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ABSTRACT. — Letu,,(x,t) be the solution to the Porous Media Equatiop= Au™, in a
domain C R”, with initial datau,,(x,0) = f(x) and boundary data),(x, ) = g(x). Let
v, = u),. We prove the convergenceasyoes to infinity of the paitu,,, v,,) to a pair(iso, voo)
which is a weak solution of the Hele—Shaw problem with boundary data= ¢ and initial
datauss(x,0) = f(x), Wheref(x) is the projection of the initial dat# (x) into a ‘mesa’. We
also prove the convergence of the positivity sets of the functignt the positivity set ofi.
For large but finiten a boundary layer connecting the initial datar) and its projectionf (x)
appears. We analyze the convergence of solutions and positivity sets in this boundary layer b
introducing a suitable time scale. All our results hold true also for the Cauchy probleaiQ
no boundary data).
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RESUME. — Soitu,, (x, r) la solution de I'équation des milieux poreux = Au™, dans un
domaine2 C R”, avec donnée initiale,, (x, 0) = f(x) etu’ (x, r) = g(x) fixée sur la frontiere
deQ. Soitv,, = u. Nous montrons la convergence, lorsque I'exposaw a I'infini, de la paire
(Um, vm) Vers(ueo, Voo ), qui est 'unique solution faible du probléme de Hele—Shaw avec donnée
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Voo = g aU bord de, et donnée initialeo, (x, 0) = f(x), f(x) étant la projection d¢ (x) sur

une ‘mesa’. Nous prouvons aussi la convergence des ensembles de positivité des fupctions
vers celui det,. Pourm grand, mais fini, une couche limite apparait, faisant la connexion entre
la donnée initialef (x) et sa projectiory (x). Nous étudions la convergence des solutions et des
ensembles de positivité dans cette couche limite, introduisant une échelle de temps convenab
Les résultats de ce papier contiennent également le cas du probléme de Cauchy pour I'équati
des milieux poreux® = R”", aucune donnée n’est fixée sur la frontiere2je

© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and results

We consider the behaviour of non-negative solutiepsx, ) to the Porous Media
Equation (PME for short)

u, =Au™, (x,1) e QxR 1.1

asm goes to infinity. The spatial domaifn is an open subset @&". We prescribe initial
data

ux,00=fx)=>0, xeQ, 1.2)

independent ofn, where f is measurable, bounded and compactly supported. If the
boundaryo 2 of 2 is non-empty, we assume that it is a smooth and bounded hypersurface
in R" and prescribe boundary data

u(x,t)=g(x) >0, (x,1) € xRT, (1.3)

which will also be taken independent @f We will take g as the trace of a function in
Wi2(Q) N L>*(RQ). Observe that we are not askisyto be bounded. Thus, we cover
both the case of bounded domains and of exterior domains.

Form > 1 the PME is a degenerate equation having the finite speed of propagatior
property, that is, iff is compactly supported, the same is truedQ«-, ¢) for all r > 0,
and the positivity setéu,, (-, t) > 0} are bounded for all > 0.

The aim of this paper is twofold: (i) To study the limit— oo for nontrivial boundary
data,g # 0, with inconsistent (see below) initial datgf ||, > 1, an interesting case not
previously considered in the literature, and (ii) To study the behaviour -asoco of the
posivity sets{u,,(-,¢) > 0}. The convergence of the positivity setsias—> oo has not
been studied before, not even for the Cauchy problem, a case which is also covered hel

Eqg. (1.1) withm > 1 is used to describe the infiltration of fluids in porous media.
In this model the functiom: stands for thedensityof the fluid. Thus, the positivity set
{u,,(-,t) > 0} is the region occupied by the fluid at timeThe evolution of the flow is
controlled by thepressure

m um—l

p:m—l

Indeed, the velocity of the fluid satisfies Darcy’s law

v=-Vp,
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and the positivity set$u,, (-, 1) > 0} evolve accordingly. It is easy to check that the
pressure satisfies

pi=(m—1pAp+|Vpl° (1.4

Formally Darcy'’s law is valid in the limitn — co. Hence we expect that the pressure
p will play an important role when describing the behaviour of solutions and positivity
sets for large values @f. Observe that for such large values we have u™. Thus, (1.3)
basically means that we are imposing the pressure at the boundary, something that see
rather sensible from the physical point of view.

Keeping the above remarks in mind, we introducegbeeralized pressure

v=u".

This will simplify the formulas, while keeping the physical meaning. Let us also mention
thatv is the natural variable to prescribe the boundary gata
With this new variabley our initial and boundary value problem reads

M[=Av, v=um’
v=g, xe&Q,
ulx,00=f(x), xef.

Observe that the dependencemrappears now only in the law relating the variahles
andv,

v =p(u), G () =u".

Formally, if we letm — oo we get

up = Av, V€ ¢oo(ut),
v=g, x €082, (1.5)
ux,0=f(x), xe,
whereg., (1) is the monotone graph
0, O<u<1,
¢OO(M) = [07 Oo), u= 11 (16)
@, u>1.

Problem (1.5)—(1.6) is known as the Hele—Shaw problem [10,15]. In thencas2this
problem is a two-dimensional mathematical model describing the movement of a viscou:
incompressible fluid confined in a narrow cell between two parallel plates, [12,22].

A different approach to have a picture of this limit consists of writing Eq. (1.1) in the
form

u, =V-(DW)Vu), Du)=mu"".

In the limit m — oo the diffusivity D(uz) becomes infinite above the level= 1 and
zero below it. This produces the instantaneous collapse of any piece of the solution lying
aboveu = 1 and tends to preclude any evolution below this level. Thus, in the absence
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of a boundary or if the boundary data are trivial, there is no evolution jesomes zero
instantaneously. However, as we shall see, the presence of hon-vanishing boundary de
keepsv away from being zero, forcing a non-stationary Hele—Shaw flow.

