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ABSTRACT. - We consider the quantum nonlinear Schrodinger equa-
tion (NLS) as a model of the quantum (nonrelativistic) field theory in
1 + 1 dimensions. In this paper we develop a calculus of intertwining
operators for the NLS. This calculus will be used in subsequent publi-
cations to solve explicitly an initial value problem for the NLS.

RESUME. - On s’occupe ici de 1’equation de Schrodinger non lineaire
quanitique (NLS) comme un modele de la theorie quantique (non rela-
tiviste) des champs en 1 + 1 dimensions. Dans ce travail nous presentons
un calcul des operateurs entrelaçants pour le NLS. Ce calcul sera utilise
dans les publications suivantes a donner la solution explicite d’un probleme
de valeur initiale pour le NLS. 
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§0 INTRODUCTION

This is the first in the series of papers on the quantum Nonlinear Schro-

dinger equation (NLS)
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286 E. GUTKIN

where ~’ + (x, t ), t ) are time dependent operator valued distributions
cc

(fields) in the Fock space ye = (B On the jargon of physics literature
N=0

~’+(x, t), t) are the creation, annihilation operators, respectively, in
the position representation. NLS is the evolution equation given by the
unitary group e-1 where

is the selfadjoint Hamiltonian, which preserves the N-particle sectors

and HN = H is the N-body Hamiltonian with (5-potential

The problem of solving NLS explicitely is thus equivalent to the problem
of constructing the group which is the direct sum of the groups
~~-1~ ~ ~ o, ~ 1 ,. ..

Faddeev and his collaborators (cf. [15 ] [16 ]) and independently Thacker
with his collaborators (cf. [~2 ]) claimed a solution of (0. 1) by the quantum
inverse scattering method. This method yields a quantization prescription
for solving NLS. More precisely one considers the classical version of NLS
(or the Zakharov-Shabat equation [l4 ])

where qJ(x, t) is a complex valued function. After solving (0.4) by the
inverse scattering method (cf. [17 ]) one « quantizes » the solution replacing
functions by fields written in the normal order. The quantized solution of
(0.4) is supposed to solve (0.1).
The quantization prescription has serious drawbacks as B. Davies ( [2 ])

pointed out. Due to the singularities in (0 .1 ) it is impossible to check
whether the obtained expression solves the NLS. I noticed some time ago
that these singularities arise as a result of formal manipulations with the

Hamiltonian H. The Hamiltonian H is not the sum of -~-~ dx03C8(x)03C8xx

and c ~-~dx03C8+2(x)03C82(x) because the highly singular operator density

2(x)03C82(x) does not define an operator on This problem with H
is not at all different from the problem with its N-body restrictions HN where

(0.3) is not the sum of the Laplacean and the 6-potential c 03A3 03B4(xi - xJ
The problem is actually not a problem because one can make and does

make sense out of HN and therefore H in a few equivalent ways. The one

Annales de I’InstÍtut Henri Poincaré - Analyse non linéaire



287NONLINEAR SCHRODINGER EQUATION

we work with here defines HN as a boundary value problem (see § 1). The
authors of [I S ] and [12 are of course aware of the fact that HN is defined
as a boundary value problem but proceed to work formally with H which
disguises the singularities. The reader can easily see for instance that
the square of (0.3) involves expressions ~2(x~ - Xj) which don’t make
sense even as distributions. Nevertheless H~ is well defined and one can
write it down using the definition of HN as a boundary value problem.

In view of the above one should take the quantization prescription for
NLS with a grain of salt. In this series of papers we solve NLS explicitely
using the approach of intertwining operators which started in [3 ] and has
been applied since to NLS [4 ] and other (unrelated) problems ( [5 ] [6]).

In § 1 we develop the calculus of intertwining operators PN, 1,
PN 1 which (for c ~ 0) produce an equivalence of HN and the free Hamil-
tonian - AN. The material of § 1 can be viewed as a far reaching extension
of the Bethe Ansatz for the delta Bose gas (0.3) (cf. [8 ] [13 ]). The main
purpose of § 1 is to establish convenient formulas for intertwining ope-
rators on N = 1, 2, ... which will be later on put together for all N

..

to produce formulas in the Fock space J-f = O+ :~N. The exposition in § 1
N=0

is completely self-contained and on the way we derive formulas for the
Bethe Ansatz eigenstates from the calculus of intertwining operators.
As another application of our techniques we obtain at the end of § 1 the
scattering matrix for HN.

