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ABSTRACT. – We consider the problem of exactly controlling the states of the de St. Venant
equations from a given constant state to another constant state by applying nonlinear boundary
controls. During this transition the solution stays in the class ofC1-solutions. There are no
restrictions on the distance between the initial state and the target state, so our result is a global
controllability result for a nonlinear hyberbolic system.
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RÉSUMÉ. – On s’intéresse ici à un système décrit par les equations de St. Venant. On montre
qu’on peut contrôler le système d’un état initial constant à un autre état constant avec des
contrôles frontières non linéaires de façon qu’il y ait une solutionC1.

Il n’y a pas de restriction concernant la distance entre les données initiales et les données
finales, donc notre résultat est un résultat de contrôlabilité globale exacte pour un système
hyperbolique non linéaire.

Mots Clés:Contrôlabilité exacte globale; Équations de St. Venant

1. Introduction

We consider the flow through a frictionless horizontal channel that is described by the
de St. Venant equations (see [14]). Cirina (see [2]) has shown local null controllability
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for nonlinear hyperbolic systems. In a more recent paper [12], Li, Rao and Jin established
local controllability for a quasilinear strictly hyperbolic system (see also [13]).

Stabilizability of open channel flow around an equilibrium, described by the de
St. Venant equations, has been shown by Coron, d’Andrea-Novel and Bastin in [4].
Finally, in [10], Leugering and Schmidt have shown local exact controllability and local
stabilizability for networks of canals described by the de St. Venant equations (see also
[7]).

In this paper, we present a result on global controllability of the de St. Venant
equations with no restrictions on the distance between the initial state and the target.
As stated for example in Dafermos [6], p. 140, classical solutions generally break down
in finite time as a result of collision of characteristics (see also [11]). However, we show
that starting from a constant subcritical initial state we can reach any other constant
subcritical state in finite time with boundary controls that can be chosen in such a way
that shocks are avoided and the state remains within the context of classical solutions.

In order to avoid shocks, it is essential to change the state sufficiently slow which is
possible if the control period is chosen sufficiently long.

Apart from its mathematical content, our result appears to be relevant for applications
where shocks have to be avoided, which is particularily true for drainage- and sewer
systems. Our proofs are based on the characteristic form of the equations. They are
constructive and show how controls can actually be computed numerically. As the
boundary controls are not unique, there is some flexibility with respect to optimization.

Our result is global in the sense that it holds for initial states and terminal states that
can be arbitrarily far away from each other. This is in contrast to the local results given in
the literature that hold for initial states in a neighbourhood of the desired terminal state
only.

Other problems of global controllability have been studied by E.J.P.G. Schmidt in [15,
16]

2. Definitions and notation

We consider the problem of boundary control of the flow through a frictionless
horizontal channel, where the boundary conditions are given in terms of the Riemann
invariants. The channel is parametrized lengthwise byx ∈ [0,L]. LetU(t, x) anda(t, x)
denote the average velocity over the cross section of the channel and the wetted area at
x at timet , respectively. Furthermore, letb(x, a) be the width of the water surface and
g be the gravitational constant. Then the de St. Venant equations governing the flow of
water in that channel are given in form of the following quasilinear hyperbolic system:

∂t

(
a

U

)
+

(
U a

g/b(a) U

)
∂x

(
a

U

)
= 0.

A detailed derivation of the model can be found in [5,8]. Letc(t, x) = [ga(t, x)/
b(x, a(t, x))]1/2 denote the corresponding wave celerity. Define the Riemann invariants
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R+ =U + 2c, R− =U − 2c and

A(R+,R−) :=
( 3

4R
+ + 1

4R
− 0

0 1
4R

+ + 3
4R

−
)

=
(
U + c 0

0 U − c

)
.

The de St. Venant equations can be written in the form

∂t

(
R+
R−

)
+A(R+,R−)∂x

(
R+
R−

)
= 0. (1)

These equations form a nonlinear hyperbolic system of the form considered in Cirina
[2,3] with z= (R+,R−) and the diagonal matrixA andf = 0.

For a matrixM ∈ R2×2, define|M| = max{|m11| + |m12|, |m21| + |m22|}. For r ∈ R2

let |r| = max{|r1|, |r2|}.
We have|A| = max{|3

4R
+ + 1

4R
−|, |1

4R
+ + 3

4R
−|}. The norms of the first partial

derivatives ofA are bounded above by 1.
In Cirina’s papers [2,3] the classes�(R,m,α, δ, k) are defined and play an important

role.
Our system is in diagonal form, hence in the notation of Cirina we have(A,f ) ∈

�(R × [0,∞),2, α,1/2, k) if k � 1 is such that|A| � k for all (R+,R−) with
|(R+,R−)| � α. Here f = 0 and the matrixS in the definition of the class can be
chosen as the identity matrix. The condition|A| � k is satisfied for example if34(|R+| +
|R−|)� k.

