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ABSTRACT. — The aim of this paper is to give a simple proof to the fact that linear instability
implies nonlinear instability for two classes of boundary layers: Ekman layers, mixed Ekman
Hartmann layers. In the case of rotating fluids, we prove that linear instability of Ekman
boundary layers (as studied in Lilly’s work [14]) implies nonlinear instability.i¥ horm. This
result describes the onset of turbulence at high enough Reynolds numbers. Application of thes
technigues to MHD models is also given.
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RESUME. — L'objectif de cet article est de donner une preuve simple du fait que l'instabilité
linéaire entraine l'instabilité non linéaire pour deux classes de couches limites : couches limite
d’Ekman, couches limites mixtes Ekman Hartmann. Dans le cas de fluides tournants, on montr
que l'instabilité linéaire des couches d’Ekman (étudiée par Lilly dans [14]) implique l'instabilité
non linéaire en normé&°. Ce résultat décrit I'apparition de la turbulence pour des Reynolds
suffisament grands. Des applications de ces techniques a des modéles de MHD sont au

données.
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1. Introduction

Boundary layers appear in various physical contexts, such as the theory of rotating
fluids (Ekman layers), incompressible MHD (mixed Ekman Hartmann layers), in the
inviscid limit of multidimensional parabolic systems, or in the inviscid limit of Navier—
Stokes equations near a boundary. The relevant parameter is the dimensionless Reyno
number

Ul
Re= —,
V

whereU denotes the typical size of the velocity outside the lal#re size of the layer
andv the viscosity. In classical situations, the boundary layer is expected to be stable
as long as the Reynolds number remains below some critical WédueAbove Re,,
instabilities may appear.

From a mathematical point of view, linear and nonlinear stability of the layer can be
proven wherRe< Re, whereRe < Re. is a critical Reynolds number associated with
energy methods. Such approaches have been developped recently in a PDE’s spirit, f
instance in [2,7] and references therein. The problem is that in most of the applications
Re < Re, with an important gap between the two values. Filling the gap is the purpose
of a forthcoming work. In this paper, we intend to prove that linear instability implies
nonlinear instability inL> norm, namely if somewhere in the layer the Reynolds
number is greater thaRe., the layer is nonlinearly unstable. We will give a general
theorem and apply it to Ekman layers and Ekman Hartmann layers. We think it can
be extended in a straightforward manner to multidimensional parabolic systems. Th
method is an improvement of the approach of [7] where instability results are proven for
the incompressible Euler equations.

2. A general instability theorem

2.1. Preliminaries

We study systems of the form
L
it + QG u) + —2L — eAu=0, (1)
&

whereu is vector valued, and wher@ if of the form

Q(v1, v2) = (v1-V)vz oOr Q(v1,v2) = P[(v1- V)vg,

where P is the Leray projector on divergence free vector fields. Moredvelenotes a
linear operator of order O with constant coefficients, asd the viscosity. Note that the
case of general functiong is a straightforward adaptation of this quadratic case which
is the only one detailed here for the sake of simplicity. Rotating Navier—Stokes equations
some MHD models and parabolic systems (for whick: 0) enter this framework. We

will consider space domair® of the formT? x [0, 1] (which correspond to periodic
boundary conditions in horizontal variables)Rt x [0, 1].
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Let us first precise what we mean by a sequence of approximate solutions. We wil
only consider boundary layers of size
DEFINITION 2.1.—A sequenca?’P (depending or) of functions of the form

N N
. . z
WPt x,y,2) =Y elult, x, )+ elult (t, X, Y, g>
j=0 j=0

Al i BL¢ 1-z
+Z£fuj ' <t,x,y, ) (2)
j=0

&

is said to be a sequence of approximate solutions of okderith regularity s on [0, T']
if for every0 < j < N, ulM € L®(0, T; H*(T?)), if uBt, u5"" € L®(0, T; H*(T? x R.,))
are rapidly decreasing in the last variable, and if moreover

uapp

L
R3PP = 9,u®P 1 O (4P, ;,2PP) 4 — e AuPPP, A3)

satisfies

HRappHLOO(O,T;LZ(Q)) < CreV Y2

for some constanf'; independent of.
DEFINITION 2.2.-We shall say thau?°P is a nonlinearly unstable sequence of

approximate solutions ofl) if for every arbitrarily larges and N, and every arbitrarily
smalle > 0, there exist two solutions and v of (1) with

