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ABSTRACT. – We develop a well-posedness theory for solutions inL1 to the Cauchy problem
of general degenerate parabolic-hyperbolic equations with non-isotropic nonlinearity. A
notion of entropy and kinetic solutions and a corresponding kinetic formulation are deve
which extends the hyperbolic case. The notion of kinetic solutions applies to more g
situations than that of entropy solutions; and its advantage is that the kinetic equations
kinetic formulation are well defined even when the macroscopic fluxes are not locally integ
so thatL1 is a natural space on which the kinetic solutions are posed. Based on this n
we develop a new, simpler, more effective approach to prove the contraction property of
solutions inL1, especially including entropy solutions. It includes a new ingredient, a chain
type condition, which makes it different from the isotropic case.
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1. Introduction and main theorems

Consider the Cauchy problem of a general nonlinear degenerate parabolic-hyp
equation of second-order:

∂tu+ ∇ · f (u)= ∇ · (A(u)∇u), x ∈ R
d, t � 0, (1.1)

u|t=0 = u0 ∈L1(
R
d
)
, (1.2)

wheref :R → R
d satisfies

a(·) := f ′(·) ∈L∞
loc

(
R;R

d
)
, (1.3)

and thed × d matrix A(u) = (aij (u)) is symmetric, nonnegative, and locally bound
so that we can always write

aij (u)=
K∑
k=1

σik(u)σjk(u), σik ∈L∞
loc(R), (1.4)

and (σik(u)) is its square root matrix, in which the structure appears more natu
with the additional indexK that can be thought to be the maximal rank of the ma
Equation (1.1) and its variants model degenerate diffusion-convection motions o
fluids and arise in a wide variety of important applications, including two phase flo
porous media (cf. [7] and the references cited therein) and sedimentation-consol
processes (cf. [5] and the references cited therein). Since its importance in applic
there is a large literature for the design and analysis of various numerical me
to calculate solutions of (1.1) and its variants; see [7,12,11,9,17] and the refe
cited therein, for which a well-posedness theory for (1.1) is in great demand. W
concerned with the well-posedness, especially uniqueness and stability, for so
of the Cauchy problem (1.1) and (1.2). The well-posedness issue is relatively
understood if one removes the diffusion term∇ · (A(u)∇u), thereby obtaining a scala
hyperbolic conservation law; see Kruzhkov [18], Lions, Perthame and Tadmor [1
and Perthame [21,22]. It is equally well understood if one removes the conve
term ∇ · f (u); see [4,16] and the references cited therein. For the isotropic diffu
aij (u) = 0, i �= j , some stability results for entropy solutions have been obtaine
BV solutions by Volpert and Hudjaev [24] in 1969. Only in 1999, Carrillo [6] co
extend this result toL∞ solutions (also see Eymard et al. [14], Karlsen and Risebro
for further extensions), and Chen and DiBenedetto [8] handled the case of unbo
entropy solutions which may grow when|x| is large. Also see Gilding [16] for a theo
for isotropic degenerate parabolic equations with isolated degenerate points.

In this paper, we establish a well-posedness theory forL1 solutions of the Cauch
problem (1.1) and (1.2) for general degenerate parabolic-hyperbolic equations of s
order, especially including the non-isotropic diffusion case. This relies on two
ingredients. Firstly, the extension from the isotropic to the non-isotropic is not a p
technical issue and we introduce a fundamental and natural chain-rule type pr
which does not appear in the isotropic case and which turns out to be the c
stone for the uniqueness in the non-isotropic case. Secondly, we extend a no
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kinetic solutions, a new concept in this context, and a corresponding kinetic formul
The notion of kinetic solutions applies to more general situations than that of en
solutions as considered in [6,17] and [8]. The advantage of the new notion is th
kinetic equation in the kinetic formulation is well defined even when the macros
fluxes are not locally integrable so thatL1 is a natural space on which the kine
solutions are posed. Based on this notion, the corresponding kinetic formulatio
the uniqueness proof in the purely hyperbolic case introduced in [21], we deve
new, simpler, more effective approach, in comparison with the previous proofs in
and [8], to prove the contraction property of kinetic solutions inL1, especially including
entropy solutions. This leads to a well-posedness theory for kinetic solutions inL1 of
the Cauchy problem of (1.1) and (1.2).

The main theorems of this paper are the following.

THEOREM 1.1. – Assume that(1.3)and (1.4)hold. Then
(i) For any kinetic solutionu ∈ L∞([0,∞);L1(Rd)) with initial datau0(x), we have

∥∥u(t)− u0
∥∥
L1(Rd)

→ 0, t → 0.

(ii) If u, v ∈ L∞([0,∞);L1(Rd)) are kinetic solutions to(1.1) and (1.2) with initial
datau0(x) andv0(x), respectively, then

∥∥u(t)− v(t)
∥∥
L1(Rd)

� ‖u0 − v0‖L1(Rd). (1.5)

(iii) Furthermore, ifu ∈ L∞([0,∞)×R
d), this kinetic solution is an entropy solutio

THEOREM 1.2. – Assume that(1.3) and (1.4) hold. For u0 ∈ L1(Rd), there exists
a unique kinetic solutionu ∈ C([0,∞);L1(Rd)) for the Cauchy problem(1.1) and
(1.2). If u0 ∈ L∞ ∩L1(Rd), then the kinetic solution is the unique entropy solution
|u(t, x)| � ‖u0‖L∞(Rd).

In Section 2, we derive a kinetic formulation in a precise manner and describ
notions ofentropy solutionsandkinetic solutionsof the Cauchy problem (1.1) and (1.2
The new ingredient of this formulation is the precise identification of the kinetic d
measure and the degenerate parabolic defect measure, even in the region wheru(t, x)

is discontinuous and is only inL1. To make the points more clearly, in Section 3,
present our new approach by a formal proof to show the contraction property of k
solutions. Then Sections 4–6 are devoted to the rigorous proof of the stability of k
solutions. In Section 7, we prove the existence of kinetic solutions and entropy sol
of the Cauchy problem (1.1) and (1.2).

In this paper we focus on the prototypical case (1.1). The results and techn
straightforward extends to more general degenerate parabolic-hyperbolic equat
second order, by combining with the Gronwall inequality, such as

∂tu+ ∇ · f (u, t, x)− ∇ · (A(u, t, x)∇u)= c(u, t, x), x ∈ R
d, t � 0, (1.6)
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After
whereA(u, t, x)= (aij (u, t, x)) with aij (u, t, x)= aji(u, t, x), f (u, t, x), andc(u, t, x)
are sufficiently smooth functions, and

∑
i,j

aij (u, t, x)ξiξj � 0,

for (t, x) ∈ R
d+1+ andu ∈ R.

