have the resources to finish the proof of Proposition 15.1.

Estimating the integrals in (15.2) by Lemma 15.6 we find that for r’  r

I !’1 I i !’’~ ___~ l I ~ l__1 I I -, l__B I B

On Ey’ where y’ > y we can estimate in terms of gjq by Cauchy’s
estimate. It is easy to see that the distance between x E Ey’ and ~E03B3 can be
estimated from below by ( y’ - y)(x + s). Hence on E ~,. we can estimate
~~’ / ~~B ~ ~ n~ ~t ~~

where p(x) = + E ~ . Then

Finally, representing as 1 r gfx, E ... we findY p ~ g,q( ~ ) g( > > )

This completes our solutions of the linear problem..

16. Subsidiary linear problems.

We require results similar to that of the previous section for the related
problems appearing in Propositions 7.1 to 7 . 4 B. First, by restricting Pro-
position 16.1 to an interval not containing x = 0 we obtain a result about
the simpler nondegenerate problem

exponential horn as shown in Figure 16 A.
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A frustrum between two rectangles surrounding [xi , x2 ] bounded

by the curves
: - -- .-,

and vertical segments at and x2 + In this case the natural

domains entering into our approximation methods are rectangles rather
than the truncated sectors of Figure 15 A. We have also illustrated these
in Figure 16 A.

PROPOSITION 16.1. - Suppose A(x) is holomorphic for

and satisfies sup ( |03BBj(x) [ , [ Jw )(x) ) )  M and |03BBj - 03A303BBkqk I > p [ q [ for
?,j

) q ) > 2. Suppose g is holomorphic on 03B3 x ( ) w I  r ). Then there exist
constants yo(p, M) and Co(p, M) such that for 03B3 > yo the problem (16 . I)
has a solution Qo satisfying

for any y’ > y and r’  r.

Proof - This is an immediate consequence of Proposition 16.1. We
next consider the reduced nondegenerate problem.

PROPOSITION 16.2. - Suppose A(x) is holomorphic on

and satisfies SUP (  ’~~ ~°j ~ jl ~ ~. ~UP’
z.j
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pose g is noiomorpmc on Ky x t r J. Then tor r’  r the problem
(16.3) has a solution Qo satisfying

/ ~B -"

Proof - This follows easily from the explicit series solution

Finally we must analyse the reduced problem in the inner scale on the
unbounded truncated sector ~y = ~ ~ 1 + s ~ >_ e- ~’, arg (1 + s) ~  e-’’ ~ . We
consider the problem

presence of A(0) rather than A(x) simplifies the analysis greatly.

PROPOSITION 16 . 3. - Suppose ) i~~(o) - >_ ,u ~ q ~ for q ~ >_ 2
and max i~~J(o) ~ - M. Suppose g(s, w) is bounded and holomorphic on
~y x ~ ~ w ~  r ~. Then for y’ > y and r  r’ Problem (16.4) has a solu-
tion Qo satisfying

Proof. - i ne estimate is obtained by induction. For m = U iet
- m - - . , -

where integration is taken along the part of the hyperbola Im = Im s‘

asymptotic to the real s-axis if s is in the right half plane, and otherwise
is the segment joining s to the origin plus the positive s-axis.
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These two choices are described in Figure 16 B. But in the proof of Pro-
position ( 15 .1 ) we estimated the integrals

along these paths. The argument given there carries over almost verbatim
to establish the conclusion in this case.
Now suppose m > 0. Let

Then Ro satisfies

Let Qo = S~" ’Ro + Uo. Then Uo satisfies

Uo. - + = - ~"’Ro. - (~ - 
The functions and are bounded on ~~ for y  y"  y’ by

~"
Ci 201420142014 sup gjq|. Now Uo is the sum of solutions of two equations of

7 - 7 ~
the form (16.4). Hence by the induction hypothesis we have the existence
of a U o satisfying

Choosing y" = 03B3 + 03B3’ 
we easily find that the inequality

2 
, ,

leads to the required estimate.
The most important cases of this result are m = 0 and 1.

