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ABSTRACT. – Let um(x, t) be the solution to the Porous Media Equation,ut = �um, in a
domain	 ⊂ R

n, with initial dataum(x,0) = f (x) and boundary dataum
m(x, t) = g(x). Let

vm ≡ um
m. We prove the convergence asm goes to infinity of the pair(um, vm) to a pair(u∞, v∞)

which is a weak solution of the Hele–Shaw problem with boundary datav∞ = g and initial
datau∞(x,0)= f̃ (x), wheref̃ (x) is the projection of the initial dataf (x) into a ‘mesa’. We
also prove the convergence of the positivity sets of the functionsum to the positivity set ofu∞.
For large but finitem a boundary layer connecting the initial dataf (x) and its projectionf̃ (x)

appears. We analyze the convergence of solutions and positivity sets in this boundary layer by
introducing a suitable time scale. All our results hold true also for the Cauchy problem (	= R

n,
no boundary data).
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Singular limit; Free boundary

RÉSUMÉ. – Soitum(x, t) la solution de l’équation des milieux poreuxut = �um, dans un
domaine	⊂ R

n, avec donnée initialeum(x,0)= f (x) etum
m(x, t)= g(x) fixée sur la frontière

de	. Soitvm ≡ um
m. Nous montrons la convergence, lorsque l’exposantm va à l’infini, de la paire

(um, vm) vers(u∞, v∞), qui est l’unique solution faible du problème de Hele–Shaw avec donnée
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v∞ = g au bord de	, et donnée initialeu∞(x,0)= f̃ (x), f̃ (x) étant la projection def (x) sur
une ‘mesa’. Nous prouvons aussi la convergence des ensembles de positivité des functionsum

vers celui deu∞. Pourm grand, mais fini, une couche limite apparaît, faisant la connexion entre
la donnée initialef (x) et sa projectionf̃ (x). Nous étudions la convergence des solutions et des
ensembles de positivité dans cette couche limite, introduisant une échelle de temps convenable.
Les résultats de ce papier contiennent également le cas du problème de Cauchy pour l’équation
des milieux poreux (	= R

n, aucune donnée n’est fixée sur la frontière de	).

1. Introduction and results

We consider the behaviour of non-negative solutionsum(x, t) to the Porous Media
Equation (PME for short)

ut =�um, (x, t) ∈	×R
+, (1.1)

asm goes to infinity. The spatial domain	 is an open subset ofRn. We prescribe initial
data

u(x,0)= f (x) � 0, x ∈	, (1.2)

independent ofm, wheref is measurable, bounded and compactly supported. If the
boundary∂	 of 	 is non-empty, we assume that it is a smooth and bounded hypersurface
in R

n and prescribe boundary data

um(x, t)= g(x) � 0, (x, t) ∈ ∂	×R
+, (1.3)

which will also be taken independent ofm. We will takeg as the trace of a function in
W 1,2(	) ∩ L∞(	). Observe that we are not asking	 to be bounded. Thus, we cover
both the case of bounded domains and of exterior domains.

For m > 1 the PME is a degenerate equation having the finite speed of propagation
property, that is, iff is compactly supported, the same is true forum(·, t) for all t > 0,
and the positivity sets{um(·, t) > 0} are bounded for allt > 0.

The aim of this paper is twofold: (i) To study the limitm→∞ for nontrivial boundary
data,g �≡ 0, with inconsistent (see below) initial data,‖f ‖∞ > 1, an interesting case not
previously considered in the literature, and (ii) To study the behaviour asm→∞ of the
posivity sets{um(·, t) > 0}. The convergence of the positivity sets asm → ∞ has not
been studied before, not even for the Cauchy problem, a case which is also covered here.

Eq. (1.1) withm > 1 is used to describe the infiltration of fluids in porous media.
In this model the functionu stands for thedensityof the fluid. Thus, the positivity set
{um(·, t) > 0} is the region occupied by the fluid at timet . The evolution of the flow is
controlled by thepressure,

p= m

m− 1
um−1.

Indeed, the velocity of the fluid�v satisfies Darcy’s law

�v =−∇p,
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and the positivity sets{um(·, t) > 0} evolve accordingly. It is easy to check that the
pressure satisfies

pt = (m− 1)p�p+ |∇p|2. (1.4)

Formally Darcy’s law is valid in the limitm→∞. Hence we expect that the pressure
p will play an important role when describing the behaviour of solutions and positivity
sets for large values ofm. Observe that for such large values we havep ∼ um. Thus, (1.3)
basically means that we are imposing the pressure at the boundary, something that seems
rather sensible from the physical point of view.

Keeping the above remarks in mind, we introduce thegeneralized pressure

v = um.

This will simplify the formulas, while keeping the physical meaning. Let us also mention
thatv is the natural variable to prescribe the boundary datag.

With this new variablev our initial and boundary value problem reads




ut =�v, v = um,
v = g, x ∈ ∂	,
u(x,0)= f (x), x ∈	.

Observe that the dependence onm appears now only in the law relating the variablesu

andv,

v = φm(u), φm(u)= um.

Formally, if we letm→∞ we get




ut =�v, v ∈ φ∞(u),
v = g, x ∈ ∂	,
u(x,0)= f (x), x ∈	,

(1.5)

whereφ∞(u) is the monotone graph

φ∞(u)=



0, 0<u < 1,
[0,∞), u= 1,
∅, u > 1.

(1.6)

Problem (1.5)–(1.6) is known as the Hele–Shaw problem [10,15]. In the casen= 2 this
problem is a two-dimensional mathematical model describing the movement of a viscous
incompressible fluid confined in a narrow cell between two parallel plates, [12,22].

A different approach to have a picture of this limit consists of writing Eq. (1.1) in the
form

ut =∇ · (D(u)∇u
)
, D(u)=mum−1.

In the limit m → ∞ the diffusivity D(u) becomes infinite above the levelu = 1 and
zero below it. This produces the instantaneous collapse of any piece of the solution lying
aboveu= 1 and tends to preclude any evolution below this level. Thus, in the absence
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of a boundary or if the boundary data are trivial, there is no evolution, asv becomes zero
instantaneously. However, as we shall see, the presence of non-vanishing boundary data
keepsv away from being zero, forcing a non-stationary Hele–Shaw flow.