To put things into perspective we will briefly summarize the results already known
for the problem. Let us start with the Cauchy problem (1.1)—(X2) R". In this case
92 = ¢, and no boundary data are needed: I§ in the domain ob., i.e., if || fllo < 1,
then, by a general stability result the solutiesconverge to the solution,, of

u, = Av, VE Poo(ut),
ux,0=f(x), xe,

see [3]. As in this case there are no boundary data, the limiting funetios stationary.
Infactuy(x, 1) = f(x) forall r > 0.

The convergence result holds true for any sequence of constitutive fun¢tjgns
such that limp,, = ¢.. An important example is the Stefan problem

Gn(u) =m(u—1),.

In this caseu stands for the enthalpy and= ¢,,(u) represents the temperature. The
specific heat is given by = 1/m. Thus the Hele—Shaw problem can be seen as the zero
specific heat limit of the Stefan problem [9,16,19,23].

On the other hand, if the s¢tf (x) > 1} has positive measure, the initial data are
inconsistent with the limiting graplp..(x), and the limit is singular. There is still
convergence to a stationary profile. However, it is rfat), but the result of the
projection of f to a new functionu., = u(x), such that < u, < 1. These bounds
oNn u, ensure that the limit profile is compatible with the limiting graph (1.6). To be
more precise, it is proved in [8] that converges ta:., in L*(R") in the weak star
topology, with

wherew,, is the solution to the complementarity problem

1—f—-Aw)w=0, w >0, 1-f—Aw=>=0 (1.8)

in R". A proof for the cases: = 1 andn = 2, with f radially symmetric, was
independently given in [21]. A heuristic derivation was given in [11]. The result also
holds for general nonlinearities, (1) — ¢ (1), see [14].

For @ bounded there are also some results in the case of homogeneous Dirichle
boundary datag = 0. These results are given in [4] if the initial data are consistent. For
inconsistent initial data we have the paper [2] where the authors prove, tltainverges
to us as in (1.7), withw satisfying (1.8) inQ together with the boundary condition
w = 0 for x € 92. Once more, the limit profile is stationary. In that paper the authors
also improve the convergence for the case of the Cauchy problem showing convergenc
of u,, (-, t) in L1(Q), uniformly for ¢ in compact subsets @0, co).

What about nontrivial boundary data? If the initial data are consistent, then it was
proved in [15] that the solutiong,, converge to a solution of (1.5) with boundary data
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v = g and initial datau(-,0) = f. The limit functionu..(x, ¢) is no longer stationary
and the estimates required for the proof become more involved.

There is still a gap in the theory: the case of nontrivial boundary data with inconsistent
initial data. Our first result covers this gap for the case of stationary boundary date

g =g).

THEOREM 1.1.— For f measurable, bounded and compactly supported let us
consider the projection of into amesa, hamely

fe=f+Aw,
wherew satisfies the complementarity problem
1—f—-Aw)w=0, w >0, 1-f—Aw=>=0, x €, (1.9)

and the boundary condition
w=0, xedQ.

Let ¢ be the trace of a function ifV>%(Q2) N L™(22) and (u., v.) be the solution
of the Hele—Shaw probleifd.5) with initial data u,,(x, 0) = f(x) and boundary data
Voo(x, 1) = g(x) for x € 9Q2. Then, asn — oo we have

Un (1) = U (-, 1) N LX), forall r > 0,

U — Voo in LY(Q x (T1, T»)), forall T, > Ty > 0.

The limit is, also in this case, non-stationary. There is a projection of the initial data
f to £, followed by an evolution according to Hele—Shaw. The boundary data produce
the evolution. In fact, when the boundary data vanish the limit is stationary, and we
only have the projection onto a ‘mesa’. Note that the boundary data play no role in the
projection of the initial data.

The non-stationary character of the limit solution introduces some technical difficul-
ties that are not present in the case with vanishing boundary data. Indeee; ®the
functionsv,, become enormous for large. Thus, it is impossible to obtain uniform
bounds down te = 0. However, if the limit is stationary, one can avoid this problem just
by studying convergence away fram= 0, sayr = 1, and then transport this information
to other times in a suitable way. This idea does not work in the case of a non-stationan
limit, and we need to analyze first this singularity, by investigating the boundary layer
that appears for very small times, in the very fast transition between the initialfdata
and its projectionf .

Next we discuss the formation of this boundary layer. In order to be able to see the
collapse of the initial data, we have to change the time scale. For the Cauchy problern
Q =R", this task was performed in [13]. The authors consider the function

U (X, 1) ==ty (x, (), T(@)=1".
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The new time scale is suggested by the asymptotic behaviour of the Barenblatt solutior
see formula (1.16) below. They prove thgt — i, Weakly star inL5 . (R" x (0, 00))
asm — oo, wWhere, for a.et,

Uoo (-, 1) = f + Awe,
W (-, 1) being the solution of the variational inequality
1/t — f — Aw)w =0, w = 0, 1/)t— f—Aw >0

in R". Thus, in the new time scale we have a projection into a mesa of hejght 1
A similar result for general approximating nonlinearitigs — ¢, is given in [14].

Our second theorem is the counterpart of the results in [13] for the case in which the
boundaryd 2 is not empty. Forn € (1, co) we introduce

tm+1

lzm(xvt):um(xv ‘L'(l)), (1) = (110)

m+1

THEOREM 1.2. — Letwy (-, t) be the solution to the complementarity problem
1/t — f— Aw)w =0, w =0, 1/t — f—Aw =0, xeQ, (1.11)

with boundary data
wx,t) =0, xe€01, (1.12)
and let

Then, for all0 < ¢ < 1,

U (-, 1) = lloo(-, 1) in LY(Q) asm — oo.

