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ABSTRACT. It is proved that if an analytic H-convex body M in [R3
admits an infinite number of area minimizing disc type surfaces interior
to M and supported by aM then M must be diffeomorphic to a solid torus.
Moreover, the set of these minimal surfaces then forms an analytic one-
parameter family which foliates M.
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RESUME. On prouve le resultat suivant : si une partie M analytique
et H-convexe de ~3 admet dans son interieur un nombre infini de surfaces
minimisantes de type disques et supportees par ~M, il faut que M soit

diffeomorphe a un tore solide. En plus, l’ensemble des solutions forme
une famille analytique de dimension 1 qui constitue un feuilletage de M.

Besides the widely known problem of Plateau there is a variety of other
geometrically appealing boundary value problems for minimal surfaces
including problems with so called free boundary conditions. For back-
ground information we refer the reader to the books of Courant [3 ] and
Nitsche [8 ]. Courant poses a totally free boundary value problem in the
following manner. Given a compact surface S in [R3 and a closed Jordan
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curve r in which is not contractible in one asks for a surface
of minimal (or stationary) area in the class of all disc type surfaces whose
boundary curve lies on S and is linked with r. Assuming sufficient diffe-
rentiability, solutions of this problem will of course be minimal surfaces
in the sense of differential geometry (i. e. surfaces of mean curvature zero)
and they will also sit orthogonally on S along their boundary. In the given
formulation of the problem the surfaces are allowed to penetrate the sup-
porting surface S what is of course unrealistic from the view point of an
experimentor who wants to produce such minimal surfaces in the form of
soap films using a supporting surface S made from a solid material. In a
physically realistic model one should therefore restrict all comparison
surfaces to a component of f~3BS. In the present paper we decide to choose
a bounded component. Imposing such an additional side condition we
have to put up with the fact that minimizing surfaces will possibly touch
the supporting surface S along interior portions of arbitrary size. Since
free variations of the surface are no longer admissible along such portions
the minimizing surface will in general not be a differential geometric minimal
surface. There is however a now well known geometric condition on a
3-dimensional manifold with boundary M which prevents interior contact
between minimizing surfaces in M and the boundary of M unless the
surface is totally contained in ~M. This is the condition that aM has non-
negative inward mean curvature, a property which we shall call « H-con-
vexity », for short.
Meeks and Yau [7] ] have used the free boundary value problem for

minimal surfaces in the study of certain questions in 3-dimensional topology.
For this purpose they proved the existence of minimizing discs in a compact
3-dimensional Riemannian manifold M with convex boundary aM where
aM has nontrivial fundamental group. The main result of Meeks and Yau
from the view point of minimal surface theory refers however to the
embedded character of any solution provided by their existence theorem.
Moreover, they show that any two different solutions are disjoint.

It is not difficult to see and was already remarked by Meeks and Yau
themselves that their results remain valid if one replaces the convexity
condition by the weaker condition of H-convexity.

In the present paper we shall deal with the question concerning the
number of solutions to the free boundary value problem. Let us first consider
two simple examples in which continua of solutions exist.

EXAMPLE 1. - Take any simple closed curve a in R~ and let M be a thin
regular closed neighborhood of a, i. e. M = ~ x E dist (x, a)  £ ~ for
sufficiently small E. The torus M can be generated by moving the center of
a circular disc of radius E along a, keeping the disc always perpendicular
to oc. A short calculation shows that this S1-family of plane discs solves the
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free boundary value problem for M. Let us remark that M E Coo if a E C~
and M E CW if a E C~’.

EXAMPLE 2. - Let a be a simple closed curve on S2, parametrized by
arclength, a = (x(.s), 0  s  I. We choose an orthonormal basis ei, e2 of
the normal space of a,

Now let p = p(cp), 0 _ ~p  2n, be a smooth, positive, but small function
which describes the boundary of the plane domain

Now we move B along a according to

If p is sufficiently small then the S1-family of plane surfaces B(s) generates
a smooth torus M and one easily verifies that B(s) always sits orthogonal
on aM. Therefore each B(s) solves the free boundary value problem for M.
Let us remark that this construction yields rotationally symmetric tori as
a special case.
By glueing together pieces of tori of the kind constructed in the above

examples we can produce smooth H-convex bodies of arbitrary genus
which possess continua of solutions. It is the content of our theorem that
this is not possible for analytic H-convex bodies.