To put things into perspective we will briefly summarize the results already known
for the problem. Let us start with the Cauchy problem (1.1)–(1.2),	= R

n. In this case
∂	= ∅, and no boundary data are needed. Iff is in the domain ofφ∞, i.e., if ‖f ‖∞ � 1,
then, by a general stability result the solutionsum converge to the solutionu∞ of

{
ut =�v, v ∈ φ∞(u),
u(x,0)= f (x), x ∈	,

see [3]. As in this case there are no boundary data, the limiting functionu∞ is stationary.
In factu∞(x, t)= f (x) for all t > 0.

The convergence result holds true for any sequence of constitutive functionsφm(u)

such that limφm = φ∞. An important example is the Stefan problem

φm(u)=m(u− 1)+.

In this caseu stands for the enthalpy andv = φm(u) represents the temperature. The
specific heat is given byc= 1/m. Thus the Hele–Shaw problem can be seen as the zero
specific heat limit of the Stefan problem [9,16,19,23].

On the other hand, if the set{f (x) > 1} has positive measure, the initial data are
inconsistent with the limiting graphφ∞(u), and the limit is singular. There is still
convergence to a stationary profile. However, it is notf (x), but the result of the
projection off to a new functionu∞ = u∞(x), such that 0� u∞ � 1. These bounds
on u∞ ensure that the limit profile is compatible with the limiting graph (1.6). To be
more precise, it is proved in [8] thatu converges tou∞ in L∞(Rn) in the weak star
topology, with

u∞ = f +�w∞, (1.7)

wherew∞ is the solution to the complementarity problem

(1− f −�w)w = 0, w � 0, 1− f −�w � 0 (1.8)

in R
n. A proof for the casesn = 1 and n = 2, with f radially symmetric, was

independently given in [21]. A heuristic derivation was given in [11]. The result also
holds for general nonlinearitiesφm(u)→ φ∞(u), see [14].

For 	 bounded there are also some results in the case of homogeneous Dirichlet
boundary data,g ≡ 0. These results are given in [4] if the initial data are consistent. For
inconsistent initial data we have the paper [2] where the authors prove thatum converges
to u∞ as in (1.7), withw satisfying (1.8) in	 together with the boundary condition
w = 0 for x ∈ ∂	. Once more, the limit profile is stationary. In that paper the authors
also improve the convergence for the case of the Cauchy problem showing convergence
of um(·, t) in L1(	), uniformly for t in compact subsets of(0,∞).

What about nontrivial boundary data? If the initial data are consistent, then it was
proved in [15] that the solutionsum converge to a solution of (1.5) with boundary data
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v = g and initial datau(·,0) = f . The limit functionu∞(x, t) is no longer stationary
and the estimates required for the proof become more involved.

There is still a gap in the theory: the case of nontrivial boundary data with inconsistent
initial data. Our first result covers this gap for the case of stationary boundary data
g = g(x).

THEOREM 1.1. – For f measurable, bounded and compactly supported let us
consider the projection off into amesa, namely

f̃ (x)= f +�w,

wherew satisfies the complementarity problem

(1− f −�w)w = 0, w � 0, 1− f −�w � 0, x ∈	, (1.9)

and the boundary condition

w = 0, x ∈ ∂	.

Let g be the trace of a function inW 1,2(	) ∩ L∞(	) and (u∞, v∞) be the solution
of the Hele–Shaw problem(1.5) with initial data u∞(x,0) = f̃ (x) and boundary data
v∞(x, t)= g(x) for x ∈ ∂	. Then, asm→∞ we have

um(·, t)→ u∞(·, t) in L1(	), for all t > 0,

vm → v∞ in L1(	× (T1, T2)), for all T2 > T1 > 0.

The limit is, also in this case, non-stationary. There is a projection of the initial data
f to f̃ , followed by an evolution according to Hele–Shaw. The boundary data produce
the evolution. In fact, when the boundary data vanish the limit is stationary, and we
only have the projection onto a ‘mesa’. Note that the boundary data play no role in the
projection of the initial data.

The non-stationary character of the limit solution introduces some technical difficul-
ties that are not present in the case with vanishing boundary data. Indeed, fort = 0 the
functionsvm become enormous form large. Thus, it is impossible to obtain uniform
bounds down tot = 0. However, if the limit is stationary, one can avoid this problem just
by studying convergence away fromt = 0, sayt = 1, and then transport this information
to other times in a suitable way. This idea does not work in the case of a non-stationary
limit, and we need to analyze first this singularity, by investigating the boundary layer
that appears for very small times, in the very fast transition between the initial dataf

and its projectionf̃ .
Next we discuss the formation of this boundary layer. In order to be able to see the

collapse of the initial data, we have to change the time scale. For the Cauchy problem,
	= R

n, this task was performed in [13]. The authors consider the function

ūm(x, t) := um

(
x, τ(t)

)
, τ (t)= tm.
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The new time scale is suggested by the asymptotic behaviour of the Barenblatt solution,
see formula (1.16) below. They prove thatūm → ū∞ weakly star inL∞

loc(R
n × (0,∞))

asm→∞, where, for a.e.t ,

ū∞(·, t)= f +�w̄∞,

w̄∞(·, t) being the solution of the variational inequality

(1/t − f −�w)w = 0, w � 0, 1/t − f −�w � 0

in R
n. Thus, in the new time scale we have a projection into a mesa of height 1/t .

A similar result for general approximating nonlinearitiesφm → φ∞ is given in [14].
Our second theorem is the counterpart of the results in [13] for the case in which the

boundary∂	 is not empty. Form ∈ (1,∞) we introduce

ūm(x, t)= um

(
x, τ(t)

)
, τ (t)= tm+1

m+ 1
. (1.10)

THEOREM 1.2. – Let w̄∞(·, t) be the solution to the complementarity problem

(1/t − f −�w)w = 0, w � 0, 1/t − f −�w � 0, x ∈	, (1.11)

with boundary data

w(x, t)= 0, x ∈ ∂	, (1.12)

and let

ū∞(·, t)= f +�w̄∞(·, t). (1.13)

Then, for all0< t � 1,

ūm(·, t)→ ū∞(·, t) in L1(	) asm→∞.

Note that the boundary layer connects the statesf and f̃ , since the final stage
ū∞(·,1) is precisely the projected initial datãf . The boundary datag play no role in
the description of the projection, which may have been expected sincef and f̃ are
independent ofg.

