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ABSTRACT. — In this paper we improve the estimate obtained by Lu—Pan on the value of
the upper critical fieldHc,(«) for a cylindrical superconductor with cross sect@rbeing an
arbitrary 2-dimensional smooth bounded domain. We also show that, when a homogeneot
magnetic field is applied along the axis of the cylinder with magnitude of the field close to
Hc,, superconductivity nucleates first at the surface of the sample where the curvai@ésof
maximal.
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RESUME. — Nous améliorons dans cet article I'estimation obtenue par Lu—Pan de la varleur du
champ surcritiquédc,(«) pour un supraconducteur cylindrinque dont la secfioest un ouvert
régulier borné dans le plan.

Nous montrons aussi que, lorsqu’'un champ magnétique constant paralléle a I'axe du cylindr
est appliqgué avec une intensité voisine g, (x), la supraconductivité apparait d’abord aux
points du bord ou la courbu2 est maximale.
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1. Introduction

Let us consider a cylindrical superconducting sample of type 2 with cross séttion
being anarbitrary boundedsmooth domain irR?, and place the sample in an applied
magnetic field. It is well known that, if the applied field is very strong then the sample
loses superconducting property. As the field is gradually reduced to a certainf@lue
called theupper critical field the nucleation of superconductivity occurs, see [8,23,24].

We are interested in the estimate of the valueZef(«) when the Ginzburg-Landau
parametex is large, and in the localization of the nucleation of superconductivity. These
problems have been studied by many physicists, see Saint-James and De Gennes [2
Saint-James and Sarma [23], and Tinkham [24]. More recently, a lot of papers devoted t
the mathematical analysis on these problems have appeared. Among them we menti
the works of Chapman [5] and Bernoff and Sternberg [3] based on some formal analysis
Bauman, Philips and Tang [2] for the rigorous analysis on disks, Giorgi and Phillips [12],
Lu and Pan [16-21] and del Pino, Felmer and Sternberg [9] for rigorous analysis on
general domains. Our main concern is the effect of the domain geometry on the value ¢
Hc, and on the location of superconductivity nucleation.

Before stating our main results we recall that, for a cylindrical superconductor of
infinite height with cross sectio® and subject to an applied magnetic field along
the cylindrical axis, the behavior of superconductivity can be described by a (global)
minimizer (y, A) of the Ginzburg—Landau functional

2
Gy, A) = /{IVK,WIZ +x?lcurl A —H|? + %(|w|2 - 1)2} dx.
Q

The Euler equation is the 2-dimensional Ginzburg—Landau system (see [6,8,10,11,23])
—(V =ik A*y =L = |y D),
curlP A=—L@Vy —yVy) — [y PA+curlH, ing,

8 — ik Ay v =0,
curlA—H =0, on 2.

(1.1)

Here vy is a complex-valued function called order parametélis a real vector field
called magnetic potential{ is the applied magnetic field= /—1, « is the Ginzburg—
Landau parameter given by the ratio of the London penetration depth and the coherenc
length of the superconductar,is the unit out-normal vector at the boundary<afHere
we use the notations
ad .
=7  Vay=Vy—iyA
a)Cj

ViV = (V —id)* = Ay —i[2A- VY + ¥ div Al — APy,

curl A =014, — 3,A4,

curl? A = (d(curl A), —d1(curl A)).

Note that in (1.1) the unit of length is the penetration depth. Also note that in [16—
21] a more general boundary condition introduced by de Gennes was considered. F
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simplicity we consider the homogeneous Neumann boundary condition. However, the
ideas and methods used in this paper apply as well for this boundary condition.

Notations — In the following, a (global) minimizety,, A) of the Ginzburg—Landau
functional is called aninimal solutionof the Ginzburg—Landau system (1.1). We call a
complex-valued functiony anorder parameteif there exists a real vector field such
that (¢, A) is aminimal solutionof the Ginzburg—Landau system (1.1).

Throughout this paper we assume
H(x) =oes, (1.2)

whereo is a constant. We shall treat as a parameter and consider the behavior of
minimizers asr — oo. It is well known that there exists a unique smooth vector field
on Q such that

culF=1 and divF=0 inQ, F-v=0 onaQ. (1.3)

Note that, under the assumptiai®, o F) is a trivial critical point of the functionag.
Moreover, (0, 0F) is the only minimizer ifo is large enough, which means that
a sufficiently strong applied magnetic field penetrates the entire superconductor an
completely destroys the superconductivity (see [19], or Theorem A below).

A mathematical definition foF., was given in [19]:

Hc, (k) =inf{o > 0: (0, oF) is the only minimizer o7 }. (1.4)

THEOREM A [19]. — For any bounde®-dimensional simply-connected domatnof
classC?® we have
(1) lim,_o Hes(k)/k =1/ Bo, Wherepy is the lowest eigenvalue ¢2.6).
(2) If the homogeneous applied field is sufficiently closéftq, superconductivity
nucleates at the surface of the sample.

Conclusion (2) in Theorem A is called surface nucleation. The precise meaning is
the following. Assume that the applied field is given in (1.2), with the magnitude
satisfying

1+ o(l))% <o < Hey(k).

Then, forany > 0, there existg (§) > 0 such that, for alt > «(8), the order parameters
¥ must satisfy

IVl L) < 8.
For anyx € @ and anyy > 0, there existg (x, n) > 0 such that, for alk > «(x, ),

[V (x)]
— <
(KT

Moreover, the order parameters exhibit a boundary layer in the neighborho@@ of
within distance @1/«) to 9€2. For more details see [19].
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However, the information given in (2) does not give the optimal localization of the
surface nucleation. It turns out that the localization depends on the gap between th
applied field andHc,. In fact, it was shown in [19] that if the gap between the applied
field andHc, is not very small, one can observe superconductivity uniformly along the
entire surface of the sample. For a more precise statement, see [19] (Section 5). On t
other hand, if the gap is small, the lower bound estimate8@r(which are related to the
upper bound estimates of the lowest eigenvalue of Schrodinger operator with magneti
field) given in [3] and [19] suggest that superconductivity can only be observed near the
maximum points of the curvature of2.

In this paper, based on the very recent work by Helffer and Morame [15] on the
asymptotical behavior of the lowest eigenvalue, we shall improve the estimafg,of
given in [19], and show that, under a homogeneous magnetic Fietd He; parallel
to the axis directiore; of the cylinder with magnitude close #.,, superconductivity
nucleates first at the points in the surface of the sample where the curvatbfe isf
maximal.

Throughout this papef is a smooth simply-connected bounded domaifRn Let
k,(x) be the curvature function @2, and let us introduce

Kmax = MaXk, (x), Kmin = Min «,(x),
max res9 r( ) min el r( )

N@ORQ) = {x €0 k. (x) = Kmax}.

Denote bys = s(x) the arclength ob<2, denote byx(s) a point ata2, and write the
curvature functiom, (x(s)) by «,.(s). We say that a maximum poin{sg) of the curvature
is non-degenerate, ¥ (so) # O.

For aC?! domaing, there is a geometric constant?) > 0 such that the distance
function to the boundary is regular in the doméaine Q: dist(x, 9Q) < £(2)}, and for
any O< § < ¢(2), we can introduce a new coordinatgsr) in a neighborhood of 2

Qs = {x € Q: dist(x, 1) < 5}

to straighten the boundaBt2, wheres = s(x) measures the arclength ane- ¢ (x) =
dist(x, 02) measures the normal distance to the boundary, see [15] (Appendix B). Let
us fix 8o < £(2). We shall identifyx (s, 0) with x(s). We can measure the tangential
distance from the point(s) to A'(32) alongd 2, and we shall denote this distance by
d,(x(s), N (9€2)). Then we define theangential distancérom x = x(s, ) to A (32) by

d, (x(s. 1), N(ORQ)) = d, (x(s). N (3)).

To every pointx = x(s, 1) € Q5,, We can assign a unique points) = x(s, 0) € 9€2.
Hence, we can define

Kk (x) =k, (x(s)) forx=ux(s,1) € Q.
As we shall see later that, order parameters concentrate at a tubular neighborf@od of

and exponentially decay in the normal direction away fi&n We shall derive various
integral estimates for order parameters in the tubular neighborhood, and the curvatur
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function will play an important role in these estimates. Therefore, in the following we
extend the functiom, (x) onto  such that it is continuous of?, equal tok, (x(s)) for

x =x(s,t) € Q,, and equal to a positive constant, 25,. Thenk, (x) is well-defined

on Q2. Wheng is of classC* we also require, (x) to be of classC?.

Our main results in this paper are Theorems 1.1, 1.2 and 1.3. Theorem 1.1 gives a
estimate ofHq,(«) up to the second term. Theorems 1.2 and 1.3 give a quantitative
version of the property that superconductivity nucleates at the maximum points of
the curvature as the applied magnetic field decreases filemand the condensation
behavior of the order parameters depends on theHjgp- o between the applied field
o and the upper critical fieldc,.