Note that the boundary layer connects the stateand f, since the final stage
iis (-, 1) is precisely the projected initial datd. The boundary datg play no role in
the description of the projection, which may have been expected ginmed f are
independent of.

Our proof of Theorem 1.2 also applies to the Cauchy problem. Thus we improve the
result in [13], as we have better convergence.

We point out that the whole limiting evolution, i.e., the very fast projection followed
by the Hele—Shaw flow, can be described in an unified way by means of a variationa
inequality formulation, see Section 3 for details. This formulation consists of the
complementarity problem (1.9) together with the boundary condition

w(x,t)=gkx)t, xed. (1.14)

The solution (14, vs) for the Hele—Shaw problem (1.5) can be computed fream
through the formulas

Uoo = [+ Aw, Voo = w;. (1.15)
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Note that also in Theorem 1.2 we use a variational inequality formulation to characterize
the evolution in the boundary layer time scale. It is worth mentioning that these
variational formulations are quite convenient from the computational point of view, as
the timer enters only as a parameter.

Theorem 1.1 proves the convergence of the varialb)eandv,, to their counterparts
in a Hele-Shaw evolution. However, it says very little about the positivity sets of
solutions of the PME forn large. Our next purpose is to investigate the behaviour of
these positivity sets in the limit — oo. The above mentioned variational inequality
formulation (1.9), (1.14), (1.15) will be rather useful in this task.

Sincev,, is a power ofu,,, both functions share the same support for finiteWe
will prove that the limit of the positivity sets af,, (-, 1) andv,, (-, t) is a set that can be
regarded as the positivity set @f, (-, ). However, this set does not coincide in general
with the positivity set ol (-, t). Thoughu., cannot vanish in sets whevg, is positive,
aSv. € ¢ (Us), the opposite case is possible, and there are indeed many examples c
Hele—Shaw flows such that, vanishes in sets whetg, is positive.

To state our result precisely we defifig (¢) for fixedr as

Soo(t) ={f >0y U{w(-, 1) > 0},
whereuw is the solution to the complementarity problem (1.9), (1.14). Thését) may
be thought as the positivity set fok, (-, r), see (1.9) and (1.15).

THEOREM 1.3. — For each positive we have
I@oo{um(-, 1) >0} = S5 (1)

in the sense of convergence with respect to the Hausdorff distance.

We also investigate the behaviour of the positivity sets in the boundary layer time
scale. In fact we will need the description of this behaviour in order to proceed for larger
times and give a proof of Theorem 1.3. We state our result in terms of the suppgyt of
(which coincides with the support @f,), and of

Soolt) ={f > 0} U {i(-.1) > O},

wherew is the function giving the evolution in the boundary layer, which is completely
determined by (1.11)—(1.12). Observe that we may thing,oft) as the positivity set of
U(-, 1), See (1.11) and (1.13).

THEOREM 1.4. - For ¢ € [0, 1] we have
im {ii (-, 1) > 0} = Seo (1)

in the sense of convergence with respect to the Hausdorff distance.

Regarding the proofs, let us mention that once the right formulations for the limit
problems are at hand, the main task to pass to the limit is getting enough estimates 1
ensure compactness. When obtaining the required bounds the existence of a bounde
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Fig. 1.U,, vs.x for different values of. (a)m = 50. (b)m = cc.

layer is clearly displayed, and the time scale that we will use to analyze the boundary
layer becomes apparent. To get the estimates we will perform comparison with
Barenblatt source type solutions

2

1

o m-—1 |x| ))m
Ux,t;C) =t nm-d+2( C — , 1.16
(60 ( 2m(n(m—1>+2><mm—1w . (119

that take the measurégs, as initial data. The constait can be computed in terms of
M, m and the space dimensian

Barenblatt solutions are an explicit example that illustrates some features of the
behaviour of solutions of the PME for large. However, they do no fit into the
framework of our theory, since their initial data are singular measures and we are onl
dealing with bounded, compactly supported, measurable functions. To have a pictur
of the fast collapse that occurs for largeand small times we take: = 50, n = 1,

M =1 and consider the corresponding solutign(x, ¢; C). FromU,, we defineU,, as

in (1.10). We plot in Fig. 1(a) the functioty,,, for four different times. Note that the
time scale we are using is the one suitable to stretch the boundary layer. In Fig. 1(b) w
show the limit evolution for the boundary layen & o). In the original time scale the
limit for a Barenblatt solution is a stationary profile, that corresponds to the final stage
of the evolution shown in Fig. 1(b).

The limit m — oo for the PME in bounded domains with homogeneous Neumann
boundary conditions has been treated in [4] for consistent initial data, and in [2] for
inconsistent initial data. The case of hon vanishing data is considered in [17]. In this las
case, the limit evolution is Hele—Shaw only up to a finite tithewhich corresponds
to the time when the Hele—Shaw flow completely fills the container represented by the
domain2. A semigroup theoretical approach to these kind of problems can be found
in [5], where the authors apply this machinery to the PME with an injection term and
homogeneous boundary data. The limit> oo for the doubly nonlinear equation

u,=Apu" (2.17)
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in R" has been considered in [6], and in [1] for the particular case of self-similar focusing
solutions. Note that the PME is (1.17) with= 2.

To finish this introduction, let us mention that a similar phenomenon (a projection
followed by an evolution) has been observed for changing sign solutions of the PME in
the limitm | 0O, see [20].

