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ABSTRACT. – We investigate vortex pinning in solutions to the Ginzburg–Landau equa
The coefficient,a(x), in the Ginzburg–Landau free energy modeling non-uniform supercon
tivity is nonnegative and is allowed to vanish at a finite number of points. For a sufficiently
applied magnetic field and for all sufficiently large values of the Ginzburg–Landau para
κ = 1/ε, we show that minimizers have nontrivial vortex structures. We also show the exis
of local minimizers exhibiting arbitrary vortex patterns, pinned near the zeros ofa(x).

RÉSUMÉ. – On étudie la localisation des vortex des solutions de l’équation de Ginz
Landau. Dans l’énergie libre de Ginzburg–Landau, le coefficienta(x) modélise la supracondu
tivité non uniforme. Ce coefficient est positif et s’annule en un nombre fini de points. On m
que, pour un champ magnétique assez grand et pour toutes les valeurs du paramètre de G
Landauκ = 1/ε assez grandes, les minimiseurs présentent des structures de vortex non t
On montre aussi l’existence de minimiseurs locaux présentant une structure prescrite d
situés au voisinage des zéros dea(x).

Introduction

In this paper we analyze several aspects of vortex pinning in superconductivity
the Ginzburg–Landau theory as our model. To describe these phenomena cons
energy

Jε(ψ,A)=
∫
�

[∣∣(∇ − iA)ψ
∣∣2 + |∇ ×A− hee3|2 + 1

2ε2

(
a − |ψ |2)2] (1)
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for ε > 0. Here� is a bounded simply connected domain inR
2 with a smooth(C2,1)

boundary anda :� → R. The domain� represents the cross-section of an infin
cylindrical body withe3 as its generator. The body is subjected to an applied mag
field, hee3 wherehe � 0 is constant. The functionA :�→ R

2 is the magnetic potentia
and∇ ×A= ∇ × (A1,A2,0) is the induced magnetic field in the cylinder. The funct
ψ is complex-valued where|ψ |2 = ψ∗ψ represents the density of superconduct
election pairs and

j = − i

2
(ψ∗∇ψ −ψ∇ψ∗)− |ψ |2A (2)

denotes the superconducting current density circulating in the cross-section�. The
parameterε = 1/κ is a positive number whereκ is the Ginzburg–Landau parame
associated to the material. We analyze the smallε (largeκ) regime. It is here that vorte
dominated current patterns are expected in stable equilibria forJε. The prototypical
picture of this phenomenon is that of a finite number of non-superconducting p
in � (at whichψ = 0, called vortices), each of which is surrounded by a ring of
super currentj .

If the material is homogeneous, the functiona in Jε is taken to be a constan
proportional toTc − T . HereT is the body’s temperature andTc is the material’s critica
temperature. ForT � Tc (a � 0), it is easy to show that the only equilibria forJε are
completely non-superconducting and haveψ ≡ 0, ∇ × A ≡ hee3. For T < Tc (a > 0),
superconducting minimizers exist if the applied field strengthhe is not too large. Ther
are a number of mathematical investigations of the relationship betweenhe and the
nature of stable superconducting states for this case. In [11] Sandier and Serfaty
that there exists a constantHc1 proportional to| log(ε)| asε → 0, such that ifhe �Hc1,
then minimizers forJε are purely superconducting, satisfying|ψ |> 0 in �. In [12] they
showed that forhe slightly greater thanHc1 and such thathe 
 ε−2, minimizers are in
a mixed state having a vortex-like structure. It was shown by Giorgi and Phillips i
that forhe � Cε−2 for some constantC, superconductivity is completely suppressed
that all equilibria forJε haveψ ≡ 0.

Inhomogeneous superconducting materials can arise naturally due to material
or the presence of grain boundaries. Inhomogeneities can be inserted intent
as well, by adding non-superconducting (normal) impurities to the material. (Se
and [4].) A consequence of having material inhomogeneities is that they tend to
stabilize supercurrent patterns. The classical Ginzburg–Landau theory can be m
to take normal inclusions into account. This is done by having the critical temper
Tc, depend on position which is equivalent to havinga = a(x). (See [10].) It is possible
thata(x) may vanish or change sign within the domain.