3. A local result

In this section we start with a result about local controllability.
The results given in the literature ususally state that we can steer the system from a

given initial state to a target state, provided that they are sufficiently close to each other.
In this section we state a result of a different type. It guarantees that for each element

of a compact set of initial states it is possible to reach target states in balls of the same size
around the initial states within the same control time. So our result could be described
as a result about uniform local controllability. For this result it is essential that a uniform
upper bound for the eigenvalues of the system matrix is valid.

Later we will use this result to prove that global controllability is possible, by
constructing a global control from a finite number of local controls. This is possible
since the following theorem ensures that for a given small distance the time intervals
needed to go from a point to a target point within that distance are uniformly bounded.

THEOREM 1. – Consider the de St. Venant system(1) with boundary conditions of
the formR+(t,0) = g1(t) andR−(t,L) = g2(t). Let a nonempty compact rectangular
set� = [a+, b+] × [a−, b−] ⊂ R2 be given such that for all(R+,R−) ∈ �, we have
3/4R++1/4R− > 0 and1/4R+ +3/4R− < 0, that is� contains only subcritical states.

Let δ > 0 be given. Define

T = max
(R+,R−)∈�

max
{

L+ δ

|(3/4)R+ + (1/4)R−| ,
L+ δ

|(1/4)R+ + (3/4)R−|
}
. (2)
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Then there exists a numberα > 0, such that for all constant initial states(R+
1 ,R

−
1 ) ∈�

and for all constant terminal states(R+
2 ,R

−
2 ) ∈� with

max
{|R+

1 −R+
2 |, |R−

1 −R−
2 |} � α, (3)

the boundary controlsg1, g2 can be chosen such that in timeT , the system has
reached the terminal state(R+

2 ,R
−
2 ) and the corresponding solution is continuously

differentiable.
Moreover, by choosingα sufficiently small, the maximal absolute values of the

derivatives

∂xR
+(t, x), ∂xR

−(t, x), ∂tR
+(t, x), ∂tR

−(t, x), g′
1(t), g′

2(t)

for (t, x) ∈ [0, T ] × [0,L] can be made arbitrarily small.

Proof. –We define an initial stateϕ :R →R2 on the real line in the following way. For
x ∈ [0,L], let ϕ(x)= (R+

1 ,R
−
1 ). Forx ∈ (−∞,−δ] ∪ [L+ δ,∞) let ϕ(x)= (R+

2 ,R
−
2 ).

For x ∈ (−δ,0)∪ (L,L+ δ) defineϕ in C1(R), such that the componentsϕ1 andϕ2 of
ϕ are monotone functions on(−δ,0) and on(L,L+ δ) and

max
x∈R

{∣∣ϕ′
1(x)

∣∣, ∣∣ϕ′
2(x)

∣∣} � 3

δ
max

{|R+
1 −R+

2 |, |R−
1 −R−

2 |}. (4)

Since the set� is compact, we can choose a numberc0 > 0 such that for all(R+,R−) ∈
� we have|(R+,R−)| � c0. Then we can choose a numberk � 1 such that for all
(R+,R−) with |(R+,R−)| � 2c0 we have |A(R+,R−)| � k. Define a = −kT and
b = L+ kT . Then(A,0) ∈ �([a, b] × [0, T ],2,2c0,1/2, k). Thus Theorem 3.IV from
Cirina [3], implies the existence of a numberβ > 0 such that if

max
x∈R

{∣∣ϕ′
1(x)

∣∣, ∣∣ϕ′
2(x)

∣∣} � β, (5)

the de St. Venant system with initial stateϕ on [a, b] has a unique continuously
differentiable solution on the convex hull of the two sets[a, b]× {0} and[0,L]× [0, T ].
Let τ denote this region. The proof of Theorem 3.IV is based upon results by Hartman
and Wintner whose proof can be found in [9].

Chooseα � βδ/3. Then (3) and (4) imply (5). Therefore by Theorem 3.IV from Cirina
[3], aC1 solution with initial stateϕ on [a, b] exists on the setτ .