2. Entropy solutions, kinetic solutions, and kinetic formulation

Eq. (1.1) satisfies a so-calledentropy property. To motivate it, we consider a non
degenerate parabolic equation (1.1) in which the matrixA(u) = (aij (u)) is replaced by
A(u)+ εI , and we denoteuε(t, x) itsC2 solution. Then, for any functionS(·) ∈C2(R),
multiplying Eq. (1.1) byS ′(uε) yields

∂tS(u
ε)+

d∑
i=1

∂xiη
S
i (u

ε)−
d∑

i,j=1

∂xi
(
S ′(uε)aij (uε)∂xj u

ε
)− ε�S(uε)

= −mS ′′
ε (t, x)− nS

′′
ε (t, x), (2.1)

where the entropy fluxηSi (u) is defined (up to an additive constant) by

(
ηSi
)′
(u)= ai(u) S

′(u), (2.2)

theentropy dissipation measuremS ′′
ε (t, x) is defined by

mS ′′
ε (t, x) := εS ′′(uε)|∇uε|2 � 0,

and theparabolic dissipation measurenS
′′

ε (t, x) is given by

nS
′′

ε (t, x) := S ′′(uε)
d∑

i,j=1

aij (u
ε)∂xiu

ε∂xj u
ε = S ′′(uε)

K∑
k=1

(
d∑
i=1

σik(u
ε)∂xiu

ε

)2

� 0.

In order to understand more about the dissipation measures, we introduce the no
βik(u) andβψik(u) for ψ ∈ C0(R) with ψ � 0:

β ′
ik(u)= σik(u),

(
β
ψ
ik

)′
(u)=√

ψ(u)σik(u). (2.3)

Then we end up with the two equivalent definitions:

nψε (t, x) :=
K∑
k=1

(
d∑
i=1

∂xiβ
ψ
ik(u

ε)

)2

=
K∑
k=1

ψ(uε)

(
d∑
i=1

∂xiβik(u
ε)

)2

. (2.4)

The heart of our investigations is to notice that this equality still holds in the limitε → 0.
It is useful at this stage to derive a priori bounds from the above calculations.

the space-time integration againstS ′ with S convex andS ′(0)= S(0)= 0, we obtain
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n of
∞∫
0

∫
Rd

(
mS ′′
ε (t, x)+ nS

′′
ε (t, x)

)
dt dx

=
∞∫

0

∫
Rd

S ′′(uε)
(

K∑
k=1

(
d∑
i=1

∂xiβik(u
ε)

)2

+ ε|∇uε|2
)

dt dx

�
∥∥S(u0)

∥∥
L1(Rd)

� ‖S ′‖L∞(R)‖u0‖L1(Rd). (2.5)

The following convenient notations are deduced by the duality(C0(R);M1(R)),
which replace the exponentS ′′ orψ . Namely,

mψ
ε (t, x)=

∫
R

ψ(ξ)mε(t, x, ξ)dξ, nψε (t, x)=
∫
R

ψ(ξ)nε(t, x, ξ)dξ,

with

mε(t, x, ξ)= δ(ξ − uε)ε|∇uε|2,

nε(t, x, ξ)= δ(ξ − uε)

K∑
k=1

(
d∑
i=1

∂xiβik(u
ε)

)2

, (2.6)

whereδ(ξ) is the Dirac mass concentrated atξ = 0.
Then we can choose, as a limiting case for smoothness of the entropyS(u), the

function S(u) = (u − ξ)+ for the parameterξ � 0, or S(u) = (u − ξ)− for ξ � 0, in
(2.5), and we end up with

∫∞
0

∫
Rd (mε + nε)(t, x, ξ)dt dx � µ(ξ) ∈ L∞

0 (R) (bounded
functions that vanish at infinity)

µ(ξ) := 1{ξ>0}
∥∥(u0 − ξ)+

∥∥
L1(Rd)

+ 1{ξ<0}
∥∥(u0 − ξ)−

∥∥
L1(Rd)

. (2.7)

ChoosingS(u)= u2/2, we also deduce from (2.5)
∞∫

0

∫
Rd

(mε + nε)(t, x, ξ)dt dx dξ

=
∞∫

0

∫
Rd

(
K∑
k=1

(
d∑
i=1

∂xiβik(u
ε)

)2

+ ε|∇uε|2
)

dt dx � 1

2
‖u0‖L2(Rd). (2.8)

As ε → 0, passing to the limit with the above bounds and under the property
uε(t, x) converges strongly (see Section 7 below), we end up with the definitio
entropy solutions.

DEFINITION 2.1. – An entropy solution is a functionu(t, x) ∈L∞([0,∞)×R
d) such

that
(i)
∑d

i=1 ∂xiβik(u) ∈ L2([0,∞)× R
d), for anyk ∈ {1, . . . ,K};

(ii) for any functionψ ∈ C0(R) with ψ(u)� 0 and anyk ∈ {1, . . . ,K},
d∑
∂xiβ

ψ
ik(u)=√

ψ(u)

d∑
∂xiβik(u) ∈L2([0,∞)× R

d
)
, (2.9)
i=1 i=1
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nψ(t, x) :=ψ
(
u(t, x)

) K∑
k=1

(
d∑
i=1

∂xiβik
(
u(t, x)

))2

=
K∑
k=1

(
d∑
i=1

∂xiβ
ψ
ik

(
u(t, x)

))2

a.e.; (2.10)

(iii) for any smooth functionS(u), there exists an entropy dissipation meas
mS ′′

(t, x) satisfying that

mS ′′
(t, x)=

∫
R

S ′′(ξ)m(t, x, ξ)dξ, withm(t, x, ξ) a nonnegative measure,(2.11)

such that

∂tS(u)+
d∑
i=1

∂xiη
S
i (u)−

d∑
i,j=1

∂xi
(
aij (u)∂xj S(u)

)= −(mS ′′ + nS
′′)
, (2.12)

in D′(R+ × R
d) with initial dataS(u(t = 0))= S(u0).

Remark2.1. – Arguing as in (2.7), an entropy solution satisfies

∞∫
0

∫
Rd

(m+ n)(t, x, ξ)dt dx �µ(ξ) ∈L∞
0 (R). (2.13)

Remark2.2. – The nonnegative parabolic defect measuren(t, x, ξ) for an entropy
solutionu(t, x) in Definition 2.1 is very simple and given by the following formula:

n(t, x, ξ)= δ
(
ξ − u(t, x)

) K∑
k=1

(
d∑
i=1

∂xiβik
(
u(t, x)

))2

,

in the usual sense. Also, the choiceS(u) = u2/2 gives theL2-integrability of∑d
i=1 ∂xiβik(u),1� k �K , and yields another useful estimate, as in (2.8):

∞∫
0

∫
Rd+1

(m+ n)(t, x, ξ)dt dx dξ � 1

2
‖u0‖2

L2(Rd), (2.14)

providedu0 ∈ L2(Rd).

