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ABSTRACT. – This paper concerns the question of equivalence between the Euler–Lagrange
equation of a certain functional and periodic Stokes waves on the surface of an infinitely
deep irrotational incompressible flow of an ideal fluid under gravity. Of particular concern is
Bernoulli’s constant-pressure condition on a free surface.
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RÉSUMÉ. – Cet article concerne la question de l’équivalence entre les solutions de l’équation
d’Euler–Lagrange pour une certaine fonctionnelle et les ondes périodiques de Stokes à la surface
d’un liquide de profondeur infinie. Une attention particulière est portée sur la condition de
Bernoulli qui dit que le pression est atmosphérique le long de la frontière libre.

1. Introduction and main results

A Stokes wave is a steady periodic wave, propagating under gravity with constant
speedc on the surface of an infinitely deep irrotational flow. Its free surface is determined
by Laplace’s equation, kinematic and periodic boundary conditions and by a dynamic
boundary condition given by the requirement that pressure in the flow at the surface
should be constant (Bernoulli’s theorem). Recently [2,3] Stokes waves have been seen
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to arise from critical points of the functional

J (w)=
π∫

−π

{
wCw′ − λw2(1+ Cw′)

}
dx, (1.1)

w ∈W 1,2
2π andλ > 0. HereCu denotes the periodic Hilbert transform of a 2π -periodic

functionu :R → R:

Cu(x)= 1

2π

π∫
−π
u(y)cot

(
1

2
(x − y)

)
dy,

see [17,18]. Forp � 1,W 1,p
2π is the linear space of absolutely continuous, 2π -periodic

functionsw with weak first derivativesw′ ∈ Lp2π and, for p > 0, Lp2π denotes the
linear space of 2π-periodic locallypth-power summable functions. The Euler–Lagrange
equation, to be satisfied by critical points ofJ , is

Cw′ = λ{w+wCw′ + C(ww′)
}
, λ > 0. (1.2)

A formal derivation of this variational principle for Stokes waves appeared in [4],
independently of the earlier work by Babenko [1] and Plotnikov [12]. Most recently
[15] critical points ofJ have been studied inW 1,p

2π , 1< p < 2, and in the real Hardy
spaceH1,1

R
of absolutely continuous periodic functions with derivative in the usual Hardy

spaceH1
R

:= {u ∈ L1
2π : Cu ∈ L1

2π }. (Note thatW 1,p
2π ⊂ H1,1

R
for p > 1.) The conclusion

was the following.

THEOREM 1.1. – For solutionsw ∈ H1,1
R

of (1.2) the following statements are
equivalent:

1− 2λw � 0 almost everywhere; (α)

(1− 2λw)
{
w′2 + (1+ Cw′)2

}= 1 almost everywhere; (β)
π∫

−π
|1− 2λw|{(w′)2 + (Cw′)2

}
dx <∞. (γ )

In these circumstancesw is real-analytic on the open set where1− 2λw > 0. Moreover
this is best possible, in the sense that there is a solution(λ̂, ŵ) ∈ (0,∞)× {⋂p<3W

1,p
2π }

with 1−2λ̂ŵ > 0 almost everywhere but which is is not Lipschitz continuous at a discrete
set of points where1− 2λ̂ŵ = 0.

The significance of this result derives from the fact (see [2, (2.2) and the proof of
Theorem 2.3]) that(β) is equivalent to the Bernoulli constant-pressure condition for a
Stokes wave with Froude number 1/

√
λ in the following sense. If (β) holds and the

periodic profile, given in dimensionless coordinates, by

S := {(−t − Cw(t),w(t)
)
: t ∈ R

}
(1.3)
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is non-self-intersecting, thenw gives rise to a Stokes wave. In other words,(β) then
implies the existence of a complex analytic functionϕ + iψ on the region belowS in
the complex plane which satisfies the Bernoulli condition

1

2

∣∣∇ϕ(x, y)∣∣2 + λy ≡ 1

2
and ψ(x, y)= 0 for all (x, y) ∈ S. (1.4)

Here, as usual,ϕ is the velocity potential andψ is the stream function in dimensionless
coordinates. For an actual waveλ= g�/πc2, where� is the wavelength,c the velocity
andg is gravity. For the solution(λ̂, ŵ)mentioned in Theorem 1.1, (1.3) gives the profile
Ŝ of a Stokes wave of extreme form which has a corner at its highest point. The question
arises as to whether it can be established that(β) is satisfied by all solutions of (1.2). To
describe progress so far we need to review the proof of Theorem 1.1. The key step is a
reduction of (1.2) to a function-theoretic question on the unit discD centred at 0 in the
complex plane. The following background material is from [6,7,13,18].