THEOREM 1.1 (Asymptotics ofd¢,). —Assume tha® is a bounded simply-connected
2-dimensional domain of clagg®. There exists a universal constafi{ > 0 such that,
for « large, we have

K C
0

THEOREM 1.2 (Location of nucleation: general domains).et Q2 be as in Theo-
reml.1and let
3/2

_ P _
o= c. [Hey (k) — o).

The order parameterg: have the following concentration behaviors.
(1) Assume thab < p = 0(1) asx — oco. Then there exist positive constaats £,
ko and Mg such that, for allke > «g, we have

/|w|2exp(aoﬁ[xmax—x,(x)])dx gMoexp(zopﬁ)/|w|2dx. (1.6)
Q Q

(2) Assume thaty < p < kmax — kmin» Where gg > 0. Then there exist positive
constantsz, M andk such that, for allkk > «; we havée

[ 102 explailima— s () - o)) de < MR [pde. (L)
Q Q

THEOREM 1.3 (Location of nucleation: non-degenerate domaing)ssume thaf
is a bounded simply-connect@edimensional domain of clasg* and A (3S2) consists
of non-degenerate maximum points of curvature. The order paramétenave the
following concentration behaviors.

(1) Assume that

0< Hey(k) —o < L~ Y3
for some constant, > 0. Then there exist positive constantsry, £1, By andx;
such that, for alk > «1, we have

1We use the notation;. = max{a, 0}.



150 B. HELFFER, X.-B. PAN/ Ann. |. H. Poincaré — AN 20 (2003) 145-181

/ 2 dx

Q\{xeQ: dist(x,0Q) <r1x %6, d;(x N (0Q))<€1c~1/6}
1/6 2
< Brexp(—awc®) 1Y [ 72(q).- (1.8)

(2) Assume thaf Lox~13 « Hc, — o = 0(1) for some constant, > 0. Then there
exist positive constants, r,, £, k2 and B, such that, for allkk > «,, we have

2
[¥ |~ dx
Q\{xeQ: dist(x, Q) <rpox~Y2, di (x N (3Q))<L2./p}

< Boexp(—azp /i) 1V 172 (1.9)

ﬂs/z
herep = 8—1[H03(K) —o].

Remark1.4. — We will see in Proposition 4.2 that, if the applied field is close to but
below Hc,, the order parameters decay exponentially in the normal direction and have
a boundary layer of the order(®@1). Thus superconductivity nucleates in a boundary
layer with thickness of order @ ~%). Theorems 1.2 and 1.3 describe in a weak sense the
exponential decay of the order parameters in the tangential direction within the boundar
layer, and hence describe the way in which superconductivity nucleates and expands
the gapHc, (k) — o between the applied field and., increases. In the case where all
the maximum points of the curvatukg(s) are non-degenerate, we have the following
conclusions:

(1) If the gap is of order @ ~1/3), then superconductivity nucleates near the set
N (092) of the maximum points of the boundary curvature, with a normal distance
of order Qi ~*/®) and with a tangential distance of orde(/¢) to N (3%).

(2) If the gap tends to zero but is still much larger than the order—&%), then
superconductivity still nucleates near the maximum points of the boundary
curvature. But now it is located within a neighborhood\td2) with a normal
distance @« ~Y2(H¢, — o)) and with a tangential distance of ordéi, — o)/2.

(3) If the gap does not tend to zero but remains bounded beloﬂx‘/ljsy3/2p, where

0 < p < kmax— Kkmin, then superconductivity is localized inside a neighborhood of
N,(892), a subset of the surface

N,(0Q) = {x(s) € 92 k,($) = Kmax— P} -
Moreover, if «/(s) # 0 wheneverk,(s) = kmax — p, then superconductivity is
located inside a neighborhood &f,(3$2) with thickness @« ~%/3). In fact, under

this condition, there exists a constanfwhich depends op) such that,

Kmax— K, () — p = cd, (x(s), N,(32)) for all x(s) € 32\ N, (3).

20ur convention is that, for two positive quantities depending on a paramgtez will write a <« b if
a/b=0(1) ask — oo.
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Since the order parametepsdecay exponentially in the normal direction, for any
0< 48 <1/3, we use (1.7) to find that

P dx < CkM3exp(—agic @77 / v dx,
Q

QN{distir, N, (8R2)) >k %)

whereC > 0 is independent of, andas = ac®?.
(4) We believe that, if the gap is greater th/sé,lly(:cmax— Kmin), hamely, if
0

K n Cl
o< — —a75Kmins
,BQ ﬁg/z min
then order parameters concentrate uniformly along the entire boundary. We shouls
mention that uniform concentration along boundary was proved in [19] under a
stronger condition%/@/3 — ok~ Y3 - 400 ask — +oo. This condition means

that:o « é — LkY/3 for someL > 0.

Remark1.5. — We believe that the error term in (1.5) i§kOY?). In fact, using
Proposition 2.3, we have, for some positive constantandm,

K Cl _ K C]_ _
—+ —3/2Kmax — ik Y2 - Hey(k) < — + W’Cmax‘i‘ mok 1/3
o B Bo By

Remark1.6. — The estimates given in Theorems 1.2 and 1.3 are not optimal.

(1) Inequalities (1.6) and (1.8) indicate in a weak version that order parameters
concentrate near the maximum points of curvature within a tangential distance o
order Qx~%/®). We believe that the concentration is within a tangential distance
of order Qi ~/?) to the maximum points of curvature.

(2) We believe that, under the condition<0Hc, (k) — o < Lk /3, it holds that

1 ll () = O([Hey (k) — 0] V2 Y/2).
Moreover, if V(32) consists of isolated points, then

||W ||L2(S2) _ O(K_3/4).
1l

For a related discussion see Remark 2.6.

Remark1.7. — Theorems 1.2 and 1.3 are consequences of Theorem 6.1, and Thec
rem 1.1 is a consequence of Propositions 2.3 and 5.1. We will see that the proofs involv
complicated estimates. We have to mention that one difficulty of the problem comes
from the fact that the bottorf, of the spectrum of the eigenvalue problem (2.6) on the
half plane, which is the limit equation of the linearization of the Ginzburg—Landau sys-
tem (2.2) at the trivial solutioriO, F), is not isolated. In fact, the spectrum of (2.6) fills
the interval[ 8o, 00).
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Remark1.8. — Combining the arguments in this paper together with the results in [15]
(Section 9), we can deal with non-homogeneous magnetic fields. We can improve th
estimates ob*(k, Hp) (see [19]) with better error terms, and prove the localizations of
the order parameters. Since the discussions will be parallel, we omit the details.

Remark1.9. — The problem in 3-dimension is less understood. It was proved in [20]
that, for a bounded 3-dimensional sample with smooth surface, under a homogeneol
magnetic field, superconductivity nucleates first at a portion of surface which is
tangential to the applied field. If the tangential portion is a 1- or 2-dimensional
submanifold of the surface, it would be interesting to see what replace the curvature
in this case.

The outline of this paper is the following. In Section 2, we improve the lower bound
estimate forHc, by getting an error term in @ ~Y/2). In Section 3, we establish a
uniform estimate for the lowest eigenvalue of a Schrddinger operator with a magnetic
field. Section 4 is devoted to the elliptic estimates on the minimal solutions of the
Ginzburg—Landau system. An upper bound estimatéffaris proved in Section 5, using
results from Sections 3 and 4. Combining the estimates in Sections 2 and 5 we prov
Theorem 1.1. The location of the order parameters when the applied field is close t
Hc, is discussed in Section 6 and their exponential decay within boundary is establishe:
using Agmon’s idea [1] (see also [13] for a presentation of the corresponding Helffer—
Sjostrand techniques in the semi-classical context).

2. Lower bound estimate of Hc, revisited

In this section we give a lower bound estimatefLf, with an improved error term.

As mentioned in Section 1, we only consider throughout this paper homogeneous
applied fields, that is satisfyinly = o 3, whereo is a constant, see (1.2). We shall treat
o as a large parameter. In order to make our discussion clear, we set

A=0A, e=

It is more convenient to consider a rescaled Ginzburg—Landau functional definéd on
as follows:

2, 1 2 2,2, K24
T m = [{I930+ Sleua- 10—y Sitfen @)
Q

where

W=Wwh3(Q,C) x Wh?(Q,R?).
Herew12(Q2, C) is the Sobolev space of all complex-valued functions, @id (22, R?)
is the Sobolev space of all vector-valued functions. Set

E(k,e) = w ip)fewj(lﬁ, A).
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Let (v, A) be a minimizer of the functional. Then,(y, A) satisfies the Euler equation
(see (1.1))

—vizAw =?(1— [y Py,
curP(A —F) =823(Jv%w), in Q,
(Via¥)-v=0,

curl(A—-F) =0, onog,

whereF is the unique vector field satisfying (1.3). We recall that the minimizer is called
a minimal solutionof (2.2). Note that (2.2) has two parameterande. However, for
simplicity we will denote a minimal solution bg¢, A¢). Due to the gauge invariance
of the Ginzburg—Landau system (2.2), we may always assume that

2.2)

divA®*=0 inQ, A®.v=0 o0naQ. (2.3)

Denote byu = u(bA) the first eigenvalue of the following eigenvalue problem
V2 b= i
Vin® =pe N2, 2.4)
(Vpad) -v=0 o0nog,

whereb is a real number. The following lemma was given in [19] (Lemma 2.1).