HM(OJC,}’)—Mapp(o7xay72)| N

s T HU(O, x,y) —u®P,x, y, z)| s < Cy ne

and
lu(T®, x,y,2) —v(T% x,9,2)| ;o =6,
(T, x,y,2) — (T, x,y,2)| 2 = 8,6%/2,
for some time§'® such thatT® < C;slog(2 4+ 1), C, andé, being independent af

Let us denoted the linear operator defined by
app appy | LV
Av =0 u®" v) + Q(v, u®P) + — — eAv.
&
The linearization of (1) around?®’P then writes as
o,v+ Av=0. (4)
Given (x,, y,) € R?, we introduce the rescaled variables x,, y,, z,) = (t, x — x,, y —
Yo, 2)/€, Which will be used when studying small scale phenomena associated with

instabilities (rescaled variables, functions and operators will be labelled with a subscrip
or superscript “r’ when necessary). We also define
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AL v =0(u"(0,x,, yo) + ug (0, X0, 0. 2,), V)
+ 0(v, ™0, X,, ¥o) + u§ (0, X0, Yo, 21)) + Lv — Av,
namely we freeze the andy variables in the main boundary layer partofind rescale
it. By rescaling Eqg. (4), we formally come up at leading order with the evolution equation

w4+ A w

Xo,Yo

0, )

for which Lilly [14] investigated the linear instability problem from a numerical
viewpoint. We finally introduces = u — u#"P, which solves

0,v + Av + Q(v, v) = —R*P, (6)
The above system will be used to analyze the nonlinear evolution of perturbations
2.2. Assumptions
Givenk e R?, we first define the spacég by
Vi = {expl(ik - (x,, y,))v(k,z,), v e C®, ik (v1,vp) + d,v3 =0}, 7

together with a family of normpuv|| ;. For simplicity of notations, we will say abusively
v € Vi instead of expik - (x,, y,)v(k, z,) € Vi. LetQ,, 4,,, be the open set defined by

Qo poyy =L/ Rel>a, U{L [/ Rek >y, — BolImAl} 8)

wherea,, B, andy, are three real positive numbers. We will assume that there exists
(x,, ¥o) € R? such that the following assumptions hold true:
(Al) Energy estimate on the nonlinear problem
There exists a constarily € R, such that for all arbitrary divergence free
smooth functions’, solutionst — v(z) of

, , Lv
a,v—i—Q(u,v)+Q(v,u)+Q(v,v)+7—8AU=R, 9)

satisfy thea priori energy estimate

d
4 PO <T@+ 16 ) [o ) 72 + 20 2 [ RO 2. (20)

(A2) Linear instability:
There existso € R?, § > 0, and a smooth complex valued functibr> A4 (k)
with positive real part fok € Bs := B(kg, 8) U B(—ko, 8), With A1(—k) = A1(k),
and functionsvy (k, -), of positive L? norms fork e B;, with vy (k, -) = v1(k, -)
such that

(trs Xrs Yrs 27) = va(k, 2,) exp()‘l(k)tr) eXp(ik - (%, yr))
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is a solution of (5) fork € Bs. Moreover,Re 11(k) has a maximum oveB; in
ko, which is nondegeneratél€ssRe 11(kg)) < 0). We also requirgk, z,) —
v1(k, z,) to be smooth (fok € Bs), and define

o = maxRe (k). (1))
keBs

(A3) If u € Vi andu’ € Vi, thenQ(u, u’) can be written under the form_, +u,_ +
u_ +u__,whereu,, € Vip.Inaddition,

lsille—o, < Crnelluelle llu'lle,

whereo, is independent ok, k' and{, Cy . being locally bounded ik andk’.
(Ad) Estimate on the resolvent &f, | :
Let

RGO =(A+AL )7

We assume that for any, > o there exis{8, andy, such thatr is well defined
on Q. 5,.y, and satisfies: for every arbitrarily large every arbitrarily large,
and everys € Qq, 5,7,

Jog RG. k0]

HS—>HS < CR,a()\'7k)a (12)

whereCy ., has at most a polynomial growth inand is bounded uniformly on
sets of the formRe A < A’ for all arbitrarily large)” > «,. We allow 8, andy,
to depend ork, in a locally bounded way.

THEOREM 2.3. — Under assumptionéAl), (A2), (A3) and (A4), the sequence?PP
of approximate solutions is nonlinearly unstable.

Remarks. — (A1) is a very rougli’ estimate on the nonlinear system. Let us
emphasize thal'o can be large, and actually much larger than(A2) is the linear
instability and stems from physical and numerical analyses. Assumption (A3) is usually
straightforward and applies to nonlinearitig€s of the form Q(vy, v2) = (v1 - V)v,.
Assumption (A4) is the difficult point to check. However, in applications it often reduces
to a simple verification on a system of ordinary differential equations. Note that this
assumption is completely different from the approach of [7].