Organization of the paper. In Section 3 we give a sketch of the proof of
Theorem 1.1. However, in order to prove this theorem we need to analyze previously th
boundary layer describing the collapse of the initial data. This is done in Section 2, where
we give a sketch of the proof of Theorem 1.2. For the reader’s sake we have collectel
all the cumbersome, but necessary, estimates in Section 4. We first derive them in a fori
suitable for the analysis of the limit in the original time scale. Then, in Section 4.1 we
rewrite the estimates in a way that allows to handle the limit for the boundary layer.
Finally, we devote Section 5 to the proofs of the results about the convergence of the
positivity sets, Theorems 1.3 and 1.4.

2. Thelimit in the boundary layer time scale

The main goal of this section is the description of the boundary layer that occurs in
the nearly instantaneous collapse of the pieces of the initial flatzove the levef =1
whenm is very large.

We seek a time scale that allows to see the very fast evolution due to the big
diffusivity at the levels: > 1. Form € (1, co) we introduce

U (X, 1) =ty (x, T(2)).

We have

U, (X, 1) =t (x, T(0)) T (1) = T' () Al (x, T(1)).

Then we choose = 1"*+1/(m + 1) and
U (x, 1) = (1t (x,1))"
to get

I/_lm’[ = Al_)m. (2.1)

Note that this choice otf, and the definition of the new variablésand v, formally
produce an equation far andv which does not depend om.
In order to characterize the limit we will introduce the Baiocchi type variable

t

w,n(x,t):/ﬁm(x,s)ds. (2.2)

0

Integration of (2.1) in(0, ¢) yields

Up(x,1) — f(x) = Aw,(x, 1). (2.3)
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In addition, the following boundary condition holds

m+1

Wy (X, 1) = g(x) xe€dQ.

m+1

Next lemma is a consequence of the estimates obtained in Section 4.1.

LEMMA 2.1. - There exist function8,, vs andw such that we have

(1) dte € L*°((0,1): LP(2)) for 1 < p < oo. Forall 0< ¢ < 1the sequencg,, (-, 1)
converges strongly ifi? (2) to it (-, 1), for 1 < p < oo, andi,, converges ta
in LY(Q x (0, 1)).

(2) Voo € L*®(2 x (0, 1)) and v,, converges td,, in L7 (2 x (0, 1)) for 1 < p < o0.

(3) Woo € L®((0, T): WEP(RQ)), for 1 < p < co. Moreover, for all0 < ¢ < 1 the
sequencew,, (-, 1) converges tow.(-,t) weakly in Wt7(Q) and strongly in
LP(S).

The functionsii,, V5 and we can be completely characterized by means of a
complementarity problem whereappears only as a parameter.

LEMMA 2.2.— The functionw,, satisfies the complementarity probléin11)with
the boundary conditioff1.12) andii,, and w,, satisfy(1.13) The functioni., is given
by the time derivative, in the sense of distributions,

Voo = woo’t.

Proof. —Just pass to the limit in (2.3) to get (1.13). The inequality, > 0 is
straightforward. Sincei,, = ﬁ,}/ ™ and thev,,’s are uniformly bounded — see estimates
in Section 4.1 — we have € i, < 1/¢t. This, together with (1.13) imply the last
inequality in (1.11).

Since

Ly Uy = DD/,

in the limit we obtain
(tiioo — 1)Toe = 0, (2.4)
that is,
ti(x,1) € H(0(x,1)).

Note that we only need to put,, instead ofv., in (2.4) to have the complementarity
condition in (1.11). Formula (2.2) holds in the limit = co. Moreover, the limito,,
satisfies

Toos (X, 1) = —'3°°(tx’ 2 (2.5)

This happens because this inequality holds for the ‘pressuypesf solutions of the
PME, and the definition of,,. Estimate (2.5) implies the retention property

Voo (x,8) >0 = Uy(x,5)>0, s>r>0. (2.6)
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Since (2.2) holds in the limit, we conclude that vanishes at a pointx, ¢) if and only
if w(x,r) also vanishes.
The boundary condition (1.12) is immediatex

Remark2.3. —Fort < 1/| f oo, We have thatw(x, ) = 0 is the solution to the
complementarity problem (1.11)—(1.12). Hencg(x, t) = f(x) up to that time. Thus,
there is a waiting time for the collapse to start. Note that the bigger the initial data, the
faster the collapse begins.

3. Thelimit in theoriginal time scale

To discuss the limit oft,,, andv,, we will introduce again a Baiocchi type variable for
m € (1, 00), namely
t
Wy, (x,1) = /vm(x, s)ds, xeQ. (3.1)
0
It is straightforward to check that

Up(x, 1) — f(X) = Aw,(x,1), (x,1) e Q2 xRY. (3.2)
Also, we have the boundary condition
wx,t)=gx)t, (x,1)edQ xR,

The following convergence lemma is a consequence of the estimates of next section

LEMMA 3.1. — There exist functiong,,, v, and wy, such that, for anyi” > 0andt
in the interval(0, T'), we have

(1) uso € L*((0,T): LP(2)) for 1 < p < o0o. For all ¢+ > 0 the sequenca,,(-, 1)
converges strongly iL?(2) to uq(-, 1), for 1 < p < oo, andu,, converges to
Uoo IN LY x (0, T)).

(2) veo € LP(2 x (0, T)) for 1 < p < oo, andw,, converges ta,, in LYX(Q x (r, T)).

(3) woo € L®((0, T): WEP(Q)), for1 < p < co. Moreover, for alls > 0the sequence
w,, (-, 1) converges tav, (-, t) weakly inW?(Q) and strongly inL? ().

The functionsu., vo andw,, can be characterized by means of a complementarity
problem where appears only as a parameter. This is the content of our next lemma.