Remark2.3. – When we refer to distributional solutions here, we always mean
the initial data are included in the definition of solutions in the sense of distribut
when a test function does not vanish att = 0. That is, a distributional solutionu(t, x)
satisfying (2.12) means that, for any test functionϕ ∈D([0,∞)× R

d),
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∞∫
0

∫
Rd

(
S(u)∂tϕ + ηS(u) · ∇xϕ −

d∑
i,j=1

αS
′

ij (u)∂
2
xixj

ϕ

)
dt dx

=
∞∫

0

∫
Rd

(
mS ′′ + nS

′′)
ϕ dt dx −

∫
Rd

S
(
u0(x)

)
ϕ(0, x)dx,

with (αS
′

ij )
′(u) = S ′(u)aij (u). However, thanks to the chain rule which is postulated

the definition of entropy solutions, several possible variants for the second-orde
are equivalent.

Remark2.4. – The main ingredient in Definition 2.1 is the equality in (2.9), whic
not always true for a functionu(t, x). Indeed, ifβik(u) is discontinuous, this chain ru
does not make sense even for any single term in the sums of (2.9). It is natural to a
the equality here because it keeps true in the limiting processuε(t, x)→ u(t, x) strongly
(see Section 7). In the case of a diagonal matrixaij = 0 for i �= j , this equality in (2.9)
is always true and needs not be included in Definition 2.1. We refer to the appendi
proof. Therefore, our theory also recovers the results of Carrillo [6] (and the exten
of [17,14]) and Chen and DiBenedetto [8] when the initial data are inL1 ∩L∞.

On the other hand, we may factor out anS ′(u) in the equation (2.12) and obtain a mo
precise kinetic formulation of nonlinear degenerate parabolic-hyperbolic equatio
second-order with form (1.1). The new ingredient of this formulation is the identifica
of the kinetic defect measurem(t, x, ξ) and the degenerate parabolic defect mea
n(t, x, ξ) in a precise manner, even in the region whereu(t, x) is discontinuous and onl
in L1. Compare with the classicalkinetic formulationfor multidimensional hyperbolic
conservation laws by Lions, Perthame and Tadmor in [19,20].

We introduce the kinetic functionχ on R
2:

χ(ξ ;u)=



+1 for 0< ξ < u,

−1 for u < ξ < 0,

0 otherwise.

(2.15)

We notice that, ifu ∈ L∞([0,∞);L1(Rd)), thenχ(ξ ;u) ∈L∞([0,∞);L1(Rd+1)).
The simple representation

S(u)=
∫
R

S ′(ξ)χ(ξ ;u)dξ

leads to the following kinetic equation, which is equivalent to (2.12):

∂tχ(ξ ;u)+ a(ξ) · ∇xχ(ξ ;u)−
d∑

i,j=1

aij (ξ)∂
2
xixj

χ(ξ ;u)= ∂ξ(m+ n)(t, x, ξ) (2.16)

in D′(R+ × R
d+1) with initial data

χ(ξ ;u)|t=0 = χ(ξ ;u0).
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We are now ready to define thekinetic solutions.

DEFINITION 2.2. – A kinetic solution is a functionu(t, x) ∈ L∞([0,∞);L1(Rd))

such that
(i) for any nonnegativeψ ∈D(R) andk ∈ {1, . . . ,K},

d∑
i=1

∂xiβ
ψ
ik(u) ∈L2([0,∞)× R

d
); (2.17)

(ii) for any two nonnegative functionsψ1,ψ2 ∈D(R),

√
ψ1
(
u(t, x)

) d∑
i=1

∂xiβ
ψ2
ik

(
u(t, x)

)=
d∑
i=1

∂xiβ
ψ1ψ2
ik

(
u(t, x)

)
a.e.; (2.18)

(iii) Eq. (2.16)holds inD′, for some nonnegative measuresm(t, x, ξ) andn(t, x, ξ),
wheren(t, x, ξ) is defined by

∫
R

ψ(ξ)n(t, x, ξ)dξ =
K∑
k=1

(
d∑
i=1

∂xiβ
ψ
ik

(
u(t, x)

))2

, for anyψ ∈D(R) withψ � 0;
(2.19)

(iv) the following inequality is satisfied:
∞∫

0

∫
Rd

(m+ n)(t, x, ξ)dt dx �µ(ξ) ∈L∞
0 (R). (2.20)

This notion ofkinetic solutionsapplies to more general situations than that of entr
solutions. The advantage is that the kinetic equation is well defined even thou
macroscopic fluxesηS(u) are not locally integrable so thatL1 is a natural space o
which kinetic solutions are posed. In the purely hyperbolic case, a fullL1-theory has
been developed in Perthame [22]. This approach also covers the so-called renorm
solutions used in the context of hyperbolic scalar conservation laws by Bénilan, Ca
and Wittbold [1].

Remark2.5. – Any entropy solution is a kinetic solution. Our uniqueness re
implies that any kinetic solution inL∞ must be an entropy solution. Therefore, the t
notions are equivalent for solutions inL∞, although the notion of kinetic solutions
more general.

Remark2.6. – The degenerate parabolic defect measuren(t, x, ξ) is no longer
defined by the simple formula in Remark 2.2 since

∑d
i=1 ∂xiβik(u) does not belong to

L2([0,∞) × R
d) in general because (2.14) does not apply. In fact, the only a p

bound used here is that of (2.13) which is also expressed in Remark 2.1 as a co
of Definition 2.1. The explicit expression in terms ofu0(x) for µ(ξ) in (2.7) is not
fundamental, and the useful information is thatµ(ξ) is bounded and vanishes at infini
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3. Contraction proof: formal

In this section, we give a formal proof for the contraction property of kinetic soluti
i.e., part (ii) of Theorem 1.1, which takes the advantage of the precise kinetic formu
(2.15)–(2.20). We will make the proof rigorous in Sections 4–6.

Consider two solutionsu(t, x) and v(t, x). Denote byp(t, x, ξ) the kinetic defec
measure and by

q(t, x, ξ) := δ
(
ξ − v(t, x)

) K∑
k=1

(
d∑
i=1

∂xiβik
(
v(t, x)

))2

, (3.1)

the parabolic defect measure, which are associated withv(t, x). Then our proof consist
in using the following microscopic contraction functional introduced in [21,22]:

Q(t, x, ξ)= ∣∣χ(ξ ;u(t, x))∣∣+ ∣∣χ(ξ ;v(t, x))∣∣− 2χ
(
ξ ;u(t, x))χ(ξ ;v(t, x))� 0. (3.2)

It is useful for deriving a contraction principle since∫
Rd

Q(t, x, ξ)dξ = ∣∣u(t, x)− v(t, x)
∣∣.

The point is to justify the following identities. Firstly,

∂t
∣∣χ(ξ ;u(t, x))∣∣+ a(ξ) · ∇x

∣∣χ(ξ ;u(t, x))∣∣− d∑
i,j=1

∂2
xixj

(
aij (ξ)

∣∣χ(ξ ;u(t, x))∣∣)
= sgn(ξ)∂ξ (m+ n)(t, x, ξ),

which yields

d

dt

∫
Rd+1

∣∣χ(ξ ;u(t, x))∣∣dx dξ = −2
∫
Rd

(m+ n)(t, x,0)dx.