Our proof of Theorem 1.2 also applies to the Cauchy problem. Thus we improve the
result in [13], as we have better convergence.

We point out that the whole limiting evolution, i.e., the very fast projection followed
by the Hele–Shaw flow, can be described in an unified way by means of a variational
inequality formulation, see Section 3 for details. This formulation consists of the
complementarity problem (1.9) together with the boundary condition

w(x, t)= g(x)t, x ∈ ∂	. (1.14)

The solution(u∞, v∞) for the Hele–Shaw problem (1.5) can be computed fromw

through the formulas

u∞ = f +�w, v∞ =wt. (1.15)
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Note that also in Theorem 1.2 we use a variational inequality formulation to characterize
the evolution in the boundary layer time scale. It is worth mentioning that these
variational formulations are quite convenient from the computational point of view, as
the timet enters only as a parameter.

Theorem 1.1 proves the convergence of the variablesum andvm to their counterparts
in a Hele–Shaw evolution. However, it says very little about the positivity sets of
solutions of the PME form large. Our next purpose is to investigate the behaviour of
these positivity sets in the limitm → ∞. The above mentioned variational inequality
formulation (1.9), (1.14), (1.15) will be rather useful in this task.

Sincevm is a power ofum, both functions share the same support for finitem. We
will prove that the limit of the positivity sets ofum(·, t) andvm(·, t) is a set that can be
regarded as the positivity set ofu∞(·, t). However, this set does not coincide in general
with the positivity set ofv∞(·, t). Thoughu∞ cannot vanish in sets wherev∞ is positive,
asv∞ ∈ φ∞(u∞), the opposite case is possible, and there are indeed many examples of
Hele–Shaw flows such thatv∞ vanishes in sets whereu∞ is positive.

To state our result precisely we defineS∞(t) for fixed t as

S∞(t)= {f > 0} ∪ {
w(·, t) > 0

}
,

wherew is the solution to the complementarity problem (1.9), (1.14). The setS∞(t) may
be thought as the positivity set foru∞(·, t), see (1.9) and (1.15).

THEOREM 1.3. – For each positivet we have

lim
m→∞

{
um(·, t) > 0

} = S∞(t)

in the sense of convergence with respect to the Hausdorff distance.

We also investigate the behaviour of the positivity sets in the boundary layer time
scale. In fact we will need the description of this behaviour in order to proceed for larger
times and give a proof of Theorem 1.3. We state our result in terms of the support ofūm

(which coincides with the support ofv̄m), and of

S̄∞(t)= {f > 0} ∪ {
w̄(·, t) > 0

}
,

wherew̄ is the function giving the evolution in the boundary layer, which is completely
determined by (1.11)–(1.12). Observe that we may think ofS̄∞(t) as the positivity set of
ū∞(·, t), see (1.11) and (1.13).

THEOREM 1.4. – For t ∈ [0,1] we have

lim
m→∞

{
ūm(·, t) > 0

} = S̄∞(t)

in the sense of convergence with respect to the Hausdorff distance.

Regarding the proofs, let us mention that once the right formulations for the limit
problems are at hand, the main task to pass to the limit is getting enough estimates to
ensure compactness. When obtaining the required bounds the existence of a boundary
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Fig. 1.Ūm vs.x for different values oft . (a)m= 50. (b)m=∞.

layer is clearly displayed, and the time scale that we will use to analyze the boundary
layer becomes apparent. To get the estimates we will perform comparison with
Barenblatt source type solutions

U(x, t;C)= t
− n

n(m−1)+2

(
C − m− 1

2m(n(m− 1)+ 2)

( |x|
t

1
n(m−1)+2

)2) 1
m−1

+
, (1.16)

that take the measuresMδ0 as initial data. The constantC can be computed in terms of
M , m and the space dimensionn.

Barenblatt solutions are an explicit example that illustrates some features of the
behaviour of solutions of the PME for largem. However, they do no fit into the
framework of our theory, since their initial data are singular measures and we are only
dealing with bounded, compactly supported, measurable functions. To have a picture
of the fast collapse that occurs for largem and small times we takem = 50, n = 1,
M = 1 and consider the corresponding solutionUm(x, t;C). FromUm we defineŪm as
in (1.10). We plot in Fig. 1(a) the function̄Um, for four different times. Note that the
time scale we are using is the one suitable to stretch the boundary layer. In Fig. 1(b) we
show the limit evolution for the boundary layer (m=∞). In the original time scale the
limit for a Barenblatt solution is a stationary profile, that corresponds to the final stage
of the evolution shown in Fig. 1(b).

The limit m → ∞ for the PME in bounded domains with homogeneous Neumann
boundary conditions has been treated in [4] for consistent initial data, and in [2] for
inconsistent initial data. The case of non vanishing data is considered in [17]. In this last
case, the limit evolution is Hele–Shaw only up to a finite timeT , which corresponds
to the time when the Hele–Shaw flow completely fills the container represented by the
domain	. A semigroup theoretical approach to these kind of problems can be found
in [5], where the authors apply this machinery to the PME with an injection term and
homogeneous boundary data. The limitm→∞ for the doubly nonlinear equation

ut =�p um (1.17)
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in R
n has been considered in [6], and in [1] for the particular case of self-similar focusing

solutions. Note that the PME is (1.17) withp = 2.
To finish this introduction, let us mention that a similar phenomenon (a projection

followed by an evolution) has been observed for changing sign solutions of the PME in
the limit m ↓ 0, see [20].

Organization of the paper. In Section 3 we give a sketch of the proof of
Theorem 1.1. However, in order to prove this theorem we need to analyze previously the
boundary layer describing the collapse of the initial data. This is done in Section 2, where
we give a sketch of the proof of Theorem 1.2. For the reader’s sake we have collected
all the cumbersome, but necessary, estimates in Section 4. We first derive them in a form
suitable for the analysis of the limit in the original time scale. Then, in Section 4.1 we
rewrite the estimates in a way that allows to handle the limit for the boundary layer.
Finally, we devote Section 5 to the proofs of the results about the convergence of the
positivity sets, Theorems 1.3 and 1.4.

2. The limit in the boundary layer time scale

The main goal of this section is the description of the boundary layer that occurs in
the nearly instantaneous collapse of the pieces of the initial dataf above the levelf = 1
whenm is very large.