Note also that the proof of Theorem 2.3 provides in fact much more information than
the theorem itself. In particular, it gives a precise description of the solution until the
instability time7?: for #. nearT,’, the solution mainly behaves like

4
o~ P+ e (v ko, 2,) XPiko - (x,. 3,)) exPplako)ty)).

for |(x,, y,) + Zm dr1(ko)t,| < /1. Therefore, neal’?, only the most unstable modes
+ ko emerge, after a travel at speed'm d;11(kg). Physically speaking, if one perturbes
u®P by a very small noise, waves of wavenumbkggrow more rapidly than the other

waves, and travel to create the instability. In genefal,o, 11 (ko) # 0 which leads to a
so called “convective instability”.
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2.3. Proof

2.3.1. Construction of an unstable wavepacket

The first step is to construct an unstable wavepacket which is localized in space an
exponentially increasing in time, and to deriké and L> estimates on it. Let us first
observe that the horizontal invariance allows to restrict to thexasey, = 0. Lety > 0
small enough such that< §. Let B, := B(ko, n) U B(—ko, n), and¢ be a smooth real

valued function supported i, with ¢ (ko) = 1 and¢ (—k) = ¢ (k). We take
MO(tra Xrs Yrs Zr) = /¢(k)vl(k7 Zr) exp()\l(k)tr) eXp(lk : (-xra yr)> dk, (13)
B'/
which is a real valued solution of (5) in view of assumption (A2). Let us also remark that

So(k — ko)
A1(k) = Ai(ko) + ViAi(ko) - (k — ko) — |k — kol —
where O< o < Rea(-) <@ in B(0, n). Moreover, denoting

(x5 yr) —it, Vidi(ko)
N

(ira j}r) =
we rewriteug as follows

uo(ty, xr, Yrs Zr) = ZRe{eXp()‘l(kO)tr + ikO (X, yr)> / d)(k)vl(kv 2r)
B(ko,n)

X exp(i(k — ko)/1, - (%, §) — |k — kolztrL;kO)> dk}

2 .
= t_Re{eXp()‘l(kO)tr +iko - (x, yr))

X / d)(ko—i- \I/CE)m(ko—l— \I/(E,z,)

B(O.n/1r)

e . - lic|? K q
X Xp(uc-(xr,yr)—Ta(ﬁ)) K}.

Classical arguments yield the following convergence uniformlyz,ire [0, Zo] and
|()’er 5’r)| < AO

/ d) (kO + %)Ul (kO + %v Zr) eXp<i’< : (irv yr)

B(0,ny1)
|ic|? ( K ) |(ir,yr>|2) 21
_ 0 LA, I, ko, z;)——— Wwhent, .
Za \/E + 20(0) /<—>v1(oz)a0) — 00
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As a result,

Ul(kOv Zr) ex (_ |(irv )7r)|2
«(0) 20 (0)

uniformly in z, € [0, Zo] and|(X,, ,)| < Ao. Denotinge(z,) = Arg(vi(ko, z,) /a(0)),
1/a(0) = a1 + i, wg = Im A1(ko), Wwe deduce that

4
uO(try xrv Yra Zr) ~ t_Re{

r

+ )"l(kO)tr + lkO : (.X'r, yr)) }

[vy(ko, z,)I
e (0)]

+ @ (ko, Zr)>. (14)

(%, 3r)I?
e

2 +R€)»1(ko)lr)

4
uo(ty, Xpy Yry 2r) ™~ ——exp| —a

;
|Gy 3012

X 005<a)olr + ko« (X, yr) — a2 5

As a consequence, we have fpfarge enough
C
|M0(lr, Xrs Yrs Zr)| < l_ eXp(Re)"l(kO)tr)

uniformly in z, € [0, Zo] and|(X,, y,)| < Ag, and

C,
||“0(tr)HL2<|<£r,yr>|<Ao,zre[0,20])2 N

exp(Re A1 (ko)t;). (15)
Moreover, we have

o)) = C/ |6 () [%|Jua(k, )| > exp(2Re 21 (k)2 ) dk.
B

n

Since, forn small enoughi; has a uniqgue nondegenerate maximumBitko, ) at
k = ko, easy arguments yield

(&

luo(e,)]| 2 ~ 7; exp(Re A1(ko)t,). (16)
C/

o) o0 < —* eXP(Re Mako)ry) (17)

ast, — +oo.

