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ABSTRACT. — In this paper, we study the travelling gravity waves of velociiy a system of
two layers of perfect fluids, the bottom one being infinitely deep, the upper one having a finite
thickness:. We assume that the flow is potential, and the dimensionless parameters are the rati
between densitiep = p2/p1 andi = gh/c?. Fore =1 — A(1 — p) near 0, the existence of
periodic travelling waves of arbitrary small amplitude and the existence of generalized solitary
waves with ripples at infinity of size larger tha®'? and polynomial decay rate were established
in [7]. In this paper we improve this former result by showing the existence of generalized
solitary waves with exponentially small ripples at infinity (of ord@¢e—</¢)). We conjecture
the nonexistence of true solitary waves in this case. The proof is based on a spatial dynamic:
formulation of the problem combined with a study of the analytic continuation of the solutions in
the complex field which enables one to obtain exponentially small upper bounds of the oscillatory

integrals giving the size of the oscillations at infinity.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Cet article est consacré aux ondes progressives de vitekses un systéme de
deux couches superposées de fluides parfaits en écoulement potentiel, la couche inférieure ét
de profondeur infinie, et la supérieure de profondeur finiees paramétres sans dimension du
probléme sont le rapport des densités p»/p1 etx = gh/c?. Pours = 1 — A(1 — p) voisin de
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0", 'existence d’ondes progressives périodiques de tailles arbitrairement petites et I'existenc
d'ondes solitaires généralisées a décroissance polynomiale vers des oscillations de taill
supérieure &2 ont été obtenues dans [7]. Dans ce présent article nous améliorons ce dernie
résultat en montrant I'existence d’ondes solitaires généralisées avec des oscillations résiduell
a l'infini exponentiellement petites (d’ordé@(e=/¢)). On conjecture la non existence de vraies

ondes solitaires dans ce cas. La démonstration est basée sur une formulation de type “dynamic
spatiale” du probleme combinée avec une étude du prolongement analytique des solutions q
permet d'obtenir des bornes supérieures exponentiellement petites des intégrales oscillant

donnant la taille des oscillations a I'infini.
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

Let us consider two layers of perfect fluids (densitigs(bottom layer),p, (upper
layer)), assuming that there is no surface tension, neither at the free surface nor :
the interface, and assuming that the flow is potential. The thickness at rest of the
upper layer ish while the bottom one has infinite thickness (see Fig. 1). We are
interested in travelling waves of horizontal velocity The dimensionless parameters
arep = py/p1 < 1, andi = gh/c? (inverse of (Froude numbé)

The existence of a family of periodic travelling waves, for generic values of these
parameters is known [6]. This paper is devoted to the problem of existence of solitary
waves fori(1 — p) near I. This problem can be formulated as a spat@lersible
dynamical system

d—U:F(,o,A; U), U(x)eD, Q)
dx

where D is an appropriate infinite dimensional Banach space, and wbete O
corresponds to a uniform state (velocityin a moving reference frame). Solitary
waves correspond to homoclinic connections to 0 of (1) and generalized solitary wave:
correspond to homoclinic connections to periodic orbits. A survey of the different results
obtained for the water waves problems using a reversible dynamical system approach c:
be found in [5].

Considering the linearized operator around 0

Le=DyF(p,2;0)

with e =1 — A(1 — p), it was shown in [7] that its spectrum contains the entire real
line (essential spectrum), with in addition a double eigenvalue in 0, a pair of simple

Fig. 1. Two layers, the bottom one being of infinite depth.
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Fig. 3. (Left) ROO? resonance, and (right) shape of the internal solitary wave in the two-layer
system foru > u. (bottom layer infinitely deep).

imaginary eigenvaluegii at a distance Q) from 0 whene is near 0, and foe less

than 0, another pair of simple imaginary eigenvalues tending towards 8-a8~. When

¢ > 0, this pair completely disappears into the essential spectrum! (see Fig. 2). The res
of the spectrum consists of a discrete set of eigenvalues situated at a distance at le
O(1) from the imaginary axis.

For (1 — p) near I, the existence of periodic travelling waves of arbitrary small
amplitude induced by the pair of simple purely imaginary eigenvatliés like in
the Lyapunov Devaney Theorem was proved [7] (despite the resonance due to the
eigenvalue in the spectrum).

For the solitary waves the situation is more intricate. First we cannot expect the
existence of a solitary wave with an exponential decay at infinity because of the lack
of spectral gap induced by the existence of the continuous spectrum on the whole re:
line. We can only expect solitary waves with polynomial decay at infinity. Such solitary
waves have been found for two superposed layers, the bottom one being infinitely deej
and the upper one being bounded by a rigid horizontal top, with no interfacial tension
(see Fig. 3).

A model equation was derived from the Euler equations thanks to a long-wave
approximation of the problem above, by Benjamin [3], Davis and Acrivos [4], and Ono
[11]. The now called Benjamin—Ono equation is nonlocal and reads

Hw')+u —u?>=0, ()

whereH is the Hilbert transform, and is a scalar function. This equation admits an
homoclinic connection to 0, given explicitly by

®3)

I/lh(f) = m
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All the other solutions of Eq. (2) have been described by Amick and Toland [2]. For
the full Euler equations, the existence of the solitary waves, with polynomial decay at
infinity, has been obtained in this case, independently by Amick [1] and Sun [14]. More
precisely, they both proved that, for > 1. and close tqu. (we can just play on the
velocity ¢ of the wave), the form of the interface for the solitary wave satisfies

Z(x) = puy (ux) + pPuq (ux),
where

djul .
Sup(1+|r|)’—(r)‘<K], ]20,1,2,....
eR dt/

Therefore, the solitary wave solution (3) of the Benjamin—Ono equation (2) gives the
first order approximation of a solitary wave solution of the full Euler equations. Neither
the approach of Amick, nor the one of Sun was based on a dynamical system approac
However, we observe that the problem may be formulated as a reversible dynamice
system, for which the differential at the origin (which corresponds to the rest state)
admits the entire real line as essential spectrum, a zero eigenvalue, and a pair of simp
imaginary eigenvalues fQr < . tending towards 0 ag — n_ . Whenu > . this pair
completely disappears in the essential spectrum (see Fig. 3).

Observe that for the problem studied in this paper (two layers, the bottom one
infinitely deep, no surface tension, no interfacial tension), the behavior of the spectrun
of the linearized operatok., is the same as the one of the previous example, with in
addition an extra pair of simple eigenvalues lying on the imaginary axis, not close to O
(compare Figs. 2 and 3). These additional eigenvattiedead to a competition between
the oscillatory dynamics they induce, and the Benjamin—Ono type of dynamics inducec
by the essential spectrum with the 0 eigenvalue. This competition causes the appearan
of oscillations at infinity for the solutions. Such a coexistence of an oscillatory dynamics
and a hyperbolic dynamics also occurs for one parameter families of reversible vecto
fields admitting a & w resonance at the origin, i.e. vector fields admitting the origin as a
fixed point and such that the differential at the origin admits the bifurcation of spectrum
described on Fig. 4.

For such vector fields it is proved in [10] that there are generically no homaoclinic
connections to 0, whereas there are always homaoclinic connections to periodic orbits
until they are exponentially small. Such a vector field occurs after a center manifold
reduction for one layer of finite depth in presence of gravity and surface tension for a
Froude number close to 1, and a Bond numbgiess than 13. In this case, foF > 1
and b < 1/3 periodic travelling waves and generalized solitary waves asymptotic at

{ % I :
F<1 F=1] F>1

Fig. 4. (Left)y Giw resonance, and (right) shape of the generalized solitary waves for
b<1/3,F> 1.
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infinity to each of these periodic waves, have been obtained provided that the amplitud
of the ripples is larger than an exponentially small quantity (as function-ol) [13,9]
(see Fig. 4). The nonexistence of true solitary waves has also been proved by S.M. SL
[15] for a Froude number close to 17, and a Bond number near 13~

We expect a result of the same type here, i.e. nonexistence of true solitary wave
and existence of generalized solitary waves with exponentially small ripples at infinity.
In [7] a weaker result was obtained, i.e. the existence of homoclinic connections to
periodic solutions provided that the size of the limiting periodic orbit is not too small
(at least of ordee®?). In this paper we show the existence of generalized solitary waves
with exponentially small ripples at infinity. The question of the (non)-existence of true
solitary waves is still open in this case. We should finally notice that the present probler
is numerically studied by &au and Dias in [12], with lot of information on the shapes
of the free surface and interface.

THEOREM 1. — There existss such that for any? €10, 1] there existc,, &, > O,
such that for0 < ¢ < g, andc,e € /¢ < Ag < §, (1) has two homoclinic connections
Unoe.p; (J =1, 2) of the form

83/2
Unog;.e(X) = pag.e (x + ¢ arctariex/p)) — euy(ex/p)éo + 0(m>’

where&, is a fixed vector o), u, is the soliton of Benjamin—Ono given K§) and
wherep,, . is a periodic function of1) which readsp4, .(x) = pa,..(s) with

Paoe(s) =eAo(€'c. +e¢)+ Y gHAfer vy,

2<p+q<r+1

ands = (A + y)x With y = 1 iop<, Voré” A5’ € R, Where coefficients, .. ¥,
liein D andy,, lie in R.
The physical shape of the corresponding generalized solitary waves is given én Fig.