THEOREM. If a compact analytic H-convex body M in (~3 which is
not simply connected admits infinitely many minimizing solutions to the
free boundary value problem then it must be homeomorphic to a solid
torus. More precisely, the set of all solutions can be represented as an
analytic S1-family of minimal embeddings F(03BE,.) : D ~ M where D is
the closed unit disc in [R2 and the map F : S~ 

1 
x D ~ M is an analytic

diffeomorphism.
It would be interesting to say more about the geometry of S1-families

of surfaces minimally spanning some torus. As a first step in this direction
we can make the following.

REMARK. 2014 If the torus M is foliated by a smooth S 1-family F of plane,
disc type surfaces, each one being orthogonal on aM, then all surfaces in
the family are congruent.

Proof - Let us denote by X the vector field of unit normal vectors of
the surfaces in iF. We choose an arbitrary BoEff and pick a point poE int (Bo).
Let then a = a(s) be the integral curve of X with oc(0) = po. We can now
(at least locally) construct an orthonormal basis el(s), e2(s) of the normal
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space of a at a(s) which additionally satisfies e i - e2 = ei . e2 = 0. Since a,
by construction, intersects all surfaces in ~ orthogonally, it follows that

and e 2(s) span the plane of that surface in ~ which passes through a(s).
Therefore in a neighborhood of Bo we can parametrize the boundaries
of our family of surfaces in the form

where oc(0) + xl(t)e1(O) + x2(t)e2(o), 0  t  l, is a parametrization of aBo
with respect to arclength and u is a smooth function with u(0, t) = 0. A
short calculation shows that the condition of orthogonality of B(s) to aM
(generated by the family 5B(s)) reads

By continuity, u stays small for small values of s and therefore us = 0, i. e.
u(s, t) = u(0, t) = 0. This proves our remark.
Our examples of Si-families minimally spanning some torus consisted

in families of plane surfaces. It would be interesting to know if also tori
admitting non-flat families exist and, if this is the case, wether all surfaces
in such a family must be congruent or at least isometric.
The author is indebted to William H. Meeks for a very stimulating

discussion on the subject of the paper.

Note added in proof Recently R. Gulliver and S. Hildebrandt have
constructed a torus foliated by an S1-family of non-flat minimal discs.

1 A PRIORI BOUNDS FOR MINIMIZING MAPS

Compactness of the set of minimizing maps is a basic ingredient in the
proof of our theorem. This compactness is established by showing the
existence of uniform bounds for derivatives of minimizing maps. This is
done by an indirect argument which is linked with the proof of the existence
of solutions. We must therefore start by defining the class of admissible
mappings underlying an existence proof. We assume that M is a three-
dimensional compact, H-convex submanifold with boundary of [R3 of
class Ck,(X, k > 3, 0  oc  1, which is not simply connected. We choose a
homotopically non-trivial Jordan curve r in int (M) and denote by D the
closed unit disc in R2 and by d(p) the distance of a point p E M from CM.
Then we define ~(M, r) to be the set of all mappings f of Sobolev class
H~(D, (~3) such that
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(3) there exists a radius ro, 0  ro  1, depending on f, such that for
almost all r e ] ro, 1 [ the path f Cr, C~ == { z Eel I z - r ~, is not

contractible in MBr.

As for condition (3) we remark that from f E Hi(D, it follows that

f |Cr E R3) for almost all r and therefore f |Cr is continuous for
such r.
As usual in classical minimal surface theory, instead of area one mini-

mizes Dirichlet’s integral
of /*/*

It can be shown that under the above conditions on M any minimizing
f E r) is a conformal harmonic map which maps int (D) into int (M) ;
furthermore f E (R3) and f (D) is orthogonal on aM along the
boundary. For our a priori estimate below as well as for our structure
investigation in the following sections we may therefore assume that

minimizing maps enjoy all those properties just listed.
In view of the non-compactness of the conformal group of D and the

invariance of our problem under this group it is obviously necessary to
impose a normalization condition on minimizing maps in order to get
estimates. A suitable such condition is

for f E ~(M, r). We have then

PROPOSITION 1. - Let M be an H-convex body of class with k > 3.
Then all maps f which minimize Dirichlet’s integral in ~(M, r) and addi-
tionally satisfy (4) are uniformly bounded in 