A similar identity holds forv(t, x).
Secondly, we compute

d

dt

∫
Rd+1

χ
(
ξ ;u(t, x))χ(ξ ;v(t, x))dx dξ

+ 2
∫

Rd+1

d∑
i,j=1

aij (ξ)∂xiχ
(
ξ ;u(t, x))∂xj χ(ξ ;v(t, x))dx dξ

=
∫

Rd+1

(
(m+ n)(t, x, ξ)

(
δ
(
ξ − v(t, x)

)− δ(ξ)
)

+ (p + q)(t, x, ξ)
(
δ
(
ξ − u(t, x)

)− δ(ξ)
))

dx dξ.

Then, we have
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y,
d

dt

∫
Rd+1

Q(t, x, ξ)dx dξ

= 4
∫

Rd+1

d∑
i,j=1

aij (ξ)∂xiχ
(
ξ ;u(t, x))∂xj χ(ξ ;v(t, x))dx dξ

− 2
∫

Rd+1

(
(m+ n)(t, x, ξ)δ

(
ξ − v(t, x)

)+ (p + q)(t, x, ξ)δ
(
ξ − u(t, x)

))
dx dξ

� 4
∫

Rd+1

d∑
i,j=1

aij (ξ)∂xiu(t, x)∂xj v(t, x)δ
(
ξ − u(t, x)

)
δ
(
ξ − v(t, x)

)
dx dξ

− 2
∫

Rd+1

(
n(t, x, ξ)δ

(
ξ − v(t, x)

)+ q(t, x, ξ)δ
(
ξ − u(t, x)

))
dx dξ,

sincem(t, x, ξ) andp(t, x, ξ) are nonnegative.
It remains to notice that, using Remark 2.2 and (3.1), we still have, very formall∫

Rd+1

(
n(t, x, ξ)δ

(
ξ − v(t, x)

)+ q(t, x, ξ)δ
(
ξ − u(t, x)

))
dx dξ

=
K∑
k=1

∫
Rd+1

δ
(
ξ − u(t, x)

)
δ
(
ξ − v(t, x)

)

×
((

d∑
i=1

∂xiβik
(
u(t, x)

))2

+
(

d∑
i=1

∂xiβik
(
v(t, x)

))2)
dx dξ

� 2
K∑
k=1

∫
Rd+1

δ
(
ξ − u(t, x)

)
δ
(
ξ − v(t, x)

)

×
(

d∑
i=1

∂xiβik
(
u(t, x)

))( d∑
j=1

∂xj βjk
(
v(t, x)

))
dx dξ

= 2
K∑
k=1

d∑
i,j=1

∫
Rd+1

δ
(
ξ − u(t, x)

)
δ
(
ξ − v(t, x)

)
σik
(
u(t, x)

)

× σjk
(
v(t, x)

)
∂xiu(t, x)∂xj v(t, x)dx dξ

= 2
d∑

i,j=1

∫
Rd+1

aij (ξ)∂xiu(t, x)∂xj u(t, x)δ
(
ξ − u(t, x)

)
δ
(
ξ − v(t, x)

)
dx dξ.

Therefore, we end up with

d

dt

∫
d+1

Q(t, x, ξ)dx dξ � 0,
R
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which implies that‖u(t)− v(t)‖L1(Rd) is non-increasing. This concludes the contrac
property (1.5).

4. Contraction proof: rigorous

To make the proof rigorous, the above argument requires to regularize the
kinetic equation (2.16) by convolution; This is the first step, in which all notat
are also introduced. Then we analyze separately the different terms in the micro
contraction functional, which requires several steps.

Step1. Regularization.We setε = (ε1, ε2), ε1 for the forward time regularization an
ε2 for the space regularization, and we define

ϕε(t, x)= 1

ε1
ϕ1

(
t

ε1

)
1

εd2
ϕ2

(
x

ε2

)
,

whereϕj � 0, j = 1,2, denote the normalized regularizing kernels with
∫
ϕj = 1,

supp(ϕ1)⊂ (−1,0) in order to allow the time regularization.
Next, we use the notations

χ := χ(t, x, ξ)= χ
(
ξ ;u(t, x)), χ̃ := χ̃ (ξ ; t, x)= χ

(
ξ ;v(t, x)),

χε := χε(t, x, ξ)= (χ ∗(t,x) ϕε)(t, x, ξ), χ̃ε := χ̃ε(t, x, ξ)= (χ̃ ∗(t,x) ϕε)(t, x, ξ),
and, similarly,

mε :=m ∗(t,x) ϕε, pε := p ∗(t,x) ϕε, nε := n ∗(t,x) ϕε, qε := q ∗(t,x) ϕε,
where ∗(t,x) denotes the convolution in time and space. We also need a fu
regularization inξ with smoothing kernelψδ(ξ)= 1

δ
ψ( ξ

δ
) and use the notation

χε,δ := χε ∗ψδ.

Finally, we need aξ -truncationKR(ξ), which is a smooth nonnegative function w
bounded support. That is,KR(ξ)=K(ξ/R)→ 1, asR → ∞, with

0�K(ξ)� 1 for ξ ∈ (−∞,∞),

K(ξ)= 1 for |ξ | � 1/2,

K(ξ)= 0 for |ξ | � 1.

The destiny of these parameters is thatδ → 0 first,R → ∞ second, andε → 0 finally.
The results we will show indicate that the contraction property holds even fo

fixed parameterε, which is an interesting phenomenon. Indeed, for any regula
microscopic contraction functional:

Qε(t, x, ξ)= |χε| + |χ̃ε| − 2χε χ̃ε � 0, (4.1)

we have
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of
,

PROPOSITION 4.1. –Under the assumptions of Theorem1.1,

d

dt

∫
Rd+1

Qε(t, x, ξ)dx dξ � 0.

Notice that, by convolution, we obtain

∂tχε + a(ξ) · ∇xχε −
d∑

i,j=1

∂2
xixj

(
aij (ξ)χε

)= ∂ξ (mε + nε)(t, x, ξ), (4.2)

∂t χ̃ε + a(ξ) · ∇xχ̃ε −
d∑

i,j=1

∂2
xixj

(
aij (ξ)χ̃ε

)= ∂ξ (pε + qε)(t, x, ξ) (4.3)

in D′((0,∞)× R
d+1), where the initial data are inessential at this stage.

Step2. First terms of the contraction functional.From the space and time regularity
χε, we deduce that(mε + nε)(t, x, ξ) is locally Lipschitz continuous inξ . Furthermore
multiplying (4.2) by sgn(ξ), we find

d

dt

∫
Rd+1

∣∣χε(ξ ; t, x)∣∣dx dξ = −2
∫
Rd

(mε + nε)(t, x,0)dx. (4.4)

Similarly,

d

dt

∫
Rd+1

∣∣χ̃ε(ξ ; t, x)∣∣dx dξ = −2
∫
Rd

(pε + qε)(t, x,0)dx. (4.5)

Step3. Quadratic term of the contraction functional.Analyzing the quadratic term
requires a furtherξ -regularization. We write

∂tχε,δ + a(ξ) · ∇xχε,δ −
d∑

i,j=1

∂2
xixj

(
(aij (ξ)χε) ∗ψδ

)= ∂ξ
(
(mε + nε) ∗ψδ

)+Ru
1,

with

Ru =Ru
1(t, x, ξ) := divx

(
a(ξ)(χε ∗ψδ)− (a(ξ)χε) ∗ψδ

)
.