A mathematical study for the Ginzburg–Landau equations corresponding to the e
(1) with variablea(x) was done by Aftalion, Sandier, and Serfaty in [1] where the c
1
2 � a(x) � 1 was considered. They proved among other things, thatHc1 remains of
order | log(ε)| asε → 0. In this paper we consider the case where� contains a finite
number of point impurities,{x1, . . . , xn}, and thata(x) vanishes at these normal sites.
this instance, the strong pinning enables us to show that the transition thresholdhe,
denoted byHc1 =Hc1(ε), separating the presence or absence of vortices, is of orde
ε→ 0. (See Corollary 4.4.) In addition, for eachhe and allε sufficiently small, we show
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that there are local minimizers forJε with prescribed vortex structure about each of
xi corresponding to the homotopy classes in� \ {x1, . . . , xn}. (See Theorem 4.6.) In th
way we are able to pin supercurrent patterns near the zeros ofa(x). (See Theorem 4.6.

Another way of introducing inhomogeneities is by making holes (voids) in the b
In [8,9,13]Jε was studied witha = 1, he = 0 but with� multiply connected by Jimb
and Morita, Jimbo and Zhai, and Rubinstein and Sternberg, respectively. In that s
local minimizers with prescribed vortex structures associated to the homotopy c
of � were shown to exist.

We require thata(x) satisfy the following.
Assume:a ∈ C1(�\{x1, . . . , xn}) ∩ Cβ(�) for someβ > 0,

√
a ∈ H 1(�), a(x) � 0

for all x in �, anda(x)= 0 iff x ∈ {x1, . . . , xn} wherex1, . . . , xn are distinct points in�
andn ∈ N. Moreover, assume that there are positive constantsmi,Mi andαi so that
mi|x − xi |αi � a(x)�Mi |x − xi |αi in some neighborhoodUi of xi for 1� i � n.

DEFINITION. – Let ε > 0 and let (ψε,Aε) ∈ H 1(�;C) × H 1(�;R
2) ≡ M. Then

(ψε,Aε) is an equilibrium forJε if and only if(ψε,Aε) is a weak solution of the Euler
Lagrange equations and natural boundary conditions for critical points ofJε in M,
namely:

−(∇ − iAε)
2ψε = 1

ε2

(
a − |ψε|2)ψε in �,

(∇ − iAε)ψε · n= 0 on ∂�,
(3)

and

∇ × ∇ ×Aε = − i

2

(
ψ∗
ε ∇ψε −ψε∇ψ∗

ε

)− |ψε|2Aε ≡ jε in �,

∇ ×Aε = hee3 on∂�.
(4)

For ε = 0 we set

J0(ψ,A)=
∫
�

[∣∣(∇ − iA)ψ
∣∣2 + |∇ ×A− hee3|2]. (5)

Denote

H 1
a = {ψ ∈H 1(�;C) such that|ψ | = √

a almost everywhere
}
.

Note thatH 1
a is nonempty, since

√
a ∈ H 1

a by our assumptions ona. We prove in
Section 1 (see Theorem 1.4) that eachψ ∈ H 1

a can be written asψ = √
a eiθ(x),

whereθ(x) = θ0(x) +∑n
i=1 diθi(x), θ0 is a measurable function determined up to

additive constant, 2πk for k ∈ Z, satisfying
∫
� a|∇θ0|2 <∞, D = (d1, . . . , dn) ∈ Zn is

uniquely determined, andθi(x) is the azimuthal angle aboutxi for 1 � i � n (so that
(cosθi(x),sinθi(x))= (x − xi)/|x − xi | for all x �= xi in R

2). Thusψ corresponds to
uniqueD ∈Zn describing a homotopy class forψ in �\{x1, . . . , xn}. We write

H 1
a = ⋃

n

H 1
a,D.
D∈Z



708 N. ANDRE ET AL. / Ann. I. H. Poincaré – AN 20 (2003) 705–729

ns

of

th this

dary
We note thatH 1
a,D is both open and closed inH 1

a and that if{un} ⊂ H 1
a,D such that

un ⇀ u in H 1 thenu ∈H 1
a,D. (See Theorem 1.5.)