In § 2 we pass to the Fock space J*f recalling the basic definitions for
the reader’s convenience. The intertwining operator on is the direct
sum of the corresponding operators on ~N, i. e.

and it yields an equivalence (c ~ 0) of the interacting Hamiltonian

with the free Hamiltonian

These intertwining operators conjugate solutions of NLS (0.1) with the
solutions of the linear equation

In order to convert this general remark into an explicit formula for solutions
~I’(x, t ) of the NLS we need to expand P in terms of the « standard fields »

(see § 2 for definitions). This will be done in a forthcoming
paper [7]. In § 2 besides preparing the ground for [7] we use the second
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quantized intertwining operators P, P-1, P*, to construct the crea-
tion and annihilation operators b + (k), bel) for the Bethe Ansatz eigenstates
and their companion fields a +(k), a(l ). Our formulas for a(k), a +(k), b{k),
b+(k) easily yield the commutation relations for these operators (Theo-
rem 2.1) which were written earlier ( [12 ] [16 ]) on the basis of analogy
with the Zakharov-Shabat equation.

§ 1. INTERTWINING OPERATORS
FOR THE N-BODY PROBLEM

Throughout this section, N ~ 2 is fixed. We denote by W the group
of permutations of N items, denote by x - wx its natural action on (~N
and let Yf c be the subspace of symmetric L2-functions f (x 1, ... 
Let C+ = {x1  ... > xN} be the positive « octant » and denote by

e(x) = ..., xN) = 8(xi - Xj) the indicator function of C+ (0 is
i;

the indicator function of R+). Multiplication by O is an isometry of Jf
on L2(C+) and the symmetrization operator

is the Hermitian projection of L2(lRN) on Jf.
Denote by Ho the positive Laplacean on H, fix a real number c and set

We define the operator corresponding to (1.1) as the positive Laplacean
on L2(C+) with boundary conditions

on the walls C+ ,1= ~ ... ~ ... ~ of C+ , i =1, ... , N - l.
Let L c be the dense subspace of smooth rapidly decaying at infi-

nity functions and denote by c~~ the operator i =1, ... , N. The imaginary
unit will be denoted by -~/20141. We use the shorthand exp (~/20141  k 1 x ~ )
for exp [~/20141 + ... + The inverse Fourier transform ~ -1
of f E is denoted by f(k) and we use the convention that
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289NONLINEAR SCHRÖDINGER EQUATION

~~

We denote the Fourier transform ~f by f and we have

For any i ~ j we define the operator Aij on L by

Operators Aij are instrumental in our construction of the intertwining
operator P.

PROPOSITION 1.1. - i ) Operators Aij commute with each other and
with operators a~. for all k and we have

iL ) For any 0

Proof - Operators Aij are convolution operators (of a special type)
therefore they commute with each other and with (infinitesimal) transla-
tions. Any convolution operator A is conjugate by the Fourier transform
to the operator of multiplication by a function m(k) which is called the
Fourier multiplier of A. If A exp k [ x ~ ) is defined then

which yields (1.7). Formula (1.6) is obtained by an elementary compu-
tation. It is equivalent to

For n = 1, ... define operators on Je by

As differential operators with constant coefficients, commute with
each other and = Ho in earlier notation. Define operators on H

N

as ( - on C + with boundary conditions on the walls C + ,~
;_, 1

for 1 ~ 2~c + 1 ~ ~ - 1 and f == 1, ..., N - 1.

Vol. 3, n° 4-1986.
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Denote by e the operator of multiplication by the function e and define
the operator P on :~ by _ _ ,

THEOREM 1.1. - Operator P intertwines with H~n~, i. e.

for n > 1. 
" ’

Proof - The domain of consists of n times differentiable sym-
metric functions on or, equivalently, n times differentiable functions
on C+ with boundary conditions

for 1 ~ 2k + 1  n - 1 on the walls of C + . The domain of is

given by the boundary conditions (1.10).
Regarding P as an operator from the symmetric part of to L2(C+)

we see from (1.11) that Pfis obtained by applying the integral operator

(1 - to f and restricting the result to C + . By Proposition 1.1,
i;