For a holomorphic functionf :D→ C, let fr(t) = f (reit ) for t ∈ R andr ∈ (0,1).
Then, for anyp ∈ (0,∞],

‖f ‖p = lim
r→1

∥∥ |fr |
∥∥
L
p

2π
= sup
r∈(0,1)

∥∥ |fr |
∥∥
L
p

2π

is well defined. The Hardy classHp
C

is the set of all such functionsf with ‖f ‖p <∞.
Moreover for anyf ∈ Hp

C
, p ∈ (0,∞], f ∗(t)= limr→1fr(t) is well defined for almost

all t ∈ R, |f ∗| ∈ Lp2π , ‖ |f ∗| ‖Lp2π = ‖f ‖p and log|f ∗| ∈ L1
2π if f �≡ 0.

THEOREM 1.2 (Smirnov). –Suppose thatF ∈Hp
C

,p > 0, and thatF ∗ ∈Lq2π , q > p.
ThenF ∈Hq

C
.

The spaceH1,1
R

is a Banach algebra (see [15] for an elementary proof) andu ∈ H1
R

if
and only ifu+ iCu=U ∗ for someU ∈H1

C
.

We can rewrite (1.2) for a functionw ∈H1,1
R

as follows. Letu= (1− 2λw)(1+ Cw′).
It then follows from (1.2) thatu= 1− C((1− 2λw)w′) andu ∈H1

R
. In other words

u+ iCu= (1− 2λw){1+ Cw′ + iw′}. (1.5)

LetW,U ∈ H1
C

be such thatU ∗ = −i(u+ iCu) andW ∗ = w′ + i(1 + Cw′). Then (1.2)
is equivalent to the following nonlinear Riemann–Hilbert problem

U ∗ = (1− 2λw)W ∗. (1.6)

The following theorem [7], due to Carleman, and an outer function construction [13],
were crucial in the proof of Theorem 1.1 and will be used in the sequel.

THEOREM 1.3 (Carleman). –Suppose thatF,G ∈ H1
C

and thatF ∗ = G∗ almost
everywhere on an open segment! of ∂D. Then F has an analytic continuation
F̂ :D ∪ ! ∪ (C \ D) → C given byF̂ (z) = G(1/z̄), z ∈ ! ∪ (C \ D). Similarly for
G. In particular, if ! = ∂D thenF andG are constant functions.



40 E. SHARGORODSKY, J.F. TOLAND / Ann. I. H. Poincaré – AN 20 (2003) 37–52

For a 2π -periodic functiong :R → C such that log|g| ∈ L1
2π , an outer functionO(g)

is defined by

O(g)(z)= exp

{
1

2π

π∫
−π

eit + z
eit − z log |g|(t)dt

}
, z ∈D.

Outer functions have the following properties [13, Theorems 17.16 and 17.7]:
(A) O(g) is holomorphic, has no zeros inD andO(g)(0) ∈ R;
(B) for g1, g2 with log |g1|, log |g2| ∈ L1

2π , O(g1g2)= O(g1)O(g2);
(C) for g with log |g| ∈ L1

2π andp ∈ (0,∞], |g| ∈ Lp2π if and only if O(g) ∈Hp
C

, and
then|(O(g))∗| = |g|;

(D) for f ∈Hp
C
, p ∈ (0,∞] andz ∈D, |O(f ∗)(z)| � |f (z)|.

A consequence of the following corollary of Carleman’s theorem is a small extension of
part of Theorem 1.1.

LEMMA 1.4. – Suppose that$,% ∈H1
C

are such that

%∗ = a$∗ (1.7)

anda|$∗|2 is bounded below, wherea is a real-valued function on[−π,π ]. Then$% is
constant onD anda|$∗|2 = c almost everywhere, wherec is a constant.(In particular,
a is either positive or negative on a set of full measure if% �≡ 0.)

Proof. –Suppose($,%) ∈H1
C

×H1
C

anda are as in the statement. Then

$∗%∗ = a|$∗|2 � −d, d > 0 a constant,

andf ∗ � 1, wheref :=$%+d+1∈H1/2
C

. Therefore by a result, proved independently
by Helson and Sarason and by Neuwirth and Newman,f is constant onD (see [6,
Chapter II, Exercise 13]). There follows a short proof of this fact, based on the theorems
of Carleman and Smirnov, which is in the spirit of the rest of this paper. Note that

F ∗ =G∗, whereF = f

O(
√
f ∗)
, G= O(

√
f ∗),

and both sides of this equation are inH 1
C

(by Smirnov’s theorem, since the right side is).
Therefore, by Carleman’s theoremO(

√
f ∗), and hencef , is constant onD. Therefore

$% is constant onD. The result now follows. ✷
COROLLARY 1.5. –This shows that in the first theorem(α)–(γ ) is a consequence of

the hypothesis

(1− 2λw)
{
w′2 + (1+ Cw′)2

}
is bounded below, (α′)

which is weaker than(α), (β).