LEMMA 3.2. —Fort > 0 Eq.(3.2)also holds in the limit, and, = woo ;, Wherew,
solves the complementarity probl€in9) with the boundary conditiol.14)

Proof. —It is completely analogous to the proof of Lemma 2.2 except for the
complementarity condition, since Eg. (3.1) is no longer true in the limit. Indeed, we
will show that

Woo(X, 1) = Wee(x, 01) —I—/voo(x, s)ds, (3.3)
0
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where we have defined (x, 07) = W (x, 1). Let us write, for finitem,

t
wm(xvt):wm(xvl)+ / vm(x,s)ds.
1/(m+1)

Since the functions,, (x, ) are uniformly bounded from above or> C/m, with C
any positive constant (see estimates in Section 4, we apply the Dominated Convergen
Theorem and our previous results about the boundary layer to get (3.3).

Itis easy to check thatl — u,,) v, = 0, and that the retention property (2.6) holds for
V- We will derive the complementarity condition from this facts, showing that we can
put w,, instead ofv,, in the formula. Note that there is nothing to do wherg = 0.

At points (x, t) wherew,, is positive andw, (x, 1) > wa.(x, 07) we havevy, (x, 1) >
0, because of the retention property fgf and (3.3).

We consider now a poirttx, ) such that

0 < weo(x, 1) = weo(x, 01).

Formulas (1.11) and (1.12) imply that,,(x, 0") solves the problem (1.9), plus the
boundary condition (1.14) far=0. Then

) + Awee(x,07) = 1. (3.4)

Also, using the estimate
u
S (m—1y
we get that the limit, is non-decreasing with respectrtoThen, there exists the limit

Uy =

Uoo(x, 0F) =|ti?g Uoo (X, 1) Suoo(x, ) < 1. (3.9)

As a consequence of formula (3.2) with= oo, and (3.3), we have
Uoo(x,07) = f(x) + Awee(x, 0F).

When we combine this last equation with (3.4) we get(x, 07) = 1, and immediately
Us(x,1) =1, by (3.5).

The boundary condition (1.14) is very easily obtained, just taking the limit co
for the boundary values af,,. O

The limit ws(x,0) = lim,, ., w,(x,0) vanishes but in general the function
wso(x, 07) does not. In fact, the latter gives a description of the result of the collapse
of the initial dataf to f(x) = un(x, O1).

After the instantaneous rearrangement of the initial mass the evolution is governed b
Hele—Shaw, in a formulation that allows ‘mushy regions’. This is an immediate corollary
of our previous computations.
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COROLLARY 3.3.—The pair(goo, Uso) IS @ solution to the Hele—Shaw problem with
boundary datg and initial data f.

Proof. —As
[ =toe(x,07) = liMuce(x, 1),
10

the assertion about the initial data is obvious. Singes the limit of v,,, the condition
on the boundary data is also satisfied. We know that

Thenvy € ¢oo (i), Whereg,, is the graph (1.6). To finish, just consider (3.2) with
m = oo and (3.3), then take derivatives with respect to time taget = Av,. O

Remark3.4. — We have described the whole limiting evolution in terms of the
variational inequality formulation (1.9), (1.14). This contains, in a single setting, the
projection of the initial data and the subsequent evolution. It is possible to formulate
the Hele—Shaw problem in this variational form, which is completely equivalent to
weak formulations when the initial datg satisfy 0< f < 1 (see [15]). However,
the variational formulation allows noncompatible dgtaand produces the effect of
‘projecting’ them tof. A Hele—Shaw flow with initial datgf follows.

This implies the non existence of weak solutions to the Hele—Shaw problem when
Il fllo > 1. Let(u, v) be a weak solution with initial daté. Then it is also a variational
solution with the same initial data (see [15]). But we have just seeriithaj should be
also a weak solution with datd = f, and this is contradictory.

4, Estimates

In this section we obtain the estimates that allow to pass to the limit as oo in
Lemmas 3.1 and 2.1. The first step is to get some control on the sizes of the solution
u and their supports by suitable comparison arguments. We will use the Barenblatt o
source solutions (1.16). To get some extra flexibility for our comparison we will use this
solutions shifted in time, i.e., we will considéf(x, r + t; C) for suitabler > 0. The
main idea is to chooseandC such that is greater than the initial datg, atr = 0, and
U™ is greater than the boundary dat@n the compact seét2 x [0, T']. We will notice
that we cannot choosE independently of the value @t when doing so. However, the
choiceT = 1/m is enough to proceed. As a second step we will handle the time interval
[1/m, T], with a constant.

We chooseR > 0, M > 1 andN > 0 such that

fOYSM, xeQ, gx)<N, xe€dQ,  suppfuaQc B(O,R).

Since solutions (1.16) are non-increasing with respect to the vatigbl¢is enough to
have the inequality

Ux,t;C) > M, |x|=R, 4.1)
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to have a control on the initial datf(x) = u(x,0) for x € . Note that this last
inequality implies

Ul(x,t7;C)>M">M, |x|=R.

If we chooseM > max(1, N) we immediately get that
Ux,7;C) >N, xecdQ.

Once we have controlled the boundary data at time0 by means of the Barenblatt
solutions, it is enough to do this at time= T to get the control on the whole
interval [0, T']. This happens because the functiénx, - ; C), for x fixed, has only one

maximum. Then, we only have to consider

together with (4.1) to perform our comparison argument.
Let us choose = t(m) andC = C(m). This is a rather straightforward calculation.
From (4.1) we immediately conclude

C > Mm—l (n(mI)l-:—Z + m— 1 R2
= -[n m—
2m n(m—1)+2

DR, (4.3)

When we take into account (4.2) we obtain

m—=1 — 1 R2 2

n(m—1) m
C 2 N m T n(m—1)+2 T _n(m71)+2‘ 44
(t+T1) o am—n 2D (4.4)

Note that a bound for the solutian, is
U(,t;C) = Cig i, (4.5)

Also, the support ofi(-, t), for ¢t € [0, T], will be contained in the balB (0, R), with