17. The nonlinear problem with holomorphic data.

We next parlay the result of Section 15 on the linear problem into a
similar result for the corresponding nonlinear problem. The following
proposition differs from Proposition 15.1 chiefly in the requirement that
if the x-domain is narrow and if we wish a small loss in the radius of the
w-domain then the perturbation must be very small. We will overcome
this limitation later by using the approximation methods of Section 13.

PROPOSITION 17.1 (Linearization on an exponential horn). - Sup-
pose A is holomorphic on _ xo + e-,~, ~  e-Y and satisfies
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I %~;1 ~ M and ~.; - ( q I for > 2. Then there exists

M), ~*(~c, M) and e*(,u, M) such that y > y*, A  A* and
, , . , _ , t , - ~tr - ~?~ .~ .. ~ , . A

imply the existence 01 a linearizing perturbation Q satisifying | Q |,
. - .. , - r ~ t , _ , ,

Proof - We index our data to show a recursive argument, Let go = g,

yo = y, ro == r and suppose
i i . B - 1 ~ ~ ~-’Ynl__ __/Bn-~ 1 A

Then ixAQo + ixQ0ww = nas a solution sansiymg

whatever y 1 > yo ana r 1  ro proviaea 03B30 is large joy Proposition

Let Q = Qo 0 R 1. Then Ri satisfies
_GT ’ An T~ 1 /T ~v ~ .~, I 10 B

where gi = (I + { go(x, E, w + E, w) }. Formally tms is

the original problem with go replaced by gl. We now determine relations

among the parameters which suffice to give the recursive estimate
)~ , . v - 1 I ~ ~ - ’Y ~ l.. __i~n + 1 A

First gl is defined on this domain if |Q0| ~ r0 - rl and |Q0w| ~ 2.
Bounding |Q0| by (17.1) and estimating I on the small domain

~ w ( - r 1 by the Cauchy formula, we find that both of these estimates are

consequences of
. _ - _.....~ , 1 ~-., -~2014~~.. , - ~ . ._ .~

Moreover we tnen nave on

_ n, 
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The bracketed expression gives an estimate for Ai. We note that it embodies
the crucial quadratic dependence ~o .
We now show that it is possible to choose A~, y~ and rk so that

This will imply that we have a recursive scheme for determining a sequence
Qo, Q1, - - -, which, provided A~ tends to 0 rapidly enough, gives us a
linearizing perturbation Q on the domain 1 x ~ ~ w ~ I  r’} in the
form of a convergent infinite composition

(r - r’) - n -1. Then, provided rk > r + Y (17.3) b) and c) are consequences
of relations of the form

where Ci > 0. The equation 17 . 4 a, has the explicit solution

which implies

2014~ 2014 2014J. t-~2014j~~-.~. I 
.

1 _ Let 03940 == 16C21e-
l( , M) for notational convenience. Then 0394k  C3e .

If l is large enough this implies (17.4 h). To complete the inductive scheme
r + r’ ’

it remains to show if ~(~ M) is large. But 2014 ~ == (r 2014 r’)A~"~ ~.
Hence 2

Choosing I( p, M) so large that C3 ) e l e(2n + 1) ( 3 2)k  1 2 we obtain rk ~ r + r’ 2.
k = 0
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T his ensures that a sequence ... is aennea satisfying
1 

amu

We next show that these estimates ensure the unitorm conver-

gence of the infinite composition Q0  Q 1 ... to a holomorphic
function Q wi  r’}. Let == Qo 0 Q 1 ~ ... = Qk. We first

1

..1. ’Y..a.. ’-’.L ""’-’" ... "".8.-

Hence

wmcn implies

Hence

we can estimate

Similarly on

i ms implies me convergence together wiin an us partial derivatives
on the smaller domain 1 x ~ ~ ~,~ ~  r’ ~ to a holomorphic function Q.
Vol. 3, n° 1-1986.
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Since ~ - 1 e-1~~‘~~~ if we choose c* so small that° 
16 CiC,u, M)

It remains to show that Q actually satisfies the linearizing equation.
This is a consequence of the relation

and the convergence of Q~k~, Q~,k~. To establish (17 . 6) with a minimum
of computation denote it briefly by = g(w + We have

repeatedly used the fact that the change of variable Q = Q’ 0 R in

LEQ = g(w + Q) leads to L~(R) = gl(w + R) where

Denote gi by Q’ x g. The action Q’ x on g is induced by a local group
of coordinate changes and is therefore associative in the sense that

Q 1 x (Qo x g) = (Qo ° x g (this is unpleasant to verify by direct

calculation). The relations L8R==Q’ x g(w) and LiQ’ 0 R) = g(w + Q’)
then express the same relation in different coordinates. Now Qk+ 1 is

exactly the solution of

or

Hence

or

This concludes the proof.