(1 - commutes with all differential operators with constant

1;

coefficients. Thus it remains to show that c 

Fix an index i, 1  i  N -1 and represent the operator ( 1 - 
as ff

_J J ~. J

/

where means the product over all i  ~ j except i  i + 1. Since the

J

operators I - cAij commute, by Proposition 1. l, the order of factors

in the product ( 1.14) does not matter. Denote the functions ( 1- f
"’""’ 

’ 

i1
and (1 - f by g and ~p respectively. Then

i; f

i

The product ( 1 - cA) is invariant with respect to the transposition si :

Henri Analyse non linéaire
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i ~ i + 1, therefore is symmetric in variables xi and x;+ 1- Since ~p is
differentiable at least the same number of times as f, we have

In view of (1.16), g satisfies the boundary conditions (1.10). The Theorem
is proved.

Let D = l be the common domain of operators H~n~, n > 1.
, n~ 1

It consists of infinitely differentiable functions on C+ satisfying boundary
conditions (1.10) for all k > 0. From now on we consider as operators
on D.

COROLLARY 1.1. - Operators H~n~, n > 1 commute.

Proof - Let Do be the space of smooth functions with boundary
conditions (1.16) for all k > 0 and rapidly decaying at infinity. The argu-
ment of Theorem 1.1 shows that PDo c D and for f E Do, g = Pf and
any m, n, we have, by Theorem 1.1,

PROPOSITION 1. 2. - Let P* be the formal adjoint of P. Then

and P* intertwines with for n  1, i. e.

Proof - Using ( 1 . 7) it is elementary to see that

which implies (1.18). Applying * to (1.12) and using that H~"~, are

symmetric, we get ( 1.19).
For i ~ j set

Vol. 3, n° 4-1986.



292 E. GUTKIN

From the definition we have

and, by ( 1. 20),

For i ~ ~’ define the operator Dij by

From the definition we have

and from (1.8)

For k = (k 1, ..., kN) E C + let fo(x denote the symmetrized plane wave

The functions fo(x k) are generalized eigenfunctions (eigenstates) of

H~n~, n > 1

and they are normalized to 6-function, i. e.

and

The following theorem is crucial for the calculus of intertwining operators.

THEOREM 1. 2. - i ) The operator P*P commutes with all symmetric
differential operators with constant coefficients and

ii) The operator P has a left inverse P ~ which is the inverse of P for
c ~ 0 and
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iii ) The operator P* has a right inverse (P*)-1 which is the inverse of P*
for c ~ 0 and

Proof By Theorem 1.1 and Proposition 1.2, P*P commutes with
operators for all n. By the classical invariant theorem, 1 N,
generate the algebra of invariant with respect to permutations differential
operators with constant coefficients.
By (1.29) and (1.30), the functions fo( . ~ k) form a complete family of

generalized eigenvectors 1. Besides, by (1. 28), the multiplicity
of { fo(. k) : k E C + ~ is one, i. e. fo( . and fo( . ~ k’) belong to the same
« eigenvalue » 1 if and only if k = k’. Therefore any operator A
commuting with 1 ~iagonalizes on {fo(. I k) : k E C+ ~. In other
words there exists a function (multiplier) a(k), k E C+ such that

for all qJ E J~f.
Consider first the case c > 0. The operator P is defined on bounded

functions, in particular on fo( . ~ k). If f’(x ~ k), x, k E is a function of two
variables and wEW we use notation k) for f (x ~ wk). Let f (x ~ k)= k).
An elementary computation shows that

Denote by C~ the domain wC + . Then [RN = U Cw and f ~(x ~ k) 
WEW

determined by (1.35) and the symmetry. Thus, f (x is bounded and P*
is defined on bounded functions, by (1.18). We will calculate P* f(x k).
Denote 0 exp (~/~1 ( k ~ x ~ ) by e(x k). It suffices to calculate

1. (1.8) using that Aij commute between themselves and we get
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294 E. GUTKIN

