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ABSTRACT. — This paper concerns the question of equivalence between the Euler—Lagrang
equation of a certain functional and periodic Stokes waves on the surface of an infinitely
deep irrotational incompressible flow of an ideal fluid under gravity. Of particular concern is
Bernoulli's constant-pressure condition on a free surface.
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RESUME. — Cet article concerne la question de I'équivalence entre les solutions de I'équation
d’Euler-Lagrange pour une certaine fonctionnelle et les ondes périodiques de Stokes a la surfa
d’'un liquide de profondeur infinie. Une attention particuliere est portée sur la condition de
Bernoulli qui dit que le pression est atmosphérique le long de la frontiere libre.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and main results

A Stokes wave is a steady periodic wave, propagating under gravity with constant
speed on the surface of an infinitely deep irrotational flow. Its free surface is determined
by Laplace’s equation, kinematic and periodic boundary conditions and by a dynamic
boundary condition given by the requirement that pressure in the flow at the surface
should be constant (Bernoulli's theorem). Recently [2,3] Stokes waves have been see
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to arise from critical points of the functional
J(w) = /{wa’—Aw2(1+Cw’)}dx, 1.2

w € Wy? and > 0. HereCu denotes the periodic Hilbert transform of a-periodic
functionu :R — R:

1 7 1
Cuw =5 [un cot<§<x - y)) dy,

-7

see [17,18]. Fop > 1, Wzl;,” is the linear space of absolutely continuous-f2eriodic
functions w with weak first derivativesw’ € L5 and, for p > 0, LS denotes the
linear space of 2speriodic locally pth-power summable functions. The Euler—-Lagrange
equation, to be satisfied by critical points @f is

Cw' =r{w+wCw +C(ww")}, 1>0. 1.2)

A formal derivation of this variational principle for Stokes waves appeared in [4],
independently of the earlier work by Babenko [1] and Plotnikov [12]. Most recently
[15] critical points of 7 have been studied inl;,”, 1< p <2, and in the real Hardy
spacéf—(]ﬁfl of absolutely continuous periodic functions with derivative in the usual Hardy
spaceHL :={u € L1 : Cu e L} }. (Note thatW,;” c H%* for p > 1.) The conclusion
was the following.

THEOREM 1.1. — For solutions w € Hﬂfgl of (1.2) the following statements are
equivalent

1— 20w > 0 almost everywhetre (o)
(1—2aw){w'? 4 (1 + Cw')?} = 1 almost everywhere (8)
/|l—2kw|{(w/)2+(Cw’)2}dx < 00. (»)

-7

In these circumstances is real-analytic on the open set whete- 2Aw > 0. Moreover
this is best possible, in the sense that there is a solutio) € (0, oo0) x {ﬂp<3 Wzl;,”}

with1— 23 >0 almost everywhere but which is is not Lipschitz continuous at a discrete
set of points wheré — 24w = 0.

The significance of this result derives from the fact (see [2, (2.2) and the proof of
Theorem 2.3]) thatp) is equivalent to the Bernoulli constant-pressure condition for a
Stokes wave with Froude numberI} in the following sense. If£) holds and the
periodic profile, given in dimensionless coordinates, by

S:={(—t —Cw@), w@)): t eR} (1.3
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is non-self-intersecting, thew gives rise to a Stokes wave. In other words) then
implies the existence of a complex analytic functipA- iy on the region belows in
the complex plane which satisfies the Bernoulli condition

%!V(p(x, y)|2 + Ay = % and Y (x,y)=0 forall(x,y)eS. (1.4)
Here, as usual is the velocity potential angr is the stream function in dimensionless
coordinates. For an actual wake= g A /mc?, whereA is the wavelength; the velocity
andg is gravity. For the solutioik, 1) mentioned in Theorem 1.1, (1.3) gives the profile
S of a Stokes wave of extreme form which has a corner at its highest point. The questiol
arises as to whether it can be established ¢ats satisfied by all solutions of (1.2). To
describe progress so far we need to review the proof of Theorem 1.1. The key step is
reduction of (1.2) to a function-theoretic question on the unit discentred at 0 in the
complex plane. The following background material is from [6,7,13,18].