We seek a time scaleτ that allows to see the very fast evolution due to the big
diffusivity at the levelsu > 1. Form ∈ (1,∞) we introduce

ūm(x, t)= um

(
x, τ(t)

)
.

We have

ūm,t (x, t)= um,t

(
x, τ(t)

)
τ ′(t)= τ ′(t)�um

m

(
x, τ(t)

)
.

Then we chooseτ = tm+1/(m+ 1) and

v̄m(x, t)= (
t ūm(x, t)

)m

to get

ūm,t =�v̄m. (2.1)

Note that this choice ofτ , and the definition of the new variablesū and v̄, formally
produce an equation for̄u andv̄ which does not depend onm.

In order to characterize the limit we will introduce the Baiocchi type variable

w̄m(x, t)=
t∫

0

v̄m(x, s) ds. (2.2)

Integration of (2.1) in(0, t) yields

ūm(x, t)− f (x)=�w̄m(x, t). (2.3)
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In addition, the following boundary condition holds

w̄m(x, t)= tm+1

m+ 1
g(x) x ∈ ∂	.

Next lemma is a consequence of the estimates obtained in Section 4.1.

LEMMA 2.1. – There exist functions̄u∞, v̄∞ andw̄∞ such that we have:
(1) ū∞ ∈ L∞((0,1): Lp(	)) for 1 � p �∞. For all 0� t � 1 the sequencēum(· , t)

converges strongly inLp(	) to ū∞(· , t), for 1 � p <∞, andūm converges tōu∞
in L1(	× (0,1)).

(2) v̄∞ ∈ L∞(	× (0,1)) and v̄m converges tōv∞ in Lp(	× (0,1)) for 1 � p <∞.
(3) w̄∞ ∈ L∞((0, T ): W 1,p(	)), for 1 < p < ∞. Moreover, for all0 � t � 1 the

sequencew̄m(·, t) converges tow̄∞(· , t) weakly in W 1,p(	) and strongly in
Lp(	).

The functionsū∞, v̄∞ and w̄∞ can be completely characterized by means of a
complementarity problem wheret appears only as a parameter.

LEMMA 2.2. – The functionw̄∞ satisfies the complementarity problem(1.11) with
the boundary condition(1.12), andū∞ and w̄∞ satisfy(1.13). The functionv̄∞ is given
by the time derivative, in the sense of distributions,

v̄∞ = w̄∞,t .

Proof. –Just pass to the limit in (2.3) to get (1.13). The inequalityw̄∞ � 0 is
straightforward. Sincet ūm = v̄1/m

m and thev̄m’s are uniformly bounded – see estimates
in Section 4.1 – we have 0� ū∞ � 1/t . This, together with (1.13) imply the last
inequality in (1.11).

Since

t ūmv̄m = v̄(m+1)/m
m ,

in the limit we obtain

(tū∞ − 1)v̄∞ = 0, (2.4)

that is,

t ū(x, t) ∈H
(
v̄(x, t)

)
.

Note that we only need to put̄w∞ instead ofv̄∞ in (2.4) to have the complementarity
condition in (1.11). Formula (2.2) holds in the limitm = ∞. Moreover, the limitv̄∞
satisfies

v̄∞,t (x, t) � − v̄∞(x, t)

t
. (2.5)

This happens because this inequality holds for the ‘pressures’vm of solutions of the
PME, and the definition of̄vm. Estimate (2.5) implies the retention property

v̄∞(x, t) > 0 ⇒ v̄∞(x, s) > 0, s � t > 0. (2.6)
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Since (2.2) holds in the limit, we conclude thatv̄∞ vanishes at a point(x, t) if and only
if w̄(x, t) also vanishes.

The boundary condition (1.12) is immediate.✷
Remark2.3. – Fort � 1/‖f ‖∞, we have thatw̄∞(x, t) = 0 is the solution to the

complementarity problem (1.11)–(1.12). Henceū∞(x, t) = f (x) up to that time. Thus,
there is a waiting time for the collapse to start. Note that the bigger the initial data, the
faster the collapse begins.

3. The limit in the original time scale

To discuss the limit ofum andvm we will introduce again a Baiocchi type variable for
m ∈ (1,∞), namely

wm(x, t)=
t∫

0

vm(x, s) ds, x ∈	. (3.1)

It is straightforward to check that

um(x, t)− f (x)=�wm(x, t), (x, t) ∈	×R
+. (3.2)

Also, we have the boundary condition

w(x, t)= g(x)t, (x, t) ∈ ∂	×R
+.

The following convergence lemma is a consequence of the estimates of next section.

LEMMA 3.1. – There exist functionsu∞, v∞ andw∞ such that, for anyT > 0 andτ

in the interval(0, T ), we have:
(1) u∞ ∈ L∞((0, T ): Lp(	)) for 1 � p � ∞. For all t > 0 the sequenceum(· , t)

converges strongly inLp(	) to u∞(· , t), for 1 � p < ∞, andum converges to
u∞ in L1(	× (0, T )).

(2) v∞ ∈ Lp(	× (0, T )) for 1 � p � ∞, andvm converges tov∞ in L1(	× (τ, T )).
(3) w∞ ∈ L∞((0, T ): W 1,p(	)), for 1< p <∞. Moreover, for allt > 0 the sequence

wm(· , t) converges tow∞(· , t) weakly inW 1,p(	) and strongly inLp(	).

The functionsu∞, v∞ andw∞ can be characterized by means of a complementarity
problem wheret appears only as a parameter. This is the content of our next lemma.

LEMMA 3.2. – For t > 0 Eq.(3.2)also holds in the limit, andv∞ =w∞,t , wherew∞
solves the complementarity problem(1.9)with the boundary condition(1.14).

Proof. –It is completely analogous to the proof of Lemma 2.2 except for the
complementarity condition, since Eq. (3.1) is no longer true in the limit. Indeed, we
will show that

w∞(x, t)=w∞(x,0+)+
t∫

0

v∞(x, s) ds, (3.3)
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where we have definedw∞(x,0+)= w̄∞(x,1). Let us write, for finitem,

wm(x, t)= w̄m(x,1)+
t∫

1/(m+1)

vm(x, s) ds.

Since the functionsvm(x, t) are uniformly bounded from above ont � C/m, with C

any positive constant (see estimates in Section 4, we apply the Dominated Convergence
Theorem and our previous results about the boundary layer to get (3.3).