LEMMA 2.1.-Let 7 be the functional defined i{2.1).
@ If M(gizF) < «?, thenJ has a non-trivial minimizer.
(2) If J has a non-trivial minimizety ¢, A), thenu(gizAE) < K2,

The proof of Lemma 2.1 is obvious. Note théd, F) is a trivial solution of the
Ginzburg—Landau system with energi0, F) = 0. If E(k, ¢) < 0, then7 has a non-
trivial minimizer.

However, Lemma 2.1 is our starting point to estimatg,, see [19]. In this section,
as in [19], we shall use Lemma 2.1 to obtain the lower bound estimakg-pvith an
improved control of the error term.

Let us first recall some facts about an eigenvalue variation problem. For every fixed
let B(z) denote the first eigenvalue of the following self-adjoint eigenvalue problem in
L3(Ry):

{ —u"+ @ +0%u=pu for 1>0, (2.5)

u'(0)=0.
LEMMA 2.2.-There is a uniqueg, zg < 0, such that

fo= inf B(2) = Blzo) = 25

Moreover,0.5 < By < 0.76.

Lemma 2.2 was proved by Dauge and Helffer in [7], see also [4]. For a different
proof see [17]. For the estimateS0< By < 0.76 see [19] (Proposition 2.4). Here we
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use the notations from [17,19]. In the following we denoteutgy) a unique positive
eigenfunction of (2.5) foz = zo and 8 = By (we may choose: such thatu(0) = 1).
Recall that: has the following property:

+00
/ (zo+ Hu?(r)dr = 0.
0

Lemma 2.2 is useful in the classification of bounded solutions associated with the
bottom of the spectrum of the Neumann realization of the Schrodinger operstpin
the half planéRii = {(x1, x2): x> 0}
—V2¢ = in R2,
w¢ IBO¢ + , (26)
Vo¢p-v=0 ondRZ,

wherew (x) = %(—XZ,)CJ_). It was proved in [17] that, the bottom of the spectrum is the
numbergBy given in Lemma 2.2, and thieoundedsolutions of (2.6) associated wify
are given byp = c exp(2L2 + izoxy)u(x2).

In the following, we set

u*(0)

~ 3lul?

: 2.7)
L2(R4)

1

It is clear from this formula thaf’; > 0.

PropPoOSITION 2.3 (Lower bound estimate fat/.,). —Assume thaf2 is a bounded
2-dimensional domain of class*. For « large, we have

K C
— + ﬂT/lZKmaer O(x~Y/?), (2.8)
0

HC3(K) 2 ’BO

where(; is the positive constant defined(.7).

Proof. —-Here we need the upper bound of the lowest eigenvamgéF) of the
Schrodinger operator with constant magnetic field: Eud 1, with an error term in
O(e~%?), which was obtained by Helffer and Morame in [15] (Proposition 10.7):

1 1
M(;F) < ?{ﬂo—ClxmaXs+Ms3/2}. (2.9)

Using the argument of the appendix in [19], (2.8) follows from (2.9). For reader’'s
convenience we include a proof below, which also gives an upper bound of the energy.

For M introduced in (2.9), we choosk such thatLgy’* > M. We shall show that,

whenk is large, (2.2) has a non-trivial minimal solution for any numéesatisfying

K C
O<o<—+ T/lszaX_LK—l/z'
Po

Po
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From the previous lower bound estimate obtainedHes(«) in [19], we know already
that (2.2) has non-trivial minimal solutions fer< « /8o whenk is large. Hence we only
need to consides’'s greater tham /By. In the following we choose such that

C
Ll <o < © + IBT/lszaX_ Lic™/2. (2.10)
0

An easy computation gives

ﬂl/Z
O kmax+ LBk Y2+ 0O(k™?). (2.11)

Bo> —> Po—
Recall thate = (o«)~Y?. From (2.11) we see that

1/2 2~ 1832
1 _
ﬁ > &> ﬁ— — —Kmaxk + IB >/2

> +0(k73).

Hence we have
£ 1 £ C

5/2
172 <~ < Z12 T S 3zkmaé +O( ),
o K ot 288 (2.12)
Bo> — > Po— Cikmaxe + LBy €% + O(£?).
o2
Let us write

1
1(e) =32<K2 —u<—2F>>. (2.13)

I

Using (2.9), (2.11) and (2.12), we have,sas> 0,

1) =62(x2 = F) ) 2 (L83~ M)e¥2 4 O(%) = 0

Let ¢, be an eigenfunction o#ViZF in © associated with the first eigenvalmiggi2 F)

of the Neumann realization eriF and choosé&xrg,, F) as a test function, whereis
2
a free parameter. We have

)\’2 2
000 Fr=32 {193,002 = U2+ 2510l e
JU:

M (s) Ae?
= ”¢s”L2(Q) + — ”¢8||L4(Q)

Choose

2 t(8)||¢8”L2(Q) I(S)U ”¢8”L2(Q)

ZK ||¢8||L4(S2) K ”¢8”L4(Q)
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Then
t(8)2”¢8”12(9) I(S)ZUZ ”¢8||A£2(Q)
E7K ||¢8||L4(Q) ”¢8”L4(Q)

This last inequality shows that, far satisfying (2.10), the Ginzburg—Landau system
(2.2) has a non-trivial minimal solutiof)y?, A®). Thus (2.8) holds. O

Remark?2.4. — Letp, andx be the same as in the proof of Proposition 2.3. Note that
(M., F) is not a solution of (2.2) (a proof is given below for reader’s convenience). From
the last part of the proof of Proposition 2.3, we have

T (W, A%) < T (ke F).

Hence
I(S)ZUZ ||¢8 ”?12(9)

Now we show that, for any. #£ 0, (A¢,, F) is not a solution of (2.2). Otherwise,
suppose thatL¢., F) were a solution of (2.2). We have

T (¥, A%) < (2.14)

=V e =1 (1= 2216,
3@ Viph) =0 in Q, (2.2)
I(Viepe)-v=0 onax.

Recall thatp, satisfies

{—Vi (b =u(FF)gp. inQ,
2 (2.15)

(VEAZF%)-VZO onax.
Comparing the first equation of (2)2vith (2.15) we see that
1 2 2 2
M ;F ¢e =k (1_ A%\ e )d)a
Sinceg, # 0, we have

K2 — w(5F)
|¢a(x)|2 = T)@g

Therefore|¢. (x)| = f:, a constant. LeD be a simply-connected subdomainsafin D
we can writeg, (x) = f.€% ™ wherey,(x) is a real-valuedC? function. Thus

_ | | .
B30 =S1fie Ve (18] = 52V - F).
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HenceF = ¢?Vy, and curF = 0 in D. Repeating this argument on any simply-
connected subdomain @2, we find curlF = 0 in 2, which contradicts (1.3). This
contradiction shows thai.¢,, F) is not a solution of (2.2).

Remark2.5. — Bernoff and Sternberg [3] gave a formal expansioHgf(x).

It was proved in [19] that, if2 is a bounded domain iR? of classC® and if F € C3(Q)
satisfying curF = 1, then, ag — 0, we have

1 1
M<8—2F> < ?{ﬂo — C1kmax + 0(88/7)}.

From this estimate Lu—Pan derived a lower bound estimat&gfwith error term in
Ok Y7y,

In [9] del Pino, Felmer and Sternberg proved, faf%* domain, an upper bound of
the lowest eigenvalue with a remainder irLtx), namely

1 1
M(;F> < ;{ﬂo— C]_Kmaxg +0(8)}’

which yields a lower bound estimate fék-,(«) with error term @1). They also pointed
out that, under the stronger assumption that there is a non-degenerate maximum poi
z(s*) of the curvature, they could prove an upper bound of the lowest eigenvalue in the
form

1/4

1 1 Bo' s 3/2
M(;F)gé‘—z{ﬂo—c:]_l(max&‘-i-% —Kr(S & +0(8 )}

We should also mention that the expressiorCefin [19] is more complicated (and
equivalent). Helffer and Morame in [15] use@/3 instead ofC;. In this paper we adopt
the definition (2.7) forC4, as in [3], which shows more explicitly the positivity 6% .