For a holomorphic functiory : D — C, let f,(r) = f(ré’) for t e R andr € (0, 1).
Then, for anyp € (0, o],

11y =151 g, = sup 151y

is well defined. The Hardy clagg?. is the set of all such functiong with || 1|, < oco.
Moreover for anyf € HZ, p € (0, 00], f*(t) = lim,_1 f,(¢) is well defined for almost

allt e R, | f*| € Ly, |1 f*Illz =11 fll, and log f*| € L3, if £ #0.

THEOREM 1.2 (Smirnov). —Suppose thak € H{, p > 0, and thatF* € L% , g > p.
ThenF € H{.

The spacé{ﬂl{’1 is a Banach algebra (see [15] for an elementary proofyuiaad-} if
and only ifu +iCu = U* for someU € HE.

We can rewrite (1.2) for a functiom € H3* as follows. Let: = (1— 2 w)(1+ Cw).
It then follows from (1.2) thatt = 1 — C((1 — 2 w)w’) andu € H%. In other words

u+iCu=>1A-2w){1+Cw +iw'}. (1.5)

Let W, U € HE be such thaU* = —i(u + iCu) and W* = w’ +i(1+ Cw’). Then (1.2)
is equivalent to the following nonlinear Riemann—Hilbert problem

U* = (1— 2xw)W~. (1.6)

The following theorem [7], due to Carleman, and an outer function construction [13],
were crucial in the proof of Theorem 1.1 and will be used in the sequel.

THEOREM 1.3 (Carleman). —Suppose thaf, G € H: and that F* = G* almost
everywhere on an open segmdntof aD. Then F has an analytic continuation
F:DUT U(C\ D) — C given byF(z) = G(1/2), z € I U (C \ D). Similarly for
G. In particular, if ' = d D then F and G are constant functions.
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For a 2r-periodic functiong : R — C such that logg| € L3_, an outer functiorO(g)
is defined by

1 7d+
O(g)(z)zexp{g/ei,_iloglgl(t)dt}, z€D.

Outer functions have the following properties [13, Theorems 17.16 and 17.7]:

(A) O(g) is holomorphic, has no zeros in andO(g)(0) € R;

(B) for g1, g2 with log|ga|, log|ga| € L3, O(g182) = O(g1) O(g2);

(C) for g with log|g| € L} andp € (0, <], |g| € LS, if and only if O(g) € HZ., and

then[(O(g)*I = Igl;

(D) for f € HE, p € (0,00] andz € D, [O(f*)(2)] > | f(2).
A consequence of the following corollary of Carleman’s theorem is a small extension of
part of Theorem 1.1.

LEMMA 1.4.— Suppose tha®, ¥ € HZ are such that
U = qd* .7

anda|®*|? is bounded below, wheteis a real-valued function oft-x, 7]. Then®dW is
constant onD anda|®*|? = ¢ almost everywhere, wheteis a constant(In particular,
a is either positive or negative on a set of full measurg i 0.)

Proof. —Supposg®, W) € HE x HE anda are as in the statement. Then
O U* =q|d*|> > —d, d>0aconstant

andf* > 1,wheref :=®V+d+1e Hé/z. Therefore by a result, proved independently
by Helson and Sarason and by Neuwirth and Newnjars constant onD (see [6,
Chapter II, Exercise 13]). There follows a short proof of this fact, based on the theorem:
of Carleman and Smirnov, which is in the spirit of the rest of this paper. Note that

_ /
F* = G*, hereF = , G=0(/f"),
AN CTNID R

and both sides of this equation arefid (by Smirnov’s theorem, since the right side is).
Therefore, by Carleman’s theoref/f*), and hencef, is constant orD. Therefore
® W is constant orD. The result now follows. O

COROLLARY 1.5. —This shows that in the first theorefm)—(y) is a consequence of
the hypothesis

(1—2aw){w'? 4 (14 Cw")?} is bounded below (o)

which is weaker thaitx), (8).