It is easy to check that(1−u∞)v∞ = 0, and that the retention property (2.6) holds for
v∞. We will derive the complementarity condition from this facts, showing that we can
putw∞ instead ofv∞ in the formula. Note that there is nothing to do wherew∞ = 0.

At points (x, t) wherew∞ is positive andw∞(x, t) > w∞(x,0+) we havev∞(x, t) >

0, because of the retention property forv∞ and (3.3).
We consider now a point(x, t) such that

0<w∞(x, t)=w∞(x,0+).

Formulas (1.11) and (1.12) imply thatw∞(x,0+) solves the problem (1.9), plus the
boundary condition (1.14) fort = 0. Then

f (x)+�w∞(x,0+)= 1. (3.4)

Also, using the estimate

ut �− u

(m− 1)t

we get that the limitu∞ is non-decreasing with respect tot . Then, there exists the limit

u∞(x,0+)= lim
t↓0

u∞(x, t) � u∞(x, t) � 1. (3.5)

As a consequence of formula (3.2) withm=∞, and (3.3), we have

u∞(x,0+)= f (x)+�w∞(x,0+).

When we combine this last equation with (3.4) we getu∞(x,0+)= 1, and immediately
u∞(x, t)= 1, by (3.5).

The boundary condition (1.14) is very easily obtained, just taking the limitm→∞
for the boundary values ofwm. ✷

The limit w∞(x,0) = limm→∞wm(x,0) vanishes but in general the function
w∞(x,0+) does not. In fact, the latter gives a description of the result of the collapse
of the initial dataf to f̃ (x)= u∞(x,0+).

After the instantaneous rearrangement of the initial mass the evolution is governed by
Hele–Shaw, in a formulation that allows ‘mushy regions’. This is an immediate corollary
of our previous computations.
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COROLLARY 3.3. – The pair(u∞, v∞) is a solution to the Hele–Shaw problem with
boundary datag and initial dataf̃ .

Proof. –As

f̃ = u∞(x,0+)= lim
t↓0

u∞(x, t),

the assertion about the initial data is obvious. Sincev∞ is the limit of vm, the condition
on the boundary data is also satisfied. We know that

0� u∞ � 1, v∞ � 0, (1− u∞)v∞ = 0.

Then v∞ ∈ φ∞(u∞), whereφ∞ is the graph (1.6). To finish, just consider (3.2) with
m=∞ and (3.3), then take derivatives with respect to time to getu∞,t =�v∞. ✷

Remark3.4. – We have described the whole limiting evolution in terms of the
variational inequality formulation (1.9), (1.14). This contains, in a single setting, the
projection of the initial data and the subsequent evolution. It is possible to formulate
the Hele–Shaw problem in this variational form, which is completely equivalent to
weak formulations when the initial dataf satisfy 0� f � 1 (see [15]). However,
the variational formulation allows noncompatible dataf and produces the effect of
‘projecting’ them tof̃ . A Hele–Shaw flow with initial dataf̃ follows.

This implies the non existence of weak solutions to the Hele–Shaw problem when
‖f ‖∞ > 1. Let (u, v) be a weak solution with initial dataf . Then it is also a variational
solution with the same initial data (see [15]). But we have just seen that(u, v) should be
also a weak solution with datãf �= f , and this is contradictory.

4. Estimates

In this section we obtain the estimates that allow to pass to the limit asm → ∞ in
Lemmas 3.1 and 2.1. The first step is to get some control on the sizes of the solutions
um
m and their supports by suitable comparison arguments. We will use the Barenblatt or

source solutions (1.16). To get some extra flexibility for our comparison we will use this
solutions shifted in time, i.e., we will considerU(x, t + τ ;C) for suitableτ > 0. The
main idea is to chooseτ andC such thatU is greater than the initial dataf , at t = 0, and
Um is greater than the boundary datag on the compact set∂	× [0, T ]. We will notice
that we cannot chooseT independently of the value ofm when doing so. However, the
choiceT = 1/m is enough to proceed. As a second step we will handle the time interval
[1/m,T ], with a constantT .

We chooseR > 0, M > 1 andN > 0 such that

f (x) � M, x ∈	, g(x) � N, x ∈ ∂	, suppf ∪ ∂	⊂ B(0,R).

Since solutions (1.16) are non-increasing with respect to the variable|x|, it is enough to
have the inequality

U(x, τ ;C) � M, |x| =R, (4.1)
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to have a control on the initial dataf (x) = u(x,0) for x ∈ 	. Note that this last
inequality implies

Um(x, τ ;C) � Mm � M, |x| =R.

If we chooseM � max(1,N) we immediately get that

Um(x, τ ;C) � N, x ∈ ∂	.

Once we have controlled the boundary data at timet = 0 by means of the Barenblatt
solutions, it is enough to do this at timet = T to get the control on the whole
interval [0, T ]. This happens because the functionU(x, · ;C), for x fixed, has only one
maximum. Then, we only have to consider

Um(x, τ + T ;C) � N, |x| =R, (4.2)

together with (4.1) to perform our comparison argument.
Let us chooseτ = τ(m) andC = C(m). This is a rather straightforward calculation.

From (4.1) we immediately conclude

C � Mm−1τ
n(m−1)

n(m−1)+2 + m− 1

2m

R2

n(m− 1)+ 2
τ
− 2

n(m−1)+2 . (4.3)

When we take into account (4.2) we obtain

C � N
m−1
m (τ + T )

n(m−1)
n(m−1)+2 + m− 1

2m

R2

n(m− 1)+ 2
(τ + T )

− 2
n(m−1)+2 . (4.4)

Note that a bound for the solutionum is

U(0, τ ;C)= C
1

m−1τ
− n

n(m−1)+2 . (4.5)

Also, the support ofu(·, t), for t ∈ [0, T ], will be contained in the ballB(0, R̄), with

R̄ =
(

2m(n(m− 1)+ 2)

m− 1
C

)1/2

(τ + T )
1

n(m−1)+2 . (4.6)

So, we have to chooseC andτ satisfying (4.3) and (4.4) and such that (4.5) and (4.6)
have bounds not depending onm. If we try to choose a constantT then we are compelled
by (4.6) to takeC ∼ 1/m. In fact, we have to do so unless we allowT andτ to vanish
very fast asm→∞, something we do not want to happen. The difficult point now is to
get (4.3), becauseMm can be very large. We take then

τ ∼ 1

mMm
.