Remark?2.6. — The energy estimate given in (2.14) involves the t‘ﬁﬂmlliz(m/

||¢g||‘£4(9) which, we believe, is of order @%?) if A(3Q) consists of a finite number of
points.

We explain the guess heuristically. For simplicity, let us consider the normalized
eigenfunctiong,, namely,||¢: || .~ = 1. From Propositions 6.6, 10.6 and 10.7 in [15]
we believe (and will show later) that the eigenfunctigp concentrates on the set
N(3) of the maximum points of the curvature, and decays exponentially away
from N (8€2), with order exg—< dist(x, 3%2)) in the normal direction, and with order
exp(—j—zgd, (x, N'(0€))) in the tangential direction.

Now suppose thatV'(d2) consists of a finite number of points. Near each point
x; € N(3€2), we can introduce new variables= (y1, y2), wherey; is the tangential
variable andy; is the normal variable, to straighten a portion of the boundary areund
(in fact, y; is a translation of(x), andy, = z(x)). In the new variableg, after making
gauge transformations, the rescaled functionppfconverges to a bounded solution
cjpo(y) of (2.6) ase — 0, where|c;| < 1, ¢o(y) = explizoy1)u(y2) andu is chosen
such thatu(0) = 1 (recall that| ¢, ||.~) = 1). So, neatx;, ¢. can be approximated
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locally by a function in the form "éf¢>o(y/e)wj(y1/\/§), here x; andw; are smooth
real functions, andw;(y)| < 1. Hence

2 ~ A 232
|¢pe|? dx >~ ¢;e%

QNBs(x;)

As mentioned above that, concentrates oV (02). The above computation can be
carried out at each of the points, ..., x, in N'(02). Hence

n n
240~ o3/2 A A2
[1gFar=e23 "5, Yo i2=0
o j=1 j=1
Similarly we have
n n
4 2 ~ ~2
[1gtar=e223"z,, Y- @=0
3 j=1 j=1
Therefore
e 72 [>2]_1 817
J 32 \wherec = 1’1—713
> =1 €

Remark2.7. — Instead of using the eigenfunctign, we can also choose the test
function used in [15] (proof of Proposition 10.7) to get a more explicit energy estimate.

”¢8 ||L4(Q)

3. Uniform estimates for the lowest eigenvalue

In this section we assume th&t is a bounded simply-connected domainRA of
classC*. We shall establish a uniform estimate for the lowest eigenvalue M(S%AS)

of the Neumann realization of the Schrodinger opere}tvtzl e with magnetic potential

SA*, whereA* satisfies the following conditions
HASHCZ(SZ)
[curl A® — 1| 1 = O("%), ase -0, (3.2
curlA® =1, ona<.

C,

We intend to apply the results of this section to the solufiérof (2.2) in order to prove
Theorem 1. However, the results in this section are valid for any family of vector fields
satisfying (3.1).

THEOREM 3.1. —-Under assumptiof3.1), there existy > 0 and C > 0 such that, for
all 0 < ¢ < &g,

( ! A*’) 812(,30 — Cikmase — Ce¥3), (3.2)

whereC is given in(2.7).
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The proof of Theorem 3.1 will be carried out following the lines of [15], with a careful
control on the error terms. In this section we always fix a positive nurdipere(2),
and letr(x) = dist(x, 02). By the gauge-invariance of the eigenvalue problem and
condition (3.1), we can choosA® in such a way that, in the neighborhodd;,,

A® = (A}, A%) has the following form:
l‘2
A=~ + () + t2b (s, 1),
A5=0, (3.3)
be(s, 1) = O(¥3).
Let {x, (x)}r be a partition of unity ofR? introduced in [15] ((9.10)—(9.14)) such that
r =72
x, € C*(R% R),
sptx,) Cy +[-1,1]?, foranyy eT,
Yoxu@?=1 Y |Vxw|[<c.
yel yell
If T(¢) is a function ofe such that O< 7(¢) < &g for all £ small, then we set

Koo () = 2y [ —— ), forally eT.
y,t(€) y ‘L’(S)

Thus we have a new partition of unity such that
SPUXy.(e) C T(e)y + [—T(e), T(e)]%,
2
Z Xy,r(s)(x)z =1 Z |va,r(s) (x)| <
yel yel
Let us introduce:
Fr(s)(Q) = {V el Spt(Xy,r(s)) NQ#£ V)},
T2 (Q) = {y € (o) (Q): dist(SPt{xy.c(e)). IQ) > (&)},
T () = {¥ € Te(e) () dist(Splxy.c()), 392) < T(e)},
Tl () = {y € T5,, () SPtxy.e) N QR C Ry }-

In the following we denote by, an eigenfunction of the Neumann-Schrddinger
operator—V3 A associated with the lowest eigenvalug We shall recall the estimates
2
for eigenfunctions. Let us begin with the weighteélestimates obtained in [15] ((6.25)
and (6.26)):

LEMMA 3.2 (WeightedL? estimates). nder assumptio3.1), there exists positive
constantsy, ¢; and C such that, for all0 < ¢ < ¢1, we have

()2’

at(x)
/exp(T){|<ag|2+sz|v;2Ae<ag|2}dx < C/|<og|2dx. (3.4)
Q Q
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Propositions 9.6 and 10.2 in [15] remain true for a fan{idy’} satisfying assump-
tion (3.1).

LEMMA 3.3.-Under assumptior§3.1), for any non-negative integek, there exist
positive numbers,(k) and C, such that, for any) < ¢ < e5(k), we have

2
[1@H i@ d < Ceetlge I
Q

[ @M1V 300, de < Cuet Pl
Q &
LEMMA 3.4. —Under assumptior(3.1), we chooser(e) = ¢” with 0 < p < 1/2.
Then, for any non-negative integkr there exist positive numbetg(k) and C (k), and
sequencesa,(y, €)}, and {b(y, ¢)}, satisfying

> aly, )’ < Ch), > bily, )’ < Ck),

’
T(¢)

/

yel e

yel

such that, for any) < e < e3(k) andy € I';,,(€2), we have

2
/ 1) [ Xy e (1) | dx < ar (v, €)% e 122 (3.5)
Q
2 _
/ 1O |V pe (Koo 06 (0) | e S iy, )% 2194117 2 (3.6)
Q

Remark3.5. — The exponential decay in the normal direction is well known in the
case where the magnetic field is independent of the paramet@der assumption (3.1),
the uniformly exponential decay can also be established, asin [9] (Theorem 4.3) and [1E
(Theorem 6.3):

Under assumption (3.1), there exigt> 0 and, for any multi-indexx with || < 2,
positive constants; (o) andc, () such that, for any & ¢ < g4, we have

c1(a) o

D] < —3

xp(—czia) dist(x,BQ)) I@ellLoi, forallxeQ. (3.7)

Proof of Theorem 3.1. tn the proofC denotes a generic constant which varies from
line to line, but is independent efandy. As above, we denote hy. an eigenfunction
associated with the lowest eigenvalug Write

02 nld]= [ V3,0 d
Q

Then
. QaZ,AS (@]

Pe = -
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So, a lower bound oD, A:[¢.] yields a lower bound foy... However, we will not
compute directly the value @,z »:[¢.]. Recall that the eigenfunctions concentrate in a
small neighborhood of the boundary. Also note that, for any smooth fungfiome have

[ 1930 o0 ar =5 [ (=94 0)0P0) di+ [lp.vnlPde,  (38)
Q Q ’ Q

hence

Mall%nlliz Q) = QaZ,Ae[%ﬂ] eV 77|2dx- (3.9)
(€2)
Q

Therefore, we shall choose a suitable cut-off functararefully, and estimate each term
in the right hand of (3.9). We shall carry out a careful analysis on the behawgmefar
the boundary, and the following notations are needed.

Let{no.z(), N1.z()} b€ the partition of unity ofR introduced in [15] ((9.22) and (9.23))
such that

77(2)’1(8)(1‘) + nir(a)(t) =1

C .
|77;',r(8)(t)| < —‘L'(S) , for j=01,

SPt(n0,z(¢)) C {ﬁ +OO) ,
’ 20
T(¢e)
(=10

Let us chooser(s) = ¢, where ¥3 < p < 1/2. We will fix p later. For eachy €
1“,1(8)(9), we can choose, € 9%, such that, for any e spt(x, ,1/3)

SPtN1, ) C

3
s —s,] < 531/3. (3.10)
Set
K(y,e)= (s, —2e¥3 s, +2e73) x (0, 7(¢)),
Ky :Kr(sy)7
a,(t)=1-K,t.

