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ABSTRACT. — We develop a well-posedness theory for solutionslitio the Cauchy problem
of general degenerate parabolic-hyperbolic equations with non-isotropic nonlinearity. A new
notion of entropy and kinetic solutions and a corresponding kinetic formulation are developec
which extends the hyperbolic case. The notion of kinetic solutions applies to more genera
situations than that of entropy solutions; and its advantage is that the kinetic equations in the
kinetic formulation are well defined even when the macroscopic fluxes are not locally integrable
so thatL! is a natural space on which the kinetic solutions are posed. Based on this notion
we develop a new, simpler, more effective approach to prove the contraction property of kinetic
solutions inL1, especially including entropy solutions. It includes a new ingredient, a chain rule
type condition, which makes it different from the isotropic case.
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RESUME. — Nous développons une théorie d’existence et unicité pour les solufibns
seulement du probléme de Cauchy pour un probléeme de Cauchy hyperbolique-paraboligt
avec diffusion non-isotrope générale. Des notions de formulations entropique et cinétique sor
introduites qui incorporent un nouvel ingrédient, une condition de type dérivation composée, qu
montre la différence fondamentale avec le cas d’'une diffusion isotrope. L'avantage de la notior
de solution cinétique est de travailler directement dans I'espace naturel
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1. Introduction and main theorems

Consider the Cauchy problem of a general nonlinear degenerate parabolic-hyperboli
equation of second-order:

du+V-fu)=V-(Aw)Vu), xeR? >0, (1.1)
ul—o=uo € L*(R?), (1.2)

where f :R — R satisfies
a(’) == f'() € Ly, (R; RY), (1.3)

and thed x d matrix A(u) = (a;; (1)) is symmetric, nonnegative, and locally bounded
so that we can always write

K
aij(u) =Y opw)ojx(u),  oi € Lisy(R), (1.4)
k=1

and (o, (1)) is its square root matrix, in which the structure appears more naturally
with the additional indexK that can be thought to be the maximal rank of the matrix.
Equation (1.1) and its variants model degenerate diffusion-convection motions of idea
fluids and arise in a wide variety of important applications, including two phase flows in
porous media (cf. [7] and the references cited therein) and sedimentation-consolidatio
processes (cf. [5] and the references cited therein). Since its importance in application:
there is a large literature for the design and analysis of various numerical method:
to calculate solutions of (1.1) and its variants; see [7,12,11,9,17] and the reference
cited therein, for which a well-posedness theory for (1.1) is in great demand. We are
concerned with the well-posedness, especially uniqueness and stability, for solution
of the Cauchy problem (1.1) and (1.2). The well-posedness issue is relatively well
understood if one removes the diffusion te¥m (A(u)Vu), thereby obtaining a scalar
hyperbolic conservation law; see Kruzhkov [18], Lions, Perthame and Tadmor [19,20],
and Perthame [21,22]. It is equally well understood if one removes the convection
termV - f(u); see [4,16] and the references cited therein. For the isotropic diffusion,
a;;(u) = 0,i # j, some stability results for entropy solutions have been obtained for
BV solutions by Volpert and Hudjaev [24] in 1969. Only in 1999, Carrillo [6] could
extend this result td.* solutions (also see Eymard et al. [14], Karlsen and Risebro [17]
for further extensions), and Chen and DiBenedetto [8] handled the case of unbounde
entropy solutions which may grow whex| is large. Also see Gilding [16] for a theory

for isotropic degenerate parabolic equations with isolated degenerate points.

In this paper, we establish a well-posedness theoryl fosolutions of the Cauchy
problem (1.1) and (1.2) for general degenerate parabolic-hyperbolic equations of seconc
order, especially including the non-isotropic diffusion case. This relies on two new
ingredients. Firstly, the extension from the isotropic to the non-isotropic is not a purely
technical issue and we introduce a fundamental and natural chain-rule type property
which does not appear in the isotropic case and which turns out to be the corner
stone for the uniqueness in the non-isotropic case. Secondly, we extend a notion ¢
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kinetic solutions, a new concept in this context, and a corresponding kinetic formulation.
The notion of kinetic solutions applies to more general situations than that of entropy
solutions as considered in [6,17] and [8]. The advantage of the new notion is that the
kinetic equation in the kinetic formulation is well defined even when the macroscopic
fluxes are not locally integrable so that is a natural space on which the kinetic
solutions are posed. Based on this notion, the corresponding kinetic formulation an
the uniqueness proof in the purely hyperbolic case introduced in [21], we develop &
new, simpler, more effective approach, in comparison with the previous proofs in [6,17]
and [8], to prove the contraction property of kinetic solutiong tnespecially including
entropy solutions. This leads to a well-posedness theory for kinetic solutioh’ dr
the Cauchy problem of (1.1) and (1.2).

The main theorems of this paper are the following.

THEOREM 1.1. — Assume thatl.3)and(1.4) hold. Then
(i) For any kinetic solution: € L>([0, co); L1(R¢)) with initial data uq(x), we have

(i) If u,v e L*=([0, o0); L1Y(R?)) are kinetic solutions t@1.1) and (1.2) with initial
dataug(x) andvg(x), respectively, then

Hu(t) - U(t)HLl(Rd) < ||u0 - UOHL]-(R‘])' (15)

(i) Furthermore, ifu € L°°([0, oo) x R?), this kinetic solution is an entropy solution.