For the next result, which is a further refinement of Theorem 1.1, we need a definition.
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DEFINITION 1.6. – For any continuous functiona which is non-zero almost every-
where on[−π,π ], let)(a)= sgn{a}. Note that)(a) is constant on each of an at most
countable familyG of open segments! of R, the union of which has full measure. Con-
sider the set

P(a)= {
(ϕ,ψ) ∈ H1

C
×H1

C
: ψ∗ =)(a)ϕ∗ almost everywhere onR

}
,

and note from Carleman’s theorem that bothϕ and ψ are analytic at every point of
{eit | t ∈ !} for all ! ∈ G. Note also thatϕ∗ψ∗ = )(a)|ϕ∗|2 is real-valued onR. Now
define the setZ(a) by

Z(a)= {
ϕ∗ψ∗: (ϕ,ψ) ∈P(a)

}
.

Then eachz ∈ Z(a) is real-valued almost everywhere onR and is real-analytic on⋃
!∈G !. Note also that on! ∈ G, any functionz ∈Z(a) has the same sign asa.

Remark. –Z(a), for any continuous functiona which is non-zero almost everywhere,
is a family of functions on[−π,π ] determined solely by the setZ(a) of points wherea
is negative on[−π,π ]. See Section 4 for further remarks onZ .

THEOREM 1.7. – Suppose that(λ,w) ∈ (0,∞)×H1,1
R

is a solution of(1.2).
(a) The following are equivalent: (i) w ∈W 1,3

2π ; (ii) w is real-analytic onR; (iii) 1 −
2λw > 0 on R.

(b) If w ∈W 1,3/2
2π then(α)–(γ ) hold.

(c) If w ∈W 1,p
2π , 1 � p < 3/2, thenw is real-analytic on the open set of full measure

where1− 2λw �= 0 and(
1− 2λw(t)

){
w′(t)2 + (1+ Cw′(t)

)2}= z(t) ∈Z(1− 2λw). (δ)

(d) Suppose that(α) holds and

(1+ Cw′)+ iw′ = ∣∣(1+ Cw′)+ iw′∣∣eiϑ . (1.8)

If ϑ = ϑ1 +ϑ2, whereϑ1 is continuous and‖ϑ2‖∞ < π/6, thenw is real-analytic.

Proof. –The proof is given in Section 3.✷
Remark. – We have seen that condition (β) in Theorem 1.1 is sufficient to ensure that

a solution of (1.2) corresponds to a Stokes waves in classical hydrodynamics, provided
that the corresponding profile (1.3) is a non-self-intersecting curve. (Indeed we know
for smooth solutions, and for solutions that arise as limits of smooth solutions, that (β)
in Theorem 1.1 is sufficient to ensure that the profile is non-self-intersecting. For these
solutions there is nothing more to prove [16].) If however (δ) holds andz �≡ 1, the free-
boundary condition (1.4) forϕ + iψ becomes

1

2
z
(
ϕ(x, y)

)∣∣∇ϕ(x, y)∣∣2 + λy ≡ 1

2
and ψ(x, y)= 0 for all (x, y) ∈ S, (1.9)

which is not a constant-pressure condition on the free surfaceS .
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Part (a) is a strong reminder of the intimate connection between the positivity of
1 − 2λw in Eq. (1.2) and the regularity ofw. Also (λ̂, ŵ) in Theorem 1.1 shows the
sense in whichp = 3 in part (a) is sharp. In that exampleϑ is continuous everywhere
on [−π,π ] except at 0 where it jumps byπ/3. It can, therefore, be represented in the
form ϑ = ϑ1 + ϑ2, whereϑ1 is continuous and‖ϑ2‖∞ = π/6, but ‖ϑ2‖∞ cannot be
made less thanπ/6, so part (d) is sharp. (There are however real-analytic solutions with
sup|ϑ |> π/6, see [10].) Part (b) shows how Bernoulli’s condition follows ifw ∈W 1,3/2

2π .
A question remains: “are there solutions of (1.2) for which the Bernoulli condition (β)

fails?” In part (c) it is shown that, although we are unable to settle this basic question, in
all cases the solutionsw ∈ H1,1

R
of (1.2) satisfy a generalised Bernoulli condition. This

is considered in Section 4, where it is shown that the generalised Bernoulli condition
is the best that can be predicted by the linear theory which is developed in Section 2.
Therefore, if the true Bernoulli condition (1.4) holds, it must be a further consequence
of (1.2). In Section 4 we examine this condition when 1− 2λw changes sign finitely
often and we observe its particularly explicit form when 1− 2λw changes sign exactly
twice.

2. Basic Riemann–Hilbert theory

Before we go any further we record a result the proof of which is identical to that of
Theorem 1.1 (see [15]) and Lemma 1.4.

