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RESUME. — Nous étudions dans cet article I'existance de solutions «multi-couches» du
probléme de transition de phase suivant :

_Szuxx + Wy(x,u)=0 1in(0,1),
ux(0)=u, () =0

ou ¢ > 0 est un petit paramétre &Y (x,u) est un potentiel & double parts «équlibre». En
particulier, nous montrons I'existence de solutions avec couches limites et couches.
© 2003 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

0. Introduction

In this paper we study the existence of solutions with multiple transition layers for the
following spatially inhomogeneous problem of Allen—Cahn type:

—&%u + Wy (x,u)=0 in(0,1),

u,(0)=u,(1)=0. (0.2)
Here e > 0 is a small parameter an@ (x, 1) is a double-well potential. A typical
example of W (x, u) is 2h(x)2(1 — u?)? with (x):[0,1] — (0, c0) and in this case
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(0.1) is called (spatially inhomogeneous) Allen—Cahn equation. Such problems and thei
higher dimensional versions appear in various situations related to phase transitions.
Here we assume
(W1) W(x,u) e C%([0,1] x R),
(W2) there exist 2 functions_ (x), o (x) € C?([0, 1]) such that

a_(x) <O0<a (x) forall x €[0,1], 0.2)
W, a_(x)=W(x,a,(x))=0 forallx e[0,1], (0.3)
W, (x,a_(x))=W,(x,a (x))=0 forallxe][0,1], (0.4)
W (x,a_(x)) >0, W,,(x,ar(x)) >0 forallx ][0, 1], (0.5)
Wx,s) >0 foralls e R\ {o_(x), oy (x)}. (0.6)

Two functionse_(x), a (x) represent two stable states of the poterifidgk, ). It is not
difficult to find two stable solutions of (0.1) which are closeoto(x) or . (x) for all

x € [0, 1]. Besides such stable solutions (0.1) gives rise to solutions with finitely many
sharp transition layers joining two stable stadéegx) andw, (x) for smalle > 0. The

main purpose of this paper is to study location and multiplicity of such transition layers.
Especially we are interested égfustering layersandboundary layers. Here we mean, by
clustering layers, multiple transition layers which are not isolated and appear in a smal
neighborhood of a particular point if©, 1]. By boundary layers, we mean transition
layers which approach to the boundary 0 or I®fl] ase — 0.

We remark that a typical feature of our problem is the property (0.3) and our potential
W(x,u) is “balanced”, that is, depth of two wells are equal for.ak [0, 1]. For the
study of layered solutions for the “unbalanced” case, we refer to Angenent, Maret-Pare
and Peletier [3] and Ai and Hastings [1]. We also refer to Kath [13] and Gedeon, Kokubu,
Mischaikow and Oka [8] for the study of slowly varying planar Hamiltonian systems
from the dynamical point of view. In particular, in recent paper [8], Gedeon, Kokubu,
Mischaikow and Oka showed the existence of complicated dynamics, which is describet
in terms of symbolic sequence of integers, by means of the Conley index theory.

In previous papers [15,16], the first author studies a special class of balance
potentials; her potential has a form:

W (x,u) = h(x)?F (u)

and she assumes conditions related to (W1)—(W2); in particular, for some0 < o,
she assumes that(o_) = F(ay) =0, F(u) > 0 for u ¢ R\ {a_, a,}, F,(0) =0,
F,.(0) <0and

Fy(u)

< F,,(u) forallu=£0. 0.7)

We remark that spatially inhomogeneous Allen—Cahn equation satisfies these assum
tions.

2 pfter completing this work, the Authors has learned about works [13,8] from Professor H. Kokubu. The
Authors would like to thank to Professor H. Kokubu for this information.



K. NAKASHIMA, K. TANAKA / Ann. |. H. Poincaré — AN 20 (2003) 107-143 109

We observe in [15,16] that transition layers appear only in a neighborhood of critical
points of(x) and boundary points 0 and 1 [, 1]:

{x€(0,1); h'(x)=0}U{0, 1}.

Moreover at most one transition layer can appear in a neighborhood of interior local
minimum ofA(x).
Under non-degeneracy assumption/n):

h'(x)#0 ifh'(x)=0

we studied in [16] non-degeneracy and the existence of solutions with interior clustering
layers, but without boundary layers. Our proof of the existence in [16] is based on the
non-degeneracy of solutions and global bifurcation theory.

In this paper, we continue a study of layered solutions and we investigate the existenc
of solutions with boundary and interior layers in more general setting (0.1). We do not
assume non-degeneracy conditions. Here we use a variational argument and we fir
layered solutions rather in a constructive way.

Now we state our main results. In our setting (0.1), the following function plays an
important role.

a (1)
G(z):ﬁ/ VW(t, 7)dr:[0,1] — R.
a_(1)

We can determine location of layers of solutions@®gr). For sufficiently smalk > O,

we can find a solutiom, (x) of (0.1) which has prescribed number of zeros near local
minima and maxima o5 (r); as numbers of zeros of solutions, we can prescribe 0 or 1
at interior local minima ofG (t) and any non-negative integers at interior local maxima
of G(¢). At boundary points 0, 1 of the spatial regif 1], we can prescribe any non-
negative integer it; (¢) takes local maxima there. To state our existence result precisely,
we assume

(W3) G(r) has finitely many critical points i0, 1)
in addition to (W1)—(W2). We use notation
M. ={pe[0,1]; G() takes a local maximumif0, 1] at p },

M_={pe(0,1); G(t)takes a local minimum at},
M=M,UM-_.

We remark that 0 (1 respectively) belongsmo if G'(0) < 0 (G'(1) > 0 respectively).
Our main result is the following theorem:

THEOREM 0.1. — AssumdgW1)—(W3). Then for any > 0 and for any sequence of
non-negative integer8: ,) .y Satisfying

n,ef{0,1} ifpeM_,
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there exists areg = eo((n,), 8) > 0 such that for any0 < ¢ < ¢g, (0.1) has solutions
uf (x), u; (x) with the following properties
@) iu;t(O) >0,
(i) uF(x) has exactlyr, zeros in[p — 8, p+ 8] forall p € M,
(i) uFf(x)#0forall x €[0, 1]\ Upemlp =38, p+41.

Remark0.2. — (i) If W(x,u) = h(x)?F(u), we haveG(t) = Ch(t), where C =
\/zf_llF(s)ds is a constant independent afand M. are sets of points wherk(x)
takes local maximum if0, 1] or local minimum in(0, 1).

(i) We can generalize (W3) slightly. See Remark 5.1 below.

Solutions of (0.1) can be characterized as critical points of the following functional:

1
I. (1) =/%Mx| + - qu(x))
0

and solutions:*(x) in Theorem 0.1 will be obtained as a critical points satisfying

I.(u,) — Z n,G(p) ase— 0. (0.8)

peM

By virtue of (0.3), we can also show that solutiomgx) of (0.1) with finite energy
limsup,_, /. () < oo must be very close te_(x) or . (x) in most of the spatial
region[0, 1] for ¢ small andu. (x) has finitely many zeros. Moreover any zeraufx)
belongs to a neighborhood of critical points@(f:) or boundaries 0, 1. More precisely,
we have

THEOREM 0.3. — AssumgW1) and (W2). Then for anyA > 0, § > O there exist
co=¢0(A,8) > 0,ng9=ng(A) € N, C(8) > 0with the following propertiesf ¢ € (0, &q]
and solutions:, (x) of (0.1) satisfy

L(up) < A, (0.9)

then
(1) meagx € [0,1]; uc(x) ¢ [@—(x) =8, (x) + 8] U [og (x) — 8, oy (x) + 3]} <
C(d)e,
(i) u.(x) has at mostg zeros in[0, 1] and any of zeros belongs eneighborhood
of critical points ofG(¢) or boundaries{0, 1}.

Proofs of Theorems 0.1 and 0.3 will be given in the following sections. To find
solutionsu*(x) stated in Theorem 0.1, we use a method quite different from [1,3,8,
15,16]; we employ variational arguments and we apply a method originally introduced
by Hemple [11] and Chen [4]. More precisely, we set

A={(n,tp,....,1t,); O<ty <tr<---<t, <1}

and define folzy,...,15,) € A
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fEt, to, . ty) = INF{L(u); ue HY(O, 1), £(=1) u(x) > 0in [t;, ;1]
forj=0,12,...,n}. (0.10)

Here we use conventiag = 0 andz,.; = 1.

We will show that critical points off* (1, 2, ..., ,) are corresponding to critical
points of I, (u) with transition layers at;, 1, ..., t, under condition(t; ;1 —t;)/e > 1
for all j (see Corollary 1.6 below). Conversely, if a solutiop(x) satisfies (0.9) for
¢ > 0 small, then it is also characterized as a critical point of (0.10).

We study the behavior of =(14, ..., 1,) and its derivatives to find critical points of
fE(t, ..., 1,). We observe that

fE ) ~ DG =Y eXp(—pi,ja,») et 2 ) (0.11)
j=1 j=0

Herepy ;(t) (j =0,1,...,n) are positive continuous functions of For the precise
meaning of (0.11) we refer to Proposition 1.15 and Remark 1.16 below. Estimates o
derivatives off* related to (0.11) are important for the proofs of Theorems 0.1, 0.3 and
this is a key of our proof. In particular, the second term of (0.11) seems to be related tc
the interaction phenomena between two layers or between a layer and a boundary.