THEOREM 1.2. — Assume tha{1.3) and (1.4) hold. For ug € L*(R?), there exists
a unique kinetic solution: € C([0, o0); L*(R?)) for the Cauchy problen{1.1) and
(1.2). If ug € L= N LY(RY), then the kinetic solution is the unique entropy solution and

lu(t, x)| < lluoll oo way-

In Section 2, we derive a kinetic formulation in a precise manner and describe the
notions ofentropy solutiongndkinetic solutionsof the Cauchy problem (1.1) and (1.2).
The new ingredient of this formulation is the precise identification of the kinetic defect
measure and the degenerate parabolic defect measure, even in the regionwhere
is discontinuous and is only ih'. To make the points more clearly, in Section 3, we
present our new approach by a formal proof to show the contraction property of kinetic
solutions. Then Sections 4-6 are devoted to the rigorous proof of the stability of kinetic
solutions. In Section 7, we prove the existence of kinetic solutions and entropy solution:
of the Cauchy problem (1.1) and (1.2).

In this paper we focus on the prototypical case (1.1). The results and technique:
straightforward extends to more general degenerate parabolic-hyperbolic equations
second order, by combining with the Gronwall inequality, such as

du+V- fu,t,x)—V- (A, t,x)Vu) =c(u,t,x), xeR? >0, (1.6)
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whereA(u, t, x) = (a;j(u, t, x)) With a;; (u, t, x) = a;; (u, t, x), f(u,t,x), ande(u, t, x)
are sufficiently smooth functions, and

> ag(u,t,x)EE; >0,
i,j

for (1, x) e Re* andu € R.

2. Entropy solutions, kinetic solutions, and kinetic formulation

Eg. (1.1) satisfies a so-callehtropy property To motivate it, we consider a non-
degenerate parabolic equation (1.1) in which the matiix) = (a;; (1)) is replaced by
A(u) + ¢1, and we denota® (¢, x) its C? solution. Then, for any functioSi(-) € C?(R),
multiplying Eq. (1.1) byS’(«®) yields

d d
0, S(u®) + Z A (u) — Z Ay, (8" (u®)aij(u®)dy,u®) — e AS(u®)
i—1 ij=1
=—m5" (1,x) —n% (1, %), (2.1)

where the entropy flux? («) is defined (up to an additive constant) by
(1) @) = a; @) S'(w), (2.2)
theentropy dissipation measure®’ (¢, x) is defined by
m3'(t, x) = 8" ()| Vu|? > 0,

and theparabolic dissipation measure’’ (¢, x) is given by

2

d K d
ny (t,x) = 8" W) Y ay ) utdyu’ =" W)y (Z aik(uﬂax,-ug) >0,
k=1 \i=1

i,j=1
In order to understand more about the dissipation measures, we introduce the notatior
Bix(u) and Bl (u) for ¢ € Co(R) with ¥ > 0:

Biw) =ou@),  (BY) )= U@w) ouw). (2.3)

Then we end up with the two equivalent definitions:

K / d N d 2
nf(t,x):zz:(Zax,ﬂ}/Z(u*’)) =Zw(u€><zaxiﬂik(u6>> . (24
k=1 i=1

k=1 \i=1

The heart of our investigations is to notice that this equality still holds in the dimit 0.
It is useful at this stage to derive a priori bounds from the above calculations. After
the space-time integration agair$étwith S convex ands’(0) = S(0) = 0, we obtain
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/ /(mf (t,x) +n3 (1, x)) dr dx

0 RY
2

00 K d
=//S”(u8)(Z(Zaxiﬁik(u8)> +g|ws|2> dr dx
k=1 \i=1

0 R4
< HS(MO)HLl(]Rd) < ||S/”L°°(R)||MO”L1(R‘1)' (25)

The following convenient notations are deduced by the dudlify(R); M(R)),
which replace the exponeSt or . Namely,

m (1, %) =/w<s>ms(r,x,s>ds, nzfa,x)=/w(s>ng(t,x,s>ds,
R R

with
me(t, x, &) =8(& — u)e|Vu' |,
K / d 2
ng(r,x,s)za@—u%Z(Zaxiﬁik(u&)) , (2.6)
k=1 \i=1

whereé (¢) is the Dirac mass concentratedsat 0.

Then we can choose, as a limiting case for smoothness of the enfi@py the
function S(u) = (u — &), for the parametet > 0, or S(u) = (u — &)_ for £ <0, in
(2.5), and we end up Withy* [pa(m. + ne)(t, x, &) dt dx < u(€) € LF(R) (bounded
functions that vanish at infinity)

1(8) = Lig=op | (o — S)JrHLl(Rd) + Lig<oy| (o — 5)—HL1(RH)' (2.7)

ChoosingS(u) = u?/2, we also deduce from (2.5)

o]

//(mg 4 n.) (1, x, ) di dx dE

0 Rd
2

o0 K d
1
_ / / (Z( ax,ﬂik(ua>> +g|w|z> drdx < Slluollizg.  (2.8)
0 RrRd 1

k=1

As ¢ — 0, passing to the limit with the above bounds and under the property that

u®(t, x) converges strongly (see Section 7 below), we end up with the definition of
entropy solutions

DEFINITION 2.1.—Anentropy solution is a functian(z, x) € L>([0, co) x R¢) such
that

(i) 34, 8, Bix(u) € L3([0, 00) x RY), for anyk € {1, ..., K};

(i) for any functionyr € Co(R) with ¢ (1) > 0and anyk € {1, ..., K},

d d
>0 BYw) = VU W) D> d, Bu(u) € LA([0, 00) x RY), (2.9)

i=1 i=1
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and
2

K d
n¥(t, x) =¥ (ut, x)) Z(Zaxiﬂik(u(t,x))>
k=1 \i=1
2
=Z<Zaxi'3i]i(u(t’x))> a.e.; (2.10)
k=1 \i=1

(iif) for any smooth functionS(ux), there exists an entropy dissipation measure
mS" (¢, x) satisfying that

m® (1, x) :/S”(é)m(r,x,é)d&, with m(z, x, £) a nonnegative measure,(2.11)

such that

d d
S+ dunf ) = Y 8y (ai;w)dy, Sw)) = —(m> +n"), (2.12)

i=1 i,j=1

in D'(R* x RY) with initial data S(u(t = 0)) = S(uo).