Moreover, Theorem 3.IV guarantees the existence of a constantN > 0 such that for
all (x, t) ∈ [0,L] × [0, T ] we have

max
{∣∣∂xR+(t, x)

∣∣, ∣∣∂xR−(t, x)
∣∣} �N max

x∈R

{∣∣ϕ′
1(x)

∣∣, ∣∣ϕ′
2(x)

∣∣} � 3Nα/δ.

(Note that in [3] there is a misprint in the statement of Theorem 3.IV, namely the
inequality|zx| �N |φ| instead of|zx| �N |φ′|.)

This implies that by choosingα sufficiently small, we can make the absolute values
of the derivatives∂xR+(t, x), ∂xR−(t, x) arbitrarily small.
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Since the initial stateϕ1 has only values betweenR+
1 andR+

2 , this is also the case for
the first componentR+ of the solution on[0, T ]. Similarly, R− can only attain values
betweenR−

1 andR−
2 .

Define

M = max
(x,t)∈[0,L]×[0,T ]

{∣∣(3/4)R+ + (1/4)R−∣∣, ∣∣(1/4)R+ + (3/4)R−∣∣}.
The system equation implies that

max
(x,t)∈[0,L]×[0,T ]

{|∂tR+|, |∂tR−|} �M max
(x,t)∈[0,L]×[0,T ]

{|∂xR+|, |∂xR−|}

� 3MNα/δ.

So we can also make the absolute values of the time-derivatives of(R+,R−) arbitrarily
small by choosingα sufficiently small.

The slopes of the characteristic curves are given bydx+/dt = (3/4)R+ + (1/4)R−,
and dx−/dt = (1/4)R+ + (3/4)R−, respectively. In the area of points above both of
these characteristics, the solutionR+ has the valueR+

2 andR− has the valueR−
2 . By the

definition ofT and on account of the rectangular shape of�, this implies that at timeT ,
the system has reached the terminal state(R+

2 ,R
−
2 ) on the interval[0,L].

This can be seen as follows. Since the set� contains only subcritical states, thex+
characteristic curves have positive slope and thex− curves have negative slope. Hence
at timeT , the characteristic with positive slope coming from the point(t, x) = (0,−δ)
has reached the point(T ,L) and the characteristic with negative slope emanating from
the point(t, x)= (0,L+ δ) has reached the point(T ,0).

We now define the functionsg1, g2 by settingg1(t) :=R+(0, t) andg2(t) :=R−(L, t)
and have thus constructed the required boundary controls.

We haveg′
1(t)= ∂tR+(0, t) andg′

2(t)= ∂tR−(0, t). Hence the result that the absolute
values of the derivatives of the control function can be made arbitrarily small by an
appropriate choice ofα also follows. ✷

Remark1. – To compute the functionsg1 and g2 numerically, the initial value
problem has to be solved with initial values given by the functionϕ on the interval
[−δ,L+ δ] with boundary conditionsR+(t,−δ) = R+

2 , R−(t,L+ δ) = R−
2 for t � 0.

Of course, after timeT the computation can be stopped since fort � T we have
g1(t) :=R+(0, t)=R+

2 , andg2(t)=R−
2 .

Numerical Examples are given in Section 5.

Remark2. – Theorem 1 is different from the local exact boundary controllability
result that has been given in Theorem 3.1 in [12], since in Theorem 3.1, it is assumed that
theC1-norms of both the initial data and the final data are small, whereas in Theorem 1
it is only required that the norm of the difference between the initial and final data is
sufficiently small.

4. Global results

We proceed to apply Theorem 1 to obtain a first result about global controllability. In
this result, we consider rectangular sets that satisfy the assumptions of Theorem 1. We
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show that we can steer the system from any point of such a set to any other point of this
set in finite time.

THEOREM 2. – Let a nonempty compact rectangular set�= [a+, b+] × [a−, b−] ⊂
R2 be given such that for all(R+,R−) ∈�, we have

3/4R+ + 1/4R− > 0 and 1/4R+ + 3/4R− < 0, (6)

that is� contains only subcritical states.
Then we can find boundary controlsg1 and g2 that steer the de St. Venant system

(1) with boundary conditionsR+(t,0) = g1(t) andR−(t,L)= g2(t) in finite time from
any constant initial state in� to any other constant state in� in such a way that the
corresponding solution is continuously differentiable.

Moreover, this can be achieved in such a way that the absolute values of the derivatives
of the state(R+,R−) and of the controls(g1, g2) remain smaller than any given upper
bound.