It is straightforward to check that, with this choice ofτ , both terms in the right hand side
of (4.3) are of the same order. Let us notice now that the right hand side of (4.4) has the
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same order asNT asm→∞. Then, we have to chooseT = T (m)∼ 1/m, in order to
have this inequality. Our choice forC, τ andT is

C = A

m
, τ = 1

mMm
, T = 1

m
,

whereA is a constant depending onM , N , R andn, but not onm. In the sequel we
will useA to denote constants of this kind, that may differ from line to line. The precise
value of these constants will not be important for us.

With this choice we can control the supports and the sizes of the solutionsum

uniformly with respect tom in the time interval[0,1/m]. Moreover, at timet = 1/m
we have

um
m(x,1/m) � A, (4.7)

which gives an uniform control on the size ofum
m at time T (m). We can then apply

the arguments of [15], Section 3, to get uniform bounds on the supports ofum and the
sizes ofum andum

m on any interval[T (m),T ], with T > 0 fixed. These size estimates
are enough to obtainL2 estimates for∇um

m andL1 estimates forum,t andum
m,t , on any

interval [T1, T2], with 0< T1 < T2 fixed, see [15].
Since we want to understand, form→∞, the limiting evolution and this is affected

by the initial dataf we need to go down tillt = 0 with our estimates onum andum
m. For

um we have the rather obvious bound

um � M.

There is not an uniform bound forum
m in 	× (0, T ) if ‖f ‖∞ > 1. To deal withum

m, we
will use the fact that, for our choice ofC and τ , and t ∈ [0, T (m)], um is below the
BarenblattU(x, t + τ ;C). Then

um(x, t) � U(0, t + τ ;C)= C
1

m−1 (t + τ)
− n

n(m−1)+2 , t ∈ [0,1/m]. (4.8)

The consequences of (4.7) quoted above and (4.8) allow us to get an uniform bound for
‖um

m‖L1(	×(0,T )) as follows. The piece in 1/m � t � T is easy. Let us consider thenum
m

on 	 × (0,1/m). We take into account the fact that the support ofum is contained in
B(0, R̄) and the choiceC =A/m. Then

1/m∫
0

∫
	

um
m(x, t) dx � A

m

1/m∫
0

(t + τ)
− mn

n(m−1)+2 dt.

Just use the value ofτ = τ(m) and work out the integral to get the estimate.
Now we will get the estimates to prove thatum(· , t) converge inL1(	) for all t > 0.

We will use Frechet–Kolmogorov’s compactness criteria. The key point is that we will
be able to reduce everything to the size estimate (4.8).

LEMMA 4.1. –For all t > 0 the familyum(· , t) is precompact inL1
loc(	).
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Proof. –For some suitable cut-off functionρ we introduce

ψ(x, t)= ρ(x)
∣∣um(x + h, t)− um(x, t)

∣∣.
Then

ψt(x, t)= ρ(x)
(
um,t (x + h, t)− um,t (x, t)

)
sign

(
um,t (x + h, t)− um,t (x, t)

)
.

Sinceum is a solution to PME andu  → um is monotone

ψt(x, t)= ρ(x)
(
�um

m(x + h, t)−�um
m(x, t)

)
sign

(
um
m(x + h, t)− um

m(x, t)
)
.

We apply now Kato’s inequality [18]

�|ϕ| � signϕ�ϕ

to conclude that

ψt(x, t) � ρ(x)�
∣∣um

m(x + h, t)− um
m(x, t)

∣∣.
We integrate this inequality in	× (0, t), then

∫
	

ψ(x, t) dx �
∫
	

ψ(x,0) dx +
∫∫

	×(0,t )

�ρ(x)
∣∣um

m(x + h, t)− um
m(x, t)

∣∣ dx dt.

The integral in the right-hand side of this last inequality is controlled by

‖�ρ‖∞ |h|
∫∫

	×(0,t )

∣∣∇um
m(x, t)

∣∣ dx dt.

So, we have to estimate∇um
m in L1(	× (0, t)). In fact, we already have uniform bounds

for t � 1/m. Our concern now is to control the integral on	× (0,1/m). To do this we
first apply Hölder’s inequality with respect to the space variable to get

∫∫
	×(0,t )

∣∣∇um
m(x, t)

∣∣dx dt � |	|1/2

t∫
0

(∫
	

∣∣∇um
m(x, t)

∣∣2 dx
)1/2

dt. (4.9)

We look for a bound for the integral of|∇um
m|2. We will not write the subscriptm in the

rest of the proof. For a fixed cut-off functionϕ(x), such that 0� ϕ � 1, we have

ϕumut = ϕum�um.

Also

ut � − u

(m− 1)t
.
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Then

− ϕum+1

(m− 1)t
� ϕum�um.

We integrate in	. Hence

−
∫
	

ϕum+1

(m− 1)t
dx �

∫
	

−ϕ
∣∣∇um

∣∣2 dx −
∫
	

um∇um∇ϕ dx.

We write

um∇um = 1

2
∇u2m,

so that

−
∫
	

ϕum+1

(m− 1)t
dx �−

∫
	

ϕ
∣∣∇um

∣∣2 dx + 1

2

∫
	

u2m�ϕ dx.

Then, we conclude that

∫
	

ϕ(x)
∣∣∇um

∣∣2(x, t) dx � 1

(m− 1)t

∫
	

ϕ(x)um+1(x, t) dx +
∫
	

�ϕ(x)u2m(x, t) dx.

An integration with respect to time yields

1/m∫
0

(∫
	

∣∣∇um(x, t)
∣∣2
dx

)1/2

dt

�
1/m∫
0

(
1

(m− 1)t

∫
	

um+1(x, t) dx

)1/2

dt + ‖�ϕ‖1/2
∞

1/m∫
0

(∫
	

u2m(x, t) dx

)1/2

dt.

Since everything is controlled fort > 1/m we can use (4.9) and this last inequality to
get a bound of theL1 norm of∇um by means of the size estimate (4.8). Computations
are rather straightforward now. We recall the fact that the supports of the functionsum

are all contained in a fixed ball with radius̄R. This allows us to get rid of the integrals
in space very easily. When we combine this fact with (4.8) we get

1/m∫
0

(∫
	

u2m(x, t) dx

)1/2

dt � A

m

1/m∫
0

(
t + 1

mMm

)− nm
n(m−1)+2

.