In Section 2 we explain how the problem can be formulated as a spatial dynamica
system of the form (1). We also recall the “normal form result” obtained in [7] which
states that the full Euler equations (1) are equivalent to a Benjamin—Ono equation
coupled with a nonlinear oscillator equation, with higher order terms.

As already explained the persistence of a pair of simple eigenvalues on the imaginar
axis after bifurcation foe > 0 causes the appearance of oscillations at infinity for the

Fig. 5. Shape of generalized solitary waves in the two layer system.
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solutions. The size of the oscillations is given by an oscillatory integrals of the form

“+o00

I(e) = / g(U(s),e)e* ds,

—00

whereg is explicitly known wheread/ is a solution of (1). In Section 3 we introduce
appropriate algebras of holomorphic functions which enables to obtain exponentially
small upper bounds of such oscillatory integrals.

Finally, in Section 4 studying the holomorphic continuation of the solutions of (1) we
prove Theorem 1.

2. Formulation as a dynamical system and normal form theory

2.1. Dynamical system formulation and scaling

Travelling waves correspond to stationary solutions in a frame moving with a constan
speedc. In such a frame the two dimensional travelling waves of Euler equations
corresponding to an incompressible potential flow of velocity(&, n), v;(&, 1)), in
layer j =1, 2 satisfy

oy g
06 0n o o

du; - v, _ (inside each domaini =1, 2),
an 0§

upZ'(£) —v2=0 atn = 1+ Z (&) (free surface),

uzZ} &) —v= MIZ; &)—v1=0 atn = Z; (&) (interface),

1 ~ ~

E(u§+v§) +AZ =0 atn =14 Z (&) (free surface),
1 S~ . ~ .

E(uf + %) — %(u% +v3) +A(l—p)Z; =c, atn=Z,(&) (interface),

where the parameters are= p,/p1 < 1, andi = gh/c?, and¢; andc, are arbitrary
constants.

In what follows we assume thatis fixed and thak. (1 — p) is close tol~. So we work
with a unique bifurcation parameter> 0 defined by.(1— p) =1—¢.

We define

l1-¢ 1
= and Ag=-—.

1-p 071 0

For formulating our problem into a dynamical system, we first transform the unknown
domain into a strip. There are different ways for such a change of coordinates. We choos
the one used by Levi-Civita [8]. For that purpose we introduce the complex potential
in layer j denoted byw;(¢ + in) and the complex velocity (in dimensionless form)

Ae
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w’,(§ +in) = u; —iv;. The Euler equations are expressed here by the facttha
analytic in¢ = £ 4 in. The new unknown are; +if;, j = 1,2, which are analytic
functions ofw; = x; 4 iy, wherex; is the velocity potential in the layer, andy the
stream function, and where

w(§ +in) =€,
the free surface is given by =1, and the interface by = 0. The region of the flow
is —oo < y < 0 for fluid 1, and O< y < 1 for fluid 2. Observe that the coordinate
given by the Levi-Civita change of coordinate is not the same in each strip. In fact we
havej—jgi = e20-F10 whereB,o — B1o is the value off, — B, taken at the interface = 0.
So, we choose as the basiacoordinate the one given by the bottom layey)(which

then introduces a factor in the Cauchy—Riemann equations of the upper layer. In such
formulation, the unknown is defined by

[U@)] () = (Bro(x), Bar(x), a1(x, y), Bi(x, ¥), a2(x, ¥), Ba(x, y))'

and the system has the form
du

E=F(8§U) 4)

with

—(1— e)e 30sinay — pefro-fo )

—A e 3Puth-Posing,,,

3y

Fle:U) = EM} Y €(=00,0), (5)

dy

Qﬁ gPf20—P1o
» ye(@©),

_ a2 of20—P10
ady

where we denote by,q, B10 and ;g the traces of (respectively),, 81, 82 at y =0, and
a1, B21 the traces ofr, and B, at y = 1. Here we choose the basic space

H=R? x CIR™) x Co 1(R7) x {€°(0, 1)}
and the domain of the operatéris:
D=R?x CLHR") x Cl, 1(R™) x {C(0, 1)}
N {10 = 20, Bro = B1ly=0, B21 = Baly=1},
where we define the Banach spaces
CIR)={feCOR); |fM|(A+1y])" <oo}, v>0,
C:RH)={feC'R), f e CORM},
Coh R ={feCOR ) AR, |f(») —1|(1+1y])" < oo},
CimyR) ={feCh, ,R); f € CAR)},
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and we take foXa, b, f1, g1, f2, g2)' =V € H, the norm

Vi =lal + bl + [l fill oo + 182115 + Il f2lloo + 1 82lloo,

with
||f||u,oo"=efs%p(|f<y>|(1+|y|)”), 1f lleo E'sugd £ ()]
yeR™ y
g™ % sup|g ()| + sup(|g() — 1| (1+1y])").
yeR~ yeR~

The definition of the norm ifi is similar, in adding the norms of; andg’. The system
(4) is reversible, i.eF anticommutes with the symmet§ywhich reads

SU = (B10, B21, —1, P1, —2, B2). (6)
Notice that the interface and free surface, expressed in the new coordinates satisfy

dZ : dz ,
—L —ePosing,, <~ —— = e o Pasgingy,,
dx dx

For looking for homoclinic connections, we work with the rescaled system

dUu
— =F(:U), (7)
dx
where
eU=U, ex=x, ey=y for y €10, —ool. (8)

The differential at the origirl., = D F (¢, 0) admits for eigenvalues, Gti A, /e with the
corresponding eigenvectors given by

£=(0,1,0,0,0,1), &=(100,100, Lk=LE&=0,
¢, = (L&, —idde glf —jg=r @), L =—t, I =St

Let us define some associated linear forms and projectionsV fer (a, b, f1, g1,
f2, g2) € H we set

PeV)=gn=g@0). pi(V)=a. p V)= V)i, +2,(V)T,,
r.(V)=Ild—p (V), 1w, =m—&pon:
with

1
& (V)= d{a — pg20+ p€h + phe / [if2(y) — ga(y)] € dy
0

0
+ A / [ifa(eT) —gl(er)]@fdr}.
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These projections satisfies
Py =1 pyED=0,  pi¢)=psE,)=¢€",
Pié) =0,  pi¢n=1 pi¢)=piC)=1
p,E)=p (=0 p)=¢t,. pE)=¢C,.
2.2. Nonlocal normal form formulation
As already explained our aim is to look for generalized solitary waves with
polynomial decay at infinity. This waves appear as homaoclinic connections of the infinite
dimensional dynamical system (4) or equivalently as homoclinic connections of its

rescaled form (7). For describing this expected decay rate @ the solutions we
introduce the following Banach spaces:

DEFINITION 2.— LetE be a Banach space andbe in]0, 1[. Let us define
B (E) = {f e C¥E); I f B2 < oo},
d
BL®) = {1 e By(ER L e By®)),
with
|f(x+8)— f(X)e
|8~ '

IIfIIBguE)=Su]£(l+IXI”)|f(X)|E+ (1+ |x|7)

su
eR, se]-1,1]

We also introduce the spacég; Bﬂlﬂ’ffy and B, defined by
By, ={V =(a,b, f1, g1, f2.g2); V(x) € H,
(a.b) € B§ (R?), (f1. 1) € (B,)?, (f2. 82) € (B})?},
By, = {U = (B1o, Bo1, @1, 1, @2, f2); U (x) € D,
(o1, B1) € (B,)?. (a2, o) € (BL¥)?),

av
1« .
BH,w = {V € BI?]Lw’ E € B]%ll,w}’

where
B, ={f(xy): (x,y) eRxR™, fisC¥inx, C%iny, ||fll < oo},
B =B5[c°0,1],  B:rT=BZ[C'0,1)],
L+ |xI*+ |y/*)
I fllg; = sup | f(x, )

xeR, y<0 1+|y|

1 2 2 8, _ ,
. Sup A+ x[“+ D) [f(x+8,y)— fx,y)l
xeR, y<0, [3|<1 1+1yl |5~

For looking for homoclinic connections we first use the following “Nonlocal Normal
Form Lemma” proved in [7] (see Lemma 18) which ensures that the full Euler equations
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(7) can be reduced via an appropriate change of coordinates to a Benjamin—Ono equatic
coupled with the equation of a linear, high frequency oscillator.