Finally we would like to give a mention about works [2,5-7,9,10,12,14,17-21] where
a similar question for nonlinear Schrodinger equation

—?Au+ V@ u=u” inRY
is studied via variational arguments and our approach in this paper is largely motivatec
by these works.
1. Minimizing problemsin subintervals and variational formulation of (0.1)
1.1. Variational formulation of (0.1)

To give our variational formulation to (0.1), we use the following notation: for
O<s<t<x

EinGs, 1) ={u e H(s,1); £u(x) >0in[s, 11},
Egn(s, 1) = {u € Eqy(s, 1); u(s) =0},

Exp(s, 1) = {u € Egy(s,1); u(t) =0},
Epp(s,t) = {u € Exy(s,1); u(s) =u(t) =0}

and
/ 1
€
I 5.0(u) = / §|MX|2 + EW(X’ u)dx forue EﬁN(s, 1).

Here D and N stand for Dirichlet and Neumann boundary conditions. We define
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+ . i
mDD(gv s, t) = Ijr:-]f I&‘,(S,l‘)(u)v
u€Epp (s,1)
+ . i
mND(gasat)= |Qf I&‘,(S,t)(u)a
u€ENp(s,1)
+ . i
mpn(ess, )= inf I . (u).

ueE[i)N(s,t)
With this notation, our functionaf*(t1, 72, . . ., #,) given in (0.10) can be written as

fE(t, ta, .o ty) =m0, 1) + mEp (1, 12) + - - -

_yn—1 _\n
+mpy " (taet, ta) +mpy (1, D). (1.1)
Here
(_)n )= if nis Odd,
T 1+ if niseven.

Thus analysis of minimizing problemss, (¢; s, 1), mip(e; s, 1), miy(; s, 1) is essen-
tial in our approach.

To analyze minimizing problemsniy(e;s,1) etc., we introduce the following
minimizing problem fors € [0, 1] andZ € (0, oo]

l
1
bE(s, €)= inf /§|vy|2+W(s,v(y))dy. (1.2)

ueEE(0,0) /

After scaling v(y) = u(s + ey), the above minimizing problem appears as a limit
problem ofmy(e; s, 1) or mip(e; s, 1). See Lemma 1.8 below.
Whent < oo, (1.2) is corresponding to positive (or negative) solution of
—vyy + Wi (s, v(y)) =0 fory e (0,9),
v(0) =0, (1.3)
v, () =0.
We remark that under (W1)—(W2), solutions of (1.4) can be extended-fwedodic
solutions of—v,, + W, (s, v(y)) = 0 in R. When¢ = oo, (1.2) is corresponding to a
solution of
=y, + W, (s,v(y)) =0 fory e (0, 00),
v(0) =0, (1.4)
v(y) = ax(s) asy— oo.
We remark that the solution of (1.5) can be extended to a heteroclinic solution joining
ax(s) anday (s):
—vyy + W, (s,v(y)) =0 fory e (—o0, 00),
v(0) =0,
© (1.5)
v(y) = ax(s) asy— —oo,

v(y) = ai(s) asy— oo.
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Uniqueness of the heteroclinic solution of (1.5) is easily seen and we denote the uniqu
heteroclinic solution byv™(s, co; ).
Here we give some remarks on solutiang) of

—vyy + W, (s, v(y)) =0. (1.6)

It is not difficult to show the following

LEMMA 1.1. — AssumgW1)—-(W2). For any fixeds € [0, 1] and for any solution
v(y) of (1.6), we have the following properties
0 E, = %|vy(y)|2 — W(s, v(y)) is independent of. Moreover we haveE, < 0
for all periodic solutionsv(y) of (1.6), in particular, for minimizers ob(s, £)
(¢ < 00), E, = 0for heteroclinic solutions joining (s) anda_(s), in particular,
for minimizer ofb (s, 00). E, < 0 for all bounded solutions dfL.6).
(ii) If a bounded solutiom(y) of (1.6) satisfies

v(yn) = ay(s) Or a_(s)

for some sequenog satisfyingy, — oo or y, — —oo, thenuv(y) is a heteroclinic
solutions joininge_ (s) and o (s).

We will use the above properties repeatedly in the following arguments.
Next we give basic properties @igy(e; s, 1), mip(e; s, 1), mpn(e; s, 1), b*(s, £).
Proofs of the following proposition will be given later in Section 6.

PROPOSITION 1.2. — There existy > 0 and ¢y > 0 such that
(i) fore e (0, &), (t —s)/e > £o the minimizing problemas, (s s, 1), miip(e; s, 1),
mﬁN(s; s, t) have unigue minimizens(x). The minimizers satisfy
—&%Ue + W (x,u) =0 in (s, 1),
Fu(x) >0 in(s,1)
and
u(s)=u(t)=0 formjp(e;s, 1),
uy(s)=u(t)=0 formip(e;s,1),
u(s) =u,(1)=0 formpy(e;s, 1),
(ii) for ¢ € [£o, oo], the minimizing problenil.2) has a unique minimizen (y) and it
satisfieg1.4) or (1.5).
In what follows, we denote the unigue minimizers by
u:|i3:D(87s7 ty-x)a M:,\ED({:‘,S,[;X), M%N(S,S,t;x), a)i(S,EQy)
for e € (0, 9], (t — s)/e = Lo, £ = L.
By the uniqueness of the minimizers, we can see that the minimizers depend on th

parameters, s, , £ continuously inC*-sense. In particular, setting

D={(es,1); £€ (0,6l 0<s<r<1 (t—s)/c>Lo},
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we have

P + + + +
LEMMA 1.3.—FunCtI.Or]SuDD’X(S,s,t;s),uDD,x(s,s,t;t),uND,x(S,s,t;t),uDN’X(s,
s,t;5): D — R are functions of clasg?.

We remark here that the minimize(x) is uniquely determined by its initial daté(s)
andu, (s). Foro™(s, £; y), we can see thab™(s, £; y) is continuous also at = oo. In
particular,

LEMMA 1.4.—ForanyL > 0ands$ > O, there existy) = n(L, §) > £ such that for
t=n
|@F (s, € y) — 0™ (s, 00; Y)ch([o,L]) <38.
The following lemma is essentially due to Hemple [11] and it is easily derived from
C'-dependence af5p, ufip, ugy ONs, 1.

LEMMA 1.5.— (iymdp, myp, mgy: D — R are differentiable and

0 1
g (e:5.0) = S| (65, 1:9)[F = ZW(s.0),

0 & > 1
57mpo(E: 8,0 = =S [upp (68, D[+ =W(1,0),

0 & 2 1
S Mo(E: 8, 1) = =3 [uyp (.5, 50|+ =W, 0),

1
a—mSN(s; s, 1) = %|uf)N (e85, s)]2 — EW(S, 0).
p :
(i) b*(s, ) [0, 1] x [£o, 00) — R is differentiable and

0 1
ﬁbi(s, 0) = —§|a)y(s, L: E)|2 +W(s, (s, 4;0)=W(s, o, ;).

In the setting of Lemma 1.5(ii), we can s,€~<%|a)y(y)|2 + W(s, w(y)) is independent
of y. Thus we also have

I 1 2
i (s,Z)——§|a)y(s,€,0)] + W(s, 0).

Here we omit proofs of Lemmas 1.3-1.5.
As to the corollary to the above lemma, we can give a variational formulation of (0.1).

COROLLARY 1.6. —The functionf= (1, 1o, . . ., 1,) defined in(1.1)is differentiable in
(0, g0l x {(t1, 12, ..., t); t1/8, (t2 —t1) /&, ..., (tn —t,_1) /&, (L —1,) /e = £o}. MoOreover
(t1, 12, ..., ty) Withty /e, (to —t1) /e, ..., (t, — t,_1) /e, (L —t,) /e > £o iS a critical point
of f(t1, 12, ..., t,) if and only if

uip(e, 0, 11; x) for x € [0, 11],

_J .
ue(x) = upt " (e, 1), t013%) forx eltj, tj1l G=212,...,1),

uél(\l_)n (e, t,, L, x) for x € [1,,, 1]

is a solution 0f0.1).
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Proof. —Recall that

+ + . .
fg (tlv t2v s tn) :mND(gv 07 tl) +m:|§D(8v tlv t2) + e

+ _y—1 +(—)"
+mDI(3 ) (8; In—1, tn) +le(\| ) (8; Ins 1)

anduﬁD(s, 0, 11; x), upp(e; 11, 12; x), . .. are the corresponding minimizers. Itis clear that
u.(x) satisfies (0.1) except pointszy, t, ..., t, and it solves (0.1) if and only if

ad
+ . .

an

d _yi-1 0 Y .