Let us define

We () = N1,y (1 (X)) e (1), (3.12)

wy,s(x) = Xy,e1/8371,1(e) (t (X))(Og (x)
Using (3.9) withn = 11 ;(;), we have

M&”w&‘ll%Z Q) = QsZ,Af [we] eV nl,r(s)lzdx- (312)
()
Q
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We shall estimate each term in the right hand of (3.12).
Stepl. We look for a lower bound 00,2 a:[w,]. As in [15] ((11.3) and (11.4)), we
get

-2 2
Qezpclwl> > Quepalw,]—Ce /3/|wg| dx
yerl (@ Q

and
2

QsZ,A5 [wy,a] = / ay (I){(l + ZKyt)’ (av - éAi> Wyl + |atwy,£|2} ds dr

K(y.e)

— C/{gl/3z|vf2Agwy,g|2 +e MR + 1Y w, . |°} dx.
Q

From these inequalities, Lemmas 3.4 and 3.5, we get

2

QSZ,A5 [ws] > Z / ay (t){(l + ZKVI)’ (as - gl_zAi> wy,s

yel? (DK (y.e)
2 -2, 2
+ 10wy | }ds di — Ce 3 |lwe |22 (3.13)

In order to estimate the sum in the right hand of (3.13), we write

Al=A,1t)+A,.,
2

A1) =—1 + %Ky, (3.14)
2

t
Aye=A5 = Ay =5 (k() — K,) + t%b: (s, 1).

We have

. 2
/ ay(t)(l—i—ZK},t)‘(aX—;—2Ai)ww ds d

K(y.e)

2
ds dr

i i
_ / a, (1) (1+ 21@)’ (as - 8—2Ay)ww — Ay
K(y.e)

_ / ay(t)(l—I—ZKyt)’(as—;—2Ay)w%g

K(y,e)

) .
+53 / a, (H)(1+ 2Kyt)Ay,gm<as - éAy> w, .. ds dr

K(y,e)

1
+3 / a, (1)(1+ 2K, 1)|A, cw, |*ds dt.

K(y.e)

2
ds dr
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Hence

2q(¢)

g2

Q.2 ps[we] = P(e) + — Ce P lw |72 (3.15)

where

P(e) = Z / ay(t){(l—i—ZK},t)’(av—;—2Ay)ww

1
YelZ (DK (v.¢)

&)= > qy.e), (3.16)

yelT ()

2

+ |atwy,6|2} ds dr,

i
q(y,e) =S / a,()(1+2K,1)A, W, , <8X — 8_2‘41/)’”%8 ds dr.
K(y.e)

We need a lower bound of each term in the right hand of (3.15). A lower bound of
P(¢g) can be obtained by using the argument in [15], proof of Theorem 11.1, with the
choicer (¢) = %12

1

P(&) > = (Bo — Carcmare — Ce¥?) well2q- (3.17)

In the following, we choose (¢) = ¢%*? and derive an estimate fog2)/e?. Since
A, = A7 — A, ., we can write

ad iA =0 iAS iA
s_g_2 y — s_; 1+; y,€*

Thus we write
q(v,e)=qi(y,e) +q2(y, ),
gi(y,e) =3 / a,(t)(1+2K,1)A, W, , (as — l—zAi) w, . ds dt, (3.18)
&
K(y.e)

1
qz(y,s):8—2 / ay(t)(l—{—ZKVI)IAV,gwygglzdsdt.
K(y.e)

We first estimatey, (y, €). Noting thatn, .,y depends only on, using (3.11) we have

q1(y,e)=73 / ay(t)(l"'ZKVt)nir(S)(t)
K(y,e)

i
X A)/,SXV,sl/:"(ps (as - ;Ai> (Xy’81/3(p8) ds dr,
SO

ds dr

i
|611(V, 8)| < C / nif(g)(t)lAy,SXy,sl/“ps| (av - ?Ai> (Xy,51/3(/75)

K(y.e)
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12
<c( / nit(g)(t)|Ay,s|2|Xy,51/3(Ps|2dSdt)
K(y,e)

]
<( ni,@)(o‘(as—S—ZAi)(xy,gmgog)

K(y,e)

From (3.3), (3.10) and (3.14) we have

2 1/2
ds dt) .

1
|A, | < t2<§|/<,(s) — k- (5))| + |ba (s, t)|) =0(3)%, onK(y,e).
So we use (3.7) witkk =0, (3.5) and (3.6), in order to obtain

2 2 2 14/3 2 2
[ 714y Pl vng s dr < CoMRanty, e 3z,
K(y.e)

i
/ nit(g)<r>| (as - ;Ai) (1, e1305)

K(y,e)

Hence we have the following estimate fpn(y, ¢):

2
ds dr < Cebo(y, &)%llwellF 2,

|q1(y, &) < Ce¥3aa(y, &)bo(y, &) |we |72 (3.19)
Similarly, we obtain an estimate fgs(y, ¢):

|q2(v. &)| < Ce¥Paa(y, &)?|we | 72qy- (3.20)
Combining (3.16) with (3.18)—(3.20), we get an estimategfor, ¢):
(v, &)| < Celaaly, &)bo(y, &) + £%aa(y, )] |we |72 -
Therefore
2|q<e>| Ce w32, (3.21)
Combining (3.15), (3.17) and (3.21), we get a lower bounddes p- [w. :

1
Q2 aclwel > =5 (Bo — Crkmat — Ce*®) [ we[172,- (3.22)
Step2. We estimate the second term in the right hand of (3.12).
Recall thatny ;) =1 if t < 7(¢)/20 andny ) =0 if # > 7(¢)/10. Hence we can
find two positive constants:; < m,, both independent of, such that the support of
|Vn1-| is contained in a s€tc € Q: myt(e) <t(x) <myt(e)} for all smalle. Thus

/mwlf@n dr < PR

r(e)
{mat(e) <t (x)<mat(e)}



B. HELFFER, X.-B. PAN/ Ann. |. H. Poincaré — AN 20 (2003) 145-181 165

2
<

2, 2
t(x dx
" ()21
{mit(e)<t(x)<mat(e)}
C382

X W”(QSHEZ(Qy (323)

Here we have used the first inequality in Lemma 3.3 Witk 2.

Step3. Now we can derive a lower bound for the eigenvalye

As in step 2, we choose(e) = £>/12. From (3.10) we see thdltw, [l ;2(q) < .l 12q)-
Using (3.12), (3.22) and (3.23) we have

Ms”w£”%2(g) = QsZ,AE [we] — / |</>sV771,r(s)|2dx

4/3 & 2
(:30 — Cikmaxé — Ce / )”wa”LZ(Q) (8)4 ”(pa ||L2(Q)

|'_‘m|\)||_‘

4 7 2
2 (IBO CleaXS —Ce /3 _ Ce /3) ||w8||L2(Q)7

which yields a lower bound fou,

1

e =
8/82

Now (3.2) is proved. O

Remark3.6. — (1) Lemmas 3.2-3.5 remain true under a weaker condition

A® C,
A ez < o
|curlA® =1 4 =0(1), ase—0.
(2) We can show that, under condition (3.1), the eigenfuncgtiotiecays exponentially
inside the boundary and away from the set of the maximum points of the curvature. Sinc
the proof is similar to the nonlinear case which will be discussed in Section 6, we omit

it here.

From the proof above we see that the conclusion of [15] (Proposition 10.5) remains
true.

PrRoOPOSITION 3.7. —Under assumptiof3.1), there existC > 0 andegg > 0 such that,
forany0 < e < o and¢ € W12(Q2), we have

1
0nld]> 5 [ Wil (3.24)
€ Q

where

(3.25)

W, () = 1—Ce'? if dist(x, 02) > 2¢%3,
| Bo— Cikr(s)e — Ce¥? if dist(x, Q) < 23,
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4. Elliptic estimates

In this section we shall derive elliptic estimates for the minimal solutions of the
Ginzburg—Landau system (2.2) when the applied field is closBtg namely when
we assume

(i + O(l))/( <o < Hey(k). (4.2)
Bo

As before we use the notatiofn= J% Using conclusion (1) of Theorem A in Section 1,
we see that condition (4.1) implies

e’k? =Py +0(1), ase— 0. (4.2)

In the following, we denote by:

(¥, A®): anon-trivial minimal solution of the Ginzburg—Landau system (2.2),

x®: amaximum point ofy® (x)|,

and we define., by
he = HWEHLOO(Q) = Wg(xa) ’
We always fix the gauge and assume that, A¢) satisfies (2.3).

PROPOSITION 4.1. —Assume that conditio(.1) holds. Then we have
dist(x*, Q) =o(e) and |[y°|[,«q =01) ase— 0.

For the proof, see [19] (Theorem 4.1 and the last paragraph of the proof of
Lemma 4.5).