A similar equation holds for̃χε,δ . Therefore, a direct combination gives

∂t
(
χ̃ε,δχε,δKR(ξ)

)+KR(ξ) a(ξ) · ∇x

(
χ̃ε,δχε,δ

)−KR(ξ)χ̃ε,δ

d∑
i,j=1

∂2
xixj

((
aij (ξ)χε

) ∗ψδ

)

−KR(ξ)χε,δ

d∑
i,j=1

∂2
xixj

((
aij (ξ)χ̃ε

) ∗ψδ

)
= χ̃ε,δKR(ξ)∂ξ

(
(mε + nε) ∗ψδ

)+ χ̃ε,δKR(ξ)R
u
1 + χε,δKR(ξ)∂ξ

(
(pε + qε) ∗ψδ

)
+ χε,δ KR(ξ)R

v
1.
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s in
After integration, we obtain

d

dt

∫
Rd+1

χ̃ε,δχε,δKR(ξ)dx dξ =
3∑
l=1

Rl(t)+
7∑
l=4

(
Rl(t)+R′

l(t)
)
, (4.6)

whereRl are defined as follows:

R1(t)=
∫

Rd+1

KR(ξ)
(
χ̃ε,δR

u
1 + χε,δR

v
1

)
dx dξ, (4.7)

R2(t)= −2
∫

Rd+1

KR(ξ)

K∑
k=1

d∑
i,j=1

∂xi
(
(σikχε) ∗ψδ

)
∂xj
(
(σjkχ̃ε) ∗ψδ

)
dx dξ, (4.8)

R3(t)= −
∫

Rd+1

KR(ξ)ψδ(ξ)
(
(mε + nε) ∗ψδ + (pε + qε) ∗ψδ

)
dx dξ, (4.9)

R4(t)=
∫

Rd+1

KR(ξ)

d∑
i,j=1

(−∂xi χ̃ε,δ∂xj ((aij (ξ)χε) ∗ψδ

)

+ ∂xj
(
σjk(ξ)χε,δ ∗ψδ

)
∂xi
((
σik(ξ)χ̃ε

) ∗ψδ

))
dx dξ.

The termR5(t) comes from integration by parts inξ and the following equality:

∂ξχε,δ =ψδ(ξ)− δ(ξ − u) ∗(t,x,ξ) (ϕεψδ),

that is, taking into accountR3(t),

R5(t)= −
∫

Rd+1

K ′
R(ξ)χ̃ε,δ

(
(mε + nε) ∗ψδ

)
dx dξ. (4.10)

Also,

R6(t)=
∫

Rd+1

KR(ξ)
(
δ(ξ − v) ∗(t,x,ξ) (ϕεψδ)

)
(nε ∗ψδ)dx dξ, (4.11)

R7(t)=
∫

Rd+1

KR(ξ)
(
δ(ξ − v) ∗(t,x,ξ) (ϕεψδ)

)
(mε ∗ψδ)dx dξ. (4.12)

The termsR′
l(t),4� l � 7, denote the symmetric terms ofRl(t), 4� l � 7, respectively

whereu(t, x) is replaced byv(t, x).
Step4. Estimates of the error terms. Our goal is now to estimate these error term

the following two lemmas.

LEMMA 4.1. – For any1� p <∞, whenδ → 0,

R1(t), R4(t), R′
4(t)→ 0, L

p
loc(R+), (4.13)
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and

R3(t)→
∫
Rd

(mε + nε)(t, x,0)dx +
∫
Rd

(pε + qε)(t, x,0)dx, L
p
loc(R+). (4.14)

In addition, whenδ → 0 first andR → ∞ second,

R5(t), R′
5(t)→ 0, in L

p
loc(R+). (4.15)

Furthermore, for anyε, δ,R,

R7(t), R′
7(t)� 0, for any t ∈ (0,∞). (4.16)

It remains to estimate the remaining terms which are more difficult to ha
and contain the actual cancellation which motivates our kinetic formulation with
introduction of the parabolic defect measuren(t, x, ξ).

LEMMA 4.2. – For anyε, δ,R,

R2(t)+R6(t)+R′
6(t)� 0, for any t ∈ (0,∞). (4.17)

Lemma 4.1 is proved in Section 6.1. Lemma 4.2 is proved in Section 6.2 for en
solutions (the easier case) and in Section 6.3 for kinetic solutions.

Step5. Contraction property.With Lemmas 4.1 and 4.2, we can now conclude
contraction proof. As a consequence of the above lemmas, we can pass to th
as δ → 0 first andR → ∞ second in (4.4), (4.5), and (4.6). Adding (4.4), (4.5), a
substracting twice (4.6) yields

d

dt

∫
Rd+1

(|χε| + |χ̃ε| − 2χ̃εχε
)

dx dξ � 0.

This complete the proof of Proposition 4.1.
Since, whenε → 0,∫
Rd

∣∣u(t)− v(t)
∣∣dx

=
∫

Rd+1

(∣∣χ(ξ ;u(t, x))∣∣+ ∣∣χ(ξ ;v(t, x))∣∣− 2χ
(
ξ ;u(t, x))χ(ξ ;v(t, x)))dx dξ,

we conclude the contraction property, that is,

∫
Rd

∣∣u(t)− v(t)
∣∣dx

is non-increasing int > 0. The full result (ii) of Theorem 1.1 is therefore proved a
using (i) which is proved below.
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5. Continuity at t = 0 and L1-stability

In order to obtain theL1-stability (1.5), it remains to prove the initial time continu
statement (i) in Theorem 1.1. The proof, first due to [13] in the hyperbolic case, is
on the use of the initial data for all entropies in the weak form of Eq. (2.12). A
kinetic level, it amounts to say thatχ(ξ ;u(t, x)) achieves the initial dataχ(ξ ;u0) in the
weak form of Eq. (2.16) (see Remark 2.3). We prove only for kinetic solutions w
contains the case of entropy solutions and turns out to be rather simple.

PROPOSITION 5.1. – Let u0 ∈ L1(Rd) and u(t, x) be a kinetic solution(see
Definition2.2). Then, whent → 0+,∫

Rd

∣∣u(t, x)− u0(x)
∣∣dx → 0,

and
t∫

0

∫
Rd

L∫
−L

(m+ n)(s, x, ξ)ds dx dξ → 0, for anyL> 0.

Proof. –We follow the proof in [22] and thus we skip some technical details. Using
Dunford–Petti theorem, we first consider a nonnegative, strictly convex function1(u)

with superlinear growth for large|u| such that1(0) = 0 and
∫

Rd 1(u0(x))dx < +∞.
Definition 2.2 for kinetic solutions yields the following identity:

∫
Rd+1

1
(
u(t, x)

)
dx +

t∫
0

∫
Rd+1

1′′(ξ)(m+ n)(s, x, ξ)ds dx dξ =
∫
Rd

1
(
u0(x)

)
dx <∞.