—unp (e, tio1. 1)) = —upp e, 15, tizist;) forj=23,...,n—-1,
atj Btj

3 +(— n—1 a +(_)
_uN(D ) (8’tn—l7 tn;tn)= _MD|(3 ) (8,tn,1; tn)-

at, ot,

We can easily see that these are equivaleM fg (11,72, ...,1,) =0. O

Remark1.7. — If W(x, u) has a form:
W(x,u) = h(x)*F (u)

and F (u) satisfies (0.7) in addition to (W1)—(W2), Hemple [11] showed the uniqueness
of minimizer mp(e; s, ) without assumption of smallness ef and largeness of

(t — s)/e. His proof of uniqueness works also fariy(¢; s, 1), my(e; s, t) after minor
moadification. Thus under the assumption (0.7), all solutions of (0.1) can be characterize
as critical points off= (11, ..., 1,).

1.2. Propertiesof mEy(e; s, t), miy(e5 s, 1), my(e; s, 1)

From now on, we try to find critical points cﬁ?fj(tl, tr, ..., t;). We remark that
re-scaled function(y) = uﬁD (e,s8,1;5 + ¢€y), etc. satisfies

. t—
—vyy + W, (s +ey,v(y)) =0 in (0, 8s>.

We use frequently the following properties of minimizers.

LEMMA 1.8.—ForanyL > 0and$ > O there exist®; = ¢1(L, §) > 0 independent
of s, ¢ such that fore € (0, e1] and (r — s) /e > £g

. L t—s
upp (e, 5,135 +6y) — ™ (5, 5—;y L
2¢ C2(10,L/2))
r—s
ujD[D(S,S,ﬁt_SY)_O)i(t, U’)’ <34,
2¢ C2(10,L/2])
t—s
uﬁo(s,s,t;t—sy)—wi<t, ;y>’ <34,
€ €2([0,L))
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< 6,
€2([0,L))

t—s
MjDEN(E,s,t;s—i-ey)—wi(S, §y)
&

whereL = min{L, =%} > 0.
From Lemma 1.4, we have
COROLLARY 1.9.— For any L > 0 and § > O there existe; = £,(L,§) > 0 and
n=n(L,8) > £y such that fore € (0, e;] and (t — s)/e > n
HMSD(& s,t;8 +¢ey)— w* (s, 00; y)HCZ([o,L]) <34,
HMSD(& s,t;t —ey) — w* (1, 00; y)HCZ([O,L]) <4,
Hu,d\,ED(g, 5,15t —¢&y) — o= (t, o0; y)HCZ([o,L]) <3,
HMSN(E, S,t;8+¢ey) — a)i(s, 00; y)HCZ([o,L]) < 4.
LEMMA 1.10. — For anyé > O there existL; = L1(8) > 0 ande; = £1(8) > 0 such
that fore € (0, e1] and (r — 5) /e > €g
t—eL1/2
%|MZ$D’X(8, S, 1 x)]2 + %W(x, u%D)dx <3,
s+elq/2
t—elq
g|quED,x(8, s, t; x)]2 + %W(x, Upp) dx < 8,

N
t

1
/ %!uE‘N’X(s, s, t; x)|2 + EW(X’ ugy) dx < 8,
s—i—slil
whereL; = min{Ly, (t — s)/e} > O.
LEMMA 1.11. - There are constantg,, a,, az > 0 such that fory € [0, (t — s)/¢]

d
|u§D(s, s, 18 +ey) —ar(s +ey)| + ’@(MJD[D(& s, 1,5 +8y) —as(s —I—ey))‘

t—s
< ar16® + azexp(—azy) + az exp(—a3 ( P y) ) )

d
luzip(e, s, 135 +&y) —as(s +ey)| + ‘a(uﬁD(s, s,t;8 +ey) —as(s+ ey))’

t_
<a182+azexp<—a3( - il —y)),

d
|u§N(8,s,t;s +ey) —as(s +ey)| + ’@(MSN(&SJ;S +€y) —ai(s+8y))’

< a16® + ap exp(—azy).
Proofs of Lemmas 1.8-1.11 will be given later in Section 6. As a corollary to Lemma
1.11, we have



K. NAKASHIMA, K. TANAKA / Ann. |. H. Poincaré — AN 20 (2003) 107-143 117

COROLLARY 1.12. —There is a constant, > 0 such that for(z — s) /e > 2a4|log ¢|

d
lupp (e, 5,155 +ey) —oi(s +ey)| + | — (upp (e, s, 155 +&y) —or(s + ey))’ < 2a16°

dy
for y € [aslloge], (t — 5)/e — aslloge|],
d
lunp(e, 5. 135 +€y) —as(s +ey)| + @(ujN:D(S’ s,t;5+ey) —as(s + sy))‘ < 2a16°

for y € [0, (r — s)/e — aallogel],

d
|u§N(8, s, ;5 +ey) —as(s +ey)| + @(”%N(& s,t;5+ey) —os(s + gy))‘ < 2a,6°

for y € [asllogel, (r — 5)/¢].
1.3. Behavior of f*(t1,...,1,)

In this section we give an explanation and a proof of (0.11). We do not need estimate:
given in this section for the proofs of Theorems 0.1 and 0.3 directly. The readers car
skip this section and proceed to Section 2.

First we comparenpp (e; s, 1), myp(e; s, 1), mpy(e; s, 1) andb® (s, =2), b*(t, =2).

Here we use results in previous subsections.

LEMMA 1.13. - For any$ > 0O there existe; > 0 such that for any € (0, £;] and

(t—s)/e =24y
i i t—s) i( t—s)‘
> at _b s T A~ _b ta <85
Mpp (3 5. 1) (s 2¢ 2¢
l‘_
miio(eis.) = b (1. gs)‘@,

t_
mﬂDEN(g;s,z)—bi<s, s)‘ <.
&€

Proof. —We only prove the first inequality. By Lemma 1.10, we can find 0 such
that

t—elL
1 1) -
/ %]uﬁD s )P W uip) dr < 3 for sufficiently smalle > 0, (1.7)
’ &

s+£l:

where

~ . t—s
L= mln{L, }
2¢
On the other hand

s+£l:
& 2 1
/§|M§D,X(8,s,t;x)| +;W(x,u§D)dx
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2
+ W(s + ¢y, ujD[D) dy (1.8)

—/Ll’d j[(e ;s +ey)
—0 2dyuDD S, 158 y

and by Corollary 1.9 we have for sufficiently small

2
+ W(s + ey, ujD[D) dy

l‘_
+W<s,a)i<s, 2—;; y)) dy

L
1/ d
’/é‘auﬁD(g,s,t;s—i—gy)

L
- [5e (s 55)
0
We can also see
L 2
1 t—s t—s
~ Y T A~ W P = 7—; d _bi<v )
0/2 ( y)+<s‘°<s28y>)y e

forlargeL > 1 independent of, ¢ satisfying(r —s)/e > £;. It follows from (1.8)—(1.10)
that

2
< -—. (2.9)

I\JII—‘

b
- (.10
<5 (110

stel
& 2 1 1 —s )
/ E’”%D,x(&& t )|+ EW(X’ upp) dx — b* <s, 2 ) <3 (1.11)
Similarly we have

)
< -

(1.12)

t—s
‘/zluDDx(sstx)’ + - W(x upp) dx — bi< 28)

t—elL

Thus by (1.7), (1.11), (1.12) we have

t—3s t—s
‘mén(s;s,t)—bi<s,2—8>—bi<t, > )‘gs. O

Next we give an estimate fdr (s, £).
LEMMA 1.14. —It holds that

b= (s, £) ~ b* (s, 00) — exp(—2y/ Wy, (s, oL (s))L)

for large £. More precisely for any > 0 there existd (v) > £, such that

— eXP(— (2y/ Wau (5, ax(s)) — v)€) < bE(s, £) — b (s, 00)
—exp(—(2y/ W, (s, s (s)) +v)£) (1.13)

for ¢ > (v).
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Proof. -We deal with 4’ case. =’ case can be dealt in a similar way. By (ii) of
Lemma 1.5,

0
ﬁlf’(s, O =W(s, 0" (s, £ 0)).

We remark thaty — —%|a)y(s, ;)% + W(s, wt (s, £; y)) is independent of and we
have

Wy (s, 65 y) = \/Z(W(s, ot (s, 4;y) — W(s, 0t (s, £; £)))
forall y € [0, £]. Thus

w(s,t;0)

l
1
gzo/dy: 0/ N A LRGN

;. (1.14)

We remark that
wt(s,0;0) = a,(s)—0 ast — co.

To analyze the behavior @* (s, ¢; £) as¢ — oo precisely, we fix smalkg > 0 and
consider behavior of

ay(s)—h
1

d
V2W(s, 0) — W(s, ay(s) —h)

o (5)—ho

¢ (1.15)

ash — +0. We remark that we can find constani(/o) depending only o such that

o (s)—ho

1

d¢ < Co(ho). 1.16
V2W (s, ) — W(s,a(s) — h)) ¢ o(ho) ( )

IntroducingW(r) = W(s, ay(s) — 1), we can rewrite (1.15) as

ho 1
h/ V20W (x) = W)

dr.