PROPOSITION 4.2. —Under condition(4.1), there are positive constantS and &g
such that, for allo < ¢ < g, we have
1) IIVSAZAW*’IIC@ < SYe Nl s
() llcurlA® — 1 caig < Celly® 112w gy
@) lcurlA® — 1o < CIYE 12
(4) For any multi-indexa with |«| < 2, there exist positive constants(«), ca(«)
such that, for all0 < ¢ < ¢g, we have

Doy ()] < c1(a) exp(_ c2(a)

T . dist(x,8§2))||1/f€]|Lw(Q), forall x € Q.

Proof. — Stefdl. We prove (1) by contradiction.
ChooseP¢ € Q such that

’va%As‘/fg(Pgﬂ = ||V5%A“/’£||L°O<sz>'



B. HELFFER, X.-B. PAN/ Ann. |. H. Poincaré — AN 20 (2003) 145-181 167

Suppose conclusion (1) were false. Then there exists a seqeiere® such that

I|m —HVlA,W 4.3)

HLOO(Q)

We shall find a contradiction. Passing to a subsequence if necessary, we deal with tw
cases, hamely, case 1 whePé stays away from the boundary for gll and case 2
where P¢ is close to the boundary gs— oo. In the following, for the simplicity of
notations, we denote; by ¢, and consider a “sequencé}.

Casel. lim,_o L dist(P¢, 9Q) =

We shall show that, in this case, as> 0,

e )‘8
HVEAZASW HL°°(S2) = O(?) (4.4)

Define the rescaled functions as follows:

1
A:(y) = : [A®(P® +ey) — A°(P?)],

1 .
$:(n) = — eXp(—lgAg(Pa) : y) ve (P +ey).

&

From (2.2),¢. satisfies

{—me = 6241 = 2216: 1),

4.5
curPA, = e2223(. Va, ¢:), in (Q— P%)/e. (4-3)

Recall thats’? — By < 1 ase — 0. Using (4.2) and applying the argument in [19]
(Lemma 4.2), we can show that, for a®y> 0, there existgo(R) > 0 such that, for
0 < e <gp(R),

[Aellc2a g < C(R).
We also obtain (see [19], Lemma 4.4): — 0 in C5Z (R?) ase — 0. Therefore,
Va. . — 0 inCol (R?), ase — 0.
Here we mean by convergencea\ﬁ;g , that for any compact subs&t c R?, there exists

ek > 0 such that we have convergencegpf(respectivelyVa, ¢.) in C**(K) ase — 0
(0 < e < €k). Hence, ag — 0,

Ae Ae
IV 300 i = [V a0 (P)] = ¥ 6.0 = 2.
So (4.4) holds.

Case2. dist(P?,9Q) < Ce ase — 0.
We shall show that, in this case, as> 0, we have

& )‘8
HVEAZASW HL°°(S2) = O(?) (4.6)
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ChooseQ?® € Q2 such that| P¢ — Q¢| = dist(P?, 3R2). Let F, be the diffeomorphism
which straightens a portion of the boundary aroundas defined in [19] (Section 2)
with F.(0) = Q¢. Let us definey® = F.1(x®) andz® = y/e. Note that{z*} is bounded
ase — 0. Without loss of generality, we may assume,lirgz® = z°. Note that, although
F. depends om, its domain contains a baklt g, with R independent of, and bothF,
and detD F, are uniformly smooth on this ball. For simplicity, we write ndW= F,
andg =detDF,. Let ¢ (y) = ¥*(F(y)) and let

= [gA® -el]er + [A° - &6

be the vector field associated wilif, see [19] ((2.22) and (2.23)). Note thait(0) =
Af(Q%), & (0) - e, = 0. Next we define the following rescaled functions

1
Xe = gylAE(QE) -ey,
1
G- (y) = —eXIO( ixe) Ve (ey),

1
()=~ [ (ey) — & (0)],
8 (y) = g(ey).
Using (2.2) and the gauge invariance property, we get the equatigh:for
—A(ge)a be = %62(L— 12|p.|D¢. in B .,
32(]38 =0 OnFRO/g.

As in [19] (Section 4), we use (4.2) to show that, there is a subsequence (still denote
by #.) such thatp, — ¢ anda, — w(y) in CE,Jg“(RZ) ase — 0, and ¢ is a bounded
solution of (2.6). Therefore, as— 0,

D(gg)ag(];‘,; - qu; in Cljc.)ta (R—Zi-)

Especially,D(g)a ¢.(0) = V,4(0), S0Va_ ¢, (0) - V,4(0). Hence, ag — 0,

Ae Ae
||V5i2A8‘/’SHL°0(Q) = ]V%ZAA//*:(P*:H = ;|VA5¢5(0)| = O(:)

So (4.6) is true.
Combining (4.4) and (4.6) we get a contradiction to (4.3). So conclusion (1) is proved.
Step2. We prove (2).
From the second equation of (2.2) and using conclusion (1) we have:

[V [curl(A® = F)] | ., = [ cUrP(A* = F) [ g
:82H%(WVE%A“/’8)HLOO(Q)

<Vl @[V 32 ¥ [l ey
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C 2
< 82||‘/’6HL00(Q) : ;Hw8||L°°(Q) = CSH‘/’SHLOO(Q)'
Recall that cudA® — F) =0 ona<2. The above inequalities imply that
2
[eurl(A® = F)|| ) < C'[[V[cu(A® = F)]|| () < CCe[[¥ o).

Therefore

| curl(A® )Hcl(sz) Ce|y HLOO(Q)

Hence conclusion (2) holds (replacidgby a larger number).
Step3. We prove (3).

CLAIM 1. -—Under condition(4.1), there exist positive constant$ and g such that,
for all 0 < ¢ < &g, we have

HV(FV}ZASW)HLWQ) S ;HWHLWQ)' 4.7

The proof of Claim 1 is similar to the proof of conclusion (1). Chod¥ec Q such
that

(V¥ V1n9°)] (P)| = IV(¥*V309) [ 1)
Define the rescaled functions as follows:
R 1 R R
Ae(y) = Z[A(P +ey) — A (P)],
by =— exp(——AE( Yoy )P )

$. satisfies an equation similar to (4.5)@(e) = (2 — 138)/8. As in step 1 we can show
that, there exisM > 0 andep > 0 such that, for any & ¢ < gp, we have

Hv@vﬁlxﬁs | @en < M-
We compute
V(P o) = by exp AL ).
(V) (P e3) = exp( A% (7)) (93, 80) ),
(VY ") (P +ey) = %E(EVAE@)@L
i(_’”’V%AsW)(ﬁE +ey) = Z—gaiyj@vmm).

So
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2 — 2

— _ ~ A = A
19T 38 i = |1V (T 3] ()] = 2] (395, ) 09 <

Claim 1 follows.
Note that

curP(Af — F) = (dp[curl(A® —F)], —a1 [curl(A® — F)]).

Hence, using Claim 1 and the second equation of (2.2), we have

F)Jll ey < 1185 [CurP (AT = F)] | 1 g
=82H8jS(FV%2Agw8)HLw(Q)
ZEZH%BJ(WVAA“/’E)HLOO(Q)

< 82||BJ(WVE%A€ )HLOO(Q) M)‘z

Ha,’j [CU”(AS —

Combining this and conclusion (2) we obtain conclusion (3).

Step4. Conclusion (4) can be proved as in [9] (Theorem 4.3) and [15] (Theorem 6.3).
In fact, conclusion (2) implies that, as— O, || curlA® — 1|l g, = 0(1). Then applying
the arguments in [9] or [15] to the equation f@f one obtains conclusion (4).

Now, Proposition 4.2 is completed.

Remark4.3. — (1) From step 1 of the proof of Proposition 4.2 we see that, for any
sequence, — oo,

lim max i|V1 Ye(x)|=0
e—0 dist(x,dQ) >epe A _ZAS ’

(2) Inequality (4.7) says thaV(WV 1a-¥5)| is of order Q12/e2). However, we can

not conclude thatv (V 1 Agw )| is also of order @, /¢?). In fact, from the computations
in step 3 of the proof of Proposition 4.2 we see that

D A &( pe . e( pe 2
049 300 0°)] (P +-3) = A (P exp( LA (P) -y ) (V4,60
e [ioas A
+ 2o AP ) 3)(V, 610
Thus, as — 0, we have:
b
V(7 8 i = O 55

The following theorem will be used in Section 5 to establish the lower bound
of He, ().

THEOREM 4.4. —Assume that conditio(4.1) holds and that(y*, A¢) is a minimal
solution of (2.2). Then there exis€ > 0 and g; > 0 such that, for all0 < ¢ < &, the
lowest eigenvalueL(gizAg) of the Neumann-Schrédinger operatelViAg satisfies the

2
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following inequality:

1 1
£ &

Here C; is the number given i(2.7).

Proof. —Sinceo < Hc,(x), (2.2) has a non-trivial minimal solutioq/*, A®). From
Lemma 2.1(2) we have
1
u(8—2A6> <k?
forall ¢ > 0.