PROPOSITION 2.1. – Suppose that$,% ∈ H1
C

, $ �≡ 0, a ∈ L∞
2π is real-valued and

%∗ = a$∗. Then the following are equivalent.
(a) a has the same sign almost everywhere.
(b) a|$∗|2 = constalmost everywhere.
(c) |a||$∗|2 ∈ L1

2π .
(d) a|$∗|2 is bounded above(or below).

Proof. –Since the fact that (c) implies (b) is relevant in the proof of Theorem 2.2, we
sketch a proof in the present notation. For the rest, see [15]. Suppose (c) and (2.1) hold
and that% �≡ 0. (If % ≡ 0 the result is trivial.) Then%2∗ = a2$2∗ and, by the remarks
before Smirnov’s Theorem 1.2, log|a| ∈L1

2π . Let

K = O(a), F (z)= %2(z)

K(z)
and G(z)=K(z)$2(z), z ∈D.

ThenF ∗ =G∗, and from the properties (A)–(D) of an outer function we find that∣∣F(z)∣∣, ∣∣G(z)∣∣� ∣∣O(G∗)(z)
∣∣, z ∈D

(cf. the proof of Theorem 1.7(c)). SinceG∗ ∈ L1
2π by hypothesis, we find thatF,G ∈

H1
C
. Thus both are constants. Hence(%$)2 = FG = constant. Therefore%$ is a

constant onD, and (b) follows. ✷
LetCα2π denote the space of 2π-periodic functions onR which are Hölder continuous

with exponentα ∈ (0,1], whereα = 1 means Lipschitz continuity. Leta ∈ Cα2π , and
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consider the problem

%∗ = a$∗, where$,% ∈Hp
C
, 1 � p � ∞. (2.1)

THEOREM 2.2. – Supposea changes sign. Then(2.1) does not have non-trivial
solutions if

p � 2

1+ α . (2.2)

Remark. – The example in the remark following Lemma 4.2 shows that Theorem 2.2
is sharp.

Proof. –Let ξ, η ∈ Lp2π be such that

%∗ = ξ + i(c+ Cξ) and $∗ = η+ i(d + Cη),

wherec, d are real constants. Then

ξ = aη and c+ Cξ = −a(d + Cη).

Hence

C(aη)+ aCη+ c+ da ≡ 0.

DefineQa(η) by Qa(η)(t)= a(t)Cη(t)− C(aη)(t), t ∈ [−π,π ]. Then, by periodicity,

∣∣Qa(η)(t)∣∣= ∣∣∣∣ 1

2π

t+π∫
t−π

(a(t)− a(s))η(s)
tan1

2(t − s)
ds
∣∣∣∣� ‖a‖Cα2π

π

t+π∫
t−π

|η(s)|
|2 tan1

2(t − s)|1−α ds

�
‖a‖Cα2π
π

t+π∫
t−π

|η(s)|
|t − s|1−α ds �

‖a‖Cα2π
π

2π∫
−2π

|η(s)|
|t − s|1−α ds.

Sinceη ∈ Lp2π ⊂L2/(1+α)
2π , the Hardy–Littlewood–Sobolev inequality [9, p. 98] gives that

the right hand side is inL2/(1−α)(R), and thereforeQa(η) is inL2/(1−α)
2π . Since

2aCη =Qa(η)− c− da and 2C(aη)= −Qa(η)− c− da,
we find thataCη, C(aη) ∈ L2/(1−α)

2π . Hence, by the Riesz theorem,aη ∈ L2/(1−α)
2π , and it

follows from Hölder’s inequality that%∗$∗ = a{η2 + (d + Cη)2) ∈ L1
2π . However, this

means that|a||$∗|2 ∈ L1
2π and hencea does not change sign, by Proposition 2.1.✷

COROLLARY 2.3. – Supposea �≡ 0 and a(t0) = 0 for somet0 ∈ [0,2π ]. Then(a)
(2.1) does not have non-trivial solutions ifp � 2/α, and (b) if a−1 /∈ L1

2π andp � 2,
(2.1)does not have non-trivial solutions.

Proof. –Because of Theorem 2.2 we only need to consider the case whena does not
change sign. Multiplying$ by −1 if necessary, we can assume thata � 0. As in the
proof of Proposition 2.1, loga ∈ L1

2π . Suppose that($,%) ∈ Hp
C

× Hp
C

is a non-trivial
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solution of (2.1) and letF =%/H andG=H$, whereH = O(√a). From properties
(A)–(D) of outer functions it follows, as in the proof of Theorem 1.1, Proposition 2.1
and Theorem 1.7(c) below, thatF,G ∈ Hp

C
, F ∗ = G∗ and henceG ≡ b = const. Since

$ �≡ 0, b �= 0. We have$= bH−1. Therefore

∣∣$∗(t)
∣∣= const

∣∣√a(t) ∣∣−1 � const|t − t0|−α/2> 0.