Using Cauchy’s mean value theorem, we can find (4, hg) andé, € (0, 61) C (0, ko)
such that
W) —Wh)  W.0) 1

— = ZW,,(65).
12 _ 2 20, 2 ©2)

Thus, settingC. (v) = \/Wlm(s, ay(s)) £ %v, for anyv > 0 we can choose smadi} > 0
such that

1 — — 1
5c_(v)z(r2 — W) < W(t) = W(h) < EC+(u)2(r2 —h?) forO<h <t <ho.
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Thus we have

ho ho
1 1 1
d'L' < — — d'L'
C.(v) h/ V12— h? h/ \/Z(W(r) — W(h))
ho
1 1
< C_(U) h/ mdf

Since

ho 2
1 . ho ho 2h0 2hO
/ﬁd’—"’g(f (3) —1) = Loo(5 =1) roo(52)}

we have

ho
ibg(%_]_)g/ — 1 — dr
Ci(v) h it \/2(W(r) - W(h))
1 2hg
<cwal5) .

Settingh = o (s) — o™ (s, £; £), we have from (1.14), (1.16) that

1

ho
€ — Co(ho) < — —
h/ V2W (1) — Wh)

dr < 2.

Thus by (1.17)

exp(C_(v) (£ — Colho))) < % <exp(CL () + 1
That is, for anyw > 0 we can find
exp(—C1(2v)0) < ai(s) —w (s, £; £) < exp(—C_(2v)¢) forl> 1.
Using
aa—glﬁ(s, O=W(s, 0 (s,£;0)) ~ %Wuu (5, 04 () (s (8) — (s, €5 0))°
and

T
bt (s, £) — bt (s, 00) = — ﬁb+(s, 0)dr,
L
we can get the desired result (1.13)3

Combining Lemmas 1.13 and 1.14, we have
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PrRoPOSITION 1.15. — For any § > 0 and v > 0 there existe; = £;(8) > 0 and

€1 =£1(v) = £g such that for any € (0, ;1] and for any(z, ..., t,) satisfying0 =ty <
H<try<---<t,<tpyp=121and(tj1 —t;)/e > €1 it holds that

liv1 =1
) ZeXp< (Pa(yi(tj) —v) 2% )

tn - tn
- eXp<—(,0i(—)" (t,) —v) L) -3

&

- exp<_(l)ﬂ:(tl) —v)

<[ ) =) Gy
=

< - exp( (p+(r1) +v)

) Sonf-tncs )

- eXp<— (p(ty) -y +v) %) + 4,

Wherelozt (t) = 2\/ Wi (l, 02 (t))
Remark1.16. — Proposition 1.15 means that (0.11) holds with

p+0(t) =2/ W, (t, as (1)),
py (1) = \/ Wa(to ey (0) for j=1,2,...,n—1,
P () =20/ W (1, ctz o (1)),

Proof. —~We remark thatG (s) = [, %Ia);r(s, 00; y)|% 4+ W(s, a);,“(s, 00; y))dy and it
holds thatG (s) = b™ (s, 00) + b~ (s, 00). Since

() =misp(e;0,1) + mip(ei 1, 12) + -+ mpy ) (€31, 1),

Proposition 1.15 follows from Lemmas 1.13, 1.14 and the continuitWgf(z, a4 (¢))
easily. O

Thus we have (0.11). Heuristically we can derive our existence result from (0.11).
Here we explain the case= 1. Since

t

FE@) ~ Gl for . > 1,

we can find critical points in a neighborhood of strict interior minima and maxima.
As to boundary layers, we assume that 0 is a strict local maximué(of. Choose

n € (0,1) sothatG(t) < G(0) in (0, n]. We have

p+(0)t1
€

()~ Gty) — exp(— ) neart, ~ 0.

More precisely by Proposition 1.15, for ady>- 0 andv > 0 there existg,(5) > 0 and
£1(v) > £g such that for € (0, ¢1] and£ > £4(v), it holds that
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fE(el) < G(el) — exp(—(px(e€) + v)L) + 6,

[E(2e0) = G(26€) — exp(—2(p+(2e€) — v)L) — 6.
We choose, £, § in the following way: first we choose smallso that

2(p+(0) —v) > p+(0) +v.
Next we choose largé> ¢,(v) so that
G(0) — exp(—2(p+(0) — v)¢) > G(n).
Finally we choosé > 0 so that
—exp(—(p+(0) + v)€) + 8 < —exp(—2(p+(0) — v)€) — 8,

G(0) — exp(—2(p+(0) — v)€) — 8 > G(n).
Letting e — 0, we have

limsupf;*(£) < G(0) — exp(—(p=(0) +v)¢) + 3,
e—0
lim i(r)mf fE(2¢0) = G(0) — exp(—2(p+(0) — v)£) — 3§,
lim ) =G®.
Thus we have

fE@e0) > max{ f=(el), f=(n)} for sufficiently smalle > 0.

Thereforef*(r1) has a critical point ine¢, ). Since we can choosg> 0 arbitrarily,
we can see thaf*(¢;) has a critical point in a neighborhood of 0.

To find critical points off* (1, ..., 1,) for n > 1, we need to use minimax methods or
degree arguments and we need estimat@s of (11, ..., 1,) which will be developed in
the following sections.

2. A congtraint for fE(ty,...,t,)

From now on, we try to find a critical point of = (4, . . ., #,) with a profile given in
Theorem 0.1. We choose a smialk- 0 such that

1 . / / /
h<ém|n{|p—p|; p. P eMU{0,1}, p#p'}.

Thenp e M, (p € M_ respectively) implies

G'(t) > 0 (< Orespectively fort e[p— 2h, p),

G'(t) <0 (> Orespectively forz e (p, p+ 2h].
We write M = {p1, p2, ..., pn} (p1 < p2 < --- < py). FOr a sequence; =n,, (j =
1,..., N) of non-negative integers satisfying the assumption of Theorem 0.1, i.e.,

n;e(0,1) if pjeM.
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we try to find a critical pointz, (x) of I, (x) which has exactly ; zeros in a neighborhood
of p; for eachj. To do so, we arrange, ro, ..., t, (n = Zf’zlnm) into N groups. We
write

(tlv"'vtn):(tllv"'9t1n17t217"'9t2n27"'7tva"'7thN)

and we assume thgh group (1, ..., ;) lie in [p; — 2k, p; + 2h]. (Some of these
groups may be empty.)
If p; ¢ {0, 1}, we set

Al={(t1,....7,); pp—2h<Tu<T2< -+ < T, < pi +2h,
(tjz1—1)/e 2 Lofor j=1,2,...,n; —1}. (2.1)
If p; =0, we have =1 and set
Ag:{(rl,...,rnl); elo<T1<Tp<---<Ty <2h,
(tjy1—1))/e 2 Lofor j=1,2,...,n1 —1}. (2.2)
If p, =1, we have = N and set
AY ={(t1,...,0); 1-2h <Ti<Ta < -+ < T,y <1 — ey,
(tj;1—1;)/e 2 Lofor j=1,2,...,ny — 1}. (2.3)
For sufficiently smalk > 0 we try to find a critical point of
fEA <o x AV R, (2.4)
We will show the existence of a critical point of (2.4) by means of Brouwer degree; that
is, we will show
deg V=, Al x---x AY,0) #£0. (2.5)
Estimates oV £ ond(Al x --- x AY) are important in the proof of (2.5).
We choose € {1, 2, ..., N} and we deal with estimates of

@y fi5s s Oy, [ 1AL — R

for fixed (111, ..., fi—1m . ti1 1, - tmy) € Alx . x AIFLx Al ... AN By the
definition of £+, itis clear thatd,, =, .. ., 3, fE)dependsonlyon_i,, ,,t1, ..., i,
liv11

For the sake of simplicity of notation, we write
P = Di, n=n,
To=li—1n_y» A =M1, T2=1li2, ..., Tn =lin, Tnt+1 =1li411,
Ve = (0, ...,0),
Ae={(t1,....T); p—2h<n1<Tp < <7, < p+2h,
(tjy1— 1)/ 2 Lofor j=0,1,...,n} (2.6)
and compute de. g., A,, 0), where

8e(T1, .. Ty) =mbp(e: 10, T1) + Mo (€ 1, T2) + - - +mSY (€3 Tws Tagr).  (2.7)
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If i=1o0ri =N, we regard

=0 ifi=1,
Ta1=1 ifi=N

and we replace the first term of (2.7) by if 7o =0 and the last term by if
7,41 = 1. We remark that we may assum& < # and any set\’ in (2.1)—(2.3) can be
written in form (2.6) in a unified way.

We will estimateV, g, on the boundarg A, of A, to show degV.g., A., 0) #0. We
remark that ifp ¢ {0, 1},

A ={(t1,...,Tw); m=p—2h} U{(t1,.... ) T =p+2h}
U{(t1,....T); (tj31—1j)/e =L forsomej €{1,2,...,n — 1}}.
If p=0,then
A ={(t1,...,T); Ta=p+2h}
U{(ts,...,w); (tj41—1;)/e =Loforsomej €{0,1,2,...,n —1}}.
If p=1,then
A, ={(t1,...,7,); n=p—2h}
U{(t1,....); (tj41—1;)/e ={oforsomej € {1,2,...,n}}.