2.3.2. Congtruction of an approximate solution
We will construct a new family of approximate solutiomSof the form

M
u® =ulP4 ENZSjuj, (18)
j=0

where eachy; is a sum of functionsu ¢ ¢)1<e,r<j+1

Ltj = Zuj,[’g/.

e
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Here, u; ., depends ore (the dependence is omitted in the notation) and can be
expressed as follows

Ujer = / uj»kl»---,k(»lzl»---slz(/ (t,z,)
(k1o ke)eBE, (ka,....kp)€BO,m)Y

x expli(ky + -+ ke + kg + -+ ko) (xr, y,)) dky ... dkp ks ... k. (19)
We will show by induction the following estimate

et k... gy @l < Cjis €XD(Re(Aalke) + -+ + Ra(ke) +€8)1,)  (20)
for everys > 0, where$ is small enough. Moreover, all the non zerg;, ,» will satisfy
(N+{¢{=N+j, and £>1 (21)

We will finally show thatu is smooth in(ky, ..., k,) in the following sense: for every
multiindex« of length¢, for every multindexx” of length¢’ and everys,

H alfl a]gl/uj,kl,...,k[,lgl,...,lgl/ (tr) HY
< Cjyuma €XP(Re(Arlky) + - + Aa(ke) + £'8)1t,). (22)

This smoothness will guarantee the fast decrease ofthe tangential variables;,, y,).
The functionsu; , , are constructed by induction gnin the next subsection. Roughly
speaking,¢’ controls the interactions with"P, and ¢ takes account of the quadratic
interactions of«® — u2PP.

Let us for the moment derive frof20) someL> and L? estimates om ;. First, we
have

l
etj 00| o0 < Cexp(E/Str)< /exp(Re r(k)t,) dk)

n

C exp(e'st,) exp(Re A1 (ko)et, ).

N

Let us observe that far small enough and bounded away from zero, we have

C /
exp(l/'st,) < exp(Rekl(ko) ) (23)
Therefore,
C
0000 1 < e 030 Reatio) (142 )1, ). (24)
Moreover,

kate ko gtk =tk
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¢
<C / exp(sl',) exp(Re ZMU@)E) _ (25)
Kyt kg Ak =tk i=1

If ¢ =0, the left hand side of25) is bounded by

t
<C / exp( (Re(fll(k()» — Bl(kg — k)2 —B Z(k — ki)2> tr>
katetke=Lk i=1
C
< g exp((Re hatko) = Bl(ko — k)?)1,)

r

for someg > 0. Hence,
Cy
o0l 2 < Z—Z\/EeXp(Re r1(ko)et,). (26)
If ¢/ 0, we use a more crude estimate

[je.0(t)] ;2 < Cexpl't,) exp(Re r(ko)et,),

so that recalling23), we obtain

c ,
e 2 < ﬁ«/ﬁ@(p(Re A1(ko) (1 + %) tr> (27)

estimate which is true in the cage= 0 as well.

2.3.3. Error terms
Let us now detail the construction of the new approximate solution. First denoting

M
w= E glu;
_]7

j=0

we obtain

RaPP

=0
eN ’

hw+ A, w+e"Qw, w)+ (A=A, Jw+

so that expanding the differen¢a” — A7 | )w in Taylor series yields in the particular
case wherQ (v, v2) = P(vy - Vo)

Opuj+ Ay, uj+ Z Ouj,ujr)
JHEN=]
) 04V EPP .
+f£,1yrp{ 2 2 {(_’)l = (0.0,0.2)r 3 u;r

J+i"=j a=(a,01).la|=)’

801 app .
+ (=) 5(0,0,0, 2, )1 5" {5" ] uj,/}} 0.

o!
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Thus,u; . .« i....i, Will be solution of equations of the form

_ y y r _ y y y o
afruj,kl,...,kg,kl,...,ke/ + Axu,youj,kl,...,kg,kl,...,ke/ + Rj,kl,...,kg,kl,...,ke/ - O (28)

whereRJ kpooooke i,k 1S the sum of error terms of ordef'*/ generated by insertingf
into the rescaled version of (1). These error terms have three different origins.
The first family is of the form

1_ - . -
R Q(uj’ ki,.. klfl»kls---»kg;-’ uj”,kzﬁl ----- k(,kg/1+1,...,kg/)

with N + j' + j" =j, 1< <€ and 1< 2] < ¢, coming from quadratic interactions
betweem],,gl,e/l anduj”,@_gl,e/_g/l. We deduce from (20), (22) and (A3)