Remark?2.1. — Arguing as in (2.7), an entropy solution satisfies

//(m +n)(t,x,&)drdx < p(§) € L7 (R). (2.13)

0 R4

Remark?2.2. — The nonnegative parabolic defect measuex, £) for an entropy
solutionu(z, x) in Definition 2.1 is very simple and given by the following formula:

2

K
n(t,x, ) =8(§ —u(t,x) Z(Zax,m u(t, x>)>
k=1 =1

in the usual sense. Also, the choic®u) = u?/2 gives the L?-integrability of
Zf’:l dx, Bix(w), 1L < k < K, and yields another useful estimate, as in (2.8):

o0

1
[ o my e, 6) e < ol (2.14)
0 Rd+1

providedug € L2(RY).

Remark?2.3. — When we refer to distributional solutions here, we always mean that
the initial data are included in the definition of solutions in the sense of distributions,
when a test function does not vanishrat 0. That is, a distributional solution(z, x)
satisfying (2.12) means that, for any test functioa D([0, co) x RY),
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00 d
/] (S(u)fw ORAES Y afj(u)aix,xp) dr dx

0 R4 i,j=1

= /OO/(mS +n5 ) dr dx — /S(uo(x))w(O,X)dx,
e

0 R4

with (aisj’)’(u) = §'(u)a;;(u). However, thanks to the chain rule which is postulated in
the definition of entropy solutions, several possible variants for the second-order tern
are equivalent.

Remark?2.4. — The main ingredient in Definition 2.1 is the equality in (2.9), which is
not always true for a function(z, x). Indeed, if8;; (1) is discontinuous, this chain rule
does not make sense even for any single term in the sums of (2.9). Itis natural to assun
the equality here because it keeps true in the limiting proggssx) — u(z, x) strongly
(see Section 7). In the case of a diagonal matyjx= 0 for i # j, this equality in (2.9)
is always true and needs not be included in Definition 2.1. We refer to the appendix for ¢
proof. Therefore, our theory also recovers the results of Carrillo [6] (and the extensions
of [17,14]) and Chen and DiBenedetto [8] when the initial data adetin L>°.

On the other hand, we may factor out &) in the equation (2.12) and obtain a more
precise kinetic formulation of nonlinear degenerate parabolic-hyperbolic equations of
second-order with form (1.1). The new ingredient of this formulation is the identification
of the kinetic defect measure(z, x, £) and the degenerate parabolic defect measure
n(t, x, £) in a precise manner, even in the region whegg x) is discontinuous and only
in L. Compare with the classicéinetic formulationfor multidimensional hyperbolic
conservation laws by Lions, Perthame and Tadmor in [19,20].

We introduce the kinetic functiop onRR?:

+1 forO<é& <u,
X(S;u):{—l foru <& <0, (2.15)
0 otherwise.

We notice that, it € L>([0, 00); LY(R?)), theny (&; u) € L=([0, 00); LY(RIT)).
The simple representation

S = [ §©x( 0 e
R
leads to the following kinetic equation, which is equivalent to (2.12):

d
Ox(Esu)+a() - Vix(Eiu) — Y ay()d2, x(E;u) =0:(m+n)(t,x,8) (2.16)

i,j=1
in D'(R* x R4+1) with initial data

x (& u)li=o = x(&; uo).



652 G.-Q. CHEN, B. PERTHAME / Ann. I. H. Poincaré — AN 20 (2003) 645-668

We are now ready to define thé@etic solutions.

DEFINITION 2.2.— A kinetic solution is a functiom(z, x) € L>([0, co); L*(R%))
such that
(i) for any nonnegativey € D(R) andk € {1, ..., K},

d
> "8, Bl () € L2([0, 00) x RY); (2.17)
i=1

(i) for any two nonnegative functiong, v, € D(R),

d
Ya(u(t, ) > 8, B (u(t, x)) Zaxlﬁ‘“‘“ u(t, x)) a.e.; (2.18)
i=1

(i) Eq.(2.16)holds inD’, for some nonnegative measure&, x, &) andn(t, x, &),
wheren(t, x, &) is defined by

2
/I/I(S)n(l x, &) dE = Z(Zaxﬁ,k u(t, x))> , foranyy e DR) with ¢ > 0;

k=1 \i=1
(2.19)
(iv) the following inequality is satisfied
//(m +n)(t, x, &) dr dx < pu(€) € LP(R). (2.20)

0 R4

This notion ofkinetic solutionsapplies to more general situations than that of entropy
solutions. The advantage is that the kinetic equation is well defined even though the
macroscopic fluxes®(u) are not locally integrable so thdt! is a natural space on
which kinetic solutions are posed. In the purely hyperbolic case, a.futheory has
been developed in Perthame [22]. This approach also covers the so-called renormalize
solutions used in the context of hyperbolic scalar conservation laws by Bénilan, Carrillo,
and Wittbold [1].

Remark2.5. — Any entropy solution is a kinetic solution. Our uniqueness result
implies that any kinetic solution ih® must be an entropy solution. Therefore, the two
notions are equivalent for solutions it?°, although the notion of kinetic solutions is
more general.