We remark thatj =0 or j =n takes aplace ip =0orp =1.

In what follows, we show two types of estimatesVWfg, on dA,. The first type of
estimates deal with the case= p — 2k or 7, = p + 2h and it reflects the influence of
the functionG(¢), i.e., the first term of (0.11). The second type of estimates deal with
the casdr;;1 — 1;)/e = £o and it reflects the interaction between two layers or between
a layer and boundary 0, 1, i.e., the second term of (0.11).

3. Estimatesof V., g,

3.1. Estimates of derivatives of m3,(e; s, t), m¥y(e; s, 1), miy(e; s, t) for
relatively large (¢t — s)/e
The aim of this subsection is to show the following estimates:

PropPoOSITION 3.1. — For any § > 0 there exists, > 0 such that ife € (0, ;] and
(t — s5)/e = 3ag|loge| (as > Ois given in Corollaryl.12) then

8 /
ang(e; s,1) — G*/(s)| <6, (3.1)
a /
EmeED(e; s,t) — G* (z)‘ <4, (3.2
a !
EmﬂNED(g; s,t) — G* (z)’ <4, (3.3)

3
—m3y(e;5,1) — GF(s)

<. 3.4
o (3.4)
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Here G*(¢) is defined by

oy (1)

0
Gt(t) =2 / VW, 1) dr, G (1) =2 / VW(t, 1) dr.
0

a_ (1)
Before giving a proof of Proposition 3.1, we remark that

oy (1)

GH(t) =2 / VW(t, 1) dr

0

:ﬁ/ VW, o (t, 00; y)o! (1, 00; y) dy
0
1 + 2 +
=/§’wy (t, oo; y)| +W(t,a) (t, 00; y)) dy.
0

Thus we have

G*'(1)

0\8 0\8

(—a);’y + Wy (t, ) + W (1, 0™ (2, 00; y)) dy

W, (1, 0" (1, 00; y)) dy.

In a similar way, we have

0
G '(t)= / W, (t, 0™t (z, 00; y)) dy.

125

(3.5)

(3.6)

Proof. —We give a proof of (3.1). (3.2)—(3.4) can be proved in a similar way. We fix
t € (0,1] and we show (3.1) for+{’ sign. Here we writeu(x) = upp(e, s, t; x). Let

¢(1) 1[0, 00) — R be a function of clas§'* such that
p(t)=1 forzr e]0,1],
p(t)=0 fort e[2, o0),
¢ (t) <0 fort €[0, c0)
and we set
We = aslloge|,
wherea, > 0 is a constant appeared in Corollary 1.12.
We supposér — s)/e > 3u. and it follows from Lemma 1.5 that

5 1
i (ess.1) = gyux(s)yz - SW(.0)



126 K. NAKASHIMA, K. TANAKA / Ann. |. H. Poincaré — AN 20 (2003) 107-143

= f]ux(s)lz — }W(s, u(s))

&) s )

- L go’(x_s>(—flux(x)lz—i-}W(x,u(x)))dx
E[Le ELe 2 €

+/ () 2w (et e

Changing variable = s + ey and introducingu(y) = u(s + ey) = upp(e, s, t; s + €y),

we have

2pke

ad 4 . _ 1 oY l 2
amDD(s,s,t)_/glus(p(us)<— [vy] +W(s+8y,v(y)))dy

2pke

+/ < ) (s +ey,v(y))dy

=)+ .
By Corollary 1.12 and (W3), we have

1
’_§|vy|2 + W(s+ ey, v(y))‘ < Ce? fory e [pe, 2,

whereC > 0 is independent of > 0. Thus

2/Le
(D <

e

1 Y 2 _} _ _E
——¢ (E)CS dy = 2(<0(1) 9(2)Ce = 5 ¢

&

Using Corollary 1.9 and Lemma 1.10, we have
2/ie

unz/hclym@+ww@»®
0

e

—>/Wx(s,a)+(s,oo; y))dy =G*'(s)

ase — 0 uniformly ins € [0, 1]. Here we used (3.5).
Combining (3.7)—(3.9), we get (3.1).0

(3.7)

(3.8)

(3.9)
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We also need the following estimate.

PROPOSITION 3.2. — For any § > 0 there existe;, > 0 and £, > £ such that for
¢ € (0, &] andt, s satisfying(t — s) /e > {5,

’(aa_er%)m%D(e;s,t)— (G*'(9) +G*'(1)| <86. (3.10)

Proof. —We deal with just 4’ case. Here we write (x) = ufp (e, s, t; x) andv(y) =
u(s +ey) =upp(e, s, t; s + ey). As in the proof of Proposition 3.1, we have

9 9

= —(——|ux<s>!2 F W, 0)) + (—f!ux<t>l2 40, 0>>
2 € 2 €

B rd( e , 1
_/E{_Em"l —{—EW(x,u(x))}dx

(1—=s)/e
—/ (x,u(x)) dx = / W, (s 4+ ey, v(y)) dy
0
Thus by Corollary 1.9 and Lemma 1.10, for sufficiently snwatt O and sufficiently
large(r — 5)/e, we have
(t=s)/e

W, (s + ey, v(y))dy — /Wx (s, ¥ (s,00; y)) dy
0

o
/Wx (1,0 (t,00;y)) dy| < 8
0

By (3.5), we have (3.10). O

3.2. Estimates of derivatives of m3,(e; s, t), m¥(e; s, 1), miy(e; s, t) for
relatively small (1 —s)/e
Next we deal with estimates ofimpp(e;s.t), 2mpp(e;s, 1), Lmyp(e:s.t),
Lmpn(e; s, 1) for relatively small(r — 5)/e.

PrRoOPOSITION 3.3. — (i)For anyZ > £y there existe (£) > 0andez(¢) > 0 such that
for (r —s)/e € [£o, £] ande € (0, e3(£)], it holds that

9 +

9 +

0 +
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0 +
gamDN(gi s, 1) < —p(0).

(i) For anys > QO there exist€(8) > ¢g ande4 > 0 such that for(z — s) /e > £(8) and
g € (0, 4], it holds that

& , € , € , €

3
—mﬁgN(s;s,z)’ <8

d
—mip(e; s, 1) oy

ot

a +
— e, 8,1
aszD( $:1)

9 4
— g;s,t
8stD( $:1)

Proof. —We prove just for-mpp(e; 5, 1).
(i) We argue indirectly. If the conclusion of (i) does not hold, there exist sequaences
tj, €; such that

(t; —s;)/€; € [Lo, £],

8]' — O,

. 0

||er_]>|or<1f gjam—SD(gj;sjatj) >0. (311)
We may assume; — §,t; — § and(t; —s;)/e; — £ € [£o, £]. Letu;(x) be a minimizer

corresponding teufp(g;; 57, ¢;) and set; (y) = u;(s; + &;y). Then by Lemma 1.8, we
have

lv;(y) — 0™ (5, 0/2; W|cz— 0 asj— oc.
Sincew™ (3, £/2; y) can be extended to &eriodic solution of
—Uyy + Wu (57 v(y)) = Oa

we have

1 .

Sloy G E/2 0> = W,(5,0) <0.
On the other hand by Lemma 1.5, we have

d 1 2 1 .- 2 -
gjngD(gj; S, lj) = é‘l)j’y(OH - W(Sj, O) — §|a)y (S,E/Z; 0)| - W(S, O) <0

asj — oo. This is a contradiction to (3.11).
(i) Sincew™ (s, 00; y) is a heteroclinic solution of (1.5), it satisfies

%|a);’(s, 00; 0)|* = W(s, 0) = 0.

Using this property, we can deduce the second statement of Proposition 3.3 fron
Lemma 1.5 and Corollary 1.9.0

3.3. Egtimatesof V,g. when 7, = p — 2h or 1, = p + 2h holds

From now on we give estimatég g. ondA,. First we deal with the casg = p — 2h
or 7, = p + 2h. Mainly we consider the cagee M, \ {0} andt, = p — 2.
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Suppose thap € M, and(ty, ..., 7,) € A, satisfiess; = p — 2h. Then for sufficiently
smalle > 0 we can findj € {1, 2, ..., n} such that

p—-2h=1u<t<---<1;<p-—h, (3.12)
(tj+1— 1;)/e = 3aalloge|. (3.13)

We choose > 0 sufficiently small so that

min  G'(¢) > 6.
p—2h<t<p—h

Applying Propositions 3.1 and 3.2, we choose> 0 so that (3.1)—(3.4) holds for
¢ € (0, &2]. Then we have

<a +- 4 a> ( )
— 4+ — T1y .oy Ty
0T 0T gelt

o )+< i 8) oo ( ) +
= —mpp(€&; 70, T — +— |mpp(&; 11, T
8‘[1 DD 0" 8‘1,'1 8‘1,'2 Db L2

9 9\, £t Oy
+ +—|m & Tj_1,Tj) + —m £ Tj, T
<3Tj—1 8rj) oo (6:7-1, 7)) o7, po (&7}, Tjt1)

> (G*'(11) = 8) + (GF' (1)) + G/ (1) = 8) + - --

+ (GO (@) + GO (1) = 8) + (6T (1) - )
=G'(t)+--+G'(r)) — jé
> 0.