IR )|, < Cyexp(Re(ralky) + - - + Aake) + 8)t,) (29)

and similarly for all its derivatives with respect to the wave numbeendk;. But using
the resolvent we have

uj,k]_,...,k[,/z]_,...,/ze/ (tr)

= / e (D% RY(7) dr
0

=5 //e“r—mR(/\ ki4---+ke+ki+-- 4+ k)R (r)drde
l
wherel’ = 0Q. Usmg assumption (A4) we get (20) and (22) Note that (21) is preserved.
The second family arises from the interactions with— A7 | and is of the form

R = (A - Ajco y,,) G=Lkgs kg kg
Here there is a technical difficulty. We have to apply the Fourier transforRY tand to
take the frequenciy,; +- - - + k& +ki4-- ke wherekg/ € B(0, n), therefore we have to
throw away parts of the Fourier transform:gPP with lky'| > B(O, n). However as:2p
is smooth in horizontal variables, and having in mind the change of scale between
and (x,, y,) the terms omitted are @>°) and will be forgotten. Note that again (21) is
preserved.

The third family finally stems fronkR® = —R2P/¢V and can be treated in a similar
and actually easier way.

2.3.4. Conclusion
At this point, we have contructed an approximate solutiénwhich in rescaled
variables solves

d,u’+ O, u®) — Au® + Lu® = R, (30)
where the remaindek? satisfies
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CENP
||R8(tr)HL2 < t—P\/EeXp(PRe)"l(kO)tr) < C\/ng(tr)v

r
N

where P=1+ MTH and &(t,) = i— exp(Re r1(ko)t,). (31)
Let Ty such that (Tp) = 1. We first want to compam‘r8 with u2PP. Let, for A > 0,
Qa = {|(x, ) + Im Vi (ko)t,| < A2y, |z,] < A}
Using (15), there existd > 0 such that for every, > 0,
o] 20,y = Con/BE) (32)

for someC, > 0. We deduce from (27) and (32) that
M .
[ = u2) (1)[| 20,y = Con/tr E@) =D i/ EVIN (1)), (33)
j=1

for some constant§’; having at most polynomial growth iri. Thus, fors, < Tp =
To — o1 with o1 large enough, but independentsgf

C,
H(ME _u?pp>(tr)HL2(QA) 2 7ﬁ£(tr) (34)
Let us now define: as a solution of
L
8,u+Q(u,u)+—u—8Au:O (35)
&

with initial dataug™ + eV uo. We will work in rescaled variables until the end of this
section. Letv = u — u®. It satisfies

v+ 0, v)+ Q(v,u)+ Q(v,v) + Lv— A,v=—R", (36)

hence using (Al),

d
g IOz <To(@+ [ 96| ) [o() |72 + ClIR ) 2 (37)

But we have in view of (23)
M .
[V @)]] oo <|IVUPP@) || oo + Y CTEWH N (1)),
j=0

WhereC}/ has at most polynomial growth in Thus, fors, < T, = To — o2 With 02 > 0
large enough but independentaf

900 | < 2 VUG 41
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Let M such that

M+1
2 R eiatke) > To(3+2 sup ||[Vu?®1)],.).
N 1r€(0,Tp)

Fort, < Tz = Ty — 0, we therefore have, after time scaling,

d
L o< o342 sup [V, o)
tr t,€(0,Tp)

€

CEZNPlr
2P
17

exp(2PRe i1 (ko)t,).
Using the fact that (0) = 0 we have

o),z < C'VE EX @,).
Indeed, ifA, < A3, a functiong satisfying¢ (0) =0 and

exp(rst)

d
. <)" )
dtd) 20 + T

verifies in view of integration by parts arguments

expl((Az — A3)(t — 1)) dr < CeXp()»sl)‘
1+ N 14N

¢ < C exp(rsf)
[

Now for T, = Ty — o3, With o3 > o, large enough,
H(“ - “8)(TV)HL2(QA) > H(“8 - “?pp)(Tr)HLZ(QA) - ||U(TV)HL2 > 0,(T,)?

with o, independent ok. Now repeating the construction withy = 0, we get two
solutions which separate, which ends up the proof: the Lebesgue measupeiobf
order CT,, which allows to get the claimed > bounds. ThelL? estimate in original
variables also follows from straightforward scaling arguments.

3. Some results of spectral theory

To prove assumption (A4) we will mainly use two results. Fit$t , is a compact
perturbation of the Laplace operator, and hence is a sectorial operator [12]. Second w
will use results of Shizuta and Vidav [18,19] that we now recall (see other applications
in [10,11]). Let us first begin by a definition.