DEFINITION. – Let (ψ0,A0) ∈H 1
a ×H 1(�;R

2)≡ M0. Then(ψ0,A0) is an equilib-
rium for J0 if and only if (ψ0,A0) is a weak solution of the Euler–Lagrange equatio
and natural boundary conditions for critical points ofJ0 in M0, namely:

div
[
− i

2

(
ψ∗

0∇ψ0 −ψ0∇ψ∗
0

)− |ψ0|2A0

]
= 0 in �,[

− i

2

(
ψ∗

0∇ψ0 −ψ0∇ψ∗
0

)− |ψ0|2A0

]
· ⇀n = 0 on∂�,

(6)

and

∇ × ∇ ×A0 =
[
− i

2

(
ψ∗

0∇ψ0 −ψ0∇ψ∗
0

)− |ψ0|2A0

]
≡ j0 in �,

∇ ×A0 = hee3 on∂�.

(7)

The functionalsJε, for ε � 0, are gauge invariant. By this we mean that if(ψ,A) ∈
M (M0) and if φ ∈ H 2(�), then the gauge transformation,(ψ ′,A′) = Gφ(ψ,A)

defined by

ψ ′ ≡ψ eiφ,

A′ ≡A+ ∇φ,
satisfies(ψ ′,A′) ∈ M (M0), Jε(ψ,A)= Jε(ψ

′,A′), and(ψ ′,A′) is an equilibrium for
Jε(J0) if (ψ,A) is one. In this paper we will fix a gauge by requiring (without loss
generality) thatA satisfy

divA= 0 in�,

A · n= 0 on∂�,
(8)

since this can be accomplished by an appropriate gauge transformation. Wi
choice of gauge (the Coulomb gauge),A is determined from the value of∇ × A =
(∂xA1 − ∂yA2)e3 ≡ he3 by first solving

)ξ = h in �,

ξ = 0 on∂�.
(9)

From (8), (9), and the fact that� is simply connected we haveA = ∇⊥ξ where
(∂x, ∂y)

⊥ ≡ (−∂y, ∂x). An important feature of the gauge choice (8) is that the boun
conditions in (3) and (6) can be replaced by

∇ψ · �n= 0 on∂�

and, since∇ × ∇ ×A = −)A+ ∇(divA), the term∇ × ∇ ×A in Eqs. (4) and (7) is
equal to−)A.

We establish the following main results in this paper.
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THEOREM 1. –Fix he � 0. For eachD ∈Zn, J0 has an equilibrium(with our choice
of gauge), (ψD,AD), inH 1

a,D×H 1(�;R
2). Moreover,(ψD,AD) is unique up to uniform

rotations ofψD in �, ψD →ψD eic for c ∈ R. (See Theorem3.2.)

We remark that(ψ,A)→ (ψ eic,A) is a gauge transformation inM (M0), and thus
Jε(ψ,A)= Jε(ψ eic,A) for all c ∈ R andε� 0.

THEOREM 2. –Fix he � 0. Let (ψεk ,Aεk ) be an equilibrium forJεk for k = 1,2, . . .
such thatεk → 0+ and

lim inf
k→∞ Jεk (ψεk ,Aεk )� c <∞. (10)

There exists a finite subsetD = D(c, he) of Zn, a subsequence{εk+}, and (ψ0,A0) ∈
H 1
a,D ×H 1(�;R

2) for someD ∈ D such that

(ψεk+
,Aεk+

)⇀
(
ψ0,A0) in M.

Moreover(ψ0,A0) is an equilibrium forJ0. (See Theorem4.1.)

Note that

Jε(
√
a )= |�|h2

e +
∫
�

|∇√
a|2 for ε� 0. (11)

Thus, givenhe, it follows from Theorem 2 that a sequence of minimizers withεk → 0+
will satisfy (10).

THEOREM 3. –Fix he � 0. Let(ψεk ,Aεk ) be a minimizer ofJεk in M for k = 1,2, . . .
with εk → 0+. Then a subsequence(ψεk+

,Aεk+
) → (ψD,AD) in M, where(ψD,AD)

is a minimizer ofJ0 in M0 and (ψD,AD) ∈ H 1
a,D × H 1(�;R

2). Moreover, ifR > 0
andBR(xi) are disjoint subsets of� for i = 1, . . . , n, then for all + sufficiently large,
|ψεk+

|> 0 outside
⋃n
i=1BR(xi) and the degree ofψεk+

in BR(xi) is di for all i ∈ {1, . . . , n}
whereD = (d1, . . . , dn). (See Theorem4.2.)

We prove in Corollary 3.6 that forhe � 0 fixed, the set of allD in Zn such that
H 1
a,D×H 1(�;R

2) contains a minimizer ofJ0 in M0 is a nonempty finite set (dependin
only on�, a(x), andhe), which we denote byD0 = D0(he).