We can argue in a similar way and we have

PrRoOPOSITION 3.4. — (i) Suppose thap € M, \ {0} (p € M_ \ {0} respectivelyand
71 = p — 2h. Then there exist € {1, 2, ..., n} such that(3.12)and(3.13)hold. For such
a j, we have

0 0
(— 4+ —)gg(‘cl, ..., T,) >0 (< Orespectively. (3.14)
011 0T;

(i) A similar result holds for the casp € M, \ {1} (p € M_ \ {1} respectively)and
7, = p + 2h. More precisely, there exisise {1, 2, ..., n} such that

P+h<t<Tjj1<---<T,=p+2h, (3.15)
(tj — tj-1)/€ = 3aslloge| (3.16)

and for such & we have

0 0
(— 4+ —)gg(rl, ..., T) <0 (> Orespectively. (3.17)
0T; 0T,
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3.4. Estimatesof Vg, when (tj41 — t;)/e = 4{o for some j € {0, 1,...,n}

Next we deal with the casérj 1 — 1;)/e = £o. Here we use Proposition 3.3. We
choosely, €5, ..., £, in the following way. First we apply Proposition 3.3(i) to choose

po = p (o).
Next we apply (ii) of Proposition 3.3 fof = pg/2 > 0 and let
€1=1L(po/2).
We continue this process and set
p1=p 1), L2=L(p1/2), p2=pL2), L =L(p2/2), ..., €y =L(Pn-1/2), pn = pLy).

By the definition, we have
PO > P1> "> P,
bo<lyi<--- <,
As a consequence of Proposition 3.3, we have the following
PrROPOSITION 3.5. — Suppose thatry, ..., 1,) € A, satisfies
(tiy1 — 1) /e =4£o forsome €{0,1,...,n}. (3.18)

Thenwe canfing € {1,2,...,n}andk € {1, 2,...,n} such that

(tj — tj-1)/¢ € [Lo, L],
{ (Tj+1—7;)/€ € [£g41, 00) (3.19)
or
(tj — tj-1)/€ € [li41, 00),
{ (Tj'+1 - 7;)/€ € [Lo, £i]. (3.20)

For suchj, k, we have

5 -0 if (3.19)holds,
(ﬁ)gﬂ(fl"””") {< 0 if (3.20)holds. (3.21)

Proof. —First we show (3.19) or (3.20) holds. If (3.19) does not hold, we have for any
Jrk
(tj —tj—)/e €llo, bkl = (tj31—1))/€ € [o, i1l (3.22)
Since (3.18) holds, we apply (3.22) repeatedly and we get
(Ti+1 - Tl)/g € [EOv E1]7
(Ti+2 — Tiv1) /€ € [€o, 2],

(Trz+l - Tn)/g € [EOv En—i—i—l]-
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If (3.20) does not hold, we have

(T —1)/e €llo, &l = (rj —7j-1)/¢ € [Lo, lryal

and

(tiy1— i) /e € [Lo, £a],
(ti —ti—1)/e € [£o, £2],

(t1 — t0)/¢ € [0, Lital
Thus, if both of (3.19) and (3.20) do not hold, we have

(tjy1—1;)/e <, forall je{0,1,...,n}.

In particular, we have
Tyr1 — To S ke, (3.23)

Sincet,;1 — 10 > h, we can see (3.23) is impossible for smal- 0. Therefore (3.19)
or (3.20) holds for suitablg andk.

Next we assume that (3.19) holds for somex and prove (3.21). The case, where
(3.20) holds, can be treated in a similar way. By Proposition 3.3, we have for small
>0

0
8ﬁm?§D(8; Tj-1,7j) = p(8e) = pr, (3.24)
j
€ imjD[D(E; T;, Tjt1)| < Pk (3.25)
afj 2
Thus we have
—g. (T T,) = im(_)'/_l(s' Ti_1,Tj)+ im(_)j(s' Ti,Tit1)
a_[jga 1s-+-5Tp _37:j DD s Ti-1, T 37:]' pp 5T, Tj41
1
> —p > 0. (3.26)
2¢

Here we remark that we need to modify our proof slightlyi=0orz, 1 =1.1f 1p=0
andj =1, we replaceniy (¢; 1o, 71) in (3.24)—(3.26) bynip(e; 0, 7). If 7,41 =1 and
j =n, we replacenp(e; ., Tur1) by miy(e: Ty, Tip1). O
4. Brouwer degreeof V. g,
By the estimates developed in the previous section, we have

V.g: 720 0nodA,

for sufficiently smalle > 0 and degV. g., A., 0) is well-defined. In this section we show
that deg¥. g., A., 0) = +1. We consider 3 cases:
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Casel:pe M_andn=1.
Case2:pe M, \{0,1} andn > 1.
Case3:pe M. N{0,1} andn > 1.
In each case we set
Case 1:®:(r) = 3(r1 — p)?,
Case 2:®, (11, ..., T,) = —3(11 — p)® — 3(Tu — p)? — Xy exp(— L),
Case 3: Ifp =0, we se®, (i, ..., 1,) = —372— Y "_gexp(— ), wherero = 0.
If p=1, wesetd,(ry,...,7,) =—3(1—1)%— Yy exp(— =), where
T4l = 1.
In each case we will see th&t g, andV, @, is homotopic inA,, that is,

1-60)V.g:(t1,..., 7)) + OV, D (11,...,7,) #0
forall 9 € [0, 1] and(ty,...,1,) € 0A,, (4.2)

and
1 in Case 1,
(=" inCases 2, 3.

In the following subsections we show (4.1) and (4.2) for each case.

degvfg&‘a A&‘a O) = degqu)7 A87 O) = { (42)

41 Casel:peM_andn=1

In this case we have ¢ {0, 1}, n =1 andA, =[p — 2h, p + 2h].

Proof of (4.1) in Case 1. We remark thaty < p —4h <p—-2h<Tu<p+2h <
p+4h <, and(ty —19) /¢, (12— 11) /8 = 2h /e > 3aylloge] for sufficiently smallke > 0.
Applying Proposition 3.4 withy, = p + 2k, j = 1, we have

9 9
a—gg(p—Zh)<0, —8((p+2h)>0
21 oT1

for sufficiently smalle > 0. Since we havgar—lCI)g(p + 2h) = +2h, we have (4.1). O

Proof of (4.2) in Case 1. By the homotopy invariance of Brouwer degree and (4.1),
we have de@V.g., [p — 2h, p + 2h],0) = deg V. D,, [p — 2k, p + 2h],0). It is clear
that degV,®.,[p —2h, p+2h],00=1. O

42 Case2 pe M, \{0,1}andn>1

Proof of (4.1) in Case 2. # suffices to show thab, (1, ..., 7,) has similar properties
to g. (11, ..., T,). More precisely,
() (3.12)~(3.13) implieg ;7 + -+ + 5-)Pe(71, ..., ) > 0,
(i) (3.15)—(3.16) implies(a% +ood ) @e(T1 -, 1) <0,
(iii) (3.19) or (3.20) imply (3.21) ford, (11, ..., T,).
Suppose that (3.12) and (3.13) hold. Straightforward computation gives us

a ol 1 i1 — T
(et ot ===~ Lo 25 sy
T & &
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We can assumed3d — 1 > 1 and we have for sufficiently small> 0

9 d
<_+...+—)CDS(‘L'1,.--,Tn) > 0.
87;1 8rj

Thus we get (i). We can also show (ii) in a similar way.
Next we show that (3.19) implie%_d%(rl, ..., T,) > 0. In fact we have under (3.19)

that
0 1 i1 —T; =T
_(I)‘,3 (Tla el Tn) [ (exp(_M) — exp(_M))
0T & £ &

1
(exp(—£i+1) — exp(—£x)) > 0.

2__
&

In a similar way, we can see that (3.20) impliéé;;;‘d)g(rl, LT <00 O

Proof of (4.2) in Case 2. By the homotopy invariance of Brouwer degree and (4.1),
we have de@v.g., A.,0) = degV,.d,, A,,0). We can also see thak, has unique
critical point in A, and it is corresponding to a strict local maximum. Thus

degV.d,, A,,0 = (-1)". O
43. Cae3: peM, Nn{0,1}andn >1
Here we assume & M, and we deal with the cage=0 andrn > 1. The case =1
can be treated in a similar way.
Proofs of (4.1) and (4.2) in Case 3lr-this case we have
Ac={(11,....1); elo<T1<Tp <+ <7, < 2h,
(tjz1—1;)/e 2 {oforall j=0,1,...,n -1},
A ={(11,..., ) €Ay (tj31—1;)/e =Loforsomej =0,1,...,n—1}
U{(t1, ..., ) € Ag; T, =2h}.

Thus it suffices to show

() (3.15)—(3.16) implies{a% +o ) Pe(rr, ., 1) <0,

(i) (3.19) or (3.20) imply (3.21) forb,(t1, ..., Ty).
We can show the above properties essentially as in Case 2 and we omit the proc
here. O

5. Proofsof Theorems0.1 and 0.3

Now we can prove our Theorem 0.1.