Just perform the integral in the right-hand side to check that it is uniformly bounded. We
consider now

1/m∫
0

(
1

(m− 1)t

∫
	

um+1(x, t) dx

)1/2

dt � A

m

1/m∫
0

t−1/2
(
t + 1

mMm

)− n(m+1)
2(n(m−1)+2)

dt.



30 O. GIL, F. QUIRÓS / Ann. I. H. Poincaré – AN 20 (2003) 13–36

We notice thatt−1/2 belongs toLp((0,1/m)) for all p ∈ [1,2). Now we choose
q = 2+ 1/m andp its conjugate exponent, and apply Hölder’s inequality to estimate
this last integral. Computations are straightforward.✷
4.1. Estimates for the boundary layer

Next we obtain the estimates required to pass to the limit in the boundary layer time
scale. The estimates̄um � M , suppūm(· , t)⊂ B(0,R) and supp̄vm(· , t)⊂ B(0,R) for
t ∈ [0,1] are trivial. The estimate for̄v is obtained through comparison with the same
family of Barenblatt solutions that we used before. We get

v̄m(x, t) � tmUm

(
0,

tm+1

m+ 1
+ τ ;C

)
.

Thus,

v̄m(x, t) � A

m
tm

(
tm+1

m+ 1
+ 1

mMm

)− nm
n(m−1)+2

.

Hence,

v̄m(x, t) � A

t
, t >

1

M
,

and

v̄m(x, t) � (tM)mA, t <
1

M
. (4.10)

An immediate consequence is thatv̄∞(x, t)= 0 for t < 1
M

.

LEMMA 4.2. –There exists a constantC > 0, such that

‖∇v̄m‖L2(	×(0,1)) � C.

Proof. –Multiply the equationūt = �v̄ by v̄ − ψ̄ , where ψ̄(x, t) = tmψ(x) and
ψ ∈ W 1,2(	), has compact support andψ(x) = g(x) for x ∈ ∂	. Then integrate in
	× (0,1). To conclude, use the uniform inm size estimates for̄u andv̄. ✷

LEMMA 4.3. –For eacht ∈ [0,1] the sequencēum(· , t) is precompact inL1(	).

Proof. –In order to apply Frechet–Kolmogorov’s criteria we have to estimate, locally
in L1, the difference|ūm(x+ h, t)− ūm(x, t)| for smallh andx ∈	1, with 	1 � 	. We
consider the time derivative

d

dt

∣∣ūm(x + h, t)− ūm(x, t)
∣∣

= sign
(
ūm(x + h, t)− ūm(x, t)

)(
ūm,t (x + h, t)− ūm,t (x, t)

)
to do so. Since

sign
(
ūm(x + h, t)− ūm(x, t)

) = sign
(
v̄m(x + h, t)− v̄m(x, t)

)
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we get

d

dt

∣∣ūm(x + h, t)− ūm(x, t)
∣∣

= sign
(
v̄m(x + h, t)− v̄m(x, t)

)(
�v̄m(x + h, t)−�v̄m(x, t)

)
.

We apply again Kato’s inequality to get

d

dt

∣∣ūm(x + h, t)− ūm(x, t)
∣∣ � �

(∣∣ūm(x + h, t)− ūm(x, t)
∣∣).

We take a cut-off functionρ, with compact support in	2 � 	 and such thatρ|	1
≡ 1.

We multiply our last inequality by the non-negative cut-off functionρ to get, after
integration in time and space∫

	2

ρ(x, t)
∣∣ūm(x + h, t)− ūm(x, t)

∣∣dx

�
∫
	2

ρ(x, t)
∣∣f (x + h)− f (x)

∣∣ dx

+
∫∫

	2×(0,t )

�ρ(x, t)
(|ūm(x + h, t)− ūm(x, t)|)dx dt.

We estimate the right-hand side by

∫
	2

ρ(x, t)
∣∣ūm(x + h,0)− ūm(x,0)

∣∣dx + ‖�ρ‖L∞|h|
∫∫

	2×(0,t )

|∇ūm(x, t)|dx dt.

This produces the required localL1 estimate. ✷
5. Convergence of the positivity sets

If A is a subset of	 we denote theδ-neighbourhood ofA in 	 by Vδ(A), i.e.,

Vδ(A)= {
x ∈	,d(x,A) < δ

}
.

We recall thatS∞(t) := {f > 0} ∪ {w(·, t) > 0} where w is a solution to the
complementarity problem (1.9), (1.14). From Section 4 we have that, fort in a bounded
interval of [0,∞) the sets{um(·, t)} andS∞(t) have an uniform bound. We will begin
by proving the easy part of Theorem 1.3, this is, that for given positiveδ

S∞(t)⊂ Vδ

({um(·, t) > 0})

for all m large enough. Let us considerx ∈ S∞(t). If f (x) > 0 thenum(x, t) is positive
for all m, andx ∈ {um(·, t) > 0}, because of the retention property for the PME. Iff

vanishes atx, thenw(x, t) > 0. Sincew is continuous, the setA(t) = {w(·, t) > 0} is
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open, andu∞ ≡ 1 on A(t), because of the variational formulation (1.9) for the limit, and
formula (1.15). Also,A(t) is bounded and we can cover it with a finite family of balls
Bi = B(xi, δ/2), with eachxi ∈ A. Note that all the intersectionsBi ∩ A are non void
open sets, hence

min
i

∥∥u∞(·, t)∥∥
L1(Bi)

= η > 0.

If we takem such that ∥∥um(·, t)− u∞(·, t)∥∥
L1(	)

< η,

then um cannot vanish identically in any of the ballsBi and, as an immediate con-
sequence,

Bi ⊂ Vδ

({um(·, t) > 0}) for all i ⇒ A(t)⊂ Vδ

({um(·, t)}).
The proof is very similar for the analogue in Theorem 1.4, and we skip the details.
The ‘difficult’ part of the proofs is based in the following idea (cf. [7]), that we express

by means of the physical picture for the PME that we have discussed in the introduction:
if the fluid reaches the ballBR/2 at timet0 + σ , and there was no fluid inBR(x

0) at time
t0, then the pressure was big at some point of the boundary ofBR(x

0) at a certain time
contained in the time interval(t0, t0 + σ ). This fact can be proved by comparison of
the pressurep with a suitably chosen supersolution. Such supersolution is given in the
following lemma.