THEOREM 4. –Let (ψε,Aε) be a minimizer ofJε for eachε > 0. Fix R > 0 as in
Theorem3 and he � 0. There existsε0 = ε0(R,he) > 0 such that for all0< ε < ε0,
|ψε| > 0 outside

⋃n
i=1BR(xi) and the degree ofψε in BR(xi) for i = 1, . . . , n, denoted

byDε = (d1,ε, . . . , dn,ε), is in D0. Moreover, there existshe > 0 (depending only on�
anda(x)) such that ifhe > he and0< ε < ε0(R,he), thenDε �= �0. (See Theorem4.3.)

We remark that Theorem 4 implies that{Hc1(ε)} is uniformly bounded inε asε→ 0+.
(See Corollary 4.4.)

The equilibrium found in Theorem 1 is (by uniqueness) the minimizer forJ0 in
H 1
a,D × H 1(�;R

2). SinceH 1
a,D is open inH 1

a , it is also a local minimizer forJ0 in
M0. Givenhe � 0, let (ψD,AD) be such a solution. For local minimizers ofJε in M,
we have (in contrast to Theorem 4) that all degrees inZn nearx1, . . . , xn are attainable:
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ing
THEOREM 5. –Fix he � 0 and anyD in Zn. For eachε > 0 sufficiently small, there
exists a local minimizer,(ψε,Aε), of Jε in M such that(ψε,Aε)→ (ψD,AD) in M as
ε → 0. In addition, for anyR > 0 as in Theorem3, there existsε1(R,he) > 0 such that
|ψε|> 0 outside

⋃n
i=1BR(xi), and the degree ofψε in BR(xi) is di for all ε < ε1, where

D = (d1, . . . , dn). (See Theorem4.6.)

1. Preliminaries

It is well known that if(ψ,A) ∈ M andψ = ρ eiθ , then∇θ is uniquely determined
almost everywhere in{ρ > 0}, ρ ∈W 1,2(�), ρ∇θ ∈ L2(�;R

2),∣∣(∇ − iA)ψ
∣∣2 = |∇ρ|2 + ∣∣ρ(∇θ −A)

∣∣2
and j ≡ − i

2
(ψ∗∇ψ −ψ∇ψ∗)− |ψ |2A= ρ2(∇θ −A) a.e. in�.

(12)

If (ψε,Aε) ∈M and(ψε,Aε) is an equilibrium forJε with ε > 0, then from (3) we can
derive the equations

−div(ρε∇ρε)+ |∇ρε|2 + |jε|2
ρ2
ε

= 1

ε2

(
a − ρ2

ε

)
ρ2
ε in �,

ρε∇ρε · ⇀n = 0 on∂�,

div jε = 0 in�, and

jε ·⇀n = 0 on∂�,

(13)

whereψε = ρε eiθε and jε = ρ2
ε (∇θε − Aε). These equations are obtained by us

test functions of the formϕ = ψ∗
ε φ in the formulation (3) such thatφ ∈ L∞(�) and

(1 + |ψε|)|∇φ| ∈ L2(�). Moreover, if we definehε by ∇ ×Aε = hεe3 then (4) can be
rewritten as

−∇⊥hε ≡ (∂y,−∂x)hε = jε in �,

hε − he on ∂�.
(14)

Similarly, if (ψ0,A0) ∈M0 and(ψ0,A0) is an equilibrium forJ0 then (6) and (7) can
be rewritten as

div j0 = 0 in�,

j0 · ⇀n = 0 on∂�
(15)

and

−∇⊥h0 = j0 in �,

h0 = he on ∂�,
(16)

whereψ0 = ρ0 eiθ0 = √
a eiθ0, h0 is defined by∇ ×A0 = h0e3, andj0 = ρ2

0(∇θ0 −A0).
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The following three results concern maximum principles and regularity for equil
of Jε. The proofs are only a slight variation of the proofs for the case in whicha ≡ 1
in �. (See [5] and [6].)

LEMMA 1.1. –If (ψε,Aε) ∈ M(M0) and (ψε,Aε) is an equilibrium for Jε(J0)

whereε � 0, then|ψε| � sup�
√
a.