Thus$ cannot belong toHp
C

if p � 2/α. This proves (a). It follows from the equality
|$∗|2 = |b|2a−1 that if a−1 /∈ L1

2π then$∗ /∈ L2
2π , which proves (b). ✷

3. Proof of Theorem 1.7

LEMMA 3.1. – Let (λ,w) ∈ (0,∞) × H1,1
R

be a solution of(1.2). Then log |1 −
2λw| ∈ L1

2π and1− 2λw > 0 on a set of positive measure.

Proof. –LetW, U ∈ H1
C

be defined following (1.5) so that Eq. (1.6) holds. It follows
fromW ∗ =w′ + i(1+ Cw′) andU ∗ = −i(u+ iCu), u= 1− C((1− 2λw)w′) that

W(0)= i, U(0)= −i. (3.1)

HenceW,U �≡ 0 and it follows from (1.6) that log|1 − 2λw| = log |U ∗| − log |W ∗| ∈
L1

2π .
An integration of (1.2) gives that

π∫
−π
w dt = −

π∫
−π
wCw′ dt = −2π

∑
k∈Z

|k||ak|2< 0,

where theak are the Fourier coefficients ofw. This implies thatw < 0 on a set of positive
measure. So, 1− 2λw > 0 on a set of positive measure.✷

(a) If 1 − 2λw > 0 onR then(α)–(γ ) hold and it follows thatw ∈W 1,2
2π . Therefore,

by the result of [2],w is real-analytic onR. Thus (iii) implies (i) and (ii). Now suppose
that (i) holds. Then 1− 2λw ∈ C2/3

2π , by Hölder’s inequality, andU, W ∈ H3
C

in (1.6).
Corollary 2.3 implies that 1− 2λw is nowhere zero, i.e. 1− 2λw > 0 on R (by
Lemma 3.1). This proves that (i) implies (iii) and (ii). Since (ii) implies (i) the proof
is complete.

(b) By Theorem 1.1 it will suffice to show that 1− 2λw > 0 almost everywhere.
Now w ∈ C1/3

2π andU, W ∈ H3/2
2π in (1.6), sincew′ ∈ L3/2

2π , and it is immediate from
Theorem 2.2 that 1− 2λw does not change sign, i.e. 1− 2λw > 0 almost everywhere
(by Lemma 3.1).

(c) The continuous function 1− 2λw is non-zero on a set of full measure (see Lemma
3.1). Letσ =)(1− 2λw) and letH = O(

√|1− 2λw|). Then(
U

H

)∗
= σ (HW)∗.
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Note that ∣∣∣∣U(z)H(z)

∣∣∣∣� ∣∣∣∣ O(U ∗)(z)
O(

√|1− 2λw|)(z)
∣∣∣∣= ∣∣∣∣O(U ∗

H ∗

)
(z)

∣∣∣∣= ∣∣O(H ∗W ∗)(z)
∣∣

= ∣∣O(W ∗)(z)
∣∣∣∣O(√|1− 2λw| )(z)∣∣

and|O(√|1− 2λw|)∗W ∗| ∈ L1
2π . Now, by Smirnov’s theorem, bothU/H andHW are

inH1
C

and therefore(HW,U/H)∈ P(1−2λw) andU ∗W ∗ = z ∈Z(1−2λw). However
U ∗W ∗ = (1 − 2λw)|W ∗|2. To complete the proof it remains to establish thatw is real-
analytic on!, ! ∈ G. Sincez ∈ Z(1 − 2λw) is real-analytic on!, it follows from a
bootstrap argument, exactly as in the local regularity theory in [15, Appendix], thatw is
C1,α-smooth on!. The functionϕ = ϕRe + iϕIm :=HW is analytic on{eit | t ∈ !} (see
Definition 1.6). Further,

w′ + i(1+ Cw′)=W ∗ = ϕ∗

O(
√|1− 2λw|)

= ϕ∗
√|1− 2λw| exp

(
iC
(

log
1√|1− 2λw|

))
.

Let v := log(
√|1− 2λw|)−1 ands := sgn{1− 2λw} = const∈ {±1} on!. Then

w = 1

2λ

(
1− s

e2v

)
and v′ = sλe3v(ϕRecosCv − ϕIm sinCv).

Let u := Cv. Then

v′ = const e3v(ϕRecosu− ϕIm sinu).

Sincew is C1,α-smooth on!, so isv, and henceu (cf. [15, Appendix]). Now it follows
from Lewy’s theorem (see [8], [14, Section 4]) thatu andv are real-analytic on!. Since
v�w is a locally invertible analytic diffeomorphism, the analyticity ofw follows from
that ofv.