Remark2.6. — The degenerate parabolic defect measurex, £) is no longer
defined by the simple formula in Remark 2.2 si@ézl dx, Bix (u) does not belong to
L?([0, 00) x R?) in general because (2.14) does not apply. In fact, the only a priori
bound used here is that of (2.13) which is also expressed in Remark 2.1 as a corollar
of Definition 2.1. The explicit expression in terms @§(x) for w(&) in (2.7) is not
fundamental, and the useful information is thag) is bounded and vanishes at infinity.
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3. Contraction proof: formal

In this section, we give a formal proof for the contraction property of kinetic solutions,
i.e., part (ii) of Theorem 1.1, which takes the advantage of the precise kinetic formulation
(2.15)—(2.20). We will make the proof rigorous in Sections 4—6.

Consider two solutions(z, x) andv(z, x). Denote byp(z, x, §) the kinetic defect
measure and by

K / d 2
Q(tvx75):=8(s_v(t7-x)>Z(Zaxiﬁik(v(t7-x)>> ) (31)
k=1 \i=1

the parabolic defect measure, which are associatedwgitty). Then our proof consists
in using the following microscopic contraction functional introduced in [21,22]:

O, x,8) = |x (& ut,0))| + |x (& v, x))| — 2x (&; u(r, x)) x (§; v(t,x)) = 0. (3.2)

It is useful for deriving a contraction principle since

/Q(t,x, £)de = |u(t,x) — v(t,x)’.

The point is to justify the following identities. Firstly,

| x (& ut, )| +a) - Vi|x (E:ult, x))| - Z 02, (@i &) x (5 u, 0)|)

i,j=1

= sgn(§)ds (m +n)(t, x, §),
which yields

/’X (& u(r, x))’dxdé——Z/(m—i-n)(t x,0)dx.
Rd+l

A similar identity holds forv(z, x).
Secondly, we compute

d
dr / X(E:u(, ) x (& v, x)) dr dg

R”H'l
Zal](@ax, (&:u(t, x))0, x (€; v(t, x)) dr d&
Rd+1’] 1
= /((m+n>(t,x,s>(8(s—v(nx))—8(&))
Rd+1

+ P+, x,6)(8(& —u(r,x)) —8(&))) dx d&.
Then, we have
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d
" / O(t, x. &) dr ds

Rd+1
d
> i (E)0, x (& u(t, x)) 3, x (& v(t, x)) dx dE
Rad+1 =1
_2 / ((m +n)(t. %, )8(E — v(t, ) + (p + @) (¢, x, E)8(E — u(r, x))) v dé
Rd+1
d
Z a;j(§)0y,ult, x)axjv(t,x)S(g — u(z,x))(s(g — v(t,x)) dx dg
Rd+1 Bi=1
-2 / (n(t,x,6)8(6§ —v(t,x)) +q(t,x,6)8(& —u(r,x))) dx d&,

Rd+1
sincem(t, x, £) and p(t, x, £) are nonnegative.
It remains to notice that, using Remark 2.2 and (3.1), we still have, very formally,

/ (n(t,x,8)8(§ —v(t,x)) +q(t,x,6)8(§ —u(t,x))) dxdé

Rd+1

K
=> /3 —u(1,x))8(& —v(1,x))

kled+l
2 2

d d
X ((Zax Bur (u(t, x) ) + (Zaxiﬁik(v(t7x)>> )dxdé
i=1

i=1

K
>2) / S(8 —u(t,x))8( —v(t, x))

j=1

M =

=2

Rd+l
d d
> 0 Bie (u(nx))) (Zax,ﬂjk(v(r,x») dx d&
i=1
d
>
1

/ §(& —u(t,x))8(& —v(t, x))oiu(u(t, x))

~
Il

lij= Rd+1

j
X o (v(, x))dyu(t, x)d,, v(r, x) dx dg

d
:22 / a;j (§) 3 u(t, x)0, ,u(t, x)8 (& —u(t, x))8 (& — v(r, x)) dx d&.

i’j:le+l

Therefore, we end up with

d
- / 0. x. &) dr 6 <0,

Rd+1
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which implies that|u(z) — v(¢) | .1z« IS NON-increasing. This concludes the contraction
property (1.5).

4. Contraction proof: rigorous

To make the proof rigorous, the above argument requires to regularize the linea
kinetic equation (2.16) by convolution; This is the first step, in which all notations
are also introduced. Then we analyze separately the different terms in the microscopi
contraction functional, which requires several steps.

Stepl. RegularizationWe setes = (¢1, &3), &1 for the forward time regularization and
&, for the space regularization, and we define

1 r\ 1 X
P, x) = —p1| — | 92| — |
&1 €1/ & €2

whereg; > 0, j = 1,2, denote the normalized regularizing kernels witlp; = 1,
supf¢1) € (=1, 0) in order to allow the time regularization.
Next, we use the notations

X =x,x,&)=x(&ul, x)), X =xEt,x)=x(& v, x)),
XS = Xs(tvxv é) = (X *(t,x) (ps)(tvxvs)v X&‘ = X&(vavg) = (X *(t,x) (ps)(t’xv é)v
and, similarly,

Mg =M % x) Pe, Pe i = P *@,x) Qe Ng := N % x) Qe de ‘= q *(t,x) Pe>»

where x ,, denotes the convolution in time and space. We also need a further
regularization irt with smoothing kernelss (&) = %W(%) and use the notation

Xe.s i= Xe * Vs.

Finally, we need &-truncationK» (§), which is a smooth nonnegative function with
bounded support. That i&z(£) = K(¢§/R) — 1, asR — oo, with
0<K(E)<1 forée(—o0, 0),
K& =1 for |£] < 1/2,
K($)=0 for§] > 1.