LeEMMA 3 (Nonlocal Normal Form Lemma). Fhere exis8; and an analytic change
of coordinates close to identity

U="(A,AuY) with(A(x),A(x),u(x),Y(x)) eC*xRxx,DforxeR
such that for anysg, ¢ € 10, e9(80)1, and any functionx — (A(x), A(x),u(x),Y(x))
lying in

E®:= (C*(R,0))* x By*(R) x B

and satisfying A| < 81, |u| + ¢|Y |z, p < 8o, (7) is equivalent to

dA | [ « 2 —
__lA _+yl(uv8p1(y)v|A| v8> :RS,A(Av A,M,Y),
dx £
du 3, — 2
;OH a —|—u+§l/t :Rs,u[Aa A, u, Y]+Ra,u(|A| >+C07 (9)

Y - %[u] = R&‘,Y[szv u, Y]v
with
RS,Y[Av Zv u, Y] = /2'1[7"u(A’ Zv u, Y)] +,]—2|:TY(A7 Zv u, Y)]v
_ d —-
ReulA, A u, Y] = EHL]—”} +CPIT ]+ CPITy] + Bu(A, A u. Y),
X

wherecg is an arbitrary constantr, , is a real analytic functionr; 4, T,, Ty, B, are
nonlinear analytic function ofA, A, u, Y) and 7y, 71, 72, CY, C(?, are linear nonlocal
operators,H being the Hilbert transform. Moreovex is explicitly given by

2 2 -1
v v AR e) = D V"V AP T ER
1<n+m+2p<r

and 7o mapsB;® (R) to B 1, and satisfies

H%[u gM”””le’“(R)'

Mgz,

For any functionx — (A(x), A(x),u(x), Y(x)) lyingin (C*(R, C))? x B%""(R) X
BLD,w and satisfyingA| < 81, |u| +¢|Y |z ,p < do, for anye €]0, &o], the two nonlocal,

g
nonlinear perturbations term®&, ,[A, A,u, Y] and R, y[A, A, u, Y] lie respectively in
B$(R) and B¢ and satisfy

. .Dw
[ ReulA A 1, Y1 gy < MY g, (Nl ey + 20 llge , + 1 Allce)

+ Meull ez, (L4 I Allce 1 All o)
IR A A Yo < MelY s, (Il ey + 1Y llag , + [Allcs),



E. LOMBARDI, G. IOO0SS/ Ann. I. H. Poincaré — AN 20 (2003) 669-704 679

HDRS,M[Av Zv u, Y]H[:(E“,Bg(R)) < M8(1+ ”u”le’a(R) + ||Y”15’g(c w + ”AllC"‘)v

[ Alles).

D,

D,

||DR€,Y[Ava uv Y]’|£(EQ’BZSD,W) < M8(1+ ”u”B%a(R) + ||Yv||3g(c
Finally the local nonlinear perturbation terrR, , satisfies
|Re.a(A, A, u,Y)| < Me |Y[p(lul + 1Y |p)

for |A| <81, [u| +€|Y |z p < do, ande € ]O, o]
This system is still reversible, which now reads

RS,A(Zv A7 uv SY) = _Ré‘,A(Av Zv uv Y)

for the local perturbation term and
§oR8,u[A7Z7uv Y]:Ré‘,u[&ozvgoAvfouv‘/g\OY]v
SoR.y[A A, u,Y1=R.y[§0A,50A,§0u So¥]

for the nonlocal perturbations terms whe(@o f)(x) = f(—x) for real or complex
valued functionsf and (S o Y)(x) = SY (—x) for functionY mappingR in H or D.

Observe that the full system (9) admits a family of reversible periodic orbits of
arbitrary small size explicitly given by

Pag.e(x) = (Ao€* X, Age™* ), 0,0)
with
A 2
s(x)=|=+»1(0,0,A5,¢)|x andAo € R,
&
whereas the truncated system correspondin®4@ = R., = R.y = 0 is partially

decoupled and admits fag = — R, ,(|Ao|?) a family of homoclinic connections to the
previously found periodic orbitg,, . given by

hAo,(p,é‘ = (AZ, A_Za Mg, Y(?)a hAo,(p,é‘(i) gjoo pAo,8(£ + WOO + (p)
with
_4102 o : :
ub(x) = s € By*(R) iseven inx,
Yy =To[ug) € BY 1, is reversible
+o00

Voo = /(yl(ug(r),spj(yg(r)), A% &) — (0,0, A3, ¢)) dx,
0
Ag(x) = Ag "2
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and
_ (e 2 [ % (vh 2
U(x)= . +11(0,0,A§, ¢) |x + [ vi(uf(v), eps(Yy (7)), AG. €) dr,
0

whereg is arbitrary and:, satisfies the Benjamin—Ono equation (9-b) wih, = 0.
Among this two parameters family there are two one parameter familievefsible
homoclinic connections corresponding to appropriate choices of the phase, shift

hAo,0,8 and hAo,JT,&‘a
and a unique homoclinic connection toHg,. given by
ho. = (0,0, up, ¥7). (10)

The question is then the persistence of this family of homoclinic connections for the ful
system(9) seen as a perturbation of the truncated system by the perturbation terms
Rs,Av RS,M! Ra,Y-

The system (9) clearly shows the competition between the oscillatory dynamics
induced by Eq. (9-a) which generates periodic solutions, and the Benjamin—Ono like
dynamics induced by Eqgs. (9-b), (9-c) which generate homoclinic connections to 0 with
polynomial decay. For the truncated system these two dynamics are decoupled, and the
is no competition, so there exist homoclinic connections to periodic orbits of arbitrary
small size. Such a coexistence of an oscillatory dynamics and a hyperbolic dynamics als
occurs for one parameter families of reversible vector fields admittirfgea@sonance
at the origin, i.e. vector fields admitting the origin as a fixed point and such that the
differential at the origin admits the bifurcation of spectrum described in Fig. 4. For such
vector fields it is proved in [10] that there is generically no homoclinic connection to O,
whereas there are always homoclinic connections to exponentially small periodic orbits

In [7], the persistence of the homoclinic connectidng o . is proved provided that
the size of the limiting periodic orbitd, satisfiesAg > §¢%2. In this paper we improve
this result by showing the persistence fay > c(¢£)e*0¢ for 0 < £ < p. As for the Giw
resonance we expect a generic non existence of homoclinic connections to 0, howev
the proof remains to be done in this case.

The competition between the oscillatory dynamics and the Benjamin—Ono like
dynamics causes the appearance of oscillations at infinity for the solutions. The siz
of the oscillations is given by an oscillatory integral of the form

+oo

1(e) = /g(U(s),s)GMTm ds, (11)

—00

whereg is explicitly known whereas) = (A, A, u, Y) is a solution of (9). In the next
section we introduce appropriate algebras of holomorphic functions which allow to
obtain exponentially small upper bounds of such oscillatory integrals.



E. LOMBARDI, G. IOO0SS/ Ann. I. H. Poincaré — AN 20 (2003) 669-704 681

3. Exponentially small estimates of oscillatory integrals and complexification

LEMMA 4 (Exponential Lemma). -Let ¢, w be two positive real numbers and let
p > 1. We denote b$B, the strip in the complex field8, = {z € C/|Zm(z)| < ¢} and
by H,,, the set of functiong : B, x 0, 1] — C satisfying

(@) & f(&,¢) is holomorphic inB,,

®) £, =SUReo1y. zem, (1f (2, (A + [2]7)) < +o00.
Then for everyf € H, , ande €10, 1], I*(f, &) = [T f(t, &) €'/ dt satisfies

1
141¢r°

+00
FE(f.8) < cpll Fllr € withc, =2 /
0

Proof. —~We only do the proof forl *. For I~, perform the change of timg = —¢
in the integral. So, leff € H, ,, &, £’ < £ be fixed. Sincef is holomorphic inB,, the
integral of f€“'/¢ along the path™; given in Fig. 6, is equal to zero. Pushiigto +oo,
we get

+00

1+(f,g):/f(ie’+z,e)efw<""+'>/8dz.

The estimate then follows, where the exponential comes from the oscillating term
computed on the lin€m(z) =¢'. O

Lemma 4 gives a very efficient way to obtain exponential upper bounds because th
membership td1, , is stable by addition, multiplication, and “composition”, which can
be summed up as follows

LEMMA 5.-H, , is an algebra and iff € H, , and g is holomorphic in a domain
containing the range of and satisfieg (0) =0, theng o f € H; .

For using the exponential Lemma 4 to compute an exponentially small upper bound o
oscillatory integral of the form (11) we need to complexify the problem and to look for
solutions of (9) in spaces of tyg, ,. For that purpose we introduce the complexified
spaces corresponding to the real ones given in Definition 2.

DEFINITION 6. —LetE be a real Banach space ardbe in]0, 1[. Denote byE the
complexified oE, i.e.E =E +E. R
For any ¢ > 0, any functionf : 8, — E and anyn € ]—¢, £[, we denote by |, :R —

E, fl,=f(+in).

Y

Fig. 6. Pathl"y.
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Then, let us define the Banach spaces
HZP(I@) {f:%8, — E, holomorphic f(R) C E; Vn €], £, flneB“(E)

||f”H?p(fE\) = nesgp [||f|n||Bg(ﬁ) < OO},

HE® = {1 ey, B L ey, ®).