DeFINITION 3.1.—LetA be a linear operator which generates a strongly continuous
semigroup — exp(—t A). We say that an operatdk is A-smoothing if

(a) exg—tA)K is compact for every > 0,

(b) + — exp(—tA)K is continuous for > 0.
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LEMMA 3.1 (Y. Shizuta, I. Vidav). tet Y be a Banach space and be a linear
operator that generates a strongly continuous semigrouly each that| exp(—zA)|| <
M for all ¢+ > 0. Let K be an A-smoothing operator front to Y. Then(A + K)
generates a strongly continuous semigraxp(—¢(A + K)) ando (—A — K) consists
of a finite number of eigenvalues of finite multiplicitieg®e A > §} for all § > 0. These
eigenvalues can be labeled by

Reii=Reroy > - >Reiy =6. (38)
Furthermore, for evenA > Re A4, there is a constanf’', such that
| exp(—1(A+K))||,y.y, < Ca €XP(AT). (39)
Combining these two results, we get in particular that we can always find for boundec
|k] an open sef2 of the form (8), withe,, arbitrarily close to the spectral radiagk).
4. Ekman layers
4.1. Introduction
Let us study the limit: — 0 of the incompressible Navier—Stokes equations with

Coriolis force

&

Btug—{—(uS-V)uS—vAuS—l—exu +Vp* =0, (40)
divu® =0, (41)
u®*=0 onz=0andz =1, 42)

in Q= Tf’ y % [0, 1], wheree = (0, 0, 1) denotes a fixed vector,> O the viscosity, and
¢ the Rossby number. Following classical parameter orderings, we assunme=that
whereg > 0 is a given constant. The limit— 0 of (40), (41) and (42) has been studied
recently in [9,2] and we refer to [6,14] for a physical approach.

In view of Taylor Proudman theorem, the formal limaitof u° is a two components
two-dimensional flow (independent of

I/l]_(t,x, y)
u(t,x,y): MZ(ta-x7y)
0

which satisfies the two-dimensional Euler equation’ﬁﬁg with damping term

du+ (u-Vyu+/2pu+Vp=0, (43)
divu =0. (44)

Since u does not satisfy in general the boundary conditions (42), we have to add
boundary layer correctors at=0 and at; = 1

ugh(t, x, y,z,) = — exp(—z,) (ucosz, + u' sinz,) (45)



100 B. DESJARDINS, E. GRENIER / Ann. I. H. Poincaré — AN 20 (2003) 87-106

where

zr=£, A =+2¢cv,

A

and similarly near = 1. It is possible to go further in the construction and to get for
every arbitrarily largeVv an approximate solution®"P of the form

N N
wP(r,x,y,2) =Y elu™t, x,y)+ > elug: (t, X,y i)
j=0 j=0
= j,BL 1-z
—|—Zs us t,x,y,T (46)
j=0
which satisfies (41), (42) and
e x uaeP
QuPP + (uBPP. V) u®PP — y Ay®PP 4 + V pPP = RaP 47
with
[R¥P(@)] 2 < C0)e 2, (48)

whereC € LS. (RT) andL” (1< p < oo) stands forL”(£2). We then get as in [9].

loc

THEOREM 4.1. —Letu?(0) be a sequence df? functions such that
Ju®(0) — u®(0)]| - < Ce",

and letu®(¢) be a corresponding weak solution (¢40), (41)and (42) with initial data
u®(0). Then

sup [ju® () — u®P@)|],. < Cre"
1e[0,T]

: | 2¢
Sup ’ul(?t(t)|Loo — < RQ,
0<t<T v

where Reis an universal constant, and; a nondecreasing function independent of

for every timeT such that

In [2], the following analytic expression fdRg was given

V2

S : ~1.102.
Jo~ z(lcosz| + | sinz]) exp(—z) dz

Re
In other words, a Reynolds number attached to the boundary layer can be defined as

; A
R%L(tvxvy):’ug]t(tvxvy)’; (49)
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where denotes the size of the layer. In the present casey/2¢v, hence

. 2¢
Res (. x, ) = [ug (1, x, )|/ —

Theorem 4.1 means that as long as the boundary layer Reynolds niRahér) =
[R&sL(2, -) |~ (r2) IS small enough, then the Ekman layer is stable and remains laminar,
as physically expected. In fact, we proved in [9]

THEOREM 4.2. — Letu(0) € H*(T?) and letu(r) be the corresponding global strong
solution of the2-D Euler equationg43) and (44). Letu®(0) be a sequence of initial data
bounded inL? and letu?(¢) be the corresponding sequence of solutiong4ff), (41)
and(42). If

4 (© — uw(©®|,» =0, then sup [u*(t) — u(),» — O
1€[0,T]

for everyT such that

sup Res (1) < Re.

o<r<T

Let us observe that the regularity of solutions of the 2-D Euler equations [20] allows
to replace the assumptiaf0) € H*(T?) by u(0) € L?(T?) andw (0) = u(0) € L>(T?).