An elementary computation shows that for any i  j

where D = {x1  ... > xi + 1 > ... > Xj+ 1 > ... > xN} and
where D 1 c D is given by xI - xi + 1  x~, D 2 c D is given by
x~ _ 1 - x~  xi - xi + 1. For kECN we-use the self explanatory notation
Re k, Im k~RN and Then (1.37)
can be written as

where

and Im k2 ~ 0. Iterating ( I . 38) > and ( 1 . 39) we obtain

where ~ is the union of a finite number of polyhedral domains D~ and

with Im 0. Applying (al - a~) to (1.40) we get
; /

where 4$’(x) has the form (1.41) only with other constants and t/1 is
a distribution supported on hyperplanes separating domains Dp. Since
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k) is given by (1. 35) we see that the function P* f (.x ~ has the form

where is given by (1.41) with different constants and 03C8 is sup-
ported on a finite union of hyperplanes. On the other hand, P* f ( . ~ must

be proportional to fo( . ~ 
Therefore ~ _ ~r = 0 and we have

The last expression can he rewritten in the form ( .34) as

A straightforward computation of the Fourier transform shows that

- + (ki - kj)2] is the Fourier multiplier of the convo-

lution operator S (1 - which proves assertion i) for c > 0.

I;

By analytic continuation in c, formula (1.35) remains valid for arbi-
trary c. The operator P* is always defined on bounded functions because
it involves integration on bounded domains only. Since is always
bounded, the second part of the argument above remains valid and proves
the assertion (i ) for arbitrary c.

The polar decomposition of the operator P

where Q = is an isometry and R = (P*P) 1 ~ 2 is positive defi-
nite (by ( 1.11 ), Ker P = 0) implies the polar decomposition of the left

inverse P ’ ~

From ( I . 1 8) and ( 1 . 31 ) 
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By (1. 23), the operator (1 - is symmetric, i.e. it commutes
with S, thus t; 1

According to earlier calculations, the Fourier multipliers of (1- and

are and 

respectively. Hence, the Fourier multiplier of the product is

which is the Fourier multiplier of ( 1 - In view of (1.26), this
implies (1.32). The proof of (1. 33) is completely analogous and we spare
the details.
The generalized eigenfunctions f(x = of H~n~, n > 1, given

by (1. 35) are called the Bethe Ansatz eigenstates (cf. [12]). It is known

(cf. [10 ]) that for c ~ 0 the Bethe Ansatz eigenstates are complete ortho-

gonal (but not normalized) in That is 0 for all k

implies qJ = 0. Completeness of f ( . ~ means that Ker P* = 0 hence P
is invertible, thus P -1 given by (1.47) is the inverse of P. Theorem 1. 2
is proved.
The following Corollary was proved in the course of proof of Theorem 1. 2.

COROLLARY 1.2. - Let ~~ denote the closure of in Then ~P~
is the subspace of absolutely continuous spectrum of the Hamiltonian H
(for c ~ 0, The operator P-1 given by (1. 32) intertwines H~"~
with for n > 1 and Ker P’ ~ = The operator (P~)’ ~ given by (1.33)
intertwines with H~"~ for n > 1 and the closure of (P*) -1 ~ is ~f,.

Sometimes it is convenient to use another « normalization » of Bethe
Ansatz eigenstates. Namely set g( . ~ k) _ (P*) -1 fo( . I k), k E C + .

COROLLARY 1. 3. - The functions gf . k) form a complete orthogonal
in family of common eigenstates of H~"~, n > 1. We have

The two families of Bethe Ansatz eigenstates are related by
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Proof. 2014 The Fourier multiplier of the convolution operator (1 2014 

is [c+-1(ki-kj]/-1(ki-kj). Using this and ( 1. 33) 1 we obtain
jj

(1.50) the same way as we obtained (1.35) in the proof of Theorem 1.2.
To prove ( 1. 51 ) we use that g( . ~ k) = P(P* P) -1 fo( . ( k) and, by ( 1. 44),

Throughout this section we have used the convolution operators on
of a special type. Let g be a distribution on R with its Fourier trans-

form

and the inverse Fourier transform

For every pair i ~ _ j of indices we associate with g the convolution ope-
rator G1~ on L ~( (~~ ) hy

A straightforward computation shows that

that is the Fourier multiplier of Gij is kj). Set

Then G is the convolution operator with the Fourier multiplier g(k~ - 

We call g(k), k E R the elementary multiplier of G and g(x), x E (1~ the ele-
mentary kernel of G. Using notation Aij for the operator which was earlier
denoted by 1 - cAij (see (1. 5)) we have
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where A is the convolution operator of type (1.50) with the elementary
kernel

and the elementary multiplier

Analogous formulas hold for the other intertwining operators P*, P* - I,
p-1.
The operator . ,^

is the normalized intertwing operator. We calculate Q explicitely in the
following Theorem.