Proof. –For (ψ0,A0) ∈M0, we have|ψ0| = √
a in � and hence the result is trivial i

this case. Ifε > 0 and(ψε,Aε) is an equilibrium forJε, the result follows by using

φε ≡ max
{
0,
∣∣ψε(x)

∣∣− sup
�

√
a
}
/
∣∣ψε(x)

∣∣= (ρε(x)− sup
�

√
a
)+
/ρε(x)

as a test function in the weak formulation of the first two equations in (13), which y

0 �
∫
E

|∇ρε|2 =
∫
E

(−φε) · |jε|2
ρ2
ε

+ 1

ε2

∫
E

(
a − ρ2

ε

)
ρ2
ε φε � 0,

whereE = {x ∈�: φε(x) > 0}. It follows thatE has zero measure. Thusφε � 0 a.e. in
� which proves the lemma.✷

LEMMA 1.2. –For ε > 0 equilibria are of class,C2,β(�) for someβ > 0.

Proof. –With our choice of gauge (8), we have∇ ×∇ ×Aε = −)Aε. The system (3
and (4) is thus uniformly elliptic and regularity follows from the classical theory. (
[6].) ✷

LEMMA 1.3. –Fix he � 0. Assumeε � 0 and(ψε,Aε) is an equilibrium forJε.
SetM = max(Jε(ψε,Aε), Jε(

√
a,0), max� a). Then

‖Aε‖2,2 � C(M,�), (17)

‖ψε‖1,2 � C(M,�), (18)

and if ε > 0

|∇ψε| � C(M,�)/ε in �, (19)

where C(M,�) denotes a constant depending only onM,a(x), and �, and the
subscriptk,2 denotes the norm inWk,2(�).

Proof. –We argue forε > 0. The proofs of (17) and (18) for the caseε = 0 are
identical.

We write (using (12))

Jε(ψ,A)=
∫
�

[
|∇|ψ ||2 + |ψ |2|∇θ −A|2 + 1

2ε2

(
a − |ψ |2)2 + |∇ ×A− hee3|2

]
.

Recall thatjε = |ψε|2(∇θε −Aε) andhε is defined by

hεe3 = ∇ ×Aε. (20)
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From this and (12), we have

Jε(ψε,Ae)=
∫
�

[
|∇|ψε||2 + |ψε|−2|jε|2 + 1

2ε2

(
a − |ψε|2)2 + |hε − he|2

]
. (21)

Thus‖jε‖2
2 � sup� a · Jε(ψε,Aε)� C(M,�), where‖jε‖2 denotes theL2 norm ofjε

in �. Then from (14), we have

‖∇hε‖2 � C(M.�).

Using this estimate together with (9) we see that‖∇ξ‖2,2 � C(M,�). Thus

‖Aε‖2,2 = ‖∇ξ‖2,2 �C(M,�).

Note that this implies

‖Aε‖Cγ (�) � C(M,�,γ ) for eachγ ∈ (0,1). (22)

Now

‖∇ψε‖2
2 �C

(∥∥(∇ − iAε)ψε

∥∥2
2 + ‖Aεψε‖2

2

)
.

So we see

‖∇ψε‖2
2 � C(M,�).

This proves (17) and (18) forε > 0 (andε = 0).
To prove (19) lety = x/ε, �ε = �/ε, ψ̃ε(y) = ψε(εy), andÃε = εAε. We have

from the Ginzburg–Landau equation

)yψ̃ε − 2iÃε · ∇yψ̃ε − |Ãε|2ψ̃ε = (a(εy)− |ψ̃ε|2)2ψ̃ε in �ε,

∂nψ̃ε = 0 on∂�ε.

Here we have used the choice of gauge. From (22) we see that|Ãε(y)| = |εAε(y)| �
εC(M,�). It follows from local elliptic estimates and Lemma 1.1 thatψ̃ε ∈ W 2,p(�ε)

for p <∞ and

|∇yψ̃ε| � C(M,�) in �ε for 0< ε � 1.

(Here we use that∂� is of classC2,1.) Thus|∇ψε| � C(M,�)/ε in �. ✷
The remaining results in this section are facts about

H 1
a = {ψ ∈H 1(�;C): |ψ | = √

a a.e. in�
}

which are used later in this paper.