(5.1)
This identity can be achieved by first choosing admissible test functionsϕn(t, x)1

′(ξ)×
K(ξ/R)with ϕn(t, x)→ 1{0�t�T ,x∈Rd}, for anyT ∈ (0,∞), and a smooth functionK(ξ)

such thatK(ξ) = 1 for |ξ | < 1, K(ξ) = 0 for |ξ | � 2, and sgn(ξ)K(ξ)� 0, and then
takingn→ ∞ first andR → ∞ second.

From (5.1) and the nonnegative sign ofm, n, and1′′, we know thatu(t, x) is relatively
weakly compact inL1

loc(R
d). Hence we may extract subsequences such thattn → 0 and

χ
(
ξ ;u(tn, x)) ∗

⇀χ̄(x, ξ) ∈L1(
R
d+1) in L∞(

R
d+1),

u(tn, x)⇀

∫
R

χ̄(x, ξ)dξ in L1
loc

(
R
d
)
,

tn∫
0

(m+ n)(s, x, ξ)ds ⇀ m̄(x, ξ) in M1(
R
d+1),

and

sgn(ξ)χ̄(x, ξ)= ∣∣χ̄ (x, ξ)∣∣� 1, m̄(x, ξ)� 0,
∫
d

m̄(x, ξ)dx �µ(ξ) ∈L∞
0 (R),
R
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where the half arrows “⇀” and “
∗
⇀” denote the weak convergence and the weak-

convergence in the respective spaces, respectively, andµ(ξ) is the function defined
in (2.13) and (2.20).

Secondly, using the definition of distributional solutions yields that, for any
functionφ(x, ξ) in D,∫

Rd+1

φ(x, ξ)χ
(
ξ ;u(T , x))dx dξ

−
T∫

0

∫
Rd+1

(
a(ξ) · ∇xφ(x, ξ)−

d∑
i,j=1

aij (ξ)∂xixj φ(x, ξ)

)
χ
(
ξ ;u(t, x))dt dx dξ

= −
T∫

0

∫
Rd+1

φξ (x, ξ)(m+ n)(t, x, ξ)dt dx dξ +
∫

Rd+1

φ(x, ξ)χ
(
ξ ;u0(x)

)
dx dξ.

Passing to the limit asT = tn → 0, we deduce that∫
Rd+1

φ(x, ξ)χ̄(x, ξ)dx dξ = −
∫

Rd+1

φξ (x, ξ)m̄(x, ξ)dx dξ

+
∫

Rd+1

φ(x, ξ)χ
(
ξ ;u0(x)

)
dx dξ,

which implies that the identity holds in the sense of distributions:

∂ξ m̄(x, ξ)= χ̄(x, ξ)− χ
(
ξ ;u0(x)

)
.

From this, we deduce that the measurem̄(x, ξ) is also a function and that, for almo
everyx, m̄(x, ·) is continuous and vanishes at infinity therefore

∫
R
χ̄ dξ = u0. On the

other hand, we know̄m(x, ξ)� 0. Therefore, we deduce from Brenier’s Lemma [3] t
m̄(x, ξ)= 0 andχ̄(x, ξ)= χ(ξ ;u0(x)). By the uniqueness of the limit, the whole fam
χ(ξ ;u(t, x)) converges weak-star toχ(ξ ;u0(x)) ast → 0.

Therefore,χ(ξ ;u(t, x)) has a traceχ(·;u(0+, ·)) = χ(·;u0(·)) on the sett = 0,
defined at least in the weak sense inL1(Rd+1).

On the other hand, we also deduce that, for the locally strictly convex function1 with
superlinear growth at infinity in Step 1,

∫
Rd

1
(
u(t, x)

)
dx �

∫
Rd

1
(
u0(x)

)
dx.

The strict convexity of1 implies that the trace ofu(t, x) on the sett = 0 is in fact
defined in the strong sense inL1 ast → 0:

u(t, x) → u0(x), in L1(
R
d
)
,
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and, as a corollary,

t∫
0

∫
Rd+1

1′′(ξ)(m+ n)(s, x, ξ)ds dx dξ → 0.

This completes the proof of Proposition 5.1.✷
6. Proof of Lemmas 4.1 and 4.2

In this section, we give the proof of Lemmas 4.1 and 4.2.

6.1. Proof of Lemma 4.1

Statement (4.16) is a simple consequence of the nonnegativity of the convolutio
truncation kernels and the dissipation measuresm(t, x, ξ) andp(t, x, ξ).

For the termR1(t), it suffices to consider the representative term:∣∣∣∣
∫

Rd+1

KR(ξ)χ̃ε,δ divx
(
a(ξ)χε ∗ψδ − (a(ξ)χε) ∗ψδ

)
dx dξ

∣∣∣∣
=
∣∣∣∣
∫

Rd+1

KR(ξ)χ̃ε,δ
(
a(ξ)∇xχε ∗ψδ − (a(ξ)∇xχε

) ∗ψδ

)
dx dξ

∣∣∣∣
�
∫

Rd+2

KR(ξ)
∣∣χ̃ε,δ(t, x, ξ)∣∣∣∣a(ξ)− a(ξ − η)

∣∣∣∣∇xχε(t, x, ξ − η)
∣∣ψδ(η)dx dξ dη

� C(ϕ2)

ε2

∫
Rd+1

∣∣χ̃ε,δ(t, x, ξ)∣∣
(∫

R

KR(ξ)
∣∣a(ξ)− a(ξ − η)

∣∣ψδ(η)dη
)

dx dξ. (6.1)

Notice that the function ofξ defined as

∫
R

KR(ξ)
∣∣a(ξ)− a(ξ − η)

∣∣ψδ(η)dη

has a uniform bound 2‖a‖L∞(−R,R) and tends to zero for a.e.ξ , whenδ → 0. On the othe
hand, χ̃ε,δ(t, x, ξ) is compact inLp

loc((0,∞);L1(Rd × (−R,R))). Therefore, by the
Lebesgue Theorem, the expression (6.1) tends to zero inL

p
loc(0,∞), for all 1� p <∞.