4.2. Formalism

Let us now turn to cases wheRs;_ is large. First, we put Ekman layers into the
formalism developped in the first section. We take ¢ and consider a vectercolinear
to (0, 0, 1) but not necessarily of unit length. Let

Q(v1,v2) = P(v1- Vuy), Lvy = Pe x vy,
and
a a Lu
Au=P((u®P V)u+ (u-V)u*P) + — —eAu.
&
For (x,, ,) € R? we define

AL u= P,(((uim(xo, Yo) + u§ (X0, Yo, z)) -V, )u+ Uuzd,, uS"(X,, Yo, zr))
+ Lu — Au

namely we freeze the andy variables in the main boundary layer partofind rescale
it. Egs. (40), (41) and (42) can be rewritten as (1), linearized equations:fféas (4),
andv = u — u®P satisfies (6). By rescaling Eq. (4), we formally come up at leading order
with

hw+ A~ w=0. (50)

XosYo
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More precisely, lefi, be the rescaled velocity profile (independentcpfindy,). Note
thati, is given by

cosy — exp(—zr g) cos(zr % + y)

tr==Us | _ siny + exp(—z,\/§> sin(z,\/ng y) D

0

wherey is an angle. Using the translation invariance of the equation, we may assume
thatx, = y, = 0. In this case

A;o,yuv =Agv=P (- VI)v+ P.(v- V)i, — A,v+ Pre x v, (52)
P, being the Leray projector on divergence free vector fields.
4.3. Spectral analysisin L?

Let us first investigate the spectrum of the linearized operatak?nShizuta and
Vidav's Lemma is very useful to get bounds on the spectral radiud’of, . More
precisely, let

K, v=P.(v-V,u,), (53)
and
Av=P.(—Av+exv+ (i - V)v). (54)

First we see tha#l with boundary conditiony = 0 generates a semigroup Irf with
| exp(—t,A)|l;2_, ;2 < 1. This semigroup is compact fof > 0 and K is a bounded
operator fromL? — L2. We can apply Lemma 3.1 to obtain that for amy- O there
exists a finite number of eigenvalues with real part greater ¢han

For givenk, andy, let o (k,, y) be the supremum (which is finite) of the imaginary
part of the spectrum, and let = sup, , o (k,, ). Numerical experiments have been
achieved by Lilly in [14] (see also [6,1])r can be computed and is positive if and
only if Re= U+/2¢/v is greater than a critical Reynolds numists. ~ 54.2 (see [1]).
Therefore Ekman layers are linearly unstable when®e& U,,./2¢/v > Re. with
Re ~ 54.2.

Moreover, o (k,, y) is smooth near its maximum. Numerically, this maximum is
nondegenerate (which is a necessary assumption to use Theorem 2.3).

4.4. Analysis of the resolvent
Let us try to solve the resolvent equationVip
(Ap — Iklcld) (vexp(ik - (x,, y.))) = wexp(ik - (x,, y,)) (55)

wherew € V, is given andc € C. Note the presence dk| in factor of ¢ which is
traditional. Now make an orthonormal change of varialgdesy,) — (x/, y/) such that
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y. = (x,, ) -k/lkl|. In the new variables, expk - (x,, y.))0(k, z,) = expi K y/)v(k, z,),
where K := |k|. As this vector field is independent of, we can introduce a stream
function & and a functionJ such that

U(zr)
exp(ik - (%, )’r))ﬁ(k, 7)) = eXp(iKy;) V'(z,)
—_iKW(z,)

System (55) then reduces to the following four by four system on the two func-
tions (U, W)

d? dv d
__U+K2U—2 +iKRe<(v1+ic)U—\IJ ul):wl, (56)
ng er er
o2 2 o v du
~_ _K?) W_iKR ' ——Kz)w—\p—’)—z
(dzf ) l e((v; +ic) (dzr2 dz? dz,
iKw - 2 (57)
dz,
where
u; = Cosy — exp(—z,\/ g) cos(? + zr\/ g)
and

vy =—siny + exp(—z,\/§> sin<)7 + zr\/g)

y being an angle between the direction of the flow outside the boundary layer and the
direction ofk, with boundary conditions

W
U(0) =0, \IJ(O):d 0 =0
dz,
onz,=0and
dv v 0
dz,  dz2

at infinity.

