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ABSTRACT. - We study the torsion of an elastic bar surrounded by
an increasingly thin layer made of increasingly hard material. In the model
problem the ellipticity constant tends to zero in the outer layer ; the equa-
tions considered may be fully nonlinear.
Depending on the link between thickness and hardness we obtain three

different expressions of the limit problem.

RESUME. - On etudie la torsion d’une barre elastique enveloppee
d’une couche tres mince d’un materiau tres dur. Dans le probleme modele
la constante d’ellipticite de la couche exterieure est tres petite ; les equa-
tions considerees peuvent etre completement non-lineaires.
En modifiant la relation entre 1’epaisseur et la rigidite, on obtient trois dif-

férents problemes-limites.
M ots-clés : Reinforcement, r-convergence. Integral functionals, Non-equicoercive

problems.

I. INTRODUCTION

Several recent papers (see [2] ] [3 ] and the references quoted there) deal
with the reinforcement problem for an elastic bar, whose mathematical
setting may be outlined as follows.

(*) Financially supported by a national research project of the Italian Ministry of
Education.
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Let Q be a bounded open set in surrounded by a layer Eg whose
thickness goes to zero as G -~ 0 ; set Qg = and denote 
a minimum point in of the functional

where G is lower semicontinuous in the LP topology of W 1 ~p(S~), and f (x, z)
is non-negative and convex in z.
The reinforcement problem consists in studying the behaviour of uE

as G tends to zero.
Under suitable assumptions we characterize the r-limit of the functio-

nals (1.1) in the LP topology: it is known (see [4]) that this immediately
gives informations on the convergence of uE.
We prove in particular that

where L = lim E1y-p-1, v is the outward normal vector to Q and y depends
only on.f - 

In [3 ] it was proved an analogous result valid in the two-dimensional

then related to the torsion of an elastic bar with cross section Q enclosed
in an increasingly thin shell made of an increasingly hard material.

Using again some techniques of elliptic equations, the results of [3 ] were
generalized in [2 ] to the many-dimensional case, with

Other similar results may be found in [1 ], sections 1, 3, 5, and in [5],
chapter 13.

In this paper we use the direct methods of Calculus of Variations and

r-convergence, which allow us to give some answers even in the fully
nonlinear case.

II. NOTATIONS AND STATEMENT OF THE RESULT

In what follows we denote by Q a bounded open subset of fR" with 1

boundary, and by v its outward normal vector. Let d : [R be a Lipschitz
function satisfying .
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For all E > 0 fix r£ > 0 so that lim rE = 0, and set
F~CI

Our assumptions on lQ ensure that the mapping (a, t ) ~ o- + tv(a) is
invertible if G is sufficiently small, hence for every x E ~E there exist
a(x) E aSZ and t(x) E ]0, rEd(6(x)) [ such that

If we will briefly write d(x) in place of Take p > 1, and let
f : f~n x f~ satisfy

(2.1) for all x E [Rn the function f (x, . ) is convex;
(2 . 2) there exists a function cv : [0, + oo [ -~ [0, + oo [ which is continuous,

increasing, vanishing at the origin and such that

(2 . 3) for all x E z E fRn

(2.4) there exists a non-negative continuous function y(x, z) which is
convex and p-homogeneous as a function of z and satisfies

where ~ : [0, + ~~o [ -~ [0, + ~c [ is continuous, decreasing and
vanishes at infinity.

Finally consider a functional G : W 1 ~p(S2) ~ [0, + oo ] such that

(2. 5) G is lower semicontinuous in the topology LP(Q) ;

When u E is such that u In E we will simply write G(u)
instead of G(u In).
For every u E and G > 0 set

We want to characterize the r-limit of F~ in the topology LP(Q), depending
on the behaviour of r£. Indeed, it is well known that the r-convergence
of a sequence of functionals is strictly related to the convergence of their

Vol. 3, n° 4-1986.
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minimum points and minimum values : more precisely, let X be a metric
space, o mappings from X into ~, and x E X. We set

If these two r-limits agree, their common value will be denoted by

We have: 
" °

THEOREM [II. I ] (see [4 ], Theorem 2 . 6). - Let X be a metric space and F,
(F~)~> o mappings from X into R such that

I ) the family (F~) is equicoercive, I. e. for every A > 0 there exists a compact
subset K;_ of X such that

it) F~(X) lim F~ = F .
.

Then F has a minimum on X and min f = lhn (inf F~) ; moreover f
x x

lim = lim and x~ ~ M in X, then M is a minimum point for F.
x 

.