(d) The Riemann–Hilbert theory in [15] leads from Eq. (1.2) to equation

(1− 2λw)
{
w′2 + (1+ Cw′)2

}≡ 1,

and in the process shows that

W = i/H, whereH(0)= 1 (3.2)

(cf. the remark at the beginning of Section 4.2). SinceH = O(
√

1− 2λw),

w′ + i(1+ Cw′)=W ∗ = ie−iC log
√

1−2λw

√
1− 2λw

. (3.3)

So (1.8) impliesC log
√

1− 2λw = ϑ + ϑ0, whereϑ0 is a measurable 2π -periodic
function such thatϑ0(t) ∈ 2πZ almost everywhere. Let us prove thatϑ0 is constant.
Since 1/

√
1− 2λw = |W ∗| ∈ L1

2π and w is bounded, log
√

1− 2λw ∈ Lp2π for any
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p <∞. By Riesz’s theoremϑ + ϑ0, and henceϑ0, also belong toLp2π for anyp <∞.
Now |H(0)| = 1 implies that log

√
1− 2λw has zero mean on[−π,π ] and therefore

Cϑ + Cϑ0 = − log
√

1− 2λw. Consequently

e−Cϑ0 = √
1− 2λw eCϑ .

It follows from [18, Vol. I, Chapter VII, Theorem (2.11)] that eCϑ ∈ L3
2π . Therefore

e−Cϑ0 ∈ L3
2π and there exists a functionϒ ∈ H3

C
such thatϒ∗ = ei(ϑ0+iCϑ0). Since

ϑ0(t) ∈ 2πZ, we getϒ∗ � 0. Thusϒ is constant (see the proof of Lemma 1.4) and
ϑ0 is also constant.

SoCϑ = − log
√

1− 2λw and|W ∗| = eCϑ ∈ L3
2π . Finally,w′ ∈ L3

2π and sow is real
analytic by part (a). This completes the proof.

Remark. – One can give a simpler proof of Theorem 1.7(d) in the caseϑ1 ≡ 0, i.e.
whenβ := ‖ϑ‖∞ < π/6. Indeed, let us consider theouter functionV = −iW . It follows
from (1.8) that

V ∗ ∈Aβ := {
ζ = reiθ ∈ C: |θ | � β, r � 0

}
.

Since the angleAβ is convex and closed, the Poisson formula (see, e.g., [7, 1◦, B,
Chapter II]) implies thatV (z) ∈Aβ , |z|< 1. Therefore ReV

π
2β (z)� 0, |z|< 1 and hence

V
π
2β ∈ Hp

C
for anyp < 1 (see, e.g., [6, Exercise 13(a), Chapter II]). Sinceπ2β > 3, we

haveV 3 ∈H1
C

, i.e.V ∈H3
C
, i.e.w ∈W 1,3

2π . Thusw is real analytic by part (a).

4. P(a) and Z(a)

The purpose of this section is to describe the setP(a), introduced in Definition 1.6,
in the case whena changes sign finitely often. (To describeP(a) in general is a more
formidable task.) We then examine the special case ofa which changes sign twice.

4.1. a changes sign finitely often

Changing the independent variable if necessary, suppose thata(0) < 0 and that there
exist points

0< t1< t2< · · ·< t2n−1< t2n < 2π (4.1)

such that

a(t)� 0 if t ∈ [t2k−1, t2k], k = 1, . . . , n, and a(t) < 0 otherwise. (4.2)

We consider the problem (recall Definition 1.6)

ψ∗ =)(a)ϕ∗ almost everywhere, ϕ,ψ ∈ H1
C
. (4.3)
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LEMMA 4.1 (Cf. [5, §41], [11, §78]). –Suppose that(4.1)and(4.2)hold. Then every
solution of(4.3) is of the form

(ϕ,ψ)=
(

n∑
k=0

ckϕk,

n∑
k=0

ckψk

)
,

where, fork ∈ {0, . . . , n}, ck are complex numbers,

ψ0(z)=X(z), ϕ0(z)=X(z);

ψk(z)= X(z)

z− eit2k−1
, ϕk(z)= eit2k−1zX(z)

eit2k−1 − z ,
(4.4)

and

X(z)= i
n∏
k=1

(
ze− 1

2 it2k−1 − e
1
2it2k−1

ze− 1
2 it2k − e

1
2it2k

)1/2

, z ∈D. (4.5)

Hereζ 1/2 is analytic in the complex plane cut along(−∞,0] and is positive on(0,+∞).
These solutions belong toHq

C
, q < 2 and do not belong toH2

C
.

Proof. –It is not difficult to see that

Xk(z)= ze− 1
2 it2k−1 − e

1
2 it2k−1

ze− 1
2 it2k − e

1
2 it2k

, |z| �= 1,

is a conformal mapping of the open unit disk onto the lower complex half-plane, and of
the complement of the closed unit disk onto the upper half-plane with one point removed.
Moreover,

X∗
k (t)=

sin t−t2k−1
2

sin t−t2k2

.