THEOREM 1. 3. - i ) The operator Q is an isometry of ~f on the space
of the absolutely continuous spectrum of H and Q is unitary for c ~ 0.

i i ) We have

where U is the unitary convolution operator of type (1.57) with the ele-
mentary multiplier

and the elementary kernel (for c ~ 0)

where Lo(x) and Io(x) are the modified Struve and Bessel functions res-
pectively.

Proof - Assertion i ) was proved in the course of proof of Theorem 1. 2.
By (1.52),

where T is the convolution operator of type (1.57) with the elementary
multiplier k2/(c2 + k2). Therefore

where T-1/2 has the same type and its elementary multiplier c2 + k2/ ~ k ~ [
is invariant under k - - k. This property of the elementary multiplier
of an operator G of type (1.57) is equivalent to the W-invariance of the
Fourier multiplier of G which means that G commutes with the permu-
tation group W, hence with S. In particular T and T -1 ~2 commute with S.
Now

Annales de l’Institut Henri Poincaré - Analyse non linéaire



299NONLINEAR SCHRODINGER EQUATION

and we set U = AT -1 ~2. Since the set of convolution operators of type (1.57)
is closed under multiplication, U has form (1.57) with the elementary
multiplier -

Since [ E(k) ) = I, the absolute value of the Fourier multiplier
;  j

of U is I, thus U is unitary. The kernel u(x) is the inverse Fourier transform
of E (see (1 . 54)) and after elementary transformations we have

Using tables of Fourier sine transform (cf. [9], p. 416) we obtain (1.64).
Theorem 1.3 is proved.
Now we can normalize the Bethe Ansatz eigenstates.

COROLLARY 1. 4. - Set ~p(k ~ . ) = E C +. i) x) are sym-
metric functions and

E C+ } is the complete in ~P~ for c ~ 0) family of
normalized to (5-function simultaneous eigenstates of operators H~n~, n > 1.

Proo~ f - By (1.27)-(1.30), functions k E C+ form a complete
in off family of normalized simultaneous eigenstates of 1, and

Q : :~~ is an intertwining isometry, hence ii). We can calculate
using (1.62) and (1.63) which yields (1.68).

In order to formulate the following Proposition we indicate by subscript c
the dependence of functions and operators on parameter c.

PROPOSITION 1. 3. - i ) The operator valued function c -~ Q~ is conti-
nuous in the uniform operator topology for c bounded away from zero
and infinity and in the strong topology for all c. Qo = 1.

ii ) Strong limits s-lim Qc = Q ± X exist and Q - x = (- 1N(N - 1 ); 2Q Y , .
ii) We have 

where U + x is the operator of form (1. 57) with the elementary kernel
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300 E. GUTKIN

and U _ r _ ~ -1N(N- 1~~2U + ~ . the operatorl 

/’on

is defined by the Cauchy principal value, i. e. is the Hilbert transform
in variable xi - x~.

Proo, f. Since the operator N ! OS does not depend on c, by ( 1. 62),

it suffices to prove assertion i) for the function c -~ U~. Since 

and is equivalent to the multiplication operator in one variable by
the elementary multiplier (1.63), everything boils down to the analysis
of the following function of two variables

The function is continuous everywhere on the extended plane except
when c, k --~ 0 and I c I, [ k [ --~ oo where the limits do not exist. On any
part of the (c, k)-plane where c and k can not go simultaneously to 0 or o0
the function uc(k) is even uniformly continuous.
The elementary inequality

where f is a continuous function with f(l) = 0 implies

which gives the continuity of U~ in the uniform
topology.
To show the continuity of c --~ U~ in the strong topology it suffices to

estimate the L2-norm of (uc - ud) f for f E L2(f1~). For a fixed f E 
and any E > 0 there exists n > 1 such that

For I k bounded away from 0 and oo the inequality ( 1. 74) holds. Thus

Estimate (1.75) gives the uniform continuity of c --~ Dc! which implies
the strong continuity of c -~ U~.
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The argument above also shows the existence of the limits lim Ucf
which correspond to the limit elementary multipliers 

The corresponding convolution operator is known to be the Hilbert
transform. The details are left to the reader. The proof of the following
Corollary is also left to the reader.