Define for all u e 

and for every L ~ 0

We will prove in section III the following result :

THEOREM [II . 2 ]. - Assume that lim = L E [o, + oo ] ; then for

every u E we have

REMARK [11.3]. - The result above yields immediately that 
~-~o

does not exist then the functionals Fg do not r-converge in the topology
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III. PROOF OF THE RESULT

We will later need the following results :

LEMMA [III. 1]. - Let a : (~" --~ (1~ be a continuous function and
u E then

Proof We denote by the letter c any positive constant. Set for every F > 0

Then lim ccy = 0 and

Vol. 3, n° 4-1986.
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LEMMA [III . 2 ]. - Let g : (~n -~ R be C1, convex, p-homogeneous and
such that for all z E ~n

Then for every x, y E [R"

Proof. By the homogeneity of g we may assume |x| = | y == 1, hence

if we set x = 
g(x) 

for x D 0 we must p rove thatif we set for (Dg(y))~~0, we must prove that

Let ;c be a minimum point of on { = 1 ~ : then

Multiplying by x and using Euler’s theorem on p-homogeneous functions
we obtain  = 0, that is

Now take x = tx such that = g( y) ; by eventually taking - x instead
of x, we obtain from (3.1) that for a suitable 11 > 0

By the convexity of g we have

whence ( y - x, Dg( y) ~  0 ; analogously we have

so Dg( y) ~ > 0 and finally

But then

Proof of Theorem [I I . 2 ] in the case L  + oo .

We begin with the inequality GL .
For every £ > 0 set _ _

then 0   1 on E£ and = 0 outside moreover ]  
Let u E W 1 °p(SZ) : by the regularity of oSZ we may assume that u E W 1’p((~n).
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Setting uE = we have uE E and u£ --~ ul~ in in addi-
tion for every t E ]0, 1 [

Fix M > 0 and set E ~n : ~  M t ; : then

Let 3(x) = dist (x, Q) : we have

By (3.2) (3.3) (3.4) and by Lemma [III. 1 ] we obtain

F~(~) ~ lim sup 
s-o

Letting M -~ + oo and t --> 1 yields

We now prove the inequality GL  F - .

Vol. 3, n° 4-1986.
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To this aim, we must show that if uE E and u~ ~ u in 

Without loss of generality we may assume that for a suitable sequence (Eh)

so that (omitting for simplicity the subscript h)

hence u E W 1 °p(S2). By the semicontinuity of G, it will suffice to prove that

Fix M > 0 and set = ~ x E f~" : ~  M ~ ; then by (2 . 4) (3 . 5)
it follows

Since M is arbitrary, we may only prove that

If we set for every h~N

then for a suitable sequence vanishing as h - + oo we have
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By (3.5) and (3 . 7) iv) we have

therefore in (3 . 6) we may assume also that y(x, . ) is a C 1 function. For every
aEoQ we set v(a) = Dzy(a, v(~)) ; then by Euler’s theorem we have

By the regularity of ~03A9, the mapping (03C3, t ) - a + tv(a) is invertible on 03A3~
if E is sufficiently small, so that there exists rE(~) > 0 such that

By using the regularity assumptions on aQ and ~(r), one may easily verify
that

uniformly in a E aS2. By simple changes of variables we obtain, writing
briefly DUf;(x) in place of + 

where q is a suitable bounded function. Then

By (3 . 5) and (3 . 7) it ) we obtain

Vol. 3, n° 4-1986.
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with cor vanishing as ~ ~ 0. Therefore

For all c7 E we have

Using (3 .10) and Lemma [III . 2 ] we finally get

and (3.6) follows from (3. 8) (3.9) and from the convergence of Ut to u in

Proof of Theorem [II . 2 ] in the case L = + oo .
Since G~ for all B, the inequality F +  G~ is trivial. As for the

inequality F - > G~ we remark that, since E/rp -1 -~ + oo, given any
L > 0 we have E > Lrp-1~ for ~ small enough ; therefore for every u E 

By the first part of the proof (case L  + f ) we obtain

whence

by taking the supremum with respect to L..
We now apply the result to the study of the asymptotic behaviour (as

1 -~ 0) of the minimum values and minimum points of the functionals
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Since u H  fudx is continuous in the strong topology of 
~n

~ve have (see [4 ], Theorem 2 . 3)

Therefore, in order to apply Theorem [II . .1 ], we must prove the equi-

coerciveness of + Rn fudx )~> o 

in the topology By the

inequalities (2 . 3) (2 . 6), we only have to show that if uE E and

then (uE) is relatively compact in 

THEOREM [III . 3 ]. - Assume 0  L  + ~ ; if (3 .11) holds, then 
is relatively compact in 

Proof - By (3.11) it immediately follows that for any b > 0 there
exists a constant c~ such that

For all a E aSZ and t E [0, rEd(6) ]

if E is small enough, for suitable constants c we have

v 

Since is bounded,

Vol. 3. n° 4-1986.



284 E. ACERBI AND G. BUTTAZZO

It follows from (3.13), with t = 0, that

so that

If 03B4 is properly chosen, by (3.12) (3.14) and (3.15) we obtain

whence J) |u~ ] Pdx - 0 and ] ~u~~W1,p(03A9) # c..
£~
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