In particular

X∗
k (t) < 0 for all t ∈ (t2k−1, t2k), X∗

k (t) > 0 for all t ∈ [0,2π ]\[t2k−1, t2k].
ThereforeX1/2

k is analytic in the complex plane cut along the closed arc{eit : t2k−1 � t �
t2k} and (

X
1/2
k

)∗
(t) > 0 for all t ∈ [0,2π ]\[t2k−1, t2k],(

X
1/2
k

)∗
(t)= −i

∣∣(X1/2
k

)∗
(t)
∣∣ for all t ∈ (t2k−1, t2k).

SinceX = i
∏n
k=1X

1/2
k , we have

X∗(t)= i
∣∣X∗(t)

∣∣ for all t ∈ [0,2π ]
∖ n⋃
k=1

[t2k−1, t2k] and

X∗(t) > 0 for all t ∈
n⋃
k=1

(t2k−1, t2k). (4.6)



48 E. SHARGORODSKY, J.F. TOLAND / Ann. I. H. Poincaré – AN 20 (2003) 37–52

Hence

X∗(X−1)∗ =)(a). (4.7)

Let

F := ψ
X
, G := ϕ

X
. (4.8)

Then (4.3) and (4.7) imply that

F ∗ =G∗. (4.9)

By Hölder’s inequality,F,G ∈ Hτ
C
, τ < 2/3. It follows from Smirnov’s theorem that

F(z)
∏n
k=1(z − eit2k−1) defines a function inH1

C
. Let the coefficientsβ1, . . . , βn ∈ C be

such that

G0(z) :=G(z)
n∏
k=1

(
z−1 − e−it2k−1

)−
n∑
j=1

βjz
−j

is holomorphic in the open unit disk and put

F0(z) := F(z)
n∏
k=1

(
z− eit2k−1

)−
n∑
j=1

βjz
j .

It is easy to see thatF0 ∈ H1
C

andF ∗
0 =G∗

0 (by (4.9)). From Smirnov’s and Carleman’s
theorems it follows thatG0 ≡ β0, F0 ≡ β0 for someβ0 ∈ C. Therefore

F(z)=
∑n
j=0βjz

j∏n
k=1(z− eit2k−1)

= c0 +
n∑
k=1

ck

z− eit2k−1
(4.10)

for some constantsc0, ck ∈ C. DefineF(z) for |z|> 1 by (4.10). Since

G(z)=
∑n
j=0βjz

−j∏n
k=1(z

−1 − e−it2k−1)
,

we have

G(z)= F(1/z̄)= c0 +
n∑
k=1

ck
eit2k−1z

eit2k−1 − z,

and the result follows from (4.8).✷
LEMMA 4.2. – Suppose(4.1)and(4.2)hold anda ∈Cα2π . If 1� p < 2

1+α then every
solution($,%) of (2.1) is given by

($,%)=
(

n∑
k=0

αkfk,

n∑
k=0

αkgk

)
, wherefk := ϕk/H, gk =Hψk,

k = 0, . . . , n, H = O
(√|a|). (4.11)
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Proof. –Suppose (2.1) has a non-trivial solution($,%) ∈ Hp
C

× Hp
C

. Let ϕ :=$H ,
ψ := %/H . Thenϕ,ψ ∈ Hp

C
(cf. the proof of Corollary 2.3). Sinceϕ,ψ satisfy (4.3),

they are given by linear combinations ofϕk , ψk , as in the preceding lemma. Therefore
$,% are given by linear combinations offk andgk , with complex coefficientsαk , as in
(4.11). ✷

Remark. – Although this result does not assert the existence of solutions of Eq. (2.1)
when 1� p < 2/(1 + α), there are many cases where such solutions exist and
consequently, in the light of Theorem 2.2, the result is sharp. To see this, suppose
that, in addition to satisfying (4.1) and (4.2),a ∈ Cα2π , α ∈ (0,1], has the property that
|a|−1 ∈ Lq2π for all q < α−1. ThenH ∈H∞

C
andH−1 ∈H2q

C
, for all q < α−1. Therefore

% :=HX ∈Hp
C

and $ :=X/H ∈Hp
C
,

for all p ∈ [1,2/(1 + α)). Since($,%) is a non-trivial solution of (2.1) for any such
choice ofa, the result of Lemma 4.2 is optimal.

4.2. 1− 2λw changes sign twice

In the water-wave problem (1.6)

a := (1− 2λw) and U ∗ = aW ∗.

We have seen that ifa changes sign only finitely many times then every solution of (1.6)
is given byW =∑

αkfk andU =∑
αkgk , αk ∈ C. By definition,H(0) ∈ (0,∞) is real,

fk(0)= 0, k = 1, . . . , n, and

X(0)= ie−iL/4 where
n∑
k=1

(t2k − t2k−1)=: L ∈ (0,2π).