CYB.E)y={f:B,—E:; f(R) CE; Vnel—t. £, fl|, < C*R,E);

1 e, 5 = SUP I flnlleage ) < 00}
nel—€.4[
To shorten notations, we denote
. lo._ la
HZP = HZP((C), and HM = H,Z,p ©).

We also introduce the Banach spadég ,, Hﬁf,‘fu and Hy ,, defined by
HE , = {V:B, — H, holomorphic,V (R) C H,

Vnel-¢, 4], V|neBHw-—Bng+lBHw§
IVIiae, == sup [[V]llzz— <ooy,
H,w nel—.e[ n BJI{,w }

HE , = {Vv:8, - D, holomorphic,V(R) c D,
Vnel—€. Ll V|, e BY, = B%, +iB%,;
IVllag, = Sup Vil <oc).

' nel-

av
la .
HH,w = {V € HI(EX]Lw’ d_Z € HI(EXH,w}'

Observe thatfg ,(E) is continuously embedded i6id(B,, E) and thatHg ,, HE,,
are respectively contlnuously embedded?ﬁ(%g,H) andCy (B,,D) whereC(Q, E)
is the set of the functions which are continuous and bounded fedmE.
The different local and nonlocal operators involved in Eqg. (9) can be extended to
“complex functions’U = (A, A, u, Y) lying in
BEY (80, 81) := {U € E¢/Vz € By, |A(z)| < 81,
u@)| +&lY @)l < do},

A@)| <81,

where

EY:= (C*(By, ©))° x HY$ x HE

7 Dw

N{U/A(x)="A(x), forx eR}
is normed with

1Ullez = | Allce + 1 Allce + el yrg + 1Y [l e

D, w’
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Indeed they appear as finite sum of analytic functions4ofA, u, ¥) € C2x R x z ,D
which naturally extend to analytic functions ©f, A, u, Y) € C? x C x = ,ID composed
with nonlocal linear operator%, 73, 7, CY, C? (see (9)) of the form

K:f=KLf]

with
+00
KLf1(x) == pu. / K(s).f(x —s)ds,

where f is any function fromR to E and K (¢) is a linear bounded operator i1 For
instance, the Hilbert transform reads

“+o00

1
Hlul(x) :=p.V. / ;.u(i— s)ds.

—00

Such operators can readily be extended to a funcfio®, — E with the same integral
formula wherex lies in B, instead ofR. Moreover we have

LEMMA 7.— LetE be areal Banach space an{E) be the space of bounded linear
operators inE. Assume thak : R\ {0} — £(E) is C* such that

() 1K) @ < Co/lsl, 1K' ($)llc@ < Cofls|® for |s| < 1,

(i) 1K@ < Ca/ls|?for|s| =1, andp.v. [1, K (s)ds € L(E).
Then, the linear majiC defined by

f|—>IC[f]:p.V./K(s).f(-—s)ds
R

is bounded fronti{,(E) into itself.
Proof. —First observe that

+00 +oo
Klfl(z) = / K($).(f(z—s)— f(2)ds + (p.v. / K(s) ds) Jf(2),

where the first integral is a classical convergent integral without “principal value”. This
formula combined with Lebegues’s theorem ensures Aljat] is holomorphic in%3,.
Moreover it is proved in [7] (see Lemma 30) thigtis a bounded linear operator from
B3 (E) to itself. Hence, sincé&[ f],] = (K[ f]],, K is a bounded linear operator from
H{,(E) toitself. O

So, to look for solutions of (9) which admit an holomorphic continuatioEjn we
study the “complexified equation”
dA Ae

7 iA<— + y1(u, epi(Y), AA, 8)) =R (A, A,u,Y),
z £
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he . .
—+1A( —{—yl(u,spI(Y),AA,e)) =R, i(A,A,u,Y),
dz € : (12)

du 3 ~ 1
pH{d }+u+2u =ReulA. A, u, Y]+ R, (AA) + co,

Y—%[M]= S,Y[A7Aau7 Y]a
whereR&A is an analytic function ofA, X, u,Y) given by

RS’A(A7 A: ua Y) = RS,A(Z7 Za E7 ?)

Remark8. — Observe that for any solutianof (12) lying in E¢, the restriction olU
to R is a solution of (9) lying in(C*(R, C))2 x By*(R) x B®

. Dw:

The bounds for the linear operatdfg 71, 72, CP, C{?, which lead to the estimates for
Re.u, Ry stated for (9), are based on the structure of these non local operators wher
nonlocal kernels occur. In [7] the estimates of these operators were based on Lemn
30, here extended at Lemma 7 for obtaining the holomorphy in the Syiplt then
results thatZ, is a bounded linear operator fromelf to Hf 1, and for any function
U= (A, X, u, Y) lying in BE} (6o, 81) and anye € 10, go], the two nonlocal, nonlinear
perturbations term®. ,[A, A, u, Y] and ReylA, A, u, Y] lie respectively inHy, and
H® and satisfy

. .Dw
[RealA A, Y1,
<SMel|Yllme , (lull 2o +elYllme , + 1 Allcs + | Allce)
+ Melull yae (1+ (1 Allce + [ Allc) (I Allco + | Allco)). (13)
[Rev[A, A, u, Y1|| o

7 Dow

<MelYllug (Nl s +el¥ g

7 Dow

+[|Allce + [|Allca),
IDReul AL At V| s e+ | DR [A A Y1 g e

rr ]Dlu))

<Me(1+ ”””H}" + 1Y || 5o

7 Dow

+ | Allca + 1Al ce). (14)

Finally the local nonlinear perturbation terms 4, R, ; satisfy
|R: A(A, A u, V)| +|R, (A, A, u, V)| < M8|Y|A(|u|+|Y|A) (15)

for |A| <81, |A| < 81, |ul +8|Y|/\ < 8o, ande €10, &o].
This system is still reversible, “which now reads

R (A, Au,SY)=—R, ;(A, A,u.Y)

for the local perturbation term and
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S:OR&‘,M[A!AVvuv Y]:R&H[SKOAV,S:OA,S:OM,S\OY],
SoR.y[A, Au, Y1 =R.y[§oA,50A,§ou, So¥]

for the nonlocal perturbations terms.

4. Homoclinic connectionsto exponentially small periodic orbits

The purpose of the paper is to prove the existence of generalized solitary waves witl
exponentially small ripples at infinity. As already explained in Section 2.2, after change
of coordinates, the full Euler equations reduces to system (12) and generalized solitar
waves appear as homoclinic connections to the periodic quhjits(x ). In this section
we prove

THEOREM 9. — For any « €0, %], ¢ €]0, p[ there existc,, ¢, such that for every
e €]0,e,] and everyAq € [c,ee /¢ gl-eg=t/¢] gystem(9) has two reversible
homoclinic connectionsis, ;. ¢, j =1, 2, of the form

X
HAO,fﬂj,S(l) = Pag,e <£ + EQ;p arCtan;> + hO,a(i) + h1,£(£)7 (16)

wherehg . is given by(10) andhy .(x) = O(¥%/(p + |x])).

COROLLARY 10. — There exist$ > 0 such that for any €10, p[ there existcy, &,
such that for everys €10, &,] and everyAq € [c,ee /¢ §], system(9) has two
reversible homoclinic connectioms,, ;. ., j =1, 2, of the form(16) whereh; .(x) =

OWe/(p+ IxD).

Remark11. — Theorem 1 is a direct consequence of the above corollary performing
back the change of coordinates given by the Normal Form Lemma 3 and the scaling (8

Proof of Corollary 10. -We first deduce Corollary 10 from Theorem 9. Looking
carefully at the proof of Theorem 9 given in the next subsections, we check that we
can obtain a similar theorem which is valid uniformly for atiy 10, ¢], i.e. a theorem
for which the constants,, ¢, are the same for eve®y € 10, £]. So grouping together the
existence results obtained fer= % and eacl’ €]0, £] and observing that

/4 ! a
U [ce e‘%, \/Ee‘ﬁ] = [c.e e_uTo, Vel

0<t'<e

we obtain thatfor any ¢ €]0, o[ there existc,, &, such that for every €10, ¢,] and
every Ag € [ciee /¢ /e[, system(9) has two reversible homoclinic connections
Haop;.e» J = 1,2, of the form(16) whereh; .(x) = O(/e/(p + |x])).