R =

1/2
R (2”1(”("1_1”2)0) (t + Ty o7, (4.6)
m—1
So, we have to choos€ and r satisfying (4.3) and (4.4) and such that (4.5) and (4.6)
have bounds not depending anIf we try to choose a constafitthen we are compelled
by (4.6) to takeC ~ 1/m. In fact, we have to do so unless we all@wand to vanish
very fast asn — oo, something we do not want to happen. The difficult point now is to
get (4.3), becausg™ can be very large. We take then

1
mMm’

T ~

It is straightforward to check that, with this choicewfboth terms in the right hand side
of (4.3) are of the same order. Let us notice now that the right hand side of (4.4) has th
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same order ad/T asm — co. Then, we have to choose= T (m) ~ 1/m, in order to
have this inequality. Our choice f@t, r andT is

A 1 1
C=—, T= , T=—,
m mMm m

where A is a constant depending avf, N, R andn, but not onm. In the sequel we
will use A to denote constants of this kind, that may differ from line to line. The precise
value of these constants will not be important for us.

With this choice we can control the supports and the sizes of the soluiigns
uniformly with respect ton in the time interval[0, 1/m]. Moreover, at timeg =1/m
we have

u, (x,1/m) <A, 4.7)

which gives an uniform control on the size @f at time 7T'(m). We can then apply
the arguments of [15], Section 3, to get uniform bounds on the suppoits ahd the
sizes ofu,, andu!! on any interval[T (m), T], with T > 0O fixed. These size estimates
are enough to obtain? estimates foivu” and L! estimates fou,, , anduj, ,, on any
interval [Ty, T»], with 0 < T; < T fixed, see [15].

Since we want to understand, far— oo, the limiting evolution and this is affected
by the initial dataf we need to go down till = O with our estimates on,, andu:. For
u,, we have the rather obvious bound

Uy <M.

There is not an uniform bound faf! in Q x (0, T) if || flloc > 1. To deal withu!", we
will use the fact that, for our choice af andzt, andr € [0, T (m)], u,, is below the
BarenblattU (x,t + 7; C). Then

n

U (x, 1) Ut +7;C) = Cii(t + 1) 752, ¢ e[0,1/m]. (4.8)

The consequences of (4.7) quoted above and (4.8) allow us to get an uniform bound fc
lui L2 ex 0.1y @s follows. The piece in/in <t < T is easy. Let us consider thex;

on Q2 x (0,1/m). We take into account the fact that the supporigfis contained in

B(0, R) and the choic& = A/m. Then

1/m 1/m

A mn
//”::(x”)dxg— /(f-i-f)_mdt.
0 Q .

Just use the value af= t(m) and work out the integral to get the estimate.

Now we will get the estimates to prove thai(-, ) converge inL*(2) for all t > 0.
We will use Frechet—Kolmogorov’'s compactness criteria. The key point is that we will
be able to reduce everything to the size estimate (4.8).

LEMMA 4.1. —For all ¢ > 0 the familyu,, (-, t) is precompact irLi ().

loc
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Proof. —For some suitable cut-off functiom we introduce
Yx,t)= ,o(x)|um(x +h,t) —u,(x, t)|.

Then

Ve (x, 1) = p () (U, (X + Ry 1) — (X, 1)) SION(tt (X + h, 1) — (X, 1)).
Sinceu,, is a solution to PME and — u™ is monotone

Ve(x, 1) = px) (Aul(x + h,t) — Aull(x, 1)) sign(uln (x + h, 1) —ulh(x,1)).
We apply now Kato's inequality [18]

Alp| = signpAg

to conclude that

Y(x, 1) < ,o(x)A|uﬁ(x +h,t) —u,(x, t)|.
We integrate this inequality if2 x (0, ¢), then

/W(x, t)dx < /Iﬂ(x, 0)dx + // A,o(x)’uﬁ(x +h,t) —u,(x, t)| dxdt.
Q Q Qx(0,1)
The integral in the right-hand side of this last inequality is controlled by
AP oo 7] // |Vull(x,t)|dx dt.
Qx(0,1)

So, we have to estimatéx™ in L1(Q x (0, 1)). In fact, we already have uniform bounds
for t > 1/m. Our concern now is to control the integral €nx (0, 1/m). To do this we
first apply Hoélder’s inequality with respect to the space variable to get

! 1/2
// Vul (x, )| dx dr < |Q|1/2/(/ng(x,z)yzdx> dr. (4.9)
0

Qx(0,1)

We look for a bound for the integral ¥« |2. We will not write the subscript: in the
rest of the proof. For a fixed cut-off functigm(x), such that G ¢ < 1, we have

(pumut — (pumAum‘

Also
u

S m—1Dt

Uy 2
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Then

(0Ltm+1

_ < n’lA n’l.
m— 1y o

We integrate ir©2. Hence

m+1
— de</—(p|Vum]2dx—/umVumV(pdx.
(m— Dt
Q Q Q
We write
MYy M 1V 2m
u"vu" = =vu",
2
so that
(pum+1 / 5 l/ o
— | ———dx < — vu™|"d = Apdx.
n i x @|Vu™| x+2 u" Apdx
Q Q Q

Then, we conclude that

1
!(p(x)]Vum]z(x,t)dx < m!gﬁ(x)umﬂ(x,t)dx—l—!Ago(x)uzm(x,t)dx.