We will use the following results from [13, Chapter 17, Theorem 17 and Exercise 19].
(i) G ∈H1

C
is an outer function (G= cO(g) for somec ∈ C with |c| = 1 andg with

log |g| ∈L1
2π ) if and only if |G(0)| = O(G∗)(0).

(ii) If G ∈H1
C

is such thatG−1 ∈H1
C

, thenG is an outer function.

Remark. – In the case when 1− 2λw > 0 almost everywhere we have seen that
|W ∗|−2 = 1 − 2λw, 1/W(z) = constO(

√
1− 2λw)(z) and therefore, by (ii),W is an

outer function. Hence, by (i), in this caseH(0)= O(
√

1− 2λw)(0)=O((W ∗)−1)(0)=
|W(0)|−1 = 1 (see (3.1)).

Now we investigate the possible existence of a solutionw of (1.2) for whicha :=
1−2λw changes sign exactly twice. In the notation of the preceding section, and rotating
the disc if necessary, let 0< t1 = γ < t2 = 2π − γ anda > 0 in (γ,2π − γ ). (Think of
γ as being small, withγ = 0 in the case of the Stokes wave of greatest height with a
crest att = 0.) Accordingly, from (4.11), there existsαk ∈ C, k = 0, 1 with

U(z)=
{
α0 + α1

z− eiγ

}
X(z)H(z) and W(z)=

{
α0 + α1zeiγ

eiγ − z
}
X(z)

H(z)
,
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where

H(z)= O
(√|a| )(z) and X(z)= i

(
e

1
2 iγ − ze− 1

2 iγ

ze
1
2iγ − e− 1

2 iγ

)1/2

.

Therefore

−i =U(0)= {
α0 − α1e−iγ}H(0)X(0),

i =W(0)= α0X(0)/H(0) and X(0)= e
1
2 iγ

(see (3.1)). Leth=H(0). (Recall thath= 1 whena > 0 almost everywhere.) Then

α0 = −ihe
1
2 iγ and α1 = ie

1
2 iγ

h
− ihe3iγ /2.

Therefore

U(z)= ie
iγ
2 X(z)H(z)

z− eiγ

(
1

h
− hz

)
and W(z)=

{
ie

iγ
2 X(z)

H(z)

}
h− z

h

eiγ − z . (4.12)

Remark. –W(z)= 0 if and only ifz= h2. Therefore the primitive,F , ofW (F ′ =W )
is a locally conformal mapping of the disc if and only ifh2 � 1.

It now follows that

U(z)W(z)= (h2z− 1)( z
h2 − 1)

(z− eiγ )(z− e−iγ )

and hence

a
∣∣W ∗(t)

∣∣2 =
1
2(h

2 + 1
h2 )− cost

cosγ − cost
=: z(t), z ∈Z(1− 2λw), say. (4.13)

Recall that ifa > 0 almost everywhere then

U ∗W ∗ = a∣∣W ∗(t)
∣∣2 ≡ 1.

We have already noted that, for the Stokes highest wave,γ = 0, a(0)= 0 and h= 1. In
general

1

2

(
h2 + 1

h2

)
� 1 with equality if and only ifh2 = 1,

cosγ � 1 with equality if and only ifγ = 0.

In the light of linear theory in Section 2, we can assert only that solutionw ∈ W 1,p
2π ,

1 � p < 3/2, of (1.2) which changes sign exactly twice must also satisfy a generalised
Bernoulli boundary condition forw involving, as an additional parameter, the point
γ ∈ (0, π), where 1− 2λw is zero atγ and 2π− γ :
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{
w′(t)2 + (1+ Cw′(t)

)2}=
1
2(h

2 + 1
h2 )− cost

(1− 2λw(t))(cosγ − cost)
,

whereh= exp

(
1

4π

π∫
−π

log
∣∣1− 2λw(s)

∣∣ds).
As in (1.9), this equation corresponds to two free-boundary conditions, which relate the
real and imaginary parts of a complex analytic functionϕ + iψ in the (dimensionless)
physical domain,

1

2

1
2(h

2 + 1
h2 )− cosϕ(x, y)

cosγ − cosϕ(x, y)

∣∣∇ϕ(x, y)∣∣2 + λy ≡ 1

2
, ψ(x, y)≡ 0 (4.14)

on the unknown free surface in the(x, y)-plane. But the pressure on the free-surface is
not constant unlessγ = 0 andh = 1. It remains a possibility that thenonlinearwater-
wave problem (1.2) yields this additional information, but a proof has so far eluded us.
Therefore although the heuristic arguments which led to the variational formulation of
the Stokes-wave problem based on the functionalJ suggest that it should be so, we are
unable to assert that solutions of (1.2) in the Hardy spaceH1,1

R
, or even in the Sobolev

spaceW 1,p
2π , 1<p < 3/2, give rise to Stokes waves.
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