For the next result, which is a further refinement of Theorem 1.1, we need a definition.
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DEFINITION 1.6.— For any continuous functiom which is non-zero almost every-
where on[—m, ], let £ (a) = sgn{a}. Note thatZ (a) is constant on each of an at most
countable familyG of open segments of R, the union of which has full measure. Con-
sider the set

P(a) = {(p, V) € H: x HL: ¥* = X (a)p* almost everywhere dR },

and note from Carleman’s theorem that bathand ¢ are analytic at every point of
(€] t eT'} for all T € G. Note also thatp*y* = X (a)|¢*|? is real-valued onR. Now
define the seg(a) by

Z@)={¢"v" (0, ¥) e P(@)}.

Then each; € Z(a) is real-valued almost everywhere dh and is real-analytic on
UregI'- Note also that ofi” € G, any functionz € Z(a) has the same sign as

Remark— Z(a), for any continuous functioa which is non-zero almost everywhere,
is a family of functions oni—m, 7] determined solely by the s&t(a) of points where:
is negative ori—, ]. See Section 4 for further remarks én

THEOREM 1.7. — Suppose thath, w) € (0, co) x H]ﬁ’l is a solution of(1.2).

(a) The following are equivalen(i) w € Wzlf; (i) w is real-analytic onR; (iii) 1 —
2w >00nR.

(b) If w e Wy>?then(a)—(y) hold.

(c) fwe Wzl;,”, 1< p < 3/2, thenw is real-analytic on the open set of full measure
wherel — 2Aw # 0 and

(1= 2w®) {w ®*+ (1+Cw ()} =z() € ZA—2ww).  (5)
(d) Suppose thate) holds and
(1+Cw) +iw' =|1+Cw) +iw'|e”. (1.8)

If ¥ =91+ 95, whered, is continuous and 9|« < /6, thenw is real-analytic.
Proof. —The proof is given in Section 3.0

Remark— We have seen that conditiof)(in Theorem 1.1 is sufficient to ensure that
a solution of (1.2) corresponds to a Stokes waves in classical hydrodynamics, provide
that the corresponding profile (1.3) is a non-self-intersecting curve. (Indeed we know
for smooth solutions, and for solutions that arise as limits of smooth solutions gthat (
in Theorem 1.1 is sufficient to ensure that the profile is non-self-intersecting. For these
solutions there is nothing more to prove [16].) If howewdrtolds and; # 1, the free-
boundary condition (1.4) fap 4 iy becomes

1 1
éz((p(x, ) |Vel(x, y)|2 +iy= > and Y (x,y)=0 forall(x,y)eS, (1.9

which is not a constant-pressure condition on the free su§ace
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Part (a) is a strong reminder of the intimate connection between the positivity of
1 — 20w in Eq. (1.2) and the regularity af. Also (i, w) in Theorem 1.1 shows the
sense in whiclp = 3 in part (a) is sharp. In that exampleis continuous everywhere
on [—m, ] except at 0 where it jumps by/3. It can, therefore, be represented in the
form ¢ = ¥; + ¥, whered, is continuous and ;| = /6, but ||9¥,]. cannot be
made less than /6, so part (d) is sharp. (There are however real-analytic solutions with
sup|®| > /6, see [10].) Part (b) shows how Bernoulli’'s condition followsit W,.>>.

A question remains: “are there solutions of (1.2) for which the Bernoulli condiign (
fails?” In part (c) it is shown that, although we are unable to settle this basic question, ir
all cases the solutions e Hﬂfgl of (1.2) satisfy a generalised Bernoulli condition. This
is considered in Section 4, where it is shown that the generalised Bernoulli condition
is the best that can be predicted by the linear theory which is developed in Section 2
Therefore, if the true Bernoulli condition (1.4) holds, it must be a further consequence
of (1.2). In Section 4 we examine this condition wher PAw changes sign finitely
often and we observe its particularly explicit form wher 2Aw changes sign exactly
twice.