LEMMA 5.1. – The radial function

V (x, t)=
(
C − (r − r0)

2

4nt

)
+
, r = |x| (5.1)

is a supersolution of the pressure Eq.(1.4) in R
n for

0< t <
r2
0

4n2C
.

Proof. –Straightforward, just work out the computations and use Eq. (1.4) for the
pressure. ✷

We need to control uniformly inm the movement of the fluid towards the center of a
ball which is empty at a certain time. According to our previous remarks, we just need
a uniform control of the size of the pressure at the boundary of the ball. We will obtain
this control thanks to the uniform convergence ofvm andv̄m to 0 on suitable subsets that
are contained in the complement of the supports ofu∞ andū∞.

LEMMA 5.2. – Givent > 0 andδ > 0, we consider anyx ∈	 such thatB(x,2δ) is
contained in the interior of the complement ofS∞(·, t). Then, for givenε > 0 we can
findM > 1 such that

vm(y, s) < ε, for all (y, s) ∈ B(x, δ)× [1/m, t], for all m � M.
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Proof. –Let hm = hm(y, s) be the solution to the problem

�hm(y)= um(y, s), y ∈ B(x,2δ),

hm(y)= 0, |y − x| = 2δ.

Since

�vm = um,t �− um

(m− 1)t
,

for fixed s the function

vm(y, s)+ hm(y, s)

(m− 1)s

is subharmonic. Then, fory ∈ B(x, δ),

vm(y, s) � 1

ωnδn

∫
B(y,δ)

vm(z, s) dz+ 1

ωnδn

∫
B(y,δ)

hm(z, s)

(m− 1)s
dz− hm(y, s)

(m− 1)s
. (5.2)

In order to control the right-hand side of this inequality, we first estimate the size of
um(·, s), for s ∈ (1/m, t). To do so we consider an integrated version of the inequality

um,s � − um

(m− 1)s
.

For s1 < s2 we obtain

um(·, s1) �
(
s2

s1

)1/(m−1)

um(·, s2).

This gives immediately

um(·, s) � (mt)1/(m−1)um(·, t), s ∈ [1/m, t]. (5.3)

Then, applying standard theory for the Laplace equation we get that the norm ofhm(·, s)
in L∞(B(x,2δ)) is small, sinceum(·, t) converges to 0. This bound is uniform fors in
[1/m, t] and gives a control on the size of the terms in the right-hand side of (5.2) where
hm appears. We will control now the size ofvm using (5.3). We recall from Section 4 the
fact that there is a constantM such that

vm(x, s) � M, (x, s) ∈	× [1/m, t].
Then

vm(x, s)= v
m−1
m

m (x, s)um(x, s) � M
m−1
m um(x, s). (5.4)

So, the integral ofvm(·, s) on the ballB(y, δ) is very small for largem. ✷
We have an analogous result in the boundary layer time scale.
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LEMMA 5.3. – Givent ∈ (0,1] andδ > 0, let us considerx ∈	 such thatB(x,2δ)
is contained in the interior of the complement ofS̄∞(·, t). Then v̄m(x, t) converges
uniformly to0 in L∞(B(x, δ)× [s, t]), for anys ∈ (0, t).

Proof. –It is based on the estimates

ūm,t � −m+ 1

m− 1

ū

t
, v̄m,t � − v̄

t
,

and is completely analogous to the proof of Lemma 5.2.✷
Now we have the tools we need to complete the proofs of Theorems 1.3 and 1.4.

Note first that all we have to do is to show that, for givenδ > 0, there exists a value
of M = M(δ) such that for allm � M we have thatum(x, t) (respectivelyūm(x, t))
vanishes at all the pointsx that lie at a distance bigger thanδ of the setS∞(t)

(respectivelyS̄∞(t)). To proceed we will need size estimates on the functionsvm andv̄m.
We will get these estimates on balls contained in	. As we did before, we can confine
ourselves to consider just a finite number of balls, because we are always working with
bounded sets. This observation will be important to have a control independent ofx on
the value ofm such thatum(x, t) (or ūm(x, t)) vanishes.

Step1. (The boundary layer for very small times.) We use the fact thatv̄m converges
uniformly to 0 on the set	×[0, T ], for anyT < 1/‖f ‖∞, see (4.10). Also, fort ∈ [0, T ]
we haveūm(·, t) → f . Let us pick a point(x, t), with 0 < t < T , such that there is
a ball Bδ = B(x, δ) ⊂ R

n contained in the complement of̄S∞(t). The definition of
S̄∞(t) implies that the initial dataf vanish onBδ . Moreover, for largem the ‘pressures’
are arbitrarily small on the set∂Bδ × [0, t]. By comparison with the supersolutions
constructed in Lemma 5.1 (centered inx) we get thatum(x, t) vanishes on the ball
B(x, δ/2) for m big enough.

Step2. (Up to the end of the boundary layer.) We go now, in the boundary layer time
scale, from a timeT ∈ (0,1/‖f ‖∞) to 1. Note thatt = 1 corresponds toTm = 1/m in the
original time scale, and that with this choice ofTm we are sure we have reached a time
such that the fast collapse of the data has already occurred. Consider then a point(x, t),
with t ∈ (T ,1], such that there is a ballB(x, δ) lying in the complement of̄S∞(t). This
ball is also contained in the complement ofS̄∞(T ), because of the retention property
for w̄, see Section 2. Hence, for largem, the ballB(x, δ/2) completely lies outside
{ūm(·, T ) > 0}. Since Lemma 5.3 ensures uniform convergence ofv̄m to 0 on the set
B(x, δ/2)×[T , t], we can perform comparison with the supersolutions in Lemma 5.1 to
get thatv̄m(x, ·) vanishes onB(x, δ/4) if m is large enough.

Step3. (Beyond the boundary layer.) We come back now to the original time scale
and to the variablesum andvm. For t > 0 we consider a point(x, t) such that a ball
B(x, δ) lies completely outside the setS∞(t). For m large we have that 1/m < t and
that B(x, δ) ⊂ {S∞(1/m)}C . Lemma 5.2 ensures thatvm is small on the boundary
of B(x, δ/2), for s ∈ [1/m, t]. With this information we can use again a comparison
argument with the supersolutions (5.1) to prove thatvm(·, t) vanishes in a neighbourhood
of x for largem.
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