Proof. –Let an initial pointA ∈ � and a target pointB ∈ � be given. For a natural
numbern andk ∈ {0, . . . , n} defineλk,n = k/n and

ωk,n = (1− λk,n)A+ λk,nB.

Since the set� is convex, the pointsωk,n are all elements of�. Now choosen sufficiently
large such that for allk ∈ {1, . . . , n} for ωk,n − ωk−1,n = (B −A)/n we have

|B −A|/n� α,

whereα is as in Theorem 1. Now Theorem 1 implies that for allk ∈ {1, . . . , n}, it is
possible to steer the system fromωn,k−1 to ωn,k in timeT as defined in (2).

So we can steer the system fromA = ω0,n to ω1,n, from ω1,n to ω2,n, . . . and finally
from ωn−1,n to ωn,n = B and after timenT the system has reached the desired terminal
stateB.

Moreover, Theorem 1 yields controls for which the absolute values of the derivatives
of the state(R+,R−) and of the controls(g1, g2) can be made smaller than any given
upper bound by choosingα sufficiently small.

Of course, ifα is small, the numbern has to be chosen large, so for a small bound
for the norm of the derivatives, the time needed to steer the system to the target state is
long. ✷

We are now ready to prove that it is possible to steer the system from any constant
subcritical state to any other constant subcritical state in finite time while avoiding the
formation of shocks.

THEOREM 3. – From a constant subcritical state(R+,R−) (i.e.3/4R++1/4R− > 0
and 1/4R+ + 3/4R− < 0) the system can be steered to any other constant subcritical
state by boundary controls in finite time with a continuously differentiable state.

Moreover, for every given positive upper bound the system can be steered in such a
way that the maximum norms of the derivatives of the state and of the controls remain
below this bound.
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Proof. –Let two constant subcritical states(R+
A,R

−
A) and(R+

B ,R
−
B ) be given.

As in the proof of Theorem 2, forn ∈ N andk ∈ {0, . . . , n} defineλk,n = k/n and let

R+
k,n = (1− λk,n)R

+
A + λk,nR

+
B , R−

k,n = (1− λk,n)R
−
A + λk,nR

−
B .

ThenR+
0,n =R+

A , R−
0,n =R−

A , R+
n,n =R+

B , R−
n,n =R−

B .
If the numbern is chosen sufficiently large, for allk ∈ {1, . . . , n} the nonempty sets

�k = [
min{R+

k−1,R
+
k },max{R+

k−1,R
+
k }] × [

min{R−
k−1,R

−
k },max{R−

k−1,R
−
k }]

contain only subcritical states, hence for allk ∈ {1, . . . , n} Theorem 2 is applica-
ble to �k. So we can steer the system from the initial state(R+

A,R
−
A) ∈ �1 to

(R+
1,n,R

−
1,n) ∈ �1, from (R+

1,n,R
−
1,n) ∈ �2 to (R+

2,n,R
−
2,n) ∈ �2 and so forth and finally

from (R+
n−1,n,R

−
n−1,n) ∈ �n to the desired terminal state(R+

B ,R
−
B ) ∈ �n, that we reach

aftern such steps.
The assertion about the maximum norms of the derivatives and the controls also

follows from Theorem 2. ✷
Remark3. – The combination of Theorem 3 with a result about local controllability

(see [12,10]) yields a result about controllability from states that are contained in a small
ball around a constant subcritical state to states that are in a small ball around another
constant subcritical state.

5. Numerical examples

Example1. – Now we want to define explicitly a functionϕ as used in the proof of
Theorem 1. Letδ > 0 andβ ∈ R be given. Define

p(x)= 6β

δ3

(
δ
x2

2
− x3

3

)
.

Thenp(0)= 0, p(δ)= β, p′(0)= 0= p′(δ) andp′(x) �= 0 for all x ∈ (0, δ). Moreover,
|p′(x)| � |p′(δ/2)| = (3/2)|β|/δ for all x ∈ [0, δ].

ForL> 0 defineL0 =L+ δ. Define the functionϕ with the components

ϕ1(x)=




R+
2 , x ∈ (−∞,−δ),

R+
2 + p(x), x ∈ [−δ,0) with β =R+

1 −R+
2 ,

R+
1 , x ∈ [0,L],

R+
2 + p(L0 − x), x ∈ (L,L+ δ],

R+
2 , x ∈ (L+ δ,∞).

and

ϕ2(x)=




R−
2 , x ∈ (−∞,−δ),

R−
2 + p(x), x ∈ [−δ,0) with β =R−

1 −R−
2 ,

R−
1 , x ∈ [0,L],

R−
2 + p(L0 − x), x ∈ (L,L+ δ],

R−
2 , x ∈ (L+ δ,∞).
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Fig. 1.