2. Basic Riemann—Hilbert theory

Before we go any further we record a result the proof of which is identical to that of
Theorem 1.1 (see [15]) and Lemma 1.4.

PROPOSITION 2.1. — Suppose thatb, ¥ e Hé, ® #£0,ac LS is real-valued and
V* = g ®*. Then the following are equivalent.

(a) a has the same sign almost everywhere.

(b) a|®*|?> = constalmost everywhere.

(€) lal|®*|* € L3,.

(d) a|®*|? is bounded abovéor below).

Proof. —Since the fact that (c) implies (b) is relevant in the proof of Theorem 2.2, we
sketch a proof in the present notation. For the rest, see [15]. Suppose (c) and (2.1) ho

and that¥ = 0. (If ¥ = 0 the result is trivial.) Then?" = ¢2®2* and, by the remarks
before Smirnov's Theorem 1.2, log € L}, . Let

W2(z)
K(2)

K=0(), F()= and G(z) = K(2)®%(z), zeD.

ThenF* = G*, and from the properties (A)—(D) of an outer function we find that

|F(2)

G(2)| < |0(G*)(2)

, z€D

’

(cf. the proof of Theorem 1.7(c)). Sin€&* € L3 by hypothesis, we find thak, G €
HL. Thus both are constants. Hencg®)? = FG = constant. Thereforal® is a
constant orD, and (b) follows. O

Let C5, denote the space of 2periodic functions ofiR which are Holder continuous
with exponenta € (0, 1], wherea = 1 means Lipschitz continuity. Let € C5_, and
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consider the problem
U*=qd*, whered, ¥ e H{, 1< p < oo. (2.1)

THEOREM 2.2. — Supposea changes sign. The(2.1) does not have non-trivial
solutions if

- 2
PZita

Remark— The example in the remark following Lemma 4.2 shows that Theorem 2.2
is sharp.

2.2)

Proof. —Let&,n € LS be such that
U*=¢+i(c+CE) and ®*=n+i(d+Cn),
wherec, d are real constants. Then
E=an and c+C&=—a(d+Cn).

Hence
Clan) +aCn+c+da=0.
DefineQ,(n) by Q,(n)(t) = a(®)Cn(t) — C(an)(t), t € [—n, w]. Then, by periodicity,

1 @ —ame) | _lales, [ nes)l
a(t) —a(s))n(s cs. ns
Q. ()| = ‘— T ds‘ < 2 . —
2 tans(t —s) b4 |2tanz(r — s)[+
-z t—m
t+m 2
_ lalleg, QT lallcg, [n(s)|
T [t — 5|1 T |t — 5|1
t—m -2

Sincen € L5 ¢ L3/ the Hardy—Littlewood—Sobolev inequality [9, p. 98] gives that
2

the right hand side is i~ (R), and therefored, (n) is in sz,(l_“). Since

2aCn = Q,(n) —c—da and 2dan) =—Q,(n) —c —da,
we find thataCn, C(an) € L5.*~®. Hence, by the Riesz theoreaw € L5/, and it
follows from Hélder’s inequality tha* ®* = a{n? + (d + Cn)?) € L3_. However, this
means thata||®*|? € L} and hence: does not change sign, by Proposition 2.1

COROLLARY 2.3.— Supposea: # 0 and a(tp) = 0 for somery € [0, 27]. Then(a)
(2.1) does not have non-trivial solutions jf > 2/«, and (b) if a=* ¢ L} and p > 2,
(2.1)does not have non-trivial solutions.

Proof. —Because of Theorem 2.2 we only need to consider the case avtiees not
change sign. Multiplyingd by —1 if necessary, we can assume that 0. As in the
proof of Proposition 2.1, log € L} . Suppose that®, ¥) € HE x HL is a non-trivial
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solution of (2.1) and leF" = ¥/H andG = H®, whereH = O(,/a). From properties
(A)—(D) of outer functions it follows, as in the proof of Theorem 1.1, Proposition 2.1
and Theorem 1.7(c) below, th&t, G € H{é, F* = G* and hence&s = b = const. Since

® #£0,b+#0. We haved = bH 1. Therefore

’CD*(Z)’ = Constm |_1 > Constt _ t0|—ot/2 > 0.