Proof - Let us denote by ~* the set of all minimizing maps which ful-
fill (4). We first show that the Dirichlet integrals of these maps satisfy a
uniform boundary strip condition, i. e. for each E > 0 there exists
R = R(E) > 0 such that

for all f E ~*. If this were not true then there would be an E > 0 and a
sequence fn E ~* such that

Since ( f n) is a sequence of bounded harmonic maps with
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we may assume that the sequence ( fn) converges to a harmonic map f
together with all derivatives locally uniformly in the interior of D. It follows
that

and that f satisfies (4). As in the proof of Satz 3.1 in [4 ] one can then
conclude that F) and hence D( f) >_ ~. This contradiction proves (5)
and from Satz 2 .1 in [4 ] we may then infer that the family 
is equicontinuous, where d is distance from ~M. Using this information
we see from the proof of boundary continuity of minimizing surfaces that
all satisfy a uniform Holder condition [5]. The estimates for the
derivatives now follow from [6 ].

2. THE LOCAL STRUCTURE
OF THE SET OF SOLUTIONS

From now on we shall assume that our manifold M is analytic. The
first lemma states for the analytic case the existence of a regular neighbor-
hood of a disc in M which is transversal to ~M. The proof requires only
standard techniques and can therefore be omitted.

LEMMA 1. - Let f : D ~ M be an analytic embedding such that
f(int(D)) c= int (M), c= aM and, furthermore f (D) is orthogonal
on aM along Then there exist 6 > 0 and an analytic diffeomor-
phism 03A6 from D x ] - (5, 5 [ onto some neighborhood of f (D) in M,
C = t), such that

where N is a unit normal off
The following lemma states the positivity up to the boundary of the first

eigenfunction of a second order elliptic operator with the so called third
boundary condition.

LEMMA 2. - Let

be an elliptic bilinear form with analytic coefficients akh c, b. Assume
furthermore that f3(u, u) > 0 for all u E H1(D) and that j3(uo, uo) = 0 for
some u0 E H;(D), u0 ~ 0. Then uo is either strictly positive or strictly
negative in D.

Proof As in the case of the Dirichlet boundary condition which is
classical one shows that uo does not change sign in the interior of D, say
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uo > 0. Let us assume that uo(zo) = 0 at some boundary point zo. Clearly,
uo is a solution of the boundary value problem

It follows at once from (8) that ~ ~r uo(zo) = 0 and since Zo is a minimum
of uo on D we also have ~ ~03B8 uo(zo) = 0 where 0 denotes arclength along aD.
Therefore uo has a zero at zo of at least second order. By our analycity
assumptions uo can however be extended into an open neighborhood
of D as a solution of (7) and it follows from the nodal line structure of
such solutions that one of the nodal lines of uo emanating from zo had to
enter the interior of D, contradicting the positivity of uo.

Before proving the main result of this section let us recall the formulas
for the first and second variation of surface area [2, §§ 109, 116]. If X is
any immersed surface with boundary and Y an arbitrary variation vector
field along X then we have

where N is a unit normal of X and H the corresponding mean curvature,
n is the outer unit normal of the boundary ax in the surface X, and integra-
tion is performed with respect to surface area in the first and with respect
to arclength along ax in the second integral. For normal variations Y = vN
we obtain

where is the inverse of the metric tensor of X and K the Gauss curvature.

PROPOSITION 2. - Let M be analytic and H-convex and let / be a mini-
mizing embedded solution to the free boundary value problem for M.
We assume furthermore that f is not an isolated solution, i. e. there exists
a sequence of stationary solutions which are geometrically different from f
but tend to f in the C°-norm. Then there is a one parameter family F = F(t)
of area minimizing surfaces in r), I t  5, which is analytic in t
with respect to the C2 

+ ~‘-norm and has the following properties : i ) F(o) = f,
ii) F’(0) is a non-zero normal vector along f, iii) every solution to the free
boundary value problem sufficiently close to f in the C°-norm after suitable
reparametrization belongs to the family F.