18. Subsidiary nonlinear problems.

The following results correspond to the Propositions of Section 16.

PROPOSITION 18.1. - Assume the hypotheses of Proposition 16.1.
Then there exist .

and sup

has a solution satisfying
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Proof - This is a consequence of Proposition 17.1.

PROPOSITION 18.2. - Assume the hypotheses of Proposition 16.2.

Then there M), c*(~c, M) and 0*(,u, M) such that if y > y*, 0  ~*

and sup I g|  c*(r - r’)n+ 10394 then
R, x  r~

nas a solution sansiymg
- f’ _ _ C

1 

except that estimates for the solution of the linearized problem come
from Proposition 16.2. These contain no factor e03B3 resulting from the loss
of x-derivative and permit a stronger conclusion here, namely that the
requisite smallness of g does not depend on the width of the x-domain.

PROPOSITION 18.3. - Assume the hypotheses of Proposition 16.3.

Suppose g(s, w) is holomorphic on !/y x { w ~  r ~. Then there exist

r~*(~u, M), c*(,u, M) and ~*(,u, M) such that if sup ~ (1 +  c*e’’(r- 
then isA(o)Q + )s = g(s, w + Q) ; Q = o( ~ w ~ 2) has a solution

satisfying  A on ~~~ + 1 - r’ ~ .
Proof 2014 The proof is nearly that of Proposition 17.1 expressed in

terms of the variable x = Es. The only difference is the occurrence of the
unbounded domain This is however entirely accounted for in the solu-
tion of the linearized problem in Proposition 16.3. The balance of the
proof is the same and we omit further details.

19. Linearization in Br.

We complete our analysis by proving the results of Section 7 along
the lines sketched in the remarks of Section 12. We articulate as lemmas
several steps in the proof of the main result, Proposition 7.1. For these
we assume the hypotheses of the proposition.

LEMMA 19.1. - Suppose g E ~( ~ x ~ and  e~2~k~. Then
for any r’  r there exist holomorphic approximations and A~’~~ to g
and A satisfying

I e~ l r~N~ ~ i / ~‘’ ~r - 

V11

and

/ir~ ~B
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on Im x ~ - e-N, where § is a convex function satisfying. log k - oc
as k ~ oo.

Proof - Let = max { cP2(k + 1) }. Then by Proposition 13.1
we can find approximations to g and to DxA of the required kind
with 03C6*(N) = 03C6*3(N - 1) + N = {03C63(K + 1) + K + 1 }*(N). The approxi-

mations to A given by + will satisfy similar
estimates. °

LEMMA 19.3. - For N sufficiently large, depending q ~-1 ~ I
and M = sup ( ~ ~ J ~, ~ i~ ), the elements of satisfy

Proof - This follows from the uniform convergence of ~,~N~ on the

real interval [- xo, xo and the bound ~.~N~ ~ [  Ci (from (19.2) of Lemma
19.2) on the narrow domain RN about this interval.

LEMMA 19.4. - There exists an M) such that c QN.

Proof - The parameter E of Equation (15.1), by Lemma 15.5, depends
only on Jl and M. The existence of an N 1 yielding the configuration of
Figure 15 A is simple to check.