Thus @ cannot belong t&{” if p > 2/a. This proves (a). It follows from the equality
|®*)? = |b|2a~t thatifa=t ¢ L] _then®* ¢ L2, which proves (b). O

2

3. Proof of Theorem 1.7

LEMMA 3.1.— Let (A, w) € (0, 00) x Hﬂlgl be a solution of(1.2). Thenlog|l —
2.w| € L3, and1— 2ow > 0 on a set of positive measure.

Proof. —Let W, U € HZ be defined following (1.5) so that Eq. (1.6) holds. It follows
fromW*=w+i(1+Cw') andU* = —i(u +i1Cu),u =1—C((1 - 2 w)w’) that
W) =i, U(0) = —i. (3.1)

HenceW, U # 0 and it follows from (1.6) that lofl — 2 Aw| = log|U*| — log|W*| €
L.
An integration of (1.2) gives that

/wdt:—/wa’dt:—ZnZlkllak|2<0,
e g keZ

where theay, are the Fourier coefficients af. This implies thatv < 0 on a set of positive
measure. So, + 2w > 0 on a set of positive measuren

(a) If 1 — 2aw > 0 onR then (a)—(y) hold and it follows thatw € W52, Therefore,
by the result of [2]w is real-analytic orR. Thus (iii) implies (i) and (ii). Now suppose
that (i) holds. Then - 2iw € C57°, by Holder's inequality, and/, W € H3. in (1.6).
Corollary 2.3 implies that - 2Aw is nowhere zero, i.e. + 22w > 0 on R (by
Lemma 3.1). This proves that (i) implies (ii) and (ii). Since (ii) implies (i) the proof
is complete.

(b) By Theorem 1.1 it will suffice to show that-4 2Aw > 0 almost everywhere.

Now w € C;/° and U, W € H3/? in (1.6), sincew’ € L3/, and it is immediate from

T
Theorem 2.2 that + 2Aw does not change sign, i.e—12 1w > 0 almost everywhere
(by Lemma 3.1).

(c) The continuous function 4 2Aw is non-zero on a set of full measure (see Lemma

3.1). Leto = (1 — 2vw) and letH = O(/|1— 20.w]). Then
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Note that
U(z) OWU*(2) B U* - -

=[0OWH@D||O(VI1-2w]) ()]

and|O/|1— 22 w|)*W*| € L%ﬂ. Now, by Smirnov’s theorem, botti/ H and HW are

in Hé and therefore HW,U/H) € P(1—2\w) andU*W* = z € Z(1— 2 w). However

U*W* = (1 — 2xw)|W*|?. To complete the proof it remains to establish thais real-

analytic onI", T € G. Sincez € Z(1 — 2\w) is real-analytic orT", it follows from a

bootstrap argument, exactly as in the local regularity theory in [15, Appendix]utieat
C1*-smooth onl". The functiony = gre + ipm := HW is analytic on{€”| r € '} (see

Definition 1.6). Further,

_ ¢
 OW/I=2aw])
@* . 1
T2l ex i€ 10g Ny 2Aw|>)'
Letv :=log(y/][1— 2xw])~! ands := sgn{1 — 2Aw} = conste {1} onT. Then

w' +i(l+Cw)=W*

1 .
w= o (1 — é) and v’ = sAe¥ (greCOSCVU — @im SINCY).

Letu :=Cv. Then
v’ = const & (preCOSU — @jm SiNu).

Sincew is C**-smooth onT", so isv, and hence (cf. [15, Appendix]). Now it follows
from Lewy'’s theorem (see [8], [14, Section 4]) theandv are real-analytic ofr. Since
v = w is alocally invertible analytic diffeomorphism, the analyticitywoffollows from
that of v.