Finally Theorem 22 of [7] gives the existence of two reversible homoclinic con-
nectionsHyu, ., j = 1,2, of the form (16) whereh; .(x) = O(J/&/(p + |x|)) for
A € [coe®/?, 8] which completes the proof of Corollary 100

The rest of this section is devoted to the proof of Theorem 9.
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4.1. Complexified shifted system and choice of the parameters

In the rest of this paper Iete 10, p[ anda €10, 1] be fixed.
We look for homoclinic connections to the periodic onit, . under the form

X
HAQ,(/),S =Pag,e (1 + epp arCtan;> +h(x). (17)

The unknown are € R, which is proportional to the phase shift at infinity, andvhich

is required to be aeversible homoclinic connection @ As already explained, to obtain
exponentially small estimates af;, we need to show that,, , . admits a holomorphic
continuation in®3, still denoted byH,, , . Which lies in BE] (6o, 61) wheres, can be
chosen arbitrarily. For that purpose we look fy, ., . as a solution of (12). Moreover,
we look forh,(z) with z € 8B, under the form

he(2) = ((iq1(z) + q2(2)) €79, (—ig1(2) + q2(z)) €7 u, Y) (18)
with
Ae
Ve(2) = . +1(0,0, A3, e)} [z + epparctanz/p)],
with
ds

[0,z]
observing that

T:(q1,92) > (A, A) = ((iq1(2) + 92(2)) €YD, (—iq1(2) + qa(2)) e V)

is an isomorphism front? onto C2.

We need a priori estimates am and h to ensure thati,, , . lies in BE} (3o, 61).
Moreover, we want to prove the existence of homoclinic connectign}@ provided
that its sizeAg lies in an interval of the formjc,ee 0/, gl-2e=t*o/¢] So, in what
follows we set

DEFINITION 12.— Let us define

So:= sup (lug@)|+el¥s(x)|—5) and eo:=eo(S0),
z€By, €€10,1] =€

4
@Yo = sup ( )
e€10,60], Apel0sa \ PLAe +€11(0,0, A2, £)]
whereeq(5p) is given by the Nonlocal Normal Form Lemn3aand let us set

Lot . R 1.1
A0=Aoe € WIthAOG —551, E(Sl .

We also define
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DEFINITION 13.-Let $¢ = HY, x H{, x H;5 x H?y, equipped with the
following norm a

16llse = (1, a2) |l e + el e + WY Iz

whereh = (¢1, g2, u, Y) and

At

. AQZ
1692 92) [l g =€ (laall g, + a2l g,) + | Giga + g2)€

«
Hl,l

+|[(—igy+ go)e

a .
HZ,l

Then, we define

B (do, dr) = {b € 9/ lull g + 1V lls | <o,

EEJD),w

(6]1, QZ)HQ? < dl}

Observe that there is noin front of IIYIIHg - in the definition of89; (do, d1).

With this choice of parameters we check

LEMMA 14. —

(a) There exists such that for every € B,, ¢ € [—¢o, ¢ol, € €10, g0] and every
Ay €1-381, 3810, 1Zm (¥ (2))| < 22 + ¢ holds.

(b) There exists, €10, %61[ such that for every € 9B, ¢ € [—¢q, ¢ol, € €10, o] and
everyAy € [—5,, 8], |Ao€ V¢ @] < 251

(c) There exist$; €10, §1[ such that for every € B,, ¢ € [—¢o, ¢ol, € €10, g0] and
everyh € BH; (o, 83)

. 1 . 1
(g2 +iqn)E P < 551, (g2 —igr)e V@] < 551-

(d) For everyz € By, ¢ € [—¢o. @ol, € €10, 0], A} € [—82,8.] and everyh €
BH, (o, 83), the correspondingi 4, , - given by(17) and(18) lies inBEY (8o, 81).

So, we are looking forp € [—¢o, ¢o] and for an homoclinic connection to =
(q1,92,u, Y) in BH (50, §3) Which is reversible, i.e.

Sh(z) =b(—2) whereS(q1, g2, u,Y) = (=41, g2, u, SY).

The new system satisfied lyy= (g1, g2, u, ¥Y) andg reads
dq1 !
o = (A0+42)[11(,0.0.¢) — gpo] + K.
d /
dizz =—q [yl(u, 0,0,¢) — (,0,00] + qu’

(19)

du 3, , ,
,OH d_z +I/£+§I/l =R£,u+Ra,u+co’

Y —Tolu]l = R;,y,
where
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2

po(2) = (ke +e71(0.0.45.€)) 5~ .
, 1 _ / j

qu - Z_i(R;,Ae - Rs,/iel%) + (Ao + QZ)A;’
, 1 . i /

Ry, = E(R;,Ae Vet R;,Ael]//w) — @by,

with
A, = {y1(u, ep;(Y), AA, &) — y1(u.0,0,8) — y1(0,0, A3, &) },

where we put a prime when we need to replatedy (Ag + g» + iq1)€V, A by
(Ap + g2 — ig1)e V¢, and where we choose the constagisuch that(g,, g2, Y, u) =0

cancelsR; , + R; , + co, i.€.
2
co=—R:.(Ap).

4.2. Strategy of proof

We look for a reversible homoclinic connectidin= (g1, g2, u, Y) to 0 of the full

Eqg. (19) under the form

h = hO,s + hl
with

1
o = (0.0.ub, Y1) € B (550, 0), b1 = (q1. 42 0. 2).
More precisely, we look fop € [—¢g, ¢o] andh; € 93@;7(%50, 83), which satisfies

L(p(Z)hl = G(hb Aa’ ¢, 8),

where

d
dizl — [y1(u8, 0,0, &) — 9ol g2,

d
% + [y1(ug. 0,0, &) — ppol g1,

L,bi=| 4

d
pH {d—f] +w + 3ugw,

Z — Tow

and
G = (qua qu, guh gZ)
with
Gy = Ao(y1(ug +w,0,0,¢) — ppo)
+ q2(ya(ug+w,0,0,¢) — y1(ug, 0,0, ¢)) + R,

q1’°

(20)



E. LOMBARDI, G. IOO0SS/ Ann. I. H. Poincaré — AN 20 (2003) 669-704 689

qu = —ql(yl(ug +w,0,0, 8) - )/1(141(1)’ 0.0, 8)) + Rt/[z’
3

Gu = R/gu + R;,u B R‘/’%” (A(z)) B sz,

Gz=R,,.

Here the reversibility comes from the invariance of the system under the symmetry

(2,91, 92, w, Z) = (=2, —q1, g2, w, SZ).

Moreover the map

((pv C]l, 612, wv Z) = (quv quv ng gz)

is analytic from]—go. ol x BH; (380, 83) to Hf'y x Hf's x Hfy x HE .
homoclinic connection to 0 of (20) we proceed in several steps:
Stepl. In Section 4.3 we consider the affine equation

For finding

L,(2)h=F.

More precisely we prove that for any antireversible H, x Hi3 x H{, x HY 1, , there
exists a reversible solutionin $¢ if and only if F satisfies the solvability condition

/<r_<£>,F(1>>d1=o, (21)
0

wherer_ is given by
r_ = (cosI', —sinT’, 0, 0),
with
r@= [ (a(h(©).0.0.) - poo() dr.
[0,z]

So, a necessary condition for the existence of a solujioof (20) in %562‘(%80, 83) is
that

J (b1, @, Ag, €) =0,

where
/= / (r-,G(h1, Aj, ¢, ) dx.
0

Step2. For studying/ and (20), we need precise estimate&:9f, G,,, G, Gz. They
are given in Section 4.4.

Step3. In Section 4.5, we study the solvability functidrand we compute its principal
part. J happens to be an oscillatory integral and its study is based on the Exponentia
Lemma 4. This is why, we had to complexify the problem.
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Step4. In Section 4.6.1, we introduce the modified equation

L(p(Z)blzGL(bl’ AB’gD’g)a (22)
where

2
(;L =G — ﬁje_zzl"_(Z).

The termG+ has been designed so that, for evenay, ¢, by

/<r_, G (b1, A% ¢, €))dx = 0.
0

Then, using the implicit function theorem, we prove that for argnd any sufficiently
small|Ajl, e the system (20) admits a solutign,, Anp in %562‘(%80, Jd3) satisfying

1—
”hl,(/),A&,g”f)% <c ( * + |A |)

Step5. Finally, in Section 4.6.2, using the study bfmade in 4.5, we prove that for
O<a< % there exist,, ¢, such that for every & ¢ < ¢,, Aj € [c.¢, ¢17%] there exists
@ (e, Ap) such that

T[D1,ag.0e.43).6- 9 (e, AD), Ag, €] = 0.

Hence, b1 4z 4. a5« IS @ reversible solution of (20) iﬁ%ﬁ%(%&o, 83) which gives the
existence of an homoclinic connection to O for (19) under the form

h hOa+blA6rp(sAO)a

At this last step we have only considered positive valuedgpéince the solution ob-
tained forAg < O are the same as the one found Agr> 0 thanks to the undetermination
on the form of the parametrization of the bifurcating solution given by (16).

4.3. Linearized system around the homaclinic connection of the truncated system

This subsection is devoted to the study of the affine equation
for any givenF = (Fg,, Fy,, Fz, Fu) € Hiy x Hi'z x Hi', x H ,, which is antire-
versible, i.e. such thaf,, and F,, areeven F,, is odd, while’ FZ is reversible(i.e.
SFz(—z) = Fz(2)). Eq. (20) reads
dq1

7~ (1(u0.0.0.8) — ppo)g2 = Fy,.

d
%Jr(yl(uo,oo g) — po)qr = Fyy,
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d
oH [d—f] +w + 3u’3w =F,, (24)
Z — Tolw] = Fy.