THEOREM 1.4. –Eachu ∈H 1
a can be written as

u(x)=√
a(x) ·

n∏
j=1

(
z− zj

|z− zj |
)dj

· eiϕ(x) =√
a(x) · eiθ(x)
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wherez= z(x)= x1 + ix2 for x = (x1, x2) in �, zj = z(xj ), ϕ ∈H 1
loc(� \ {x1, . . . , xn}),

θ(x) = ϕ(x) + ∑n
j=1dj θj (x), and θj (x) is the azimuthal angle ofx about xj for

1 � j � n. Moreover, for eachu ∈H 1
a , D ≡ (d1, . . . , dn) ∈ Zn is unique,ϕ ∈ H 1

loc(� \
{x1, . . . , xn}) is unique up to an additive constant2πk for k ∈ Z, and ϕ satisfies∫
� a|∇ϕ|2 �C(�,a,D)+ ∫� |∇u|2.

Proof. –Fix u ∈ H 1
a and setv(x) = u(x)/

√
a(x) = u(x)/|u(x)|. Thenv ∈ H 1

loc(� \
{x1, . . . , xn};S

1) whereS
1 = {z ∈ C: |z| = 1}). It follows from Schoen and Uhlenbec

[14] that there exists a sequence{vm} such that

vm ∈C2

(
� \

n⋃
j=1

B 1
m
(xj );S

1

)

for m= 1,2,3, . . . and

vm → v in H 1
loc

(
� \ {x1, . . . , xn}) asm→ ∞.

(See also [2].) We compute the degree of eachvm nearxj ; as follows:
We say that a radiusr is admissiblefor a givenxj andvm if Br(xj ) ∩ {x1, . . . , xn} =

{xj } and∂Br(xj )⊂� \⋃n
i=1B 1

m
(xi). For any suchr , sincevm is smooth and|vm| = 1

in � \⋃n
i=1B 1

m
(x1, . . . , xn), the winding number ofvm on ∂Br(xj ) is defined by:

dj,m = − i

2π

∫
∂Br(xj )

v∗
m(vm)τ (23)

whereτ = ν⊥ = (−ν2, ν1), ν is the exterior unit normal on the boundary ofBr(xj ), and
(vm)τ is the derivative ofvm in the directionτ . It is well known from degree theory th
dj,m is integer-valued and independent ofr for all admissibler with respect toxj andm.
Thus if 0< r1 < r2 <∞ andr2 satisfiesBr2(xj )⊂� andBr2(xj )∩ {x1, . . . , xm} = {xj },
then for allm sufficiently large, anyr ∈ [r1, r2] is admissible forxj andvm, and we may
integrate (23) to obtain

dj,m = − i

2π(r2 − r1)

∫
Bra (xj )\Br1(xj )

v∗
m(vm)τ dx. (24)

Sincedj,m is integer-valued andvm → v in H 1
loc(� \ {x1, . . . , xn}) asm→ ∞, it follows

from (24) thatdj,m is independent ofm for all m sufficiently large. Thus there exis
dj ∈Z such thatdj = dj,m for all m sufficiently large and, lettingm→ ∞, we have

dj = − i

2π(r2 − r1)

∫
Br2(xj )\Br1(xj )

v∗vτ dx. (25)

We may use this to define the degree ofv nearxj , since (25) is independent ofr2 > r1 > 0
provided thatBr2(xj ) ⊂ � and Br2(xj ) ∩ {x1, . . . , xn} = {xj } and it is clear (25) is
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e
independent of the particular converging sequence{vm}. In particular, we can defin
the degree of u inBr(xj ) by (25), forv = u/|u| andr1 < r2 as above. (See also [7].)

Now consider the real two-dimensional vector field

Fm = −
n∑

j=1

dj∇θj − iv∗
m∇vm (26)

in C1(� \⋃n
j=1B 1

m
(xj )), whereθj (x) is the (multivalued) azimuthal angle ofx aboutxj

and thus∇θj (x) is well defined in� \ {xj} for 1� j � n. Since∇ ×∇θj = 0 in� \ {xj }
andvm is C2 with |rm|2 = vmv

∗
m = 1 in � \⋃n

j=1B 1
m
(xj ), it follows that∇ × Fm = 0 in

� \⋃n
j=1B 1

m
(xj ). Thus ifm is sufficiently large so thatdj = dj,m for 1� j � n, then by

Stokes’ Theorem and (23),
∮
C Fm · dr = 0 for any closed curve,C, in � \⋃n

j=1B 1
m
(xj ).

Moreover, there existsϕm ∈ C2(�\⋃n
j=1B 1

m
(xj )) such that∇ϕm = Fm form= 1,2, . . . .