(d) The Riemann—Hilbert theory in [15] leads from Eqg. (1.2) to equation

(1—2w){w?+ 1+Cw)?} =1,
and in the process shows that
W=i/H, whereH(0)=1 3.2)
(cf. the remark at the beginning of Section 4.2). Sifite= O(v/1 — 2Aw),

ie—iCIog«/l—Z}Lw
"Fil+Cw) =W ———————. 3.3
w +1(1+4Cuw’) T (3.3)

So (1.8) impliesClog+/1— 2 w = 9 + ¥, Where ¥ is a measurable s2periodic
function such thaty(¢) € 2rZ almost everywhere. Let us prove thag is constant.
Since ¥Yv/1—2w = |W*| € L} and w is bounded, log/1— 2 w € L} for any
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p < oo. By Riesz's theorem# + ¥y, and hencedy, also belong ta 5 for any p < oc.
Now |H (0)| = 1 implies that log/1 — 2Aw has zero mean opx, 7] and therefore
CY + C¥o = —log+/1 — 20w. Consequently

e % — /1 — 2aw e,

It follows from [18, Vol. I, Chapter VII, Theorem (2.11)] thaf®e L3.. Therefore
e % ¢ L3 and there exists a functiol € HZ such thatY* = &@+C%  Since
Yo(t) € 2nZ, we getY* > 0. ThusY is constant (see the proof of Lemma 1.4) and
P is also constant.

SoC¥ = —logy/1—2aw and|W*| = €7 € L3_. Finally, w’ € L3, and sow is real
analytic by part (a). This completes the proof.

Remark— One can give a simpler proof of Theorem 1.7(d) in the aase 0, i.e.
wheng := | #|» < /6. Indeed, let us consider taterfunctionV = —iW. It follows
from (1.8) that

VieAs:={¢=re’eC: |9|<p, r=0}.

Since the angled; is convex and closed, the Poisson formula (see, e.g.,°[7Bl
Chapter II]) implies thaV’ (z) € Ag, |z| < 1. Therefore Ré’%(z) > 0,|z] <1andhence
V# € H? for any p < 1 (see, e.g., [6, Exercise 13(a), Chapter II]). Sirgge> 3, we

haveV3e ML, i.e.V e H3, i.e.w € W32 Thusw is real analytic by part (a).

4. P(a) and Z(a)
The purpose of this section is to describe the®et), introduced in Definition 1.6,
in the case whemn changes sign finitely often. (To descrif¥a) in general is a more
formidable task.) We then examine the special casewlich changes sign twice.

4.1. a changes sign finitely often

Changing the independent variable if necessary, suppose (at O and that there
exist points

O<thi<tbh<: <ty 1<ty <27 (41)

such that
a@®) >0 ifrelty_1,tx], k=1,...,n, and a(t) <0 otherwise (4.2)
We consider the problem (recall Definition 1.6)

Y* = S(a)p* almost everywhere ¢, v € Hz. (4.3)



E. SHARGORODSKY, J.F. TOLAND / Ann. |. H. Poincaré — AN 20 (2003) 37-52 47

LEMMA 4.1 (Cf. [5, 841], [11, 878]). -Suppose tha@.1)and(4.2)hold. Then every
solution of(4.3)is of the form

(@, ¥) = (sz(/’ky chllfk>,
k=0 k=0

where, fork € {0, ..., n}, ¢, are complex numbers,

Yo(z) = X(2), ®o(z) = X (2);
- (4.4)
_ X@® _ €217X ()
wk(Z)—m, @k(Z)—étTl_Z,
and
——IIZk 1 __ 2”2/{—1 1/2
X(z)_IH(Ze © ) , zeD. (4.5)
1 IIZk _ ezIIZk

Here¢ /2 is analytic in the complex plane cut alongoo, 0] and is positive o0, +00).
These solutions belong fd?, ¢ < 2 and do not belong t72..