The destiny of these parameters is that O first, R — oo second, and — O finally.

The results we will show indicate that the contraction property holds even for any
fixed parameter, which is an interesting phenomenon. Indeed, for any regularized
microscopic contraction functional:

Qs(tvxvé—):l)(al"{_l)zgl_z)(s Xs>ov (41)

we have
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PROPOSITION 4.1. —Under the assumptions of Theordmi,

d
= / 0.(1,x. &) dv ds <O,

Rd+1

Notice that, by convolution, we obtain

d
dxe +a(®) - Vaxe — Y 85 (aj(E)xe) = 8 (me + 1) (1, x, 6), (4.2)
i,j=1
d
Ofe +a(§) - Vike =y 02, (aij(§)Xe) = 0 (pe + qo) (1, x, §) (4.3)
i,j=1

in D’'((0, o0) x R4*+Y), where the initial data are inessential at this stage.

Step2. First terms of the contraction functiondfrom the space and time regularity of
Xe, We deduce thatm, + n,)(z, x, &) is locally Lipschitz continuous i§. Furthermore,
multiplying (4.2) by sgit¢), we find

d
Rd+l Rd
Similarly,
d -
o [ G noldeds ==2 [ +q0 0. x. 0 d (4.5)
Rd+l R4

Step3. Quadratic term of the contraction functiona\nalyzing the quadratic term
requires a furtheg-regularization. We write

d
Ouxes +a®) - Vexes — 02, ((@ij(E)xe) % ¥s) = 9 ((me +ne) * ¥s) + RY,
i,j=1

with

R =Ri(t,x,&) :=div, (a(€)(xe * ¥s) — (a(€) xe) * Vs).
A similar equation holds fog, ;. Therefore, a direct combination gives

d
O (Xe.sXes KR(E)) + Kr(€) a(€) - Ve(Xesxes) — KrE) e D 92, ((aij ) xe) x ¥s)
i,j=1

d
— Kr@xes Y 02, ((aij(§)Xe) * ¥s)
i,j=1
= Xe.s Kr(§)0: ((me +np) % Ys) + Xes KR(E)RY + Xes Kr(§)0e ((pe + qe) * ¥5)
+ Xe.s Kr(E)RY.
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After integration, we obtain

" / Festes Kr(€) che df = ZRz(zHZ RO +R)®),  (4.6)

Rd+1

whereR,; are defined as follows:

Ra(t) = / K@) (FosRY + xesRY) dx . @4.7)

Rd+1

K d

Ra(1) = -2 / Kr(E)Y Y 0 ((0ixe) % Vs) 0y, (05 Xe) x ¥s) dx d,  (4.8)
Ri+1 k=11i,j=1

Ra(t) = — / Kr(E)Ps(E) ((me +ne) * Y5 + (pe + qe) x ¥s) dx dg,  (4.9)

Rd+1

Ra(t) = / KR@Z 01, %e.sds, (@i () x:) * V)

Rd+1 i,j=1
+ 0y, (0jk () Xes * Ws) O, ((0ik (E) Xe) * Ws) ) dx dE.
The termRs(¢) comes from integration by parts énand the following equality:

O Xe.s = Vs(§) —8(& —u) *( x.6) (0 VPs),

that is, taking into accouriRs(z),

Rs(t) = — / Kly(6) Fes ((me + n0) % 5) v G, (4.10)
Rd+l
Also,
Reo(1) = / Kr(E) (5 — v) ) (@e5)) (0 % W1p) dlx (4.12)
Rd+l
Ra(t) = / Kr(®) (8 — ) %q.r.) (@e5)) (e + r5) dly . (4.12)
Rd+l

The termsR;(¢), 4 <[ < 7, denote the symmetric terms®f(¢), 4 < [ < 7, respectively,
whereu(t, x) is replaced by (z, x).

Step4. Estimates of the error term®ur goal is now to estimate these error terms in
the following two lemmas.

LEMMA 4.1.—Foranyl< p < oo, whens — 0,

Ri1(1), Ra(t), Ry(t) >0, Li(Ry), (4.13)
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and

Ra(1) — /(mg +ne)(t, x,0)dx + /(ps +qe)(t,x,00dx, Lig(Ry).  (4.14)
R4 R4

In addition, whers — O first and R — oo second,
Rs(t), Ry(t) =0, in LL.(R,). (4.15)
Furthermore, for any, §, R,
R7(t), R5(t) >0, foranyr € (0, 00). (4.16)

It remains to estimate the remaining terms which are more difficult to handle
and contain the actual cancellation which motivates our kinetic formulation with the
introduction of the parabolic defect measure, x, &).

LEMMA 4.2.-Foranye,d, R,
Ra(t) + Re(t) + Rg(t) =0, for anyr € (0, 00). (4.17)

Lemma 4.1 is proved in Section 6.1. Lemma 4.2 is proved in Section 6.2 for entropy
solutions (the easier case) and in Section 6.3 for kinetic solutions.

Step5. Contraction propertyWith Lemmas 4.1 and 4.2, we can now conclude the
contraction proof. As a consequence of the above lemmas, we can pass to the lim
asd — 0 first andR — oo second in (4.4), (4.5), and (4.6). Adding (4.4), (4.5), and
substracting twice (4.6) yields

d N -
" / (el 4+ 17| — 2 xe) dx d <O.