An integration with respect to time yields
1/m ) 1/2
/(/]Vu'"(x,t)| dx) dt
0 Q
1 1/2

1/m 1 1/2 /m
< /(7/um+1(x,t)dx> d;+||Ago||gé2/(/uz’"(x,t)dx> dr.
(m — Dt 5 %

0 Q

Since everything is controlled far> 1/m we can use (4.9) and this last inequality to
get a bound of th&.* norm of Vu” by means of the size estimate (4.8). Computations
are rather straightforward now. We recall the fact that the supports of the funatjons
are all contained in a fixed ball with radius This allows us to get rid of the integrals
in space very easily. When we combine this fact with (4.8) we get

Y/m , 1/2 A /m 1 T

/(/um(x,t)dx) dté—/(t—l— i ) .
m m m

0 Q 0

Just perform the integral in the right-hand side to check that it is uniformly bounded. We
consider now

1/m 1/m n(m+1)

1 N vz o, 1 \ w0
— = [ u"(x,0)d dt<= [t /2<t ) dt.
O/((m—l)tg/u (x.1) x) m / +mM’"
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We notice thatr—%? belongs toL”((0,1/m)) for all p € [1,2). Now we choose
g =2+ 1/m and p its conjugate exponent, and apply Holder’'s inequality to estimate
this last integral. Computations are straightforwardi

4.1. Estimatesfor the boundary layer

Next we obtain the estimates required to pass to the limit in the boundary layer time
scale. The estimates, < M, suppi,,(-,t) C B(0, R) and sup,,(-,t) C B(0, R) for
t € [0, 1] are trivial. The estimate fop is obtained through comparison with the same
family of Barenblatt solutions that we used before. We get

m+1
_m , 1 <thm 0, T;C .
B 1) ( o )
Thus,
A L 1\ oD
Up (x, 1) < —1" )
(. 1) m <m+1+mM’">
Hence,
_ A 1
Um(xvt) < ) t> >
t M
and
_ 1
Un (X, 1) S GM)"A, 1 < I (4.10)

An immediate consequence is thgf(x, ) =0 forz < %

LEMMA 4.2. —There exists a constait > 0O, such that
VUl L2@x0.1)) < C.

Proof. —Multiply the equationi;, = Ao by v — v, where v (x,t) = "y (x) and
¥ € WH?(Q), has compact support ang(x) = g(x) for x € Q. Then integrate in
Q x (0, 1). To conclude, use the uniform in size estimates faf andv. O

LEMMA 4.3. —For eachr € [0, 1] the sequence,, (-, t) is precompact ir.1().

Proof. —In order to apply Frechet—Kolmogorov’s criteria we have to estimate, locally
in L1, the differenceii,, (x + h, t) — ii,, (x, t)| for smallh andx € Q4, with Q1 € Q. We
consider the time derivative

d  _ _
E|um(x +h, 1) =ty (x,1)]

= SigN(tty (x + 1, 1) =ty (X, 1)) (lp (X + hy 1) — i (x, 1))
to do so. Since

SigN(ity (x + 1, 1) — iy (x, 1)) = SIGN(D, (x + 1, 1) — Uy (x, 7))
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we get

d _ -
Z|um(-x +hat) - um(x,t)]

=SigN(Ty (x + 1, 1) — Uy (x, 1)) (AT (x + h, 1) — AV (x, 1)).
We apply again Kato’s inequality to get

d
Eyam(x 1) = i (0 )| < A(fit (X 4 h 1) — i (x, 1)]).

We take a cut-off functiop, with compact support if; € €2 and such thap|g, = 1.
We multiply our last inequality by the non-negative cut-off functipnto get, after
integration in time and space

/,o(x, D)t (x + h, 1) — iy (x, 1)|dx

Qo

< /p(x,z)|f(x+h) — f0)]dx

Q22

+ // Ap (. 1) (Jii (x + B, 1) — ity (x, 1)]) dox d.

Q2% (0,1)

We estimate the right-hand side by

[ oG 0linG+5,0) = i (x, 0 dx + [ Apllll [ [ Vi (x, 0l dxdr.
Qo Q2x(0,7)

This produces the required locat estimate. O

5. Convergence of the positivity sets

If A is asubset of2 we denote thé-neighbourhood oft in @ by V;(A), i.e.,
Vs(A) = {x € Q,d(x, A) <§}.

We recall thatS.(¢) := {f > 0} U {w(-,#) > 0} where w is a solution to the

complementarity problem (1.9), (1.14). From Section 4 we have that,ifioa bounded

interval of [0, c0) the sets{u,, (-, 1)} and S, (¢) have an uniform bound. We will begin
by proving the easy part of Theorem 1.3, this is, that for given positive

Soo(t) C VB ({um('v t) > 0})

for all m large enough. Let us considere S, (). If f(x) > 0 thenu,, (x, t) is positive
for all m, andx € {u,,(-,t) > 0}, because of the retention property for the PMEf If
vanishes ak, thenw(x, ) > 0. Sincew is continuous, the set(¢) = {w(-,1) > 0} is
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open, andi,, = 1 on A(t), because of the variational formulation (1.9) for the limit, and
formula (1.15). Also,A(¢) is bounded and we can cover it with a finite family of balls
B; = B(x;,8/2), with eachx; € A. Note that all the intersection8; N A are non void
open sets, hence

miinHuoo(-, t)HLl(B,-) =n>0.

If we takem such that

Hum(’v 1) —Uo(:, Z)HLl(Q) <1

thenu,, cannot vanish identically in any of the balg and, as an immediate con-
sequence,

B C Vs({uw(-, 1) >0}) foralli = A@) C Vs{un(,0}).

The proof is very similar for the analogue in Theorem 1.4, and we skip the details.
The ‘difficult’ part of the proofs is based in the following idea (cf. [7]), that we express
by means of the physical picture for the PME that we have discussed in the introduction

if the fluid reaches the baBy, at timez° + o, and there was no fluid iBz (x°) at time

10, then the pressure was big at some point of the boundaBy 6f°) at a certain time
contained in the time intervak®, t° + o). This fact can be proved by comparison of
the pressure with a suitably chosen supersolution. Such supersolution is given in the
following lemma.