Proof. —It is not difficult to see that

l.
Il‘ 51195 —
7€ 2 2%k-1 _ @2'"2k-1

Xi(z) = T — lZl#1L,
Ze—§ Zk_ez 2k

is a conformal mapping of the open unit disk onto the lower complex half-plane, and of
the complement of the closed unit disk onto the upper half-plane with one point removed
Moreover,

int_tZk—l
Xi0) = 2
sin‘=
In particular
X;(@) <0 forallt e (ty_1,tx), X;@)>0 forallre[0,27]\[rfok—1, t2].

ThereforeX,f/2 is analytic in the complex plane cut along the closed{dfc ty_1 <t <
) and

(X% (1) >0 foralls € [0, 27\ [far—1. o],
(X 1/2) (t) = —i|(X;/?)"(t)| forallr e (tx 1, tn).

SinceX =i[[;_; X%, we have
X*(t) =i|X*@)| for aIIte[O,Zn]\U[tZk_l, ] and

k=1

X*(t)>0 forallre | (a1, r20)- (4.6)
k=1
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Hence
X*(X-1H* = X(a). 4.7
Let
F = %, G .= % (4.8)

Then (4.3) and (4.7) imply that
F* = G*. (4.9)

By Holder’s ine_quality,F, G € HE, t < 2/3. It follows from Smirnov’s theorem that
F(z)[T}_1(z — €%-1) defines a function irt{%. Let the coefficientss, ..., B, € C be
such that

Go(2) := G(2) H(Z_l _ e—itzk_1> _ Zﬁjz_]
k=1 j=1

is holomorphic in the open unit disk and put

Fo2):=F@) [[(z— €21 =Y Bz’
=1

k=1

It is easy to see thaly € H: and Fg = G§ (by (4.9)). From Smirnov’s and Carleman’s
theorems it follows thaG o = B, Fo = Bo for somep, € C. Therefore

Yi—0Bi?!
F(z)= /= 4.10
(Z) H;::l eIZk 1) O+kzlz eIIZA 1 ( )

for some constants, ¢, € C. Define F(z) for |z| > 1 by (4.10). Since

> oBiz

G(z)= . )
(Z) szl(z_l—e_'m'*l)

we have
n eltzA 1z
G(z)= F(l/Z)—CO+ZCket2k 1—7’

and the result follows from (4.8). O

LEMMA 4.2. — Supposg4.1)and(4.2)hold anda € C5_ . If 1< p < 1%(1 then every
solution(®, V) of (2.1)is given by

(@, V) = (Zakfla Zakgk>7 where fi := o /H, g = Hi,

k=0 k=0

k=0,....,n, H=0(y/]al). (4.11)
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Proof. —Suppose (2.1) has a non-trivial solutio, W) € HZ x HE. Let ¢ := ®H,
Y :=W/H. Theng, ¢ € HE (cf. the proof of Corollary 2.3). Since, ¢ satisfy (4.3),
they are given by linear combinations @f, v, as in the preceding lemma. Therefore
®, W are given by linear combinations g¢f andg,, with complex coefficientgy, as in
(4.11). o

Remark — Although this result does not assert the existence of solutions of Eq. (2.1)
when 1< p < 2/(1 + «), there are many cases where such solutions exist and
consequently, in the light of Theorem 2.2, the result is sharp. To see this, suppos
that, in addition to satisfying (4.1) and (4.2)€ C5,, « € (0, 1], has the property that
la|"te L3, forallg <a~t. ThenH e H® andH ' e HZ, for all ¢ < «~L. Therefore

V:=HXeHl and &:=X/HeH?,

for all p €[1,2/(1+ «)). Since(d, ¥) is a non-trivial solution of (2.1) for any such
choice ofa, the result of Lemma 4.2 is optimal.

4.2. 1— 2w changes sign twice

In the water-wave problem (1.6)
a:=(1-22w) and U*=aW=.

We have seen thatif changes sign only finitely many times then every solution of (1.6)
is given byW = > @ fi andU = > oy gk, ax € C. By definition, H(0) € (0, c0) is real,
fr(0)=0, k=1,...,n, and

X(©0)=ie""* where (tx — tz—1) =: L € (0, 27).
k=1

We will use the following results from [13, Chapter 17, Theorem 17 and Exercise 19].