Rd+1

This complete the proof of Proposition 4.1.
Since, where — 0,

/]u(t) —v(t)|dx
Rd

- / (1 (& ult. )] + | x (& v(t.0))| — 2x (&t 1)) x (&: v(1, x)) )l

Rd+1

we conclude the contraction property, that is,
/]u(t) —v(t)|dx
R4

is non-increasing im > 0. The full result (ii) of Theorem 1.1 is therefore proved after
using (i) which is proved below.
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5. Continuity at ¢ =0 and L*-stability

In order to obtain the.-stability (1.5), it remains to prove the initial time continuity
statement (i) in Theorem 1.1. The proof, first due to [13] in the hyperbolic case, is basec
on the use of the initial data for all entropies in the weak form of Eq. (2.12). At the
kinetic level, it amounts to say that(&; u(z, x)) achieves the initial data(&; ug) in the
weak form of Eq. (2.16) (see Remark 2.3). We prove only for kinetic solutions which
contains the case of entropy solutions and turns out to be rather simple.

PROPOSITION 5.1. — Let up € LY(R?) and u(t,x) be a kinetic solution(see
Definition2.2). Then, when — 07,

/]u(l, x) — uo(x)] dx — 0,

R4

and

t L
///(m +n)(s,x,E)dsdxdé — 0, foranyL > O.
0 Rd —L
Proof. —We follow the proof in [22] and thus we skip some technical details. Using the
Dunford—Petti theorem, we first consider a nonnegative, strictly convex funétian
with superlinear growth for largg:| such that®(0) = 0 and [ps @ (uo(x)) dx < +o0.
Definition 2.2 for kinetic solutions yields the following identity:

t
/ @ (u(t,x))dx —I—/ / " (E)Ym +n)(s, x,&)dsdx ds = / @ (uo(x)) dx < oo.
Rd+1 0 Rd+1 R4
(5.1)
This identity can be achieved by first choosing admissible test funaggiginsx) @’ (&) x
K (&/R) with ¢, (t, x) — Lio<, <7 xerdy, fOranyT e (0, oo), and a smooth functiok (&)
such thatk(¢) =1 for |£€] < 1, K(&§) =0 for |§] > 2, and sgn(§)K (6 0, and then
takingn — oo first andR — oo second.
From (5.1) and the nonnegative signofn, and®”, we know that«(z, x) is relatively
weakly compact inLi (RY). Hence we may extract subsequences such,that0 and

X (&5 u(ty, X)) =1 (x, &) € LRI in L=(RIY),
u(tn,X)—\/)?(x,E)dS in LL,(RY),
R

/(m +n)(s,x,E)ds — m(x,€) in /\/ll(Rd+1),
0
and

SgNE) X (x, &) =[x (x, &) < 1, m(x,§) =0, /ﬁl(x,é)dX<M(5)€L8°(]R),
R4
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where the half arrows-~" and “-~” denote the weak convergence and the weak-star
convergence in the respective spaces, respectively,udéd is the function defined
in (2.13) and (2.20).

Secondly, using the definition of distributional solutions yields that, for any test
function¢ (x, &) in D,

/ Cx. &)y (E: u(T, x)) de dé

Rd+1

T d
-1/ (a(é)-Vm(x,S)— 3 a,-j@)ax,.x,mx,@)x(s;u(nx)) b e g
0 Rd+1

ij=1
T

=—/ / e (x. £)(m + )z, x, &) dr dlx df + / & (. £)x (3 uo(x)) dhr k.

0 Rd+1 Rd+1

Passing to the limit a =, — 0, we deduce that

/¢(x,5))?(x,-§)dxd-§=— / bz (x, §)m(x, &) dx d§

Rd+1 Rd+1

+ / 0, &) (: uo(x)) dr e,

Rd+1

which implies that the identity holds in the sense of distributions:
der(x,8) = X (x,8) — x (&5 uo(x)).

From this, we deduce that the measuréx, &) is also a function and that, for almost
everyx, m(x, ) is continuous and vanishes at infinity therefggey dé = uo. On the
other hand, we know:(x, £) > 0. Therefore, we deduce from Brenier's Lemma [3] that
m(x, &) =0andy (x, &) = x(&; upg(x)). By the uniqueness of the limit, the whole family
x (&; u(t, x)) converges weak-star yp(&; ug(x)) ast — 0.

Therefore, x (§; u(z, x)) has a tracex (-; u(0+, -)) = x(-; ug(-)) on the setr = 0,
defined at least in the weak sensd.i(R?+1).

On the other hand, we also deduce that, for the locally strictly convex fundtiwith
superlinear growth at infinity in Step 1,

/CD(u(t,x)) dx < /CD(uo(x)) dx.
R4 R4

The strict convexity of® implies that the trace of(z, x) on the sett = 0 is in fact
defined in the strong senseirt ast — O:

u(t, x) = uog(x), in Ll(Rd),
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and, as a corollary,

/ ®"(&)(m +n)(s, x, E)ds dx d& — 0.

0 Rd+1

This completes the proof of Proposition 5.10

6. Proof of Lemmas4.1and 4.2
In this section, we give the proof of Lemmas 4.1 and 4.2.
6.1. Proof of Lemma4.1

Statement (4.16) is a simple consequence of the nonnegativity of the convolution an
truncation kernels and the dissipation measuré@sx, &£) andp(z, x, &).
For the termR1(¢), it suffices to consider the representative term:

‘ / KR(S))Z&,B div, (a(S)Xs * Yy — (a(é)X(s) * 1/’3) dXdé:‘

Rd+1

_ ‘ [ Kn© 7@ Vo x 0 — (@@ Vi) 5 5) dxds\

Rd+1

< / Kr(®)|Xes(t, x,8)|a(d) —aE —m)||Vexe(t, x, & —n)|¥s () dx d& dn

Rd+2

C
<t /|xg,g(r,x,s>|(/KR(s)|a(s>—a(s—n>!wa(n>dn)dxd§. 6.1)
&2 %

RA+1

Notice that the function of defined as

/KR(s>|a<s> — a — n)|ws(n) dn
R

has a uniform bound| || .~ —r, r) and tends to zero for a.&, whens — 0. On the other
hand, %..s(t, x, &) is compact inL{.((0, 00); LY(R? x (=R, R))). Therefore, by the
Lebesgue Theorem, the expression (6.1) tends to zekg (D, co), for all 1< p < oo.
This proves the first statement of (4.13).