We already know that i m ¢ > 0 system (56) and (57) can be solvedifiexcept for
a finite number of values af (given by Lemma 3.1), which are eigenvalues with finite
multiplicities. Apart from these eigenvalues, the solution to (56) and (57) is unique, and
is easily seen to belong #*. Moreover, the solution is continuous and infinitely many
times differentiable with respect fq as soon as we are away from the spectrum. Since
Ajp is a sectorial operator, we can choose a contour of the ffivas soon as;, is
greater thaw . Hence assumption (A4) holds true.
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4.5. Instability results

Let us now restate Theorem 2.3 in the case of Ekman layers:

THEOREM 4.3 (in rescaled variables).l-et iz, be the velocity profile defined Ig§1).
If 0 < o < 400 and is nondegenerate, than is linearly unstable. It is also nonlinearly
unstable in the following senstor every arbitrarily larges, and every arbitrarily small
§ > 0, there exists a solution’(¢) of the rescaled version of40), (41)and (42) such
that

HM?(O) - I/_lr’ HS g 85
and
[ (1) =@l 20 =0, [ud(T3) =i, > = O,

for some positive tim&?, wherea > 0 is independent of. Moreover we can choosg
and T? such thatT’? ~ C,logs—1.

Note that numerical computations show that the assumptions are satisfied as soon
the Reynolds number is larger thRe. ~ 54.2. Therefore, for sufficiently high Reynolds
numbers, the Ekman layer is unstable and undergoes a transition from laminar layer t
“turbulent” layer. The main open problem is to know whether this turbulent layer will
separate from the wall and enter into the fluid or if it dissipates more than the laminar
layer, which in both case would prevent.aconvergence to (43) and (44) in the interior,
or if it will remain confined near the wall. Physical experiments [6] seem to indicate that
the layer separates from the wall and that waves propagate. However, these experimer
are carried out at relatively “large” layers and relatively large parameter values of

This theorem can be refined to get

THEOREM 4.4 (in original variables). £et us assume thdd < o < +o0 and is
nondegenerate for Re Re.. Letu?PP be an approximate solution defined ag(®). Let

us assume that
2¢
420 (/= > Re.

Thenu?PP is nonlinearly unstable in the following sender every arbitrarily larges,
and every arbitrarily smalk > 0O, there exist two solutiong] and x5 of (40), (41)and
(42) such that

|45 (0) — u®P(0)| s <CeV

e+ 150 = 10

and
i (T%) = u5(T¥)|| o > >0

for some positive tim&*, wherea > 0 is independent of, and T¢ goes to0 ase goes
to 0.

Proof of the theorems. Fheorems 4.3 and 4.4 are just restatements of Theorem 2.3.
Using the divergence free condition and the explicit form@f (A1) and (A3) are
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straightforward, and (A2) is the linear instability which is an assumption. Finally, (A4)
has been proven in Section 4.4

5. Application to Hartman—-Ekman layers

In geophysical situations, we are interested in the following MHD equations on the
fluid velocity » and the magnetic field, in a domainQ = R? x [0, 1], rapidly rotating
aroundes, and within a strong external fixed magnetic field with directégn

Vp E ez X u
ou+wu -Vyu+ — — —Au+
€ €

A A6
= —curlb x e3+ —curlb x b, (58)
& & &

curl Ab
8,b+(u-V)b=b-Vu+¥+7, divb=0, divu=0, (59)

and inQ¢ we consider the Maxwell type equations
curlb =0, curlE = —69,b, divE =0, divb =0. (60)
The boundary conditions are
u=0andE x b is continuous, on =0 and z= 1. (61)

Note in particular that on the fluid’s side, we have éugt E onz =0 and z=1. We
consider the following physically relevant orderings forA, 6, e

e — 0, A=0(1), 60, E ~ g2 (62)
The Reynolds number in this case reads as

int
Re= 10 v !;%“W (63)

and in [2] we proved the stability of the boundary layers for small Reynolds. In [3] we
computed the critical Reynolds number. A Theorem similar to 4.4 holds true and can be
proved with the same ideas. Pure Hartmann layers (external strong fixed magnetic fiel
without rotation) can also be treated. More difficult situations where the rotation vector
of the domain is not perpendicular to the boundary or where the external magnetic fielc
is not directed alongs can also be handled, and are of geophysical interest [3].

We will not detail here this application nor state a precise result since it completly
follows the lines of the Ekman case.
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