REMARK 19.5. - Because of estimate (19.2) and the lower bound
of Lemma 19.3 we choose the parameter E determining the family of

exponential horns to be E ~, It is this family which appears in all
subsequent arguments. ~ 

LEMMA 19 . 6. - There exist Ni, c i and At such that for N > N*
and A  each of the problems

has a solution Q satisfying ) Q) J Q~, ~  ~ on ~N+ 1 x ~ I w   r’ ~ provided h
is holomorphic on N  {|w I  r} and there satisfies

Proof - Here also by (19.2) and Lemma 19 . 3 we have collective esti-
mates for the parameters determining the applicability of Proposition 17 .1
to each of these problems.
We now prove Proposition 7.1 by recursively solving the sequence
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of problems = + pN~). We begin by directly solving the
problem

tor a suitable choice ot N o . t’or higher indices N > No we seek solutions
in the factored form

The compositional remainder QN must then satisfy

wnere

~~~~ "

By Lemmas 19.1 and 19.4, for N sufficiently large we have the estimates

tliU

/~~B nB B.

on

We also suppose that No is so large that for N > No the conclusion of
Lemma 19 . 6 holds. We now attempt to solve ( 19 . 3)No-( 19 . 6)N recursively
by choosing No and 6 suitably. Let

r - r 1 
Then, ifAN ~ 2014.2014,  we can estimate = sup I

4 ~~ 
-

using
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These inequalities have the form

Next, we can use this estimate for to obtain an estimate for QN+l 1
as the solution of ( 19 . 5)N + 1 given by Lemma 19 . 6 provided

(and  ~ i ). This inequality has the form

Finally the explicit form of ( 19 . 4)N + 1, namely

leads to the estimate

provided A

To summarize, if we choose 6 and No so that the following hold, then the
quantities AN, G~, dN will majorize the quantities defined in (19.9) :

(Here a, b, c, d, a and f3 are nonnegative quantities depending M, r’
with specific properties that no longer concern us.
Combining ii), iii ), and v, we obtain

We now choose No so large that

This is possible since, using c
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The sequence defined by (19.13) will then be majorized by solutions of
the simpler scheme

1

Moreover, now that No nas been nxed, we can apply Lemma 19.6 to the
problem = g(No) to conclude that for small 6 we have  K~.
We therefore add to (19.14) the initial condition

It is now easy to prove by induction that - AN  for some A.

For if A’.’ .1+1 - A’-’ .1 - Ae-N for j  N, then ka + 1 1 - e-1A03B4 and

tion is justified if

but this inequality is true tor large A and small 6. Hence we conclude that

. ~. 1

Then iv) is a consequence ot

By Lemma 19.4, Hence these estimates imply

11 - 1-1.70U.
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or for N >_ 2 No
/~r~ ~B ___ __

l he converse portion ot Proposition (13 .1) now implies that the sequence
converges on [0, xo ] to a function in B;. Moreover the convergence

of Qw, g(N) to Qx, Qw, g ensures that the limit satisfies L(Q) = g on
[0, Xo ]. .

Similarly we can construct a linearizing perturbation on [ - xo, 0 ].
Piecing these together we obtain a linearizing perturbation on the inter-
val [ - xo, xo ] containing the support of g. This concludes the proof of
Proposition 7.1.
A proof of Proposition 7 . 2 A can be given along the same lines but is

much easier. However this result is basically the known result that the
vector field i A + g (in which x and a merely appears as parameters) can
be linearized if A satisfies the eigenvalue conditions. We therefore omit
the proof.

PROPOSITION 7 . 2 B. - Since it deals with holomorphic data, is a conse-
quence of Proposition 18.2.
To prove Proposition 7.3 we use a simpler variant of the proof of Pro-

position 7 .1 in which the operation 0 is replaced by +. Briefly we consi-
der L(Q) = g(w) as the limit of holomorphic problems 
Letting Q~N + 1 ) = Q(N) + we find

- . B .- ~1~.T ) ~ B - /T~TB. - 

/B mucn simpler version oi me recursive estimation scneme m me aoove

proof shows that for some large a and No we have

QN + 1 == Q(N + 1 ) - Q(N) ,~, e - ~*(N) + aN on .

The converse part of our approximation scheme then shows that the Q(N)
converge to an element of Br’ .
The conclusions of Proposition 7.4 A can be derived from the explicit

solution Q = LWq { A - of - iAQ + iQwAw = 

Proposition 7 . 4 B is a consequence of Proposition 16 . 3. Finally we recall
that the closure properties of { were established in Section 14.
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