Proof - We can clearly assume that f satisfies (4). To some fixed com-
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pact neighborhood V of the identity in the conformal group of D we can
find a neighborhood U of f such that to each g E U there corresponds
T E V such that g.1: also satisfies (4). It follows then from Proposition 5
that any sequence of solutions converging to f in C° in fact converges
in We shall work with k = 2. Using the analytic diffeomorphism 0
constructed in Lemma 2 we see that any surface g E C2 +x(D, M) suffi-
ciently close to f can be represented in the form

where u is a real function and r a diffeomorphism of D of class C-’ ~ 
Giving up the requirement of conformal parameters we need therefore
only consider surfaces of the form g(z) = u(z)) with u E C2 +°‘(D). We
want to set up the conditions on u that such a surface is a minimal surface

sitting orthogonally on aM along its boundary. For any immersion
g : D ~ !R3 let H [g denote the mean curvature of g. We can then define
the nonlinear second order differential operator

where U 2 ~ " is some neighborhood of 0 in C2 + ~‘(D). In view of the analycity
the operator h is also analytic with respect to the corresponding norms

and from (6) and a classical formula in differential geometry [2, § 117] ]
we obtain

where f and K f are the Laplace-Beltrami operator and the Gauss curva-
ture of the induced metric of f, respectively.

Using polor coordinates (r, 0) on D we can write the condition that an
immersion g : D ~ M is orthogonal to aM along g(aD) as

Inserting the expressions

in the left hand side of ( 1?) we obtain the analytic boundary operator

Using (6) and the conformality of f one calculates
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All minimal surfaces in M close to f which sit orthogonal on aM can
therefore be described as the zero set of the nonlinear elliptic operator

In order to study the zeros of T we first consider the linear elliptic operator
L = DT(0) together with its corresponding bilinear form

After partial integration and using the conformality of f we can write

It follows now from the standard theory of elliptic boundary value
problems that L has Fredholm index 0. We obtain more information on L
by considering the area functional

Since f = ~( . , 0) is area minimizing we conclude at once that

From

and (9) and (10) we obtain the expression

where ç is the outer unit normal of /(cD) in /(D). Since / has conformal
parameters we have

and we see that

From (14) and Lemma 2 we can now conclude that ker L is one-dimensional.
From now on we can argue as in [10 ] : Let

be a projection. It follows from the implicit function theorem that for a
sufficiently small neighborhood of the set

v2 + x ~ is an embedded analytic arc. Obviously one has
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and we know from our hypotheses that there is a sequence (un) such that
0 but un -~ 0 in C2 +a(D) and T(un) = 0, i. e. the analytic function

(I - P)T has zeros on the 1-dimensional manifold r~ (P’I’) -1 (o)
which accumulate at the point 0. It follows of course that (I - P)T is identi-
cally 0 on V’- + " n ( PT) -1 (o) and therefore V 2 +" n T -1 (o) = V 2 + x n (p’I’) -1 (o),
which is an analytic arc. Parametrizing this arc as u = u(t), I t  b, we
clearly have

and it follows from Lemma 2 that u’(0) is non-zero everywhere in D. If we
now set

then

which is a non-zero normal vector along f Moreover, it follows from the
d

construction of the family u(t) and formula (9) dtA(F(t)) = 0 and

hence A(F(t)) = A(F(0)) = A( f ). Since f has minimal area in L(M, r)
we see that each F(t) is also area minimizing in ~(M, r). This finishes the
proof of the proposition.

3. PROOF OF THE THEOREM

From the assumption that M possesses infinitely many solutions to the
free boundary value problem we shall deduce that M is the union of a
disjointed S1-family of embedded discs where each disc corresponds to
a solution of our free boundary value problem. Then we shall show that
the unit normals to these discs form an analytic vector field on M. By
means of this vector field we shall finally construct the diffeomorphism
from S~ 1 x D onto M stipulated in our theorem.
We denote by ~ the set of all differentiably embedded discs in M and

define a metric d on g by

d(O 1, ~12) = inf ~ ~ ~ f 1 - f 2 ~ ~ o ~ f’k ~ D -~ Ok is a diffeomorphism; k = 1, 2 ~,
where ]) ( I o denotes the C°-norm.