The fact that the terrik 4 tends to zero ir{;,.(0, co) can be obtained by following the
same argument. Indeed, we have

K d
Ra0|< [ Ke® Y [0 7et0, .8 = ], (1. x.6 = 1)

RiA3 k=11i,j=1

X |aij (& —n') —ow(E — o —n')|[Ws(m¥s(n') dx d& dn dn’
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C
(“’2) /Z Z|ax,xg(t x & —1)

Rd+lk 1i,j=1

X (/KR(§)|aij(S — 1) — o (& —maojeE — 1) |¥s(m)Ys(n') dn dn/>dxd§,
R2

and we conclude as before.

The results (4.14) and (4.15) concerniRg(r) andRs(¢) are much simpler because
(me +n.)(t,x,&) and(p, + q.) (¢, x, &) are continuous i§, vanish at infinity, and their
total masses are dominated ¢ ), because of (2.13). Therefore, we omit the proof.

6.2. Proof of Lemma 4.2: entropy solutions

In the case of entropy solutions, the definition of the measurex, &) allows to write
directly the expressiofRs(?) + Rg(t) with explicit convolution terms. This yields

RG—I-Ré

K
= [ Kn@0e = 5.5 = 3)0ult = o' x = ) (& s, ) s € = 05", 1)
k=1

(3

2 2

Zayiﬁik(u(sv )’)) ' )

i=1

Vj (

) ds ds’ dx dy dy’ d&
K

223" [ Ke(@g(t = 5.x = Dgut =5/, x = Y00s(§ = uCs, )Y = v, ¥)
k=1

d d
X Z 3y, Bix (u(s, ) Z dy,; Bk (v(s', y")) ds ds’ dx dy dy’ dg.

i=1 j=1

On the other hand, we have

Ra(t) =23 Z/KR@)ax,gog(z—s X = N)get =5 x = Y)Us(E — 1)

k=1 i,j=1

X Ys(€ =)o x (n; uls, y))
x o) x(n';v(s’,y")) dsds”dx dy dy’ dg dndy'. (6.2)

Consider for instance the following term fraRy(¢):

d
> [ Bt = 5.5 = )s(& = o O us, ) cdy
i=1
d 2
= _Z/ax,-cps(t — 5. x =BT (uGs.y)) dy

—Z/%U s x = 00, B (s, ) dy
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where the first equality follows from the definition in (2.3). This term is also equal to the
following term fromReg(r) + Rg(1):

d
/(ps(t —sox = s (& —uls. 1)) 3 8y B (us. ) dy.
=1

as a consequence of the identity betwé&érfunctions:

d
Zw%@ s, ) =5 (& —uls, ) S 0 B (u(s, 1)),

i=1

which is exactly statement (ii) in Definition 2.1 of entropy solutions.
Hence, Lemma 4.2 is proved for entropy solutions.

6.3. Proof of Lemma 4.2: kinetic solutions

When treating the kinetic solutions, we write again the expresBign) + Ry (1), but
we only have at hand a weaker form than that in Section 6.2. That is,

K
Ro(t) +Ro) =Y [ Kn@®put = 5.5 = et = 5'.x = y)

2

Z 3y,,3%($ )(u(s’ y)>

i=1

x (%(S—U(S )

2

Z 8)1131#8(5 )(U(S/, y/))

j=1

+Ys(& —uls, y))

> ds ds’ dx dy dy’ d&

K
223 [ Ke®put = 5.5 = .t = 5'ox =)
k=1

xm — (s, ) /¥ (€ — 05", ¥)

X Zay,ﬁm@ ?(u(s. y)) Zay,ﬂm@ ) (v(s’, y")) ds ds’ dx dy dy’ d&

j=1

ZZ Z /KR(S)(ps(t S, X—y)(pg(t s/ x_y)

k=1i,j=1

x /W5 (6 — (s 1) /W5 (5 = v(s', ¥)
X 8,(,,3%(S )(u(s y)) ,(],3%(s )(v(s’,y’)) ds ds’ dx dy dy’ d&.

On the other hand, the expression (6.2)Ry(¢) still holds. Therefore, we conclude
the proof of Lemma 4.2 if we can justify, for instance,

/Bx,-%(t — s, x = WYs(n—uls, y))owE —n)x (& —nu(s,y))dydy
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= / @t —5,x — Y/ Us (& —uls, »)) 3. B (uls, y)) dy.

This is exactly assumptions (2.17) and (2.18) in Definition 2.2. This concludes the proof
of Lemma 4.2 for kinetic solutions.

7. Existence of kinetic solutions

We now prove Theorem 1.2 for the existence of kinetic solutions, especially entropy
solutions, of the Cauchy problem (1.1) and (1.2).

We divide the proof into four steps.

Stepl. We first consider the caag € W?1N HNL>*(R?) and we prove the existence
of anentropysolution. To do so, we set

(ai;(w)) == (aij(w)) +el.