Let us first show the inversion for the two first coordinates. Let us consider a basis of
solutions of the homogeneous systenigmn, ¢»)

r1(z) = (sin'(z), cosl(z), 0, 0), (25)

r_(z) = (cosT'(z), — SinT'(2), 0, 0), (26)

r@= [ (b, 0.0.¢) - gpo(r)) (27)
[0,z]

thenr, is reversible, while_ is antireversible, andl' is odd and may be also written as

['(z)= / y1(uf(1),0,0,8)dt — pp[re +y1(0,0, A3, &)] arctan(z/p).
[0,2]

Let us denoté-, -) the canonical scalar product @?: for ¢ = (¢1, g2) andq’ = (¢, g5),
(q.9") = q191 +q2495. We identify (C?)* with C2by ¢ > (g, -), := (¢, -). We then show

LEMMA 15. — Let us consider the affine system

d
% =q2(r1(u5, 0.0, 2) — gpo) + Fyy.

<
‘ (28)
di; = —q1(y1(ug, 0,0, ) — gpo) + Fy,,

with F, = (F,, Fy,) € H{, x H{3, antireversible(F,, even,F,, odd. This system has
a unique reversible, holomorphic solutigg,, ¢o) = F,(F,), (¢1 0dd, g, ever) tending
towardsO at infinity, if and only if (we identifyr_ with its two first componenys

/<r_(£>, F,(x)),dx=0. (29)
0
We have

Fy(F) @) = —r4 (2) / (ri (2, Fy (1)), dT — r_(2) / (r_(¥), F,(1)), dx.
Z+R+ Z+R+

Moreover, there exists such that for every e [—go, ¢ol, € €10, 0] and everyF, =
(Fy1, Fyp) € H, x Hi g satisfying(29) , F,(F,) lies in Hi*y x H, and satisfy

0) Hflh(Fq)HHzl + H‘qu(Fq)HHZZ < c(”Fql”H?_z + ”F‘lZ”HZa)’
(W) ([ (FuF) + Fra(FD)E || ye, < (I Fallg, + I Fillag,),

o2

(i) [|(—iFgy (Fy) + Fop(Fy))e™™

e, <C(IFallug, + 1 Fxllug,).

whereF, = (i Fy, + qu)e"¥ andF; = (—iF, + qu)e—ik%z_
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Z Z4r

Y

Re(z)+r

Fig. 7. Pathl’,.

Proof. — Stedl. Explicit formula Variation of constants method leads to

fq(Fq)(Z)Z(C++ /<i’+(f),Fq(f)>*dT>F+(Z)

[0,z]

+ (c_ + / (r_(v), Fq(r)>*dr>r_(z). (30)
[0,z]
We check thatF, (F,) is reversible if and only it_ = 0 and that if}‘q(Fq)(g)xjooO,
then necessarily
cy =— [{rs(1), Fy(v)), drt
(31)

C_=—

(r_(1), Fy(v)), drt

0\8 0\8

Hence, we deduce the compatibility condition (29), and the explicit fornFafF,)
using the holomorphy of the solutions and the integral patbdrawn on Fig. 7.

So, we assume now thé, is an antireversible function lying iy, x H; and
satisfying the compatibility conditiof29).

Step2. Estimates inH;. The two explicit formulas (30), (31) ensure tg{(F, ) is
holomorphic in8,. Moreover, using (28), and the reversibility & (F,) we get that
there existg: such that for every € [—go, ¢o] and every € 10, g]

H]:ql(Fq)HHgl + H]:qz(Fq)HHgl < C(”F(h”h’ffz + ||F42”H21,3)'

Step3. Estimates ofF,,(F,) in Hf,. SinceF,,(F,)(z) )—>+ 0, we have

+00
d
Fo(F) @) = — / S (FuF) e+ ) d (32)
0

Moreover, F,,(F,) is even, lies inHy, and satisfies (28). Hencef"Z— lies in Hy;

Fq.(Fy) lies in Hf, and there exists such that for every € [—¢q, <p0] € €]0, &g,

quz(Fq)HHgfz < C(”Fql“sz + ”F‘lZ”H?_s)'
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Step 4. Estimates of Fu(F,) = (iF, (F,) + F,(F,)€*/* and F;(F,) =
(—iFy (Fy) + Fo,(F,))e *0%/¢ We check thatF, (F,) satisfies

de(Fq)

dz —lfA(F )[ +)/1(M0,0 0, 8) wpo| + Fa.

SinceF, (F,)(z) Re@:m 0, we get

“+00
FAF)(@) = — / 2T AT B (4 1) e

and
0

A . .
fA(Fq)(Z) = / e—(l?or-i-ll"(—z-i-r)—zl"(—z)) F;‘(—Z + ‘L’)d‘[
—o0
because of reversibility. Hence, there existsuch that for every € [—¢o, ¢ol, ¢ €
10, o,

HfA(F)HHa c(IFallug, + 1 Fzllue,).

Similarly we prove that there existssuch that for every e [—¢q, ol, € €10, &o],
HfA(F)HHa c(IFallmg, + 1 Fzllae,)- 0

It remains to invert the second part of system (20) with respe@t{@). This is given
by the following

LEMMA 16. — Let consider the affine system#ff', x Hy

d
pH[—w} +w+ 3ugw = F,,
dz (33)

Z —Tolw]l = Fz,

whereFy is reversible, andF, is even. Then, there is a unique reversible solutwnz)
such that(F,, F7) — (w, Z) is a bounded linear map

o o loa o
Hyp X Hy 1, = Hy5 x Hy D,
with an estimate

lwllyre + 120 ag ,, < c(IFullmg, + 1 Fzllne

bl ]Dlu)>

Proof. —Since7, is a bounded linear operator froHylz‘" to Hy p . itis sufficient to

solve the equation fow, which is the linearized Benjamin—Ono equation. It is shown
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in [1] that if F,, € BS(R), then the solutionw of the linearized B-O equation lies in
By*(R), with

1l gae gy < €l Forllag -

Let us show that this estimate holds when we repla@g (R), B (R)) by (H;"s, HE,).
Stepl. Let us define the linear operatdrdefined onH}f by

Alw] = pH [d_w] + w.
dz

To show that it is an isomorphism of Banach spaces fmiﬁ onto Hy', we first check

that is is a bounded linear operator froﬁj’z‘" to Hy,. For that purpose we introduce
¢ € C*(R) such thatp(s) = 1 for |s| < 1, and¢(s) = O for |s| > 2, then we have

Afw](2) = pHﬁ—w] @+w@=w@ +pv [ 6K (2~ 5)ds
z T J dz

P /
T ;R/([l—fﬁ(s)]K(S))sw(z—s)ds,

where K (s) = 1/s. We now observe that bothK and ([1 — ¢(s)]K (s)), satisfy the
hypothesis on the kernd&t in Lemma 7, henced is a bounded linear operator from
Hy5 to HE,.

Moreover we can compute explicitly the inverse4ivhich is given by

A1) = / Ki(s)f(z — ) ds
R

where

Kals) = — 70’6_1/0 d
1= o J s24+712 ’
Then observing that
d(A Y w])

— )2 )—/Kl(s)f(z—s)ds

and thatk; and K; satisfy the assumptions of Lemma 7 with= R, we finally obtain

that.4 is an isomorphism of Banach space frd!f[’z‘" onto Hy,.
Step2. Let us now define the linear operafGre L(H,) by

Kw = 3upw.

Then, the operatord + K: HZ2 — H{, is injective since it reduces to an injective
operator when reduced on the real line (see [1]). So, to show hat K is an
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isomorphism of Banach spaces frdﬁi’f onto Hy,, it is sufficient to show thatd —1KC

is a compact operator iH*,. To obtain this compactness it is sufficient to replace in the
proof of Amick in [1] the interval of the real line by products of intervals withe, £[,
observing that our norm is a sup norm in the strip. The essential argument here is the
ul converges uniformly to O whelfiRe(z)| — oc in the stripB,, so the proof of Amick
works on every horizontal line. O

4.4. Estimates of the nonlinear terms

In this subsection we give estimates of the different terms involved in the four
components of the nonlinear opera@®r

LEMMA 17. - There exists: such that fore €10, o], Ag € [—2, 821, ¢ € [—¢o, ¢ol
and for everyhy = (g1, g2, w, Z) in BHY (380, 83), G(h1, Af, ¢, €) lies in HY, x Hey x
H{, x HY 1, and satisfies

: _ gt _ .

() (IIqullﬂngr ||Gq2||HZS>e e <e(e M+ IIhlII%g + 1451),

A0z
&

. . Aoz
(i) (G, +iGo)€ ™ | o + (G, =Gy

ne, < (&7 110l + Ag),
(i) Gz, < (e (e +1A5]) + a3 + 1451Ib1l5),
V) N1Gz Ny, <™ (e +1A3]).