(i) G eHL isan outer function@ = cO(g) for somec € C with |¢| = 1 andg with
log|gl € L%ﬂ) if and only if |G(0)| = O(G*)(0).

(i) If G € HE is such thaG—! € HE, thenG is an outer function.

Remark—In the case when + 2iw > 0 almost everywhere we have seen that
[W*|72 =1 — 2w, 1/ W(z) = constO(v/1 — 2aw)(z) and therefore, by (i)W is an
outer function. Hence, by (i), in this cag&(0) = O(v/1 = 2 w)(0) = O(W*)~1)(0) =
[W(0)|~1 =1 (see (3.1)).

Now we investigate the possible existence of a solutionf (1.2) for whicha :=
1—2Aw changes sign exactly twice. In the notation of the preceding section, and rotating
the disc if necessary, letOt, =y <1, =27 — y anda > 0in (y,2r — y). (Think of
y as being small, withy = 0 in the case of the Stokes wave of greatest height with a
crest att = 0.) Accordingly, from (4.11), there existg € C, k =0, 1 with

o1
z—@v

[, oz€ \ X(2)
}X(z)H(z) and W(Z)—{O( + }H(Z)’

Uz) = a1z€7
(2) {Oto+ ot
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where
%iy _ —%iy 1/2
Hz)=0(/la))z) and X()=i (%)
ze2'v —e 2
Therefore
—i=U(0) = {ap — 16" } H(0) X (0),
i=W(0) =@X(0)/H©O) and X(0)=e?”

(see (3.1)). Let = H(0). (Recall that: = 1 whena > 0 almost everywhere.) Then

. iy '
Qo = _ihe%W and o= i — ihe3"’/2.
Therefore
iz .y
|e7X(z)H(z)<1 ) {Ie7X(z)}h—§
=———a U " d = — (412
U(z) p— L~ hz and W(z) H@ &=z ( )

Remark— W (z) = 0 if and only if z = h2. Therefore the primitiveF, of W (F' = W)
is a locally conformal mapping of the disc if and onlyiff > 1.

It now follows that
(h*z -1 (% -1
(z—€V)(z—€T7)

URW(z) =
and hence

T(h?+ %) — cost
COSy — COSt

a|w*(n)|* = —72(1), ze€Z(1—2w), say (4.13)

Recall that ifa > 0 almost everywhere then
UW*=a|W* ) = 1.

We have already noted that, for the Stokes highest wave0, a(0) =0 and 2= 1. In
general

1 1
> <h2 + ﬁ> >1 with equality if and only ifz? = 1,

cosy <1 with equality if and only ify =0.

In the light of linear theory in Section 2, we can assert only that solutian Wzlj;”,

1< p < 3/2, of (1.2) which changes sign exactly twice must also satisfy a generalised
Bernoulli boundary condition fokv involving, as an additional parameter, the point

y € (0, ), where 1— 20w is zero aty and 27— y:
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T(h?+ %) — cost
(1— 2 w(t))(cosy — cost)’

{w' %+ (1+Cw' @)’}

1 T
whereh = exp(— / log|1— 2w (s)| ds) .
4 J

As in (1.9), this equation corresponds to two free-boundary conditions, which relate the
real and imaginary parts of a complex analytic functips- iy in the (dimensionless)
physical domain,

130 + ) — cosp(x, y)
2 cosy —cosp(x,y)

Voo, P +iy==, ¥(x,y) =0 (4.14)

NI

on the unknown free surface in tlie, y)-plane. But the pressure on the free-surface is
not constant unlesg = 0 and. = 1. It remains a possibility that th@onlinearwater-
wave problem (1.2) yields this additional information, but a proof has so far eluded us.
Therefore although the heuristic arguments which led to the variational formulation of
the Stokes-wave problem based on the functighauggest that it should be so, we are
unable to assert that solutions of (1.2) in the Hardy sﬁaké, or even in the Sobolev

spaceWzl;T” , 1< p <3/2, give rise to Stokes waves.
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