Proof of Theorem 0.1. ¥ suffices to show that

degV =, A,,0 = £1.
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For eachp € M we definedP)(ty, ..., 7,) asin Section 4 and s&t. : Al x --- x AN —
Rn1+~~~+nN by

N

\Ijé‘(tllv LR tlnlv cee tva LR ZNI‘LN) = ZqD‘E;pl)(tllv LR till[)'
i=1

Then we can see thatf* is homotopic tov ¥, and
deg VfE Al x--- x AY,0) =deg V¥,, Al x --- x AY,0)

N
=[] deg Ve, AL, 0)
i=1

=41

Thus £* has a critical point inAl x --- x AY and it has a desired profile stated in
Theorem 0.1. O

Remark5.1. — From the proof of Theorem 0.1, it is clear that we can get the existence
result in more general setting. For example, instead of (W3), we assume
(W3) G(r) has critical set$l;);c such that
(i) for eachi, I; is an subinterval of0, 1). (I; may be one point.) We write
I; = la;, b;].
(i) G'r)y=0forallreI;.
(iv) For eachi there exists$; > 0 such that

G'(1)>0 inla; =&, a),
{G/(l)<0 in (b;, b; + 8:1, (5.1)
or
G'(t) <0 inla; —é;, a;),
{ G'(t) >0 in(b;, b; + 1. (5.2)

We classifyl;’s into 2 groups:
My ={I;; (5.1) holdg, M_ ={I;; (5.2) holds.

Then we can show the following resufisssumgW1), (W2) and (W3. Then for any
given sequencér;);c, Of non-negative integers satisfying

() n; =0 except for finitely many,

(i) n; €{0,1}if I, e M_,
there existsg > 0 such that for € (0, gg] our problem (0.1) has a solutianx) with
exactlyn;-layers in a neighborhood df. We can also deal with boundary layers.

Finally we give a proof to our Theorem 0.3.
Proof of (i) of Theorem 0.3. ket A > 0 and$ > 0 are given numbers and let(x) be
a critical point of I, (1) satisfying

I.(u;) <A. (5.3)
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Setting
V(&) =min{W(x,u); x €[0,1], u ¢ [@_(x) — 3, x_(x) + 8]
Ulag(x) — 8, ap(x) + 681} > 0,
we have
v(3) meas{x €[0,1]; u.(x) ¢ la_(x)—38,a_(x)+ 4]
U [y (x) — 8,y (x) + 81}

1
< / W (x,u(x))dx <el(u,) <eA.
0

Thus choosing”(§) = A/v(8), we have (i) of Theorem 0.3.0

Proof of (ii) of Theorem 0.3. Proof of (ii) of Theorem 0.3 consists of several steps.
Let A > 0 be a given number and let(x) be a critical point of/, («) satisfying (5.3).
We fix smallpp > 0 satisfying

inf W (x,ox(x) +&)>0.
xel0,1], €< o o, @) +)

We set

L. ={y €0, 1/e]; u.(ey) ¢ [a_(sy) — po, a—(£y) + po]
Ulay (ey) — po, a4 (ey) + pol }-
By (i) of Theorem 0.3, we have

mead., < C(pg) independent of. (5.4)

Stepl: Lets, € L, be a sequence such thgt=lim,_, o5, exists, wherg, = ¢s,. Set
ve(y) = u (3. + &y). Thenv,(y) converges irC2, to a heteroclinic solution of

—wyy + W, (50, w(y)) =0 (5.5)

joining a_ (50) and o (o).

In fact, v.(y) converges inCZ. to a solutionw(y) of (5.5). By (i) of Theorem 0.3,
for any$ > O there existy, 5 € [s. — 2C(8), 5. + 2C ()] such that, (y.s) € [a_ (5. +
8)’8,3) - 87 0‘—(58 + gys,B) + 8] U [(X+(§5 + gys,B) - 87 0(+(§5 + gys,B) + 8] Thus

w([§o — 2C(8), 50 + 2C(5)])
N ([a—(50) — 8, a_(50) + 8] U [ Go) — 8, v (5o) +8]) # 0.

Therefore there exists a sequenge— +oo such thatw(y,) — a,(59) or w(y,) —
a_(5p) By (ii) of Lemma 1.1,w(y) must be a heteroclinic solution joining_(5p) and
o (So)-

Step2: Lets, andt, be consecutive zeros of (x). Then’f%‘f — oo ase — 0.

This is a direct consequence of Step 1. In a similar way, we have
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Step3: Lets, be any zero of (x). Then* — oo, 1‘TS — oo ase — 0.

Now we prove

Step4: The number of zeros af, (x) is bounded by a constang(A) depending only
OnA.

In fact, let{r{"”; j =1,2,...} be a set of zeros of. (x). By Steps 1-3, we can see

limsupl, (u.) > limsupd_ G (r{).
j

e—0 e—0

Thus by (5.3), the number of zeros mf(x) is bounded by:g = A/ min,¢jo 1; G(x) for
sufficiently smalle.

Step5: Let 0 < 1) <1 <--- <1® < 1 be set of zeros ofi,(x). Suppose
u:(0) > 0 (u.(0) < O respectively) Then for sufficiently smalk > 0, u,|j0 (),
el (X, - - Uels,. 17 (X) @re minimizers o (e; 0, 11), mpp (€3 1, 12), . . ., mSY (€
1) (myp(e: 0, 1), mip(&: 11, 12), ..., mSn (: 1, 1) respectively)

We prove just fom.|y; .. ,1(x) (j =1,2,...,n —1). By Steps 1-3 and (5.4), we can
seeu;|; .., (x) satisfies

et +ey) —as(t; +ex)| < po forye |Clpo). 7L~ Clpo)|.  (5.6)

Thus applying Lemma 6.4 in Section 6, we can get uniqueness of solutignsdp.1)
satisfying (5.6). The minimizer ofigp (e; tj,tj+1) is also a solution satisfying (5.6).
Thereforeu, |y, 1;,,1(x) is @ minimizer ofmy (e; i tit1).

Step6: Conclusion.

For sufficiently smalk > 0, u. (x) is characterized as a critical point 6f (11, . . ., 2,,).
Thus by the arguments in Section 3, we can get the desired result.

6. Properties of mi,(e;s, 1), mEy(e;s, 1), mEy(e5s, 1)
Here we give proofs to Proposition 1.2 and Lemmas 1.8-1.11.
First we deal with Proposition 1.2. We mainly considegy(¢; s, ). Setting¢ =

(t —s)/e andv(y) = u(s + ey), it suffices to prove uniqueness of minimizer of the
following minimizing problem:

cle,s,0)= inf  J(e,s,8;0)

veED(s,0)

for sufficiently smalle and largef. Here

¢
1
J(e,s,€;v) :/élvy|2+ W (s + ey, v(y))dy.
0

We start with the following lemma.
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LEMMA 6.1. — For sufficiently smalk and large, c(e; s, £) has a minimizew(y)
which satisfies

v(y) >0 in(0,40).
Proof. —It is clear thatc(e, s, £) is achieved and the corresponding minimiz¢p)
satisfies
v(y) >0 in[O,¢].

Under (W1)—(W2) we can easily see thay) = O for larget.
Suppose that(y) =0in [0, §] (§ > 0) andv(y) > 0in (8§, m) (m < £). Then we have

—vyy + Wy (s +ey,v(y)) =0 in(8,m).

Forh € (0, 6§), we set

2h

0 in[0,8 —h),
vh(y)={w(y—(8—h)) in[8—nh,8+h),
v(y) in[8+h,¢].

Then we can see
d

dh

ThusJ (e, s, ; v;) < J(e,s,£;v) for smallh > 0. This is a contradiction and we have
8 = 0. In a similar way, we can see thaty) > 0in (0,¢). O

1
T (e, 5,6 v4) = —Zf|vy(5)|2 <o.

h=0

As a fundamental property ofe, s, £) we have

LEMMA 6.2. — There exists a constamt; > 0 independent of € (0, 1], s € [0, 1],
£ > 2 such that

c(e,s,0) <Ay forallg,s, 2.

Proof. —We set

say (s +¢€) for y € [0, 1],
v(y)={oz+(s+8y) fory e[1,¢—1],
(0 —s)ay(s+e(—1) forye[e—1,el.

Then we havef, 1, 1,14 vy 124+ W (s +ey, v(y)) dy < C, whereC > 0 is independent
of ¢, s, £. Thus we have

Z—ll ,
c(8,S,€)§C+/§|Uy| + W (s +ey,v(y))dy
1

-1
1 , 2
:C+/§82|O(+(S+8y)’ dy
1
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st+e(t—1)
&
=C+3 / o, (x) |
s+e

1
<C+ /|a’+(x)yzdx.
0

Thus we get Lemma 6.2.0

Next we show the minimizev(y) stays neakx, (s + y) except neighborhoods of
boundaries of0, £].