Proof. —This lemma readily follows from the following one observing that figre
BHY (380, 83), b = ho. + b lies in BH (3o, 3) since IIu’éII,,;g + ||Yé‘||H; e S 280
because of our choice é§ made in Definition 12. O ’

LEMMA 18. — There existg such that fore € ]0, &o], Af € [—82, 821, ¢ € [—¢o, ¥ol
and for everyh = (g1, g2, u, Y) in BH; (8o, 83)

i) 1A, I, < cs.

@) (1R g, + IR, g, e < ce™™,
(i) ([ Ry, + R & |+ (=i R)y + Repe o < o™,
V) [|RL, = Re(43) e, < (@2, 42| + 21 A8l]| 01 42) | ).
) IR, + IRyl |, < ce™ (e + 143,

Proof. —(i) First observe that for every € [—¢o, ¢ol, € €]0, eol, Af € [—82, 821,
z € By and every(qi, g2, u, Y) in BHYT (8o, 83),

|u(z) +8!Y(Z)|@ < IIMllHl{,ZCt Ik, <o,
|A@)| = (Ao + g2(2) + iq1(2))€V*@| < 81, (34)

|A(R)| =] (A0 + q2(2) — iqu(2))e VD] < 8,
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and

Aot
. ot € -
159 | cogas, ) < ce™ 1€ || caen 00 S €= P Heﬁ(w Hca(%z 0 S6

| *

Al cem,.0) <c( ol (g1, q2>||ga),

(35)
~ |A6|
| Allce(ss,.c) < ¢ + | (qa, qZ)HQa ,
IIAAllca(%g o< A0+ (g1, CI2)HQa + 2|A3l|| (g1, CI2)HQa
and also
IIMIIizg2 < do, ||pI(Y)||Ha < ”Y”H"‘ D < do, (36)
IAA = A3 e, < [l (a1. 92) | s + 2181|412 02| -
since

= L kot
AA — A3= ((g2+iq1)€ 7 ) ((g2 —iqr)e™ ) +2A%q2€ .
Estimate (i) follows from the above estimates combined with

Y1y, £, A, A, £) — 11(0,0, A2, &) — y1(u,. 0,0, &)
< ce (vl +elu A3+ AL A, — AZ))
which holds for everyA,, A,, u,, v, € C* satisfying |A.| < 81, |A.| < 81, |us| <

8o, |v«| < do.
(ii) Estimates (34), (35-c, d), (36-a) combined with (15) ensures that

IR allcogs, o) S cel¥llag  (lull yro + 1Y g ) < e,
_ 1—
IR A, <oV g (el o+ 1Y e ) )(L+ Age~™) < s

This two last estimates coupled with (i), (35-a) finally gives (ii).
(i) The estimate (iii) can be deduced from the following explicit formulas

(R, +iR, )e’f =R, AECE 4 (grtige ™ A + A A,
(R, —iR; )& «—R eW/fw >+(q2—iq1)e-lTAy+Aoe—'TA’V

combined with (i), (37-b) and (35—a, b).

(iv) Estimate (iv) directly follows from (34), (35-€e), (36-b) and from the analyticity of
R .

(v) We deduce (v) from (13) and from (34), (35-c, d), (36-ajx

We will also need estimates of the derivativessoWwith respect tdy;.
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LEMMA 19. — There existg such that fore €10, gg] and everyp € [—go, ¢o]

0 (1P5:G01(0,0,0, )| 250,12, + 251G 20, 0,0, )|l £ 0. e
(i) || Dpy(Gy, +iGyy) (0,0, g, Sk Hma ey S €6
| Dy, (Gy, —iG4,)(0,0, 0, )€™ ||L(5a Hey <€
(iiy || Dy,Gw (0,0, <p,s)|\£(ﬁa iy < €8
(iv) ||Dy,G2(0,0, (p,S)Hﬁ(ﬁa HE ) <ee.
Proof. —For b’ = (¢1, g5, w', Z’) € 7 let us denote
U'=((g2+iqD€", (g5 +iqpe ", w', Z')
and observe that

1 .
Dy, G,,(0,0,¢,8).h = Z—ie_”/"”DURS,A (0,0, ug, Y).U
1
— Z—ie’WDURE,A(O, 0, ug, Y2).U
+q5(ra(ug, epi(Yg), 0,¢) —11(ug, 0,0, ¢)),  (38)
1, ,
Dy, G,,(0,0,¢,8).h = Ee—”/waURS,A(o, 0,ub, ¥3).U
1.
+ Edw DyR, 5(0,0,up, Y4).U'

— a1 (r(ug. epi(¥g). 0.€) — y1(u5.0.0.¢)).  (39)
Dhlgw(oa 05 @, 8)-6/ = DURS,M (07 07 uga Y(?)U/

(40)
Dy,G2(0,0,¢,8).h' = DyR, v (0,0, ug, Yg).U'
Then observing that (35-b) and our choiceSgensure respectively that
IV lleg <cl'lisg.— [ub] + el 3] < bl yns + 1 ¥8lls | <80 (4D)

estimates (iii) and (iv) directly follows from (40) and (14).
To get (i), we first check that:
(@) the analyticity ofR. 4, R, ; combined with (15) ensures that
|DyR..4(0,0, ”g’ Y(?) ’L(E‘Z,HZA) + |DUR8,A(O7 0, ”g’ Yél) ’L(E‘g,Hg4) Sce; (42)

(b) the explicit formula giving/; at Lemma 3 combined with (36-a) ensure that

Iy £p3(¥8). 0. 8) = ya (05, 0.0,8)] . < ce. (43)
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We deduce estimate (i) from (35-a) and the two above estimates.
Finally, (ii) follows from the above estimates, (35-b) and from the explicit formulas
¥4
€7 Dy, (G +iGy)(0,0,¢,6).U
= ei(l%z_w‘ﬂ)DuRg,A (0, 0, I/lg, Yél)U/
+i(gy+iq€ (ya(ug, epi(¥§).0,€) — y1(ug,0,0,¢)),
_j oz .
€% Dy,(Gy, —1Gy,)(0,0,0,).U
= VeI DGR, 1(0,0,ul, Y).U'
. A2
+ilgy—ig)e ™ (y(ub, epi(YE).0,6) —y1(uh,0,0,6)). O
4.5. Splitting of the solvability condition
This subsection is devoted to the computation of an equivalent of the solvability
condition J. On one hand, the leading part @fis given by an explicit computation
involving only ho .. On the other hand, the perturbation termJohich involves the
perturbation part of the homoclinic happens to be an oscillatory integral which admits

an exponentially small upper bound given by the Exponential Lemma 4. We have
complexified the problem to be able to obtain this exponentially small upper bound.

LEMMA 20. — There existsc such that for everyy € [—¢o, ¢ol, € €10, ol, Aj €
[—32, 82] and every reversibley = (g1, g2, w, Z) € BH} (380, 83),

—Lr

J(h1. ¢, Af, &) = e Agsin(T'(00)) + J1(h1, ¢, Ap, €)

with
—+00 -
[(00) = / 71(h(2),0,0,) dx — 92 (s +£71(0,0, A3, )
0

and
, . ~tig .
() |J1(b1, @, AG, )| < ce (8+|Aolllblllﬁ7+||b1||%;z),
70»0

(i) || Dy, J2(0, 0,0, e)||ﬁ(ﬁz,,R) <ceew .

Proof. —(i) Using the reversibility of); and the antireversiblity o we get

o +00
1 )
J = /<r_, G(h1, Ag, @, 8)), dx = o / e (G + G,y (b1, A}, ¢, &) dx.
0 —00

Moreover,
iGg,+ Gy, =iR, + R, +i(iq1+q2) Al +iAo(y1(ug+w.0,0,&) — ppo)

:iAo(yl(ug, 0,0, 8) — (/?,00) + lAO(A]/i + A;) + _i%A&A,
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where
. Aoz . A0Z
Apa= R, €00 1i(Al + A )(igL+q2€ T,
Aﬁ = (yl(ug +w,0,0,¢) — yl(ug, 0,0,¢)).
So we split/ in three parts. The first one gives the leading parf of

+oo

/ e_iFiAo(yl(ug, 0,0,¢) — gpo) dx

+o0
dar .
= Ap / cos(F)d— dx = Apsin(I'(c0)). (44)
X
s X
The second one can be bounded using Lemma 18(i). We get that

1

Jo= —
0= 5

17
| J10l = |2_l / e TiAo(Al + A)dx

—00

<clAol(lwll 2 +2)

<clAol (lIballge +é). (45)
The third part of/ happens to be an oscillatory integral given by

+00
1 —i%0% _ir
J11:2—i e e Ag,Adi.
—00

Observe that

Aoz
sup |Zm (T (2))| + ‘Im <L - er)
z€By €
AQ€[—82,82], £€[0,e0]