Then, Volpert—-Hudjaev’s theorem [24] implies that, for each 0, there is a smooth
solutionu® (¢, x) such that, for > 0, we have

Hu (t )HLl(Rd) ||u0”L1(Rd)7 Hus(t HLOO(R‘]) ||u0||L°°(Rd)7 (71)
Hv u (t HLl(Rd) ”I’lOHTV(Rd)’ (72)
900 2, ) gy < Novttoll ey = |V - F o) = V - (A* o) Vato) | p1ggaye (7-3)

and inequalities (2.5) and (2.8) hold.
Then, foranW” =4 € D, ¥'(0) =4 (0) =0

> / [ (Zm,mm%) de

k=179 pa

_Z//W(us)afj(us)ax[usaxjugdx dt < /\p(ug)dx <C < oo
L 0 Rd R4

By Kolmogorov's compactness theorem and after a standard control of decay a
infinity, there is a subsequence (still denoteti), x) such that

u® — u in Cioe([0, 00); L*(RY)),
and thanks to (2.8),
d d
> Bu ) = Y0y Bu(u) in L2([0, +00) x R).
i=1 i=1

In particular, from this, we obtain property (i) of Definition 2.1

d
> 0 Bi(u) € L*([0, +00) x RY), (7.4)

i=1
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and,

/ / (Za Mu)) e 0 < S ol 2y (7.5)

k=179 pa

Furthermore, for any nonnegativec D andk € {1, ..., K}, we have

d d
ST 0B W (1, x0)) = U (ur(1,20) S 8, Buc(uf (1, 1)) ae
i=1 i=1

Notice that, by a strong-weak limit, the right-hand side converges weally to

d
V(@ x)) D 0, B (u(t, x)).
i=1

Also, the left-hand side converges weaklylifto
d
> 3Bk (u(t. x)).
i=1

Therefore, we obtain property (ii) of Definition 2.1,

d d
VU, ) >80 B (ut, x) =D 8, B (u(t, x)) ae. (7.6)
i=1 i=1

We may also pass to the limit in Eq. (2.1). Since, recalling the definition (2.6),
n(t,x, &) <w — limn,(¢, x, &), we obtain thatu(z, x) satisfies Eq. (2.12) irD’ for
some nonnegative measure$, x, £) andn(z, x, £) satisfying (2.19) and (2.20) as the
argument in Section 2. Therefore, we have proved thatC ([0, co); L1(R?)) is an
entropy solution and Step 1 is completed.

Step2. For the general case € L', we prove the existence of a kinetic solution
directly. The same argument allows to build an entropy solution wigenL > (R?).

Approximateuo(x) by u§ € W21 n H' N L>°(R9) such that

ugy— uo, Ll(Rd).

Then there exists a global entropy soluti@he C ([0, oo); L*(R?)) of (1.1) and (1.2)
with initial dataug(x) for eache > 0. Using the contraction property of Theorem 1.1,

||M —Uu lec([o 00); LL(R4)) & ||MO - MO ”Ll(Rd) — 0 Whengl, Er —> 0.
Therefore {u¢} is a Cauchy sequence and there existsC ([0, c0); L1(R%)) such that
ut(t,x) — u(t,x), inC([0, 00); L*(R?)) whene — 0,

which implies the convergence of(z, x) a.e.
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For anyV as before, we have

2

K X d
Z//w(ug) (Z axﬁ,-k(m)) dr dr < /\v(u@dx < C < oo,
k=179 pd i=1 RY

which implies

oo 2

d
//(Zw;’,gma) dr dx < C < oo.
0 pe \i=l

On the other hand, for any two nonnegative functignsy, € D(R),

d
Ya(ue(t, %)) Yy B (uf (2, 3)) Zax,ﬁ"’“”z (u(t,x)) ae
i=1

These facts imply that the limit functian(z, x) satisfies

d
> "8, Bl () € L2([0, 00) x RY),

i=1

and

d
V(e 0) > 8, B2 (u, x)) Zax,ﬁ"’“”z (u(t,x)) ae
i=1

The other properties in Definition 2.2 of kinetic solutions follow as in Step 1. Then the
functionu(z, x) is a kinetic solution.

The contraction property and the argument in Section 5 for kinetic solutions: &t
imply that the kinetic solution is stable i, hence is unique.

This completes the proof of Theorem 1.2.
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Appendix A

In this appendix, we explain why a simplification occurs for diagonal diffusion
matricesg;; (u) = 0 for i # j. Namely, we do not need to assume the identities (2.10) or
(2.18) for diagonal diffusion matrices; they are always true with the dAlgssumptions
stated in (i) of Definition 2.1 or 2.2. This comes from some classical equalities in Sobolev
spaces where very particular cancellations occur that cannot be true in the nondiagon
case.
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PROPOSITION —Leto € L%.(R), o (u) > 0, andyr € Co(R). SetB(u) = [; o (§)dg
and B¥ (u) = [o ¥ (&)o(§)dé. Then, for any function € L} (R?) such thatB(u) €
Hléc(Rd)v

U (u(x))dy, B(ux)) =8, (u(x)), forl<i<d.

We do not give a detailed proof of this result that follows from classical analysis of
Sobolev spaces. The reason why this proposition holds is that, setting(u), the
identity reads

0 a
V(BT W) 5 v = =Wy (v),

in L2, with V() = ¥ (B71(-)) away from the countable points whep=(.) is

loc?
discontinuous. However, at these pointsis constant and thug’;qfﬂ(v) = %v =0,

see Gilbarg and Trudinger [15]. An argument based on regulariziagd ~1(-) can
also prove the result.

Also see Bouchut [2] for a more difficult case ioe BV; see also a similar statement,
not necessarily stated as such, in Carrillo [6] and Eymard Gallouet and Herbin [13].
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