This proves the first statement of (4.13).
The fact that the termR4 tends to zero inLp

loc(0,∞) can be obtained by following th
same argument. Indeed, we have

∣∣R4(t)
∣∣� ∫

Rd+3

KR(ξ)

K∑
k=1

d∑
i,j=1

∣∣∂xi χ̃ε(t, x, ξ − η)
∣∣∣∣∂xj χε(t, x, ξ − η′)

∣∣
× ∣∣aij (ξ − η′)− σik(ξ − η)σik(ξ − η′)

∣∣ψδ(η)ψδ(η
′)dx dξ dηdη′
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ε2

∫
Rd+1

K∑
k=1

d∑
i,j=1

∣∣∂xj χε(t, x, ξ − η′)
∣∣

×
( ∫

R2

KR(ξ)
∣∣aij (ξ − η′)− σik(ξ − η)σjk(ξ − η′)

∣∣ψδ(η)ψδ(η
′)dηdη′

)
dx dξ,

and we conclude as before.
The results (4.14) and (4.15) concerningR3(t) andR5(t) are much simpler becaus

(mε + nε)(t, x, ξ) and(pε + qε)(t, x, ξ) are continuous inξ , vanish at infinity, and thei
total masses are dominated byµ(ξ), because of (2.13). Therefore, we omit the proof

6.2. Proof of Lemma 4.2: entropy solutions

In the case of entropy solutions, the definition of the measuren(t, x, ξ) allows to write
directly the expressionR6(t)+R′

6(t) with explicit convolution terms. This yields

R6 +R′
6

=
K∑
k=1

∫
KR(ξ)ϕε(t − s, x − y)ϕε(t − s′, x − y′)ψδ

(
ξ − u(s, y)

)
ψδ

(
ξ − v(s′, y′)

)

×
(∣∣∣∣∣

d∑
i=1

∂yiβik
(
u(s, y)

)∣∣∣∣∣
2

+
∣∣∣∣∣
d∑

j=1

∂yj βjk
(
v(s′, y′)

)∣∣∣∣∣
2)

ds ds′ dx dy dy′ dξ

� 2
K∑
k=1

∫
KR(ξ)ϕε(t − s, x − y)ϕε(t − s′, x − y′)ψδ

(
ξ − u(s, y)

)
ψδ

(
ξ − v(s′, y′)

)

×
d∑
i=1

∂yiβik
(
u(s, y)

) d∑
j=1

∂yj βjk
(
v(s′, y′)

)
ds ds′ dx dy dy′ dξ.

On the other hand, we have

R2(t)= −2
K∑
k=1

d∑
i,j=1

∫
KR(ξ)∂xiϕε(t − s, x − y)∂xj ϕε(t − s′, x − y′)ψδ(ξ − η)

×ψδ(ξ − η′)σik(η)χ
(
η;u(s, y))

× σjk(η
′)χ
(
η′;v(s′, y′)

)
ds ds′ dx dy dy′ dξ dηdη′. (6.2)

Consider for instance the following term fromR2(t):

d∑
i=1

∫
∂xiϕε(t − s, x − y)ψδ(ξ − η)σik(η)χ

(
η;u(s, y))dηdy

=
d∑
i=1

∫
∂xiϕε(t − s, x − y)β

ψδ (ξ−·)2
ik

(
u(s, y)

)
dy

=
d∑∫

ϕε(t − s, x − y)∂yiβ
ψδ(ξ−·)2
ik

(
u(s, y)

)
dy,
i=1
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e

where the first equality follows from the definition in (2.3). This term is also equal to
following term fromR6(t)+R′

6(t):

∫
ϕε(t − s, x − y)ψδ

(
ξ − u(s, y)

) d∑
i=1

∂yiβik
(
u(s, y)

)
dy,

as a consequence of the identity betweenL2 functions:

d∑
i=1

∂yiβ
ψδ(ξ−·)2
ik

(
u(s, y)

)=ψδ

(
ξ − u(s, y)

) d∑
i=1

∂xiβik
(
u(s, y)

)
,

which is exactly statement (ii) in Definition 2.1 of entropy solutions.
Hence, Lemma 4.2 is proved for entropy solutions.

6.3. Proof of Lemma 4.2: kinetic solutions

When treating the kinetic solutions, we write again the expressionR6(t)+R′
6(t), but

we only have at hand a weaker form than that in Section 6.2. That is,

R6(t)+R′
6(t)=

K∑
k=1

∫
KR(ξ)ϕε(t − s, x − y)ϕε(t − s′, x − y′)

×
(
ψδ

(
ξ − v(s′, y′)

)∣∣∣∣∣
d∑
i=1

∂yiβ
ψδ(ξ−·)
ik

(
u(s, y)

)∣∣∣∣∣
2

+ψδ

(
ξ − u(s, y)

)∣∣∣∣∣
d∑

j=1

∂yj β
ψδ(ξ−·)
jk

(
v(s′, y′)

)∣∣∣∣∣
2)

ds ds′ dx dy dy′ dξ

� 2
K∑
k=1

∫
KR(ξ)ϕε(t − s, x − y)ϕε(t − s′, x − y′)

×
√
ψδ

(
ξ − u(s, y)

)√
ψδ

(
ξ − v(s′, y′)

)
×

d∑
i=1

∂yiβ
ψδ(ξ−·)
ik

(
u(s, y)

) d∑
j=1

∂yj β
ψδ(ξ−·)
jk

(
v(s′, y′)

)
ds ds′ dx dy dy′ dξ

= 2
K∑
k=1

d∑
i,j=1

∫
KR(ξ)ϕε(t − s, x − y)ϕε(t − s′, x − y′)

×
√
ψδ

(
ξ − u(s, y)

)√
ψδ

(
ξ − v(s′, y′)

)
× ∂xiβ

ψδ(ξ−·)
ik

(
u(s, y)

)
∂xj β

ψδ(ξ−·)
jk

(
v(s′, y′)

)
ds ds′ dx dy dy′ dξ.

On the other hand, the expression (6.2) forR2(t) still holds. Therefore, we conclud
the proof of Lemma 4.2 if we can justify, for instance,∫

∂xiϕε(t − s, x − y)ψδ

(
η− u(s, y)

)
σik(ξ − η)χ

(
ξ − η;u(s, y))dy dη
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proof

tropy

e

h

ay at
=
∫
ϕε(t − s, x − y)

√
ψδ

(
ξ − u(s, y)

)
∂xiβ

ψδ(ξ−·)
ik

(
u(s, y)

)
dy.

This is exactly assumptions (2.17) and (2.18) in Definition 2.2. This concludes the
of Lemma 4.2 for kinetic solutions.

7. Existence of kinetic solutions

We now prove Theorem 1.2 for the existence of kinetic solutions, especially en
solutions, of the Cauchy problem (1.1) and (1.2).

We divide the proof into four steps.
Step1. We first consider the caseu0 ∈W 2,1∩H 1∩L∞(Rd) and we prove the existenc

of anentropysolution. To do so, we set

(
aεij (u)

) := (
aij (u)

)+ εI.