LEMMA 6.3.— For any p > O there existsL,(p) > 0 such that for any minimizer
v(y) of c(e, s, €) it holds that

lv(y) —ay(s +ey)|<p forall y e [La(p), £ — La(p)]. (6.1)
Proof. —First we show that for any > 0 there existsA,(n) > 0 such that

meagy € (0, £);

v(y) —ag (s +ey)| = n} < Ax(n). (6.2)
In fact, setting

Yy =

inf W(t,ar(t)+£)>0,
1€[0,1], £€[0,er4 (1) —nlUlct (1)+1,00) (1 oty £)

we have from Lemma 6.2 that

vymeagy € (0,0); [v(y) —ay(s+ey)| =n} < J(e, s, L;v)=c(e, s, £) < A

Thus we have (6.2) foA,(n) = A1/v,. Next we show the following property holds for
any minimizerv(y) of c(e, s, t):

For any § > 0 there existd(§) > 0 and &(§) > 0 such that fore € (0, ¢(8)] and y,,
y2 € (0, £) satisfying

]v(yl-)—our(s—i—ey,-)] <d(@§) fori=1,2, (6.3)

it holds that
}’21
/§|vy|2+W(s+8y,v(y)) dy <5 (6.4)

Y1

To prove this fact, we consider two casés; — yi| > 3 and |y, — y1| < 3. When
ly2 — y1| = 3, we consider a function (y) defined by

a (s +ey) foryelyi+1 y,—1],

{ (y—yDay(s+ey)+ QA —y+y)v(y) foryelyy, y1+1],
w(y) =
(V2 = y)ay(s +ey2) + (L+y—y2)v(y2) forye[y2—1,yl
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When|y, — y1| < 3, we consider

-y Y2—y
w(y) = 1v(y1)+ 2 v(y2).
- y2—Mnn

In both cases, we have
1 2
/§|wy| +W(s+ey, w(y))dy—0

y1

ase, — o (s +ey2)| > 0.

Sincev(y) is a minimizer, we have

YZl )’21
/§|vy|2+W(s+sy,v(y>) dy</§|wy|2+W(s+sy,w(y>) dy

Y1 Y1

and we can find desired(§), d(5).

Suppose|v(yg) — oy (s +eyg)| > p and our goal is to show thapy lies in a
neighborhood of 0 of. We assumeyp € [1, £ — 1] and we remark that there exists a
constant(p) > 0 depending only op such that

o+l
/ 20,24 W(s + ey, v() dy = c(p). (6.5)

Ford =c(p)/2 > 0 we choosel(s), (8) > 0 so that (6.3) implies (6.4). Applying (6.2)
with n =d(8) > 0, we can findy; € [0, A2(n)], y2 € [£ — A2(n), £] such that (6.3) holds.
Thus we have

y2 1

[ S0+ Wants +en), v(0) dy <5 =c(p)/2 (6.6)

y1

Comparing (6.5) with (6.6), we hawg € [0, £]\ [A2(n) + 1, £ — Az(n) — 1]. Thus we
get (6.1) forL.(p) = Ax(n) +1. O

For the proof we choosgy > 0 such that

8o = inf W (1, a4 (1) + &) > 0. (6.7)

t€[0,1], |E|<po

Next lemma is an essential part of the proof of Proposition 1.2. It is also used in the
proof of Theorem 0.3.

_ LEMMA 6.4. — Let po > 0 be a number satisfyin(5.7). For any Lo > O there exist
£o > 0andgo > 0 such that for any € (0, £o], £ > € satisfyings + ¢ < 1, positive(or
negative solutionv(y) of
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—vyy + W, (s +ey,v(y) =0 in(0,90), (6.8)
v(0)=v®)=0 (6.9)

with a property
lv(y) —ay (s +ey)| <po in[Lo,€— Lol (6.10)

is unique.

Proof. —We argue indirectly and suppose that there exist sequepgES ;, (5,)52 1,
(£,)2° 1 such that

g, — 0, £, — 00
and the corresponding problem (6.8)—(6.9) has two distinct solutibgs andv?(y)
which satisfy the property (6.10). We may assume
S, —> S0,  Sp +é&,, —> 1o € (0, 1].
It is not difficult to see thabl(y), v2(y) converge inCZ_ to some solutionu(y) of

—wyy + W, (s0, w(y)) =0. (6.11)

Solutions of (6.11) can be classified into 3 classes; unbounded solutions, periodi
solutions and heteroclinic solutions. Sine&y), v2(y) has no zeros ir0, ¢,] and

£, — oo, the limit functionw(y) must be a heteroclinic solution which is asymptotic
to a, (so) by the property (6.10). Thus we have

vi(y), v2(y) = @' (s, 00;y) uniformly in [0, L] asn — oo
for any L > 0. Similarly we have for any. > 0
v e, — ), v2(l, —y) = wt(to, 00; y) uniformly in [0, L] asn — oo.
Since both obl(y) andv?(y) satisfy (6.8) in[0, ¢,], we can find that, (y) = (v1(y) —

vZ()/IvE(y) — v2(») |l 2 satisfies

Py + Wi (80 + €07, 0,02 + (1 — 6,)v7)h, =0,
h,(0) = h,(€,) =0, (6.12)
Ihnllgr =1
for a suitabled, =6, (y) € (0, 1).
Multiplying &, (y) to (6.12) and integrating ove®, ¢,,], we can find

g’l
/ |hny|2 + W (sn +&,y, env,} + (1 - 9,1)113)}15 dy =0. (613)
0

Thus by (6.7) and (6.13)
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n Kn—LZ(,OO)
/|hny|2+<so / I 2dly
0 La(po)
< / Wi (sn +é&ny, On U,J{ +@1- en)vs)hyzz dy (614)

[0, L2(p0)1U[€n—L2(p0) £n

Therefore we have

12nll 20,0000y 72 O OF Nl L2(6,Lo(p0).6) 7> O @SR —> 00.

In fact, if not, (6.14) implies|A, ||z — 0 and it is a contradiction th,, || g1 = 1.
Here we assumh,, [ 120, 1.,(py)) 7> 0. The caséih, |l 12¢,—1,(00).,) 7> O CaN be treated
in a similar way. By (6.14), we may assume that— % 0 weakly in H. By (6.14),
we have
—hyy + Wy (s, 0" (s, 00; y))h =0 in[0, 00),
h(0) =0,
he HY0,00) and h=#0.

On the other hand>;f(y) = w;f(s, oo; y) also satisfies

—(@))yy + W (s, 0" (s, 00; y)) o) =0,
? (0) #0.

Thush(y) andw;f(y) are linearly independent solutions of
—Cyy + Wi (s, @™ (s, 005 y)) ¢ =0 in [0, 00). (6.15)

SinceW,, (s, o™ (s, 00; y)) = W,.(s,a,(s)) > 0 asy — oo, (6.15) have a unbounded
solution ¢(y). However¢(y) must be a linear combination @éf(y) and a)j(y). We
remark that both of(y) and a);f(y) are bounded in0, co). It is a contradiction and
the solution of (6.8)—(6.10) is unique for largend smalk. O

Now we can complete the proof of Proposition 1.2.

Proof of Proposition 1.2. £et v(y) be a minimizer forc(e, s, £). By Lemma 6.3,
v(y) satisfies the assumption of Lemma 6.4. Thus by Lemma 6.4, we get uniquenes
of minimizer of miy(e; s, t) for sufficiently smalls and large(z — s)/e. Uniqueness for
minimizers ofmpp (s; s, 1), miip(e; s, 1), miy(e; s, 1), b* (s, £) can be proved essentially
in same way. 0O

As to the corollaries to uniqueness result for minimizers, we can prove Lemmas 1.8
1.10 and 1.11.

Proof of Lemma 1.8. We give a proof just fougy(e, s, t; s + ey). If the conclusion
of Lemma 1.8 does not hold, we can fiad- 0 and sequences, s, t, such that, — 0
and
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t, — Sp

2 Lo,
&n

) (6.16)
C2(0,L/2)

Ups (Ens Sns tns Sn + €,Y) — 0" (sn, t"zgns" ; y)
for all n € N. We may also assumg — s, and £, = lim,_, . (t, — 5,) /&, € [£g, 0]
exists.

When (., = oo, we can easily see thafiy (s, su, ty: Sy + €,7) = @7 (500, 00; y) N
C2. and this is a contradiction to (6.16).

When £, € [, 00), we can also see thatiy(e,, s, t.;s, + €,y) — w(y) in
C2([0, £5]), wherew(y) is a unique solution of

—wyy + Wy (800, w(y)) =0 in (0, L),
w) >0 in(0,~Ly),
w(0) = w(fy) =0.
We havew(y) = 0™ (0, £+,/2; y) in [0, £4,/2] and this is also contradiction to (6.16)0

Proof of Lemma 1.10. Fhe result of Lemma 1.10 is essentially obtained in the proof
of Lemma6.3. O

Proof of Lemma 1.11. We choosepp > 0 so that (6.7) holds. Writinguv(y) =
v(y) — ay (s + ey) and applying Lemma 6.3, we have

—wyy + Wi (s + ey, w(y) + oy (s +ey)) = ezaj’r(s +¢ey),

lw()| < po in[La(po), £ — La(po)].

Thus applying maximal principle t@ (y) in [L2(p00), £ — L2(po)], we have the result of
Lemmal.ll. O
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