COROLLARY 1.5. - The Hamiltonian H ~ (c = oo, the infinite strength
of interaction) is equal to the Dirichlet Laplacean in C + . The unitary
intertwining operator Q ~ transforms the Neumann Laplacean Ho into
the Dirichlet Laplacean H ~ . The normalized Bethe Ansatz eigenstates

= Q~ fo(k !.) of H~ are given by

Calculus of intertwining operators allows to obtain explicitely the wave
operators Win, of the scattering theory and the scattering operator

for the Hamiltonian (1.1). We recall the basic notions of the
scattering theory. By general definition

The wave operators are isometries from the space ~~ of absolutely conti-
nuous spectrum onto :Yf and we denote their right inverses by W-1in’W-1outres-
pectively. Both operators W-1in and W-1out intertwine Ho with H

For the rest of this section we denote the scattering operator 1

by S and the symmetrization operator by Sym. By (1.79), S commutes
with the free Hamiltonian

Let for k~C+

be the incoming and outgoing scattering states. Then
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and

Let wo E W be the longest permutation i. e. wo :

Then wo C + - C _ _ ~ x : xi 1  ...  and (1.82) implies by sym-
metry that in C+ we have

Now for every k = (k 1 > ... > kN) we have 5 Bethe Ansatz eigenstates
f (k ~ . ), g(h ~ . ), ~p(k ~ . ), and which coincide up to scalar
factors.
Denote by V the convolution operator on of type (1.57) with

the elementary multiplier r---

THEOREM 1. 4. - i ) The inverse wave operators are equal to

and

respectively.
ii ) The unitary operators UV and UV-l are. convolution operators

of type (1.57) with elementary multipliers

and

respectively. The corresponding elementary kernels are equal to
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and

where the exponential integral Ei(x) (cf. [9 ])

is given by the Cauchy principal value for x > 0.
iii ) The scattering operator is equal to

where the convolution operator V2 has elementarv multiDlier

and the elementary kernel

Proof. - Since [ == 1, the operator V is unitary and, since ~( - k) = 
V commutes with Sym. Compairing (1.68) with (1.83) and (1.84) we have

which, in view of the above, implies

and

Formulas (1.88) and (1.89) are obvious. (1.90) is obtained from (1.88)
using the tables of Fourier sine and cosine transforms (cf. [9]). ( 1. 91 )
follows from

For the scattering operator S we have

which proves (1.93). The set of convolution operators of type (1.57) is

Vol. 3, n° 4-1986.
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closed under multiplication and the elementary multiplier of a product
is the product of elementary multipliers of the factors. This proves (1.94).
Formula (1. 95) is obtained using tables of the Fourier transform (cf. [9 ]).

§ 2. FOCK SPACE

We start by recalling generalities about the second quantization of a
many body problem. We restrict our exposition to the case of interacting
particles on the line with the pair potential interaction

although the formalism holds for more general interactions. Denote by -~N
the space and set

where J~o = I~ and Ho = 0. The subspace ~N of ~P is called the N-particle
sector. One chooses a generator Q e II ~ II = 1. Then J~o = CQ and Q
is called the vacuum vector. The space ~f is called the Fock space and H
is the second quantized Hamiltonian (2.1). As is customary in the second
quantization, we denote by X+ the operator adjoint to X and call the ope-
rator valued distributions on  the fields. For x e fF~ we define operators

°  by

wherefE and

where f E The operators ~o(x), ~ro ( y) satisfy the canonical commu-
tation relations

and

Any system >~(x), ~ + ( y) of fields in :~ satisfying (2 . 5), (2 . 6) is unitarily
equivalent to >~ o ( y). The fields >~ +(x), ~( y) are called the creation,
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annihilation operators respectively. We will call the stan-
dard fields. We refer the reader to [I or [77] for more details on the for-
malism of second quantization.
Any reasonable operator on :~ can be expressed in terms of the standard

fields. In particular

where, as usual in the physics literature on second quantization, we put
dinerentials in front. The second quantized Hamiltonian H generates a
one-parameter unitary The corresponding evolution equa-
tion in ~ 