Then the functionϕ = (ϕ1, ϕ2) satisfies the requirements of the proof of Theorem 1.
For our numerical example, letL = 10, δ = 5 and R+

1 = 2
√

0.3g with g = 9.81,
R−

1 = −R+
1 , R+

2 = 2
√

0.2g, R−
2 = −R+

2 .
We consider a rectangular channel where for the water heighth we haveh = c2/g.

So we start with water height 0.3 and zero velocity and want to steer the system
to the state with water height 0.2 and zero velocity. Fig. 1 shows the water height
h = [0.25(R+ −R−)]2/g for x in the interval[−δ,L+ δ] that is shifted to the interval
[0,20]. So the interval[0,L] is shown in the figure as the space interval[5,15], the
interval [−δ,0] corresponds to[0,5] and the interval[L,L+ δ] to [15,20].

Note that the initial time zero is in the back and the time 20 is in the front.

Example2. – To illustrate the fact that for a fixedδ for the controls that we have
constructed the derivatives of the state remain smaller if the distance between initial state
and terminal state is smaller, we consider the data as in Example 1, but with terminal state
R+

2 = 2
√

0.28g, R−
2 = −R+

2 . So here we start with water height 0.3 and zero velocity
and want to steer the system to the state with water height 0.28 and zero velocity.

Fig. 2 shows the heighth for a rectangular channel.

Example3. – For an example where shock waves occur, we consider the data as in
Example 2, but withp = 0, hence

ϕ1(x)=


R+

2 x ∈ [−∞,0),
R+

1 x ∈ [0,L],
R+

2 x ∈ (L,∞)

and ϕ2(x)=


R−

2 x ∈ [−∞,0),
R−

1 x ∈ [0,L],
R−

2 x ∈ (L,∞).
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Fig. 2.

Fig. 3.

So here the initial state is not continuous. This situation gives the same solution as
absorbing, i.e. nonreflecting boundary conditions at 0 andL, namelyg1(t) = R+

2 and
g2(t)=R−

2 .
Fig. 3 shows the heighth= [0.25(R+ −R−)]2/g.
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6. A problem of time-optimal control

We have seen that it is possible to control the system in such a way that no
shocks occur. In problems of time optimal control without state constraints, the state
corresponding to the optimal control will often be nondifferentiable (see for example
[1]). This motivates the definition of the following problemP of time-optimal control,
where as a constraint an upper bound for the maximum norm of the derivative of the state
is prescribed. So in this problem, controls that produce states with shocks are avoided.

Let two constant subcritical states(R+
1 ,R

−
1 ), (R

+
2 ,R

−
2 ) and a positive numberγ > 0

be given.

P : inf T such that (7)

there exist control functionsg1, g2 in C1(0, T ) that steer the system in timeT from the
constant initial state(R+

1 ,R
−
1 ) to the constant state(R+

2 ,R
−
2 ) in such a way that

max
(t,x)∈[0,L]×[0,T ]

{∣∣∂tR+(t, x)
∣∣, ∣∣∂tR−(t, x)

∣∣, ∣∣∂xR+(t, x)
∣∣, ∣∣∂xR−(t, x)

∣∣} � γ.

Theorem 3 implies that for this problem, a feasible control exists and hence the
optimal controlling time is finite.

7. Conclusion

We have shown a result about global controllability for the de St. Venant equations
that guarantees shock-free controllability between steady states, which are essential
for applications. Our result can easily be generalized to the case of general nonlinear
hyperbolic systems with space dimension one. This generalization and the generalization
to networks of canals are the subject of current research.

Of course many open questions remain, for example the problem of global controlla-
bility between general, possibly nonsteady states.

It is also interesting in this context to consider the problem of time-optimal control
from a given constant initial state to a constant terminal state.

The unrestricted time optimal control is given by absorbing boundary conditions
that generate shock waves, since certain compatibility conditions are violated (see
Example 3). So we cannot find a classical continuously differentiable solution. This is
an example for the well-known fact that for problems of optimal control, in general we
cannot find an optimal control that produces a continuously differentiable state. This fact
has to be taken into account in the formulation of optimal control problems.

We have proposed a problem of time optimal control where a constraint for the
maximum norm of the derivative is prescribed. The detailed analysis of this problem
for which here we have only shown feasibility is the subject of future research.
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