From Proposition 4.2 we see that the fan{y’ }o. ., Satisfies condition (3.1). Using
Theorem 3.1 we conclude that, the lowest eigenvalue- M(S%Ag) satisfies

1 1
( Af) > = (Bo— Cikmat — C&*?)
&

forall 0 < ¢ < g9. Hence (4.8) holds. O

Next we giveL? estimates fofy¢| , which will be used in Section 6. The conclusions
indicate that, if the applied field is close to the upper critical field in the sense
of condition (4.1), then the order parameter concentrates in a thin layer around the
boundaryo 2.

LEMMA 4.5. —Assume that conditio(d.1) holds andF satisfies(1.3). Let (y¢, A%)
be a minimal solution 0f2.2). There exist positive constanmt$, ¢ and gq such that, for
all 0 < ¢ < g, we have

[wPdesm [ pefa 4.9)
Q

{dist(x,0Q)<ce}

Proof. —Note that the weighted.? estimate (3.4) is valid fors®. In fact, from (2.2)
we have, for any real and smooth functign

/|ww rdx—/{x AR AR AL
</ {20+ 199 .
Q

On the other hand, using Propaosition 4.2 (conclusion (2)) we see thatsiupported
in the interior of2, then

/|V;2Ag(xw8)]2dx > insf?]curIA8|2/ e Py > (1— Cs)/]xw8|2dx.
& xXe
Q Q Q
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From these inequalities, we can argue as in [15] (Section 6.4) to get

oo “2 )y Par < C/|w v,
Q

wherea and C are independent of. Then, using the above inequalities we can show
that (see [15], (6.26))

/exp(at(x)>|V1Auﬁ ] dr < 2/|w8|2dx.
Q Q

Thus the weighted.? estimates are valid fag®.
Especially we have

W|2dx<Ce—w/Wy2dx.
Q

{dist(x,0Q) >ce}
Hence
_ 2 _ 2
-ce=) [ |wfa<ce [ |yfar
{dist(x,0€2) >ce} {dist(x,02) <ce}

Chooser > 0 such that - Ce™*¢ > 1/2. From the above inequality we find:

|2 1 |2
!|‘/f’dx<m / || dx.

{dist(x,02) <ce}

So (4.9) holds withM =1/(1 — Ce ™). O

5. Upper bound estimates for H, (k)

In this section we keep the notations of Section 1.

PROPOSITION 5.1. —Assume thaf2 is a bounded simply-connectéddimensional
domain of clas€*. Then we have, for large,

C,

Hey() < = +ﬁ3/2Kmax+ O(k~*3). (5.1)

Bo

Proof. —~We shall prove the following conclusion: For amy satisfying O0< o <
He,(k), we have

Rt ﬁ(;/lz"maX“‘ O(k2). (5.2)

(5.1) follows from this conclusion.
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From the lower bound ofi.,, we only need to consider suet's that

K C L
% + meax— T <o < Hey(k), (5.3)

with L > 0 large. Foro satisfying (5.3), condition (4.1) holds. Ginzburg—Landau
system (2.2) has a non-trivial minimal solutigg®, A®). From Theorem 4.4, for all
0 < & < &g, the lowest eigenvalug, = M(E%AE) satisfies (4.8). From (4.8) and (5.3) we
have

K 6225 By — Crmane — C*5. (5.4)
o

Inequality (5.4) implies that

1 B Cy C
e VP T L P VP (5:5)
and
1 B 1

Plugging (5.6) into the right side of (5.5), we get

1 Bo CivBo ( 1 )
> — — 2 Kmax_o .
o K

. «7/3

Thuso must satisfy (5.2). So (5.1) holdsO

Proof of Theorem 1.1. Fheorem 1.1 follows from Propositions 2.3 and 5.10

6. Localization of order parameters

In this section we assume th& is a bounded simply-connected 2-dimensional
domain of clas€* and discuss the concentration phenomena of order parameters whel
the applied field is close tf, (k) andxk is large. We keep the notatien= 1/./o« and
denote by(y¢, A®) a minimal solution of (2.2). Let

Ag:HWSHLOG(Q)’ Y =

Recall that we have defined the tangential distadge: (s, ), N'(02)) and have
introduced the notation@; and A/ (92) (see Section 1).

THEOREM 6.1. —Let
3/2

0 _
o= c [Hey (k) — o).
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(1) Assume thab < p < Lik~@, where0 < a < 1/3 and L; is a positive constant.
Then there exist positive constants, c1, /1, &2 and M; such that, for all
0 < ¢ < g1, we have

/|w | exp< [kmax — & (x) — 1167 ])dx M, / |1ﬂ | dx. (6.1)

c1€

(2) Assume thafl.,x Y2 < p = o(1), where L, is a positive constant. Then there
exist positive constants,, ¢, I, e, and M, such that, for all0 < ¢ < &5, we have

/Wf | eXD( [iemax — rer (x) — lzp]>dx M, / |v°|* dx. (6.2)

coE

(3) Assume tha® is not a ball, and letg < p < kmax— kmin. Then, there exist positive
constantsys, c3, M3 andez such that, for all0 < ¢ < ¢3, we have

/Wf | exp( [Kmax — K (5) — ]3/2) JTE / [y ] dx. (6.3)

In the proof of Theorem 6.1 we need the following notations. Fer®< g, u > 0,
we define

I, n) ={x € Q: dist(x, dQ) <8, «,(x) > Kkmax— i},
y (z) = sup{dist(x(s), N'(3€2)): x(s) € 0Q, k,(s) = kmax— 2z}, forz>0.
If Qis not a ball and ifmin < B < kmax, We define

Tp(8, n) = {x € Q: dist(x, Q) <38, k. (x) > B — u}.

LEMMA 6.2. —Assume thaf? is a bounded domain of clags* in R? and ¢o(s) =
kmax — k- (s). Then we have the following conclusions.
(1) There exists a positive constafitsuch thatig,(s)|? < Ceo(s).
(2) Assume thatv'(3€2) consists of non-degenerate maximum points of the curvature.
Then there exists a constapt > 0 such thaty (z) < yo./z for 0 < z < z*.

Proof. —Conclusion (1) is a standard result. We prove conclusion (2). Assume that
N (0Q) consists of non-degenerate maximum points,), ..., x(s,) of the curvature.
Then we can write

Po(s) = po(s)(s — s1)%+++ (s — s,)°,
where pg(s) is a positive continuous function. Hence, we can find a positive constant
¢ > 0 such thatpy(s) > cd, (x(s), N (32))?. So the conclusion is true.O

Proof of Theorem 6.1. — Step If 0 < He, (k) — o < C for largex, then the number
t(e) given in (2.13) satisfies

? Y2 [Hey(c) — o] +0(Y3),  for smalle. (6.4)
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This follows from (1.5) and the estimate

1 1
1(53F) = o= Cuimwe + 0[] (6.5)

obtained in [15] (Theorem 11.1). In fact, sinee= H¢,(k) + O(1) = & + O(1) and
e=1//ok, we haveso = ﬁ + O(¢). Using (6.5) and (1.5) we get

te) 1, , (1 )} ,30[ C1 13

_ = — — —F

. 8|:8K el ) . ,30+,30Kmaxsa o|+0(e™”)
C1

B
8(: [,30 - WKmax_ O] + O(gl/3> '83/2 [Hey(6) — o] + 0(81/3)-

Step2. We prove an integral inequality.
Let x be aC? function. As in (3.8) we have

Qezpe [X9°] E/Ilee (xe®)|*d
_9{/ VlAF(p (x%¢%) dx+/|(pV)(| dx

=K2/(l—)\§|(p€| ) xe| dx+/|qfvx| dr.

Q

Using this and Proposition 3.7 we get
282d< 2,:2(1 — 22|0f 12 £1? 1 g2| 4ty de
W) x*[of|"dx < [ {e%* (1= aZ|o" ) [xe"|" + %0 V| } dr.
Q Q
Let x = exp( ) wherea and¢ are to be chosen later. We get

/y yexp( ){W(x)—82K2+k282K2|(p’ —a?%|Ve?}dx <0.  (6.6)

The term involving|¢?|* in the left hand side of the above inequality has a positive sign,
and will be neglected in the following (so the nonlinear effect is neglected, although this
term could be useful to estimate the orden.pfase — 0).

In terms of the number(e) defined in (2.13), we derive from (6.6) the following
inequality.

/ |<o8|2exp(%) {w.co- szu(g%F)} ~1e) — oIVl dr <O,
Q
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Now, in 25,13, using the upper bound (2.9) pf(S%F), the lower bound (3.25) dW, (x),
we have
1
We(x) — (; F) > C1¢ [kmax— & (x)] — C'e™3,

whereC’ is a positive constant independentofn 2\ 2,,13 we have, for some constant
m > (1-Bo)/2,

W, (x) — ezu(gle) —t(e) — a’e|Vp|? =1~ By +0(1) > m.