Let ~min be the subset of ~ consisting of all discs f (D) where f is a mini-
mizing solution of our free boundary value problem. It follows from

Proposition 1 that ~min is compact with respect to the topology just intro-
duced. Let us now assume that is not finite. Then possesses
some accumulation point Ao = f o(D). Let ~o denote the connected com-
ponent of Ao in Obviously all discs in ~o are then accumulation
points. If On ~ 0 in 2Zmin and On = fn(D) where fn are corresponding
solutions of our minimization problem satisfying the normalization
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condition (4) then it follows from Proposition 1 that, at least for a subse-
quence (nk), 

_

and consequently f (D) = A. We conclude therefore from Proposition 2
that locally ~o is given by analytic one-parameter families of embeddings
which make one-dimensional differentiable manifold. ~o is also

compact as a component of the compact space ~min and therefore, by the
classification of 1-manifolds, ~o is homeomorphic to Sl. Consider now the
set

which is obviously a compact subset of M. Since the families F = F(t)
representing ~o locally have the property (cf. Proposition 2) that F’(0)
is a non-zero normal vector field along the disc F(0) it follows from the
inverse mapping theorem that the map (t, z) )2014~ F(t)(z) is a diffeomorphism
from ] - 5, 5 [ x D onto a neighborhood of F(0)(D). Therefore Mo is also
open in M and we may conclude that Mo = M. It follows then that

= !!Zmin since by the results of Meeks and Yau [7] every disc in 
had to be disjoint from all discs in fØo. We now orient the local families
F = F(t) of Proposition 2 by requiring that they form an oriented atlas
of ~ S 1 .
Then to each such oriented family F = F(t) there corresponds a unique

analytic family of vector fields N = N(t) such that N(t) is a unit normal
for F(t) and N(O) = F’(0). We may now define a global vector field on M
by setting

This definition is unambiguous since by the results of Meeks and Yau [7] ]
there is for given p E M at most one disc 0 E containing Il 

p E 0 = F(t)(D) exactly one z ~ D such that p = F(t)(z). In particular,
X ~ is a nowhere vanishing tangential field on dM. Since aM must be
connected as the union of the boundaries of the discs in it follows

already from the Poincare index theorem [7] ] and the classification of
compact surfaces [9 ] that aM is homeomorphic to a torus and hence M
homeomorphic to a solid torus. In order to prove the more precise state-
ment in our theorem we want to show that the vector field X defined above

possesses a closed orbit which intersects each disc A E exactly once.
For this purpose we fix a disc Ao E 2»min and cut M along Ao, considering
the two sides ofAo, denoted by Do and Ao, as bottom and top of a cylinder.
We claim that any flow line of the vector field X starting from Ao at time
t = 0 reaches every disc A E gmin different from ~o after finite positive
time. Since the vector field is always transversal to each disc in !?2min it is
obvious that the set of all those discs having the required property is
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open. Using the local charts for given in Proposition 2 it is not difficult
to see that this set is also closed. Hence our last claim is proved and there-
fore any flow line starting from Ao in particular reaches Ao after finite
time. This however says that the Poincare map of Ao is well defined, which
assigns to each point p E Ao that point of Ao to which the flow line issueing
from p at time t = 0 returns for the first time. Being continuous this map
must have a fixed point which establishes the existence of a closed orbit y
of X intersecting Ao exactly once. Since y is transversal to all discs A e ~min
it intersects all these discs exactly once. Now we are able to construct
our distinguished diffeomorphism from S 1 x D onto M which maps
each copy of D onto a solution of our free boundary value problem. Let
us first assume that the closed orbit y is contained in the interior of M and
let y = be an analytic parametrization of y. Furthermore we
choose a unit vector field Y along y which is everywhere orthogonal to y.
It is then easily seen that the conditions

determine a conformal solution j’ = f ~ of our free boundary value problem
uniquely. We now define a mapping F : S~ 1 x D -~ M by F(~, z) = f ~(z).
Using Proposition 2 it is easily verified that F is an analytic diffeomorphism.

0

Let us finally consider the case that the closed orbit is not contained in M
and therefore contained in aM.
We choose two analytic parallel curves y~, Y - on aM at distance E

from y. For sufficiently small E each of the two curves is transversal to all
boundaries a0, A E and intersects each such boundary exactly once.
We then define our diffeomorphism F by

where f03BE is the uniquely determined solution of our free boundary value
problem satisfying the conditions

Thus the theorem is completely proved.
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