Then, Volpert–Hudjaev’s theorem [24] implies that, for eachε > 0, there is a smoot
solutionuε(t, x) such that, fort > 0, we have∥∥uε(t, ·)∥∥

L1(Rd)
� ‖u0‖L1(Rd),

∥∥uε(t, ·)∥∥
L∞(Rd)

� ‖u0‖L∞(Rd), (7.1)∥∥∇xu
ε(t, ·)∥∥

L1(Rd)
� ‖u0‖T V (Rd), (7.2)∥∥∂tuε(t, ·)∥∥L1(Rd)

� ‖∂tu0‖L1(Rd) =
∥∥∇ · f (u0)− ∇ · (Aε(u0)∇u0

)∥∥
L1(Rd)

, (7.3)

and inequalities (2.5) and (2.8) hold.
Then, for any8 ′′ =ψ ∈D+, ψ ′(0)=ψ(0)= 0,

K∑
k=1

∞∫
0

∫
Rd

ψ(uε)

(
d∑
i=1

∂xiβik(u
ε)

)2

dx dt

=∑
i,j

∞∫
0

∫
Rd

ψ(uε)aεij (u
ε)∂xiu

ε∂xj u
εdx dt �

∫
Rd

8(uε0)dx � C <∞.

By Kolmogorov’s compactness theorem and after a standard control of dec
infinity, there is a subsequence (still denoted)uε(t, x) such that

uε → u in Cloc
([0,∞);L1(

R
d
))
,

and thanks to (2.8),

d∑
i=1

∂xiβik(u
ε)⇀

d∑
i=1

∂xiβik(u) in L2([0,+∞)× R
d
)
.

In particular, from this, we obtain property (i) of Definition 2.1

d∑
∂xiβik(u) ∈L2([0,+∞)× R

d
)
, (7.4)
i=1
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2.6),

e

on

,

and,

K∑
k=1

∞∫
0

∫
Rd

(
d∑
i

∂xiβik(u)

)2

dx dt � 1

2
‖u0‖2

L2(Rd). (7.5)

Furthermore, for any nonnegativeψ ∈D andk ∈ {1, . . . ,K}, we have

d∑
i=1

∂xiβ
ψ
ik

(
uε(t, x)

)=
√
ψ
(
uε(t, x)

) d∑
i=1

∂xiβik
(
uε(t, x)

)
a.e.

Notice that, by a strong-weak limit, the right-hand side converges weakly inL2 to

√
ψ
(
u(t, x)

) d∑
i=1

∂xiβik
(
u(t, x)

)
.

Also, the left-hand side converges weakly inL2 to

d∑
i=1

∂xiβ
ψ
ik

(
u(t, x)

)
.

Therefore, we obtain property (ii) of Definition 2.1,

√
ψ
(
u(t, x)

) d∑
i=1

∂xiβik
(
u(t, x)

)=
d∑
i=1

∂xiβ
ψ
ik

(
u(t, x)

)
a.e. (7.6)

We may also pass to the limit in Eq. (2.1). Since, recalling the definition (
n(t, x, ξ) � w − lim nε(t, x, ξ), we obtain thatu(t, x) satisfies Eq. (2.12) inD′ for
some nonnegative measuresm(t, x, ξ) andn(t, x, ξ) satisfying (2.19) and (2.20) as th
argument in Section 2. Therefore, we have proved thatu ∈ C([0,∞);L1(Rd)) is an
entropy solution and Step 1 is completed.

Step2. For the general caseu0 ∈ L1, we prove the existence of a kinetic soluti
directly. The same argument allows to build an entropy solution whenu0 ∈L∞(Rd).

Approximateu0(x) by uε0 ∈W 2,1 ∩H 1 ∩L∞(Rd) such that

uε0 → u0, L1(
R
d
)
.

Then there exists a global entropy solutionuε ∈ C([0,∞);L1(Rd)) of (1.1) and (1.2)
with initial datauε0(x) for eachε > 0. Using the contraction property of Theorem 1.1

‖uε1 − uε2‖C([0,∞);L1(Rd)) � ‖uε1
0 − u

ε2
0 ‖L1(Rd) → 0, whenε1, ε2 → 0.

Therefore,{uε} is a Cauchy sequence and there existsu ∈C([0,∞);L1(Rd)) such that

uε(t, x)→ u(t, x), in C
([0,∞);L1(

R
d
))

whenε → 0,

which implies the convergence ofuε(t, x) a.e.
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) or

bolev
iagonal
For any8 as before, we have

K∑
k=1

∞∫
0

∫
Rd

ψ(uε)

(
d∑
i=1

∂xβik(u
ε)

)2

dt dx �
∫
Rd

8(uε0)dx �C <∞,

which implies

∞∫
0

∫
Rd

(
d∑
i=1

∂xβ
ψ
ik(u

ε)

)2

dt dx � C <∞.

On the other hand, for any two nonnegative functionsψ1,ψ2 ∈D(R),

√
ψ1
(
uε(t, x)

) d∑
i=1

∂xiβ
ψ2
ik

(
uε(t, x)

)=
d∑
i=1

∂xiβ
ψ1ψ2
ik

(
uε(t, x)

)
a.e.

These facts imply that the limit functionu(t, x) satisfies

d∑
i=1

∂xiβ
ψ
ik(u) ∈L2([0,∞)× R

d
)
,

and √
ψ1
(
u(t, x)

) d∑
i=1

∂xiβ
ψ2
ik

(
u(t, x)

)=
d∑
i=1

∂xiβ
ψ1ψ2
ik

(
u(t, x)

)
a.e.

The other properties in Definition 2.2 of kinetic solutions follow as in Step 1. Then
functionu(t, x) is a kinetic solution.

The contraction property and the argument in Section 5 for kinetic solutions att = 0
imply that the kinetic solution is stable inL1, hence is unique.

This completes the proof of Theorem 1.2.
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Appendix A

In this appendix, we explain why a simplification occurs for diagonal diffus
matricesaij (u)= 0 for i �= j . Namely, we do not need to assume the identities (2.10
(2.18) for diagonal diffusion matrices; they are always true with the onlyL2 assumptions
stated in (i) of Definition 2.1 or 2.2. This comes from some classical equalities in So
spaces where very particular cancellations occur that cannot be true in the nond
case.
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PROPOSITION. – Let σ ∈ L∞
loc(R), σ (u) � 0, andψ ∈ C0(R). Setβ(u) = ∫ u

0 σ (ξ)dξ
and βψ(u) = ∫ u

0 ψ(ξ)σ (ξ)dξ . Then, for any functionu ∈ L1
loc(R

d) such thatβ(u) ∈
H 1

loc(R
d),

ψ
(
u(x)

)
∂xiβ

(
u(x)

)= ∂xiβ
ψ
(
u(x)

)
, for 1� i � d.

We do not give a detailed proof of this result that follows from classical analys
Sobolev spaces. The reason why this proposition holds is that, settingv = β(u), the
identity reads

ψ
(
β−1(v)

) ∂

∂xi
v = ∂

∂xi
8β(v),

in L2
loc, with 8 ′

β(·) = ψ(β−1(·)) away from the countable points whereβ−1(·) is
discontinuous. However, at these points,v is constant and thus∂

∂xi
8β(v) = ∂

∂xi
v = 0,

see Gilbarg and Trudinger [15]. An argument based on regularizingv andβ−1(·) can
also prove the result.

Also see Bouchut [2] for a more difficult case foru ∈ BV ; see also a similar statemen
not necessarily stated as such, in Carrillo [6] and Eymard Gallouet and Herbin [13
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