_

is equivalent to the operator equation

Applying the evolution to the standard fields we obtain the time dependent
fields

which for any t satisfy the canonical (equal time) commutation relations
(2. 5), (2. 6). Applying the time evolution to (2. 7) we see that

which simply means that the Hamiltonian H is an integral of the evolution
(2.9). From (2.11) and the equal time commutation relations we obtain
the evolution equation for the fields

Although the evolution equation (2.12) is nonlocal and nonlinear it is

equivalent to the infinite sequence of local linear evolution equations

where f E N = 1,2 ...
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Now we specialize to the case v(x - y) = y). Equations (2.11)
and (2 .12) become formally

and

Equation (2.15) is the quantum Nonlinear Schrodinger equation and we
will refer to it as NLS.
When solving the NLS one should not forget that expressions (2.14)

and (2.15) are formally obtained from (2.11) and (2.12), which make sense
literally for smooth potentials v(x), by setting v(x) = c5(x). It is clear from
the preceeding exposition that the Hamiltonian H of (2.14) is the direct
sum of N-body Hamiltonians

which are defined by the boundary conditions ( 1. 2). With this understanding
and our earlier conventions on the fields t ), the NLS (2 .15)
is well defined and we proceed to solve it explicitely. By that we mean an
explicit expansion of the time dependent fields in terms
of the initial data the standard fields 
The fields tjJ(x, t ), are called interacting as opposed to the free
fields t ), which correspond to the case c = 0.
Our solution of NLS is based on the explicit equivalence of the Hamil-

tonian H which depends on c and the free Hamiltonian Ho which cor-
responds to c = 0. Quoting the results of § 1 we will use the subscript N = 1,2...
in formulas established there. Set

In what we denote by H the restriction H ~~~. Then

which implies

i. e. P intertwines the unitary groups e-1to and e-1t Analogous
formulas hold with the other intertwining operator (P*)-1. The following
Proposition is obvious.
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PROPOSITION 2.1. - i ) Let Ao(t ) be an integral curve of the free (ope-
rator) evolution, i. e. 

_

Then A(t ) = is an integral curve of the interacting evolution, i. e.

ii) Let A(t)=e-1tAe--1t and A0(t)=e-1to Ae--1to be an

interacting and a free evolution respectively. Then

where

In view of Proposition 2.1, in order to obtain an explicit formula for
the interacting fields ~(x, t ), it suffices to express the intertwining ope-
rators P and P -1 in terms of the standard fields ~o ( y). Before doing
it, let us establish a direct connection between the intertwining operators P,

and the Bethe Ansatz eigenstates.
Define for k E R the operators t/Jo(k) by

Then

and the commutation relations are

Operators are creation operators for the eigenstates of the free
Hamiltonian Ho, i. e. for any k = (k 1, ..., kN)

where fo( . ~ k) given by (1.27) satisfies

For obvious reasons t/Jo(k) are called (the standard) momentum
creation, annihilation operators as opposed to glo(x) which are
position creation, annihilation operators. Letting evolve under
the free time evolution obtain the time dependent free fields
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t ). From the definition of we see immediately that

Define the operators b + (k, t ) by

PROPOSITION 2.2. - b + (k, t ) is an integral curve of the interacting
evolution (2.91 and

Denote b + (k, 0) by b + (k). For any k = (k1,...,kN)Ee+

where g(.1 k) are defined by (1.50).

Proof - The operator (P*)-1 intertwines the free evolution with the
interacting evolution. By Proposition 2.1, (i ), b + (k, t ) is an integral curve
of the interacting evolution (Proposition 2 .1 obviously holds with (P*)-1 1
in place of P). Thus, (2.29) follows from (2.27). We have

In this sequence of equalities we have used that P*D = Q, (2.25), that
.fo~ - ~ k ~ ~ ..., kN) E and P* -1 1~~; = 
We summarize the meaning of Proposition 2.2 in the following Corol-

lary.

COROLLARY 2.1. - The fields b+(k) create Bethe Ansatz eigenstates
g( . k 1, ..., kN) of the Hamiltonian H,
Remark. If we used P instead of P* -1 in (2. 28) we would get creation

operators for eigenstates f ( . ~ (see (1. 35)). Both f ( . ~ and g(.1 k) are
Bethe Ansatz eigenstates in different « normalizations » and both options
are equivalent. The choice of *-1 over P is made to facilitate comparison
with some formulas in the literature (cf. [l2 J). Using U = Q+ Un instead

28) we get creation operators for the normalized Bethe Ansatz
eigenstates k).