LEMMA 5.1. - The radial function

_ (r —ro)? _
Vix,t)= (C—Tt>+, r=|x| (5.1)

is a supersolution of the pressure Ed.4)in R” for

2
o)

4n2C’

O<t<

Proof. —Straightforward, just work out the computations and use Eqg. (1.4) for the
pressure. O

We need to control uniformly im the movement of the fluid towards the center of a
ball which is empty at a certain time. According to our previous remarks, we just need
a uniform control of the size of the pressure at the boundary of the ball. We will obtain
this control thanks to the uniform convergencesgfandu,, to 0 on suitable subsets that
are contained in the complement of the supportg.ofandii..

LEMMA 5.2. — Givenr > 0 and$ > 0, we consider any € 2 such thatB(x, 268) is
contained in the interior of the complement${ (-, 7). Then, for givere > 0 we can
find M > 1 such that

vn(yv,s) <eg, forall (y,s) e B(x,d8) x[1/m,t], forallm> M.
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Proof. —Let h,,, = h,,(y, s) be the solution to the problem

Ahy,(y) =u,(y,s), ye€ B(x,26),

hm(y)zov |y—x|:28
Since
A > uﬂ‘l
Un =Umt =2 — Q>
! (m — )t

for fixed s the function
hm (yv s)
U (y,s) + n—Ds

is subharmonic. Then, fore B(x, §),

hn(z.8) , _ *w(3.5)

. 5.2
w, 8" (m—1s ¢ (m—1s (5-2)
B(y,5)

U (y,8) < / U (z,8)dz +

B(y,d)

1
w,, 6"

In order to control the right-hand side of this inequality, we first estimate the size of
un(-,s), fors € (1/m, ). To do so we consider an integrated version of the inequality

Forsi < s» we obtain

52 1/(m—-1)
um('a sl) < (S_> Mm(', SZ)'
1

This gives immediately
tn (-, 8) < (MDY "V, (1), s €[1/m, 1], (5.3)

Then, applying standard theory for the Laplace equation we get that the narpd- of)

in L*°(B(x, 25)) is small, since,,(-, t) converges to 0. This bound is uniform foiin

[1/m, t] and gives a control on the size of the terms in the right-hand side of (5.2) where
h,, appears. We will control now the size @f using (5.3). We recall from Section 4 the
fact that there is a constam such that

vp(x,s) <M, (x,5)eQx[1/m,t].

Then
m—=1

Un (X, 8) = U (X, )it (6, 8) < M7 0 (3, 5). (5.4)
So, the integral of,, (-, s) on the ballB(y, §) is very small for largen. O

We have an analogous result in the boundary layer time scale.
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LEMMA 5.3. - Givent € (0, 1] and$ > 0, let us consider € Q such thatB(x, 25)
is contained in the interior of the complement £f(-, 7). Thenw,,(x,) converges
uniformly toO in L*(B(x, §) x [s, t]), for anys € (0, t).

Proof. —It is based on the estimates

and is completely analogous to the proof of Lemma 5.2.

Now we have the tools we need to complete the proofs of Theorems 1.3 and 1.4
Note first that all we have to do is to show that, for givks 0, there exists a value
of M = M(8) such that for allm > M we have thatu,,(x,t) (respectivelyii,,(x, 1))
vanishes at all the points that lie at a distance bigger thah of the setS.(¢)
(respectivelyS,,(1)). To proceed we will need size estimates on the functignanda,,.

We will get these estimates on balls contained2inAs we did before, we can confine
ourselves to consider just a finite number of balls, because we are always working witt
bounded sets. This observation will be important to have a control independermnof

the value ofn such thaty,, (x, #) (or i, (x, 1)) vanishes.

Stepl. (The boundary layer for very small times.) We use the factihatonverges
uniformly to O on the se®2 x [0, T'], foranyT < 1/| f i, S€€ (4.10). Also, fore [0, T']
we havei,, (-, t) — f. Let us pick a point(x, ¢t), with 0 <t < T, such that there is
a ball B; = B(x,8) c R” contained in the complement &, (). The definition of
S~ (1) implies that the initial datg vanish onB;. Moreover, for largen the ‘pressures’
are arbitrarily small on the séitBs x [0, t]. By comparison with the supersolutions
constructed in Lemma 5.1 (centered.ih we get thatu,,(x, ) vanishes on the ball
B(x, §/2) for m big enough.

Step2. (Up to the end of the boundary layer.) We go now, in the boundary layer time
scale, fromatimég € (0, 1/| f |l») to 1. Note that = 1 corresponds t@,, = 1/m in the
original time scale, and that with this choice Bf we are sure we have reached a time
such that the fast collapse of the data has already occurred. Consider then( point
with ¢ € (T, 1], such that there is a balt (x, §) lying in the complement of(¢). This
ball is also contained in the complement $f(7), because of the retention property
for w, see Section 2. Hence, for large the ball B(x, §/2) completely lies outside
{u, (-, T) > 0}. Since Lemma 5.3 ensures uniform convergence,ofo 0 on the set
B(x,8/2) x [T, t], we can perform comparison with the supersolutions in Lemma 5.1 to
get thatv,, (x, -) vanishes orB(x, §/4) if m is large enough.

Step3. (Beyond the boundary layer.) We come back now to the original time scale
and to the variables,, andv,,. Fort > 0 we consider a poinx, t) such that a ball
B(x, ) lies completely outside the sét,(r). For m large we have that/in < ¢ and
that B(x,8) C {Ss(1/m)}€. Lemma 5.2 ensures tha, is small on the boundary
of B(x,§/2), for s € [1/m, t]. With this information we can use again a comparison
argument with the supersolutions (5.1) to prove that, r) vanishes in a neighbourhood
of x for largem.
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