Therefore, we have

/!w!exp( ){cl[xmax—xr(xﬂ M) crers 2|V¢|2}dx

2;1/3

+; / % exp(zjf))dx<0 (6.7)

{dist(x,9$2) >2¢1/3}

Step3. We consider case (1).
Setp (x) = ¢o(x) = kmax — k- (x). Using conclusion (1) of Lemma 6.2, we can show

that|V¢o(x)|? < Ceo(x). Choosexr such that O< o < ,/ﬂ. From (6.7) we have

[ 1o e oo ) { Gt - 12— c s

281/3

2
+ = / |¢8|26Xp<—a¢o(x)> dx <O. (6.8)
& \/g
{dist(x,d$2) >2¢1/3}
Suppose that & p < Lye*/°. Using (6.4) we find (e) = O(e**). From this and (6.8)

we have
2 C
/ "ngzeXp(ﬁ%(x)) {71¢o(x) - C*e”} dx
Q,,1/3
20
+o / |¢€|Zexp<—¢o(x)> dr <0, (6.9)
e NG
(dist(x,d$) >21/3)

whereC* is a constant independent af
In the following, we choosd; > 4C*/C;. Note that, if x = x(s,t) € Q13 \
(2613, 116), thengo(x) = go(x(s, 1)) = ¢o(s) > l16% > %8”. Therefore we have

|<p€|2exp< ¢o(x)>{ L ho(x) — C'e “}dx
Q,1/3\I'(26Y/3 1169

2o
> Ce / |¢6|23Xp<$¢o(x)> dr

Q,,1/3\I'(261/3,116%)



B. HELFFER, X.-B. PAN/ Ann. |. H. Poincaré — AN 20 (2003) 145-181 177

From this and (6.9) we get
2

JE
Q,,1/3\I"'(261/3,1187)

m g2 20
v | leTee( o) ax
(dist(x,39) >2:1/3)
2
< / |¢8|29Xp<ﬁ¢o(m) dx.

[(261/3,1169)
Hence, for alle > 0 small, we have

|<08|2exp< ¢o(x)> dx

200 200
|<06|29Xp<—¢0(x)> dr < / leexp(—m(x)) d.
JE JE
Q\I'(261/3,1169) ['(2s1/3,1169)

Using this and Lemma 4.5 we get

20 20
Q/ |¢8|29Xp<$¢0()€)>dx<2 / |<08|29Xp<$¢0(x)>dx

20([18” 2
<2 ‘
exp( NG ) / o[ s

['(261/3,1169)

[(21/3 1169)

<2Mexp<2aﬁ >/|g08|2dx.
8 QL‘S

From this we get (6.1) witkv; = 2, c1 = c andM; = 2M.
Step4. We consider case (2). Assumés/? « p(¢) = 0(1) ase — 0. From (6.4) we
have

t(e
ae'? « %

Choosep (x) = ¢o(x) = kmax — k- (x) anda as in case 1. Then (6.8) also holds, and

= C1p +0(3) = 0(D).

o) 2 — el = o) - Cap — O(e).

Choosd, > 4. If x = x(s, 1) € Q.13 \ ['(26Y3, Iop), thengo(x) > I»p, and, for alle > 0
small,

c t(e , Cql
— bo(x) - % —Cle'P> (% - cl)p —0("%) > Cap.

So, for smalle > 0, we have
2o

\/E%(x)) dx

o[ ex

2,,1/3\I'2%3,120)
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m e12 2
* Cipe / ] eXp(ﬁ%(x)) dx

{dist(x,09)>21/3}

20
< / |<p”’lzexp<ﬁ¢o(m)dx

['(261/3,15p)
Hence
2
/ |<06|29Xp<—¢0(x)>dx< / o] exp( ¢0(x))
NG NG
Q\I'(2e1/3,15p) I'(21/3,15p)
Thus
2
/|<P | exp< ¢o(x)> / |<p5|2exp<—¢o(x)> dx
Je
' (261/3,15p)

2050 2
<2 ¢
exp( NG ) / o'

['(261/3,15p)

<2Mep< 2p>/|

From this inequality we get (6.2) witlt, = 2o, c; = c andM, = 2M.

Step5. We consider case (3). Assume thats not a ball, andy < 0 < kmax — Kmin-
We introduces = kmax— 0. Thenkmin < B < kmax. From (6.4) we have(e) = C1(kmax—
B)e + O(e*3). Define

(B — k()% if k. (x) <B,

#0) =B =k (]2 = {o if 1c,(s) > B.

Choosex > 0 small such thafa?|«;[|7. < $. For allx € Q.13 we have

Crlimar— 0] "2 — o212

9
= Ca[kmax— ()] = Calkmax— B1 = 207}/ ()| [B ()], +O(™7%)

C
>C1[B - (x)] — ?1 B — k()] +O(s3).

From this and (6.7) we have, for some const@fit- 0

/ "] exp( ){2[ — k()] = [~ (0], — C"e%} dx

Q,.1/3

[ rel¥)ec

{dist(x,dQ) >2¢1/3}
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Chooselz > 2C”. On the sefl5(2¢/3, I3¢/3) we have[ — «, (x)]; < l3eY/3. We can
find M’ > 0 such that, foe > 0 small

20
(I3 — C")e3 / |¢8|ZeXp<$[ﬁ Kr(X)]3/2>dx

Q\T'p(261/3,1361/3)

|¢8|29Xp<%[ﬁ o w)??)

Tp(261/3,13¢1/3)

x {[B =k ()], —2[B — Kk (x)] + C"e"/%} dx

N

2
<M / o2 d.
[p(261/3,13¢1/3)
Hence

|¢°| exp(T[ K,(x)]3/2) dx
Q\I'p(2¢1/3,1361/3)
M/

(13 _ C//)81/3
Tp(261/3,13¢1/3)

LetM” = M'/(l3—C")+1. Fore > 0 small, we use the above inequality and Lemma 4.5
to get

](p*:]zdx.

<

[leen( S -nwP) < [ e
Q

T'g(26%/3,13¢1/3)

M//
< gl/3 /’ ’ dx.
QL‘(“

Hence (6.3) holds witlvz = 20, c3 =c andMz = MM".
Now Theorem 6.1 is proved.O

Proof of Theorem 1.2. Fheorem 1.2 is a direct consequence of Theorem 6L1.

Proof of Theorem 1.3. We prove conclusion (1). We keep the notations in Theo-
rem 6.1.

Assume O< He,(k) — o < Lik~Y3. From Theorem 6.1 we see that, there exists
g0 > 0 such that (6.1) holds with = 1/3 for all 0 < ¢ < g9, namely,

/|¢ | exp( [max— Kr(x)]>dx<Mlexp< 1/6>9c/15 e [Pk,

Hence

|1/fs’2dx<Mlexp< 1/6) / ¢ | dx. (6.10)

Q3o \I"(30.21161/3)
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By the assumptionV (d2) consists of non-degenerate maximum points of the curvature.
From Lemma 6.2, conclusion (2), we haydz) < yo4/z for all 0 < z < z*. So

v (2113 < yo/201eV8. Let € = po /21, If di(x, NORQ)) > £V then kmax —

K- (s(x)) > 2I1eY/3. From (6.10) we get

aqly

/ D e LA PP CEEY

{xeQ: dist(x,d2) <8g, d;(x,N(0Q))>tcl/6}

Recall that (3.4) holds fog°. So we have, for some positive constasmtandC,

P de < Cexpl — = ) [ v [P dr. (6.12)
g1/6
Q

{re5/6Ldist(x,9€2) <o)
Chooser = a1/; /. From (6.11) and (6.12) we have, for all small

2 ayly 2
/ |1ﬂ8’ dx < BleXp<_m> ng|‘L2(Q)’

Q\{xeQ: dist(x,d2) <re6, d; (x, N (9K2))<el/8)

whereB; = M1+ C. Choose positive constartsg, 1, a; ande] such that, for O< ¢ < ¢/,

_ _ agly
2e'/8 < Uik 1/6, re®/® < rik 5/6, 21/6 > allcl/s.

If « is large (sce is small), we have

/ 7 dr < Brexp(—auc )| [z,

Q\{xeQ: dist(x,0Q)<rik %8, d;(x N (0R))<l1x~1/6}

So (1.8) is proved.
Conclusion (2) can be proved by a similar argumentt

Remark6.3. — It is interesting to estimaqepg||‘£2(Q)/||W||‘£4(Q) which, we believe,

is proportional t0||1//8||%2(9) up to a higher order term, as— 0. We may use (6.6) to
obtain an estimate fdfy ¢ .~ g, in terms of||xp€||‘L‘2(Q)/||W||‘z4(m.
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