Let b(k, t ) be the adjoint to b + (k, t).

COROLLARY 2 . 2. - b(k, t ) is an integral curve of the interacting evo-
lution and 

_ _

where we set b(k) = b(k, 0).

Proof - Immediate from Proposition 2.2.
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We will now compute the commutation relations for operators b(k),
b+(k‘). This requires some preparation. Define the operators ao(k) on ~P by

Then

The basic properties of fields ao(k), ao (k) are summarized in the following
Lemma.

LEMMA 2.1. - For all k and the fields ao(k), commute with
each other and with the Hamiltonian Ho. The fields ao(k) and satisfy
the commutation relations

For any (k1, ..., kN) E C+ we have
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An elementary computation with the commutation relations (2.24) shows
that

and

Since ao(k) = exp a(k), we have from (2.41)

which is equivalent to (2. 34). (2.42) implies (2.35) in the same way. For-
mulas (2. 36) and (2. 37) follow from (2. 35) and (2. 34) respectively.

Since

the commutation relations (2.34)-(2.37) imply (2.38) and (2.39). The
latter equations mean that the fields ao(k), are diagonalized by the
eigenstates fo(. ~ kl, ..., kN) of Ho. Hence they commute with Ho and with
each other.

Define the fields a(k) by

and let

be the adjoint fields.
Next Theorem establishes the commutation relations between the fields

b(k), b+(k), a(~), a+(l).

THEOREM 2.1. - The fields a(k), a + (l ) commute with each other and
with the interacting Hamiltonian H. They are diagonalized by the Bethe
Ansatz eigenstates and
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The following commutation relations are satisfied

Proof. - The operator P*P on :Yf which is given by

is invertible and we have

To establish (2.53) we apply both sides of it to the free eigenstates
fo(.1 k1, ..., kN) and use (1.45), (2.36) and (2.37) to show that we obtain
the same thing. The operator ao (k)ao(k) is symmetric and taking the adjoint
of (2. 53) we get

By (1.45), P*P is diagonalized by the eigenstates fo(.1 k), therefore P*P
commutes with ao(k) and 
From the definition of fields b(k) we have

Switching t/io(k) and around by (2 . 53) we get

On the other hand

and switching P*P with by (2.53) we get
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From the commutation relations (2.34)-(2.37) follows

Thus

(~2014n~The first summand in the right hand side of (2.58) is b(k)b+(l),
by(2.55).Thesecondsummandis ~ +(~2014/)

where we have used that commutes with the fields

ao(k). From (2. 58) and (2 . 59) we have

which immediately implies (2.47).
Formula (2.48) follows directly from the definitions of a+(k) and b(l)

and Lemma 2.1, (2. 37). Equation (2.49) is the adjoint of (2.48). To show
(2. 50) we have

since ao(k) and P*P commute. Analogously

because Now Lemma 2.1, (2.35) implies (2.50).
Taking the adjoint we obtain (2.51).

Using that P*P commutes with ao(k) and we have

The Hamiltonian H commutes with a(k) and a (k) because
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and Ho commutes with ao(k), ao (k). From (2 . 38) and (2.43) we have

which proves (2.45). A parallel argument shows that

By the Remark after Corollary 2.1, eigenstates f ( . ~ k 1, ... , kN) and
g( . ~ ki, ... , kN) are proportional, thus (2 . 61) implies (2 . 46). The Theorem
is proved.

COROLLARY 2.3. - The action of fields b{k) on the Bethe Ansatz
eigenstates g( . ~ k 1, ..., kN) is given by

b(k)g( - I k 1, ..., 

Proof. 2014 By (2.30), (2.45), (2.46) and (2.47) we have

b(k)g(.|k1, ..., kN) = ., _ (k-k1)2b+(k1)b(k)g(. |k2, ..., kN)
(K Ki)

J=2

Iterating (2. 63) and using that b(k)Q = 0 we obtain (2.62).
In the next paper [7] we will express the intertwining operators P, etc...

and the fields a(k), a + (k), b(k), b + (k), t ), in terms of the stan-
dard fields which will give us an explicit solution of the NLS.
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