< 00 (46)

and that for everyp € [—go, ¢ol, € €10, g0l, Af € [—62, 821, z € B, and everyh; €
BHY (580, 83),

|ug(2) + w ()| + £[¥g (2) + Z(2)| 5 < bo.
|A@)| = |(Ao+ g2(2) +iq1(2))€V?| < 81,
|A@R)| = |(Ao+ q2(z) — iq1(2))eV* | < 8.
Hence, using (46), (15) and Lemma 18(i), we get that there existsh that
sup(1+122) |6 A )| < ce |V + Z] o (i +wllyre + Y8+ Zl| e )

ZE%@ W

+ C(”w”H}; + 8) H(QL q2)||QtZ
< &(2c83 + ¢83) + c||h1||52§?

for everyp € [—¢o, 9ol, € €10, g0, Af € [—62, §2] and everyy; € %fyg(%ao, 83).
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This last estimate combined with the Exponential Lemma 4 ensures that there exist
¢ such that

4
|1l < ce™ (e + 1ball3e) (47)

holds for for everyp € [—go. ¢ol, € €10, £ol, A§ € [—52, 621 and everyh € BHY (160, 83).
Gathering (44), (45), (47), we finally get the desired equivalent at Lemma 20(i).
(i) For b/ = (g1, g5, w', Z') € $H¢ let us denote

U = ((g5+iq)€", (g5 +iqpe Ve, w', Z')
and observe that

Dy, J1(0,9,0,8).h" = Dy, J11(0, ¢, 0, &)1/
2 . AQX. .
/e"Te_’rDhlAg,A(OJp,O, £).h dx

—00

_ 1
2
with
DhlAé‘,A(ov Y, Ov 8)'[3/ = ei(%_]//W)DUR&A(O’ 0’ I/tg, YOh)U/
. A0Z
Filgy+ig))e " (ya(up, ept(YL),0,6) — y1(uh, 0,0, ¢)).
Hence, using (46), (41), (42), (43) we get

sgsp(1+ 121%)[€7"“ Dy, Ac. 40, 9. 0, 8).5'(2)| < cellb[| 5o
Z€Dy

This last estimate combined with the Exponential Lemma 4 ensures that therecexists
such that

—l
| Dy, J1(0,9,0,8).'| < cee™ ||| ge
holds for for everyy € [—¢o, ¢ol, € €10, go] and everyh’ € H%. O

4.6. Proof of Theorem 9

4.6.1. Homoclinic connections of the modified equations
As already explained in subsection 4.2, for finding homoclinic connections of (20) we
first study the modified Eq. (22)

pr(Z)bl = Gl(bl’ AB’ v, 8)5

where
t=G- —2_1 e<r
G G .

We first prove

PrROPOSITION 21. — For every? €10, p[, 0 < @ < 1, there existd,, e1 andc > 0
such that for every € ]—go, ¢ol, € €10, e1], and everyAj € 1-44, 84, Eq. (22) admits
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a reversible homoclinic connectidn, 4; ,.- to 0, lying in $7, analytic with respect to
(¢, Ap) and satisfying

Il < (e +143).

Proof. —Our aim is to solve (22) by using analytic implicit function theorem. For that
purpose, we rewrite (22) under a more appropriate form.

On one hand, Lemmas 15 and 16 ensure that for eyegy[—¢o, o] and every
e €10, gol, the operatot, is an isomorphism of Banach spaces from

9% g =97 N{b/bhis reversible, i.eSh(z) = h(—z) foranyz € B, }

onto

HS 4 == (H{'y x Hi'sx Hfy x H, n]D)w {//r (x),F(x))d }

N {F/F is antireversible, i.e5F(z) = —F(—z) for anyz € B,}
normed with
_ Aot
IF g = 1 Fullg, + 1 F2m o, €5 (1 F g, + 1 Fopllag,)

. ;202 _; 0z
+H(1F611+qu)el ¢ Fo + Fp)e'

whereF = (F,,, F,,, F,, F7).

On the other hand, Lemmas 17 and 20 ensure@idt1, A}, ¢, ¢) lies inH%| %, for
every g € [—go, ¢ol, € €10, gol, Af € [—62, 82] and everyh, € ‘Bm( 50, 83)|R Where
BHY (do, dr) | g = BHY (do, dr) N {h/b is reversiblé.

Hence, for every € [—¢o, ¢ol, € €10, gol, Aj € [—82, 82] and everyh, € %sa‘g(%ao,
83)|r EQ. (22) is equivalent to

b1 =Ny (b1, A5, ) :=L_'G" (b1, Ay, 0. ) (48)

whereN< is an analytic function fronﬁssﬁz‘(%(so, 83)|r X 1—82, 82l x 1—go, ¢ol 10 HF |k
which satisfies

INZ (b1, A5, @) [l 0 < e (™ + B2l + 1451).
HDthi(O, 0, ¢’)||L(.s§‘;,5;‘) <ce™®
thanks to Lemmas 15, 16, 17, 19, 20 and thanks to the estimate

Apt

e e < ce™e

Finally, we need a slight adaptation of the Implicit Function Theorem to solve (48), since
we fix ¢ small enough, but non zero here. We replbiceh, Ag, ¢) by

N (b1, A, 9) — (1 — ne* )NL(0, 0, p)
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and use the Analytic Implicit Function Theorem fdy;, Ag, 1) near 0, observing that
g?~INL(0, 0, ¢) is uniformly bounded i¢ |« for (e, @) €10, €] x 1¢o, ¢ol.

For anyg € Jgo, ¢ol and foru = 0 we have the trivial solutioith,, Aj) = 0 whereas
(48) corresponds tp = ¢~ which lies in the domain of existence of the solution for
and|Ag| small enough.

Hence, there exist;, §4 such that for every €10, 1], (22) admits a solutiom,w,AB,g
lying in $% |z which is analytic with respect top, Af) € 1—¢o, ol x 1—84, 4] and
which satisfies

1—
101pas clloe < (7 +1A43)). O

4.6.2. Resolution of the solvability condition
To achieve the proof of Theorem 9, we look for appropriate values of the phase shifi
@ := ¢p(Ag, €) € 1—¢o, pol such that

J[hl,AB,(p(a,AB),sa @(e, Ap), Ag, €] =0.

For such values of the phase shifi, s 4 .- is a reversible homoclinic connection

to 0 of the Eq. (20) lying irfBﬁ‘g(%ao, 83) which gives the existence of an homoclinic
connection to O for (19) under the form

h=ho.+ bl,Aa,rp(s,Aa),a-

Denote &, := Min(e1, 82). Then Proposition 21 and Lemma 20 ensure that there
existsc, > 0 such that for any €]0, %], everye €]0, g2, ¢ €]—¢0, wol and every
Ay € [0, e17*], we haves ™ < §, and

—{Ag

J(hl,AB,(p,&‘v (pv A6v 8) - e e A6S|n(r(ﬂ(oo)) + Jl(hl,AB,(p,Sv (0, A*v 8)

and
—LA

|Jl(hl,A6,<p,s» @, Ay, &)| <cocee .
Then observe that — I',(oc0) is affine since, (00) = a(e, Ag)e + b(e) where

+00
a(s,AB)::—%(Ag—i—syl(0,0,AS,e))<0, b(e) ::/yl(ug(g),o,o,s)di
0

and that our choice opo ensures that — I',(c0) is a monotonic bijection from
I—®o, ol Onto ]b(e) — 2, b(e) + 2r[. So there exist three consecutive valygs<
@5 < @3 of ¢ in 1—go, go[ andn* € Z such that

T T T
Ly(0o) =% +n'n,  Ty)=o+0 —Dr,  Ty0)=7+0" ~ 2.

Then, denote, = 2c, ands, := min(s2, 1/(2C>)?) and observe that for eveaye< 10, %],
¢ €10, &,] and everyAy € [c.¢, e17%], we havec,e < 17 and
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—o\2
J(hl,Aa,(pI,&‘a (pIa 67 E)J(hl,A6,¢§,87 (957 65 8) < _(C*e € ) < 05

—to\2
J(hl,Aa,(pE,&‘a (pga 67 E)J(hl,A6,¢§,87 (957 65 8) < _(C*e € ) < 0

Hence, the intermediate value theorem ensures that for everyo, %], e €]0, &,]

and everyAj € [c,s, e17] there are two distinct values of in ]—go, po| denoted by
@;(e, Ay, j=1,2, suchthat

p1(e, Ap) €loi, o5l P2(e, Ap) €13, @3l
J(D1a8.0c.a5.0- 95 (8, AD), Ag, ) =0,

T (g
0 < e(pa(e, Ap) — @1(e, AD)) '07 (; +11(0,0, A3, s)) < 2.

This ensures that (9) admits two distinct reversible homoclinic connectiogs, .
satisfying

T
HAo,q)j,a(i)izoo Page | X = 8%’7 ,

wherep,, . is T-periodic withT := 27 /(% + y1(0, 0, A, ¢)). The other phase shifts
for which J vanishes lead to the same homoclinic connections.
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