From this and (26) we obtain

vm∇ϕm = −vm
(

n∑
j=1

dj∇θj
)

− i∇vm

and hence

∇(vm e−iϕm · e−i∑n

j=1
dj θj
)= e−iϕm · e−i∑n

j=1
dj θj

×
[
∇vm − i

(
vm∇ϕm + vm

n∑
j=1

dj∇θj
)]

= 0.

As a result (adding a constant toϕm if necessary), we have

vm(x)= eiϕm(x) · ei
∑n

j=1
dj θj (x) = eiϕm(x) ·

n∏
j=1

(
z− zj

|z− zj |
)dj

.

By (26),∇ϕm = −∑n
j=1 dj∇θj − iv∗

m∇vm and sincevm → v in H 1
loc(� \ {x1, . . . , xn}),

we have∇ϕm → −∑n
j=1 dj∇θj − iv∗∇v and

eiϕm ≡ vm ·
n∏

j=1

(
z− zj

|z− zj |
)−dj

→ v ·
n∏

j=1

(
z− zj

|z− zj |
)−dj

in L2
loc(� \ {x1, . . . , xm}). It follows that{ϕm} (after possibly subtracting constants 2πkm

wherekm ∈ Z) converges inH 1
loc(� \ {x1, . . . , xn}), to someϕ ∈H 1

loc(� \ {x1, . . . , xn}),
andu= √

av = √
a ei(ϕ+∑n

j=1
dj θj ) a.e. in�.

Settingθ(x)= ϕ(x)+∑n
j=1dj θj (x), we have

|∇u|2 = |∇√
a|2 + a|∇θ |2 � a|∇θ |2.
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s

t of
Since|∇θj (x)| = c(dj )|x − xj |−1 anda(x)� c|x − xj |αj whereαj > 0 for 1� j � n,∫
�

a(x)
∣∣∇θj (x)∣∣2 � C(�,a,D) <∞ (27)

whereD = (d1, . . . , dn). Thus∫
�

a|∇ϕ|2 �
∫
�

|∇u|2 +C ·
n∑

j=1

∫
�

a|∇θj |2 �
∫
�

|∇u|2 +C(�,a,D).

Finally, to show thatD ∈Zn is unique andϕ ∈H 1
loc(� \ {x1, . . . , xn}) is unique (up to

an additive constant 2πlwherel ∈Z) for eachu ∈H 1
a , assume that̃D = (d̃1, . . . , d̃n) ∈

Zn and ϕ̃ ∈ H 1
loc(� \ {x1, . . . , xn}) such thatu = √

a ei[ϕ̃+∑n

k=1
d̃kθk]. Then v ≡ u/

√
a

satisfies−iv∗∇v = ∇ϕ̃ + ∑n
k=1 d̃k∇θk in � \ {x1, . . . , xn}. Fixing j ∈ {1, . . . , n} and

integrating overBr2(xj ) \Br1(xj ) for 0< r1 < r2 as in (25), we have

dj = − i

2π(r2 − r1)

∫
Br2(xj )\Br1(xj )

v∗vτ dx

= 1

2π(r2 − r1)

∫
Br2(xj )\Br1(xj )

(
ϕ̃τ +

n∑
k=1

d̃k(θk)τ

)
dx

= 1

2π(r2 − r1)
· [0+ d̃j · 2π(r2 − r1)

]
= d̃j

where τ = τ(x) = (x − xj )
⊥/|x − xj | for all j ∈ {1, . . . , n}. Thus ei(ϕ−ϕ̃) = 1 in

� \ {x1, . . . , xn} with ϕ− ϕ̃ in H 1
loc(� \ {x1, . . . , xn}) and it follows thatϕ− ϕ̃ = 2πl for

somel ∈Z. ✷
For eachD ∈Zn; we define

H 1
a,D = {

u ∈H 1
a : u= √

a ei[ϕ+∑n

j=1
dj θj ] whereϕ ∈H 1

loc

(
� \ {x1, . . . , xn})}.

By Theorem 1.4, it follows that

H 1
a = ⋃

D∈Zn

H 1
a,D

andH 1
a,D∩H 1

a,D′ = ∅ forD �=D′ in Zn. We will need the following additional propertie
of H 1

a,D:

THEOREM 1.5. –For eachD ∈ Zn, H 1
a,D is a nonempty, open and closed subse

H 1
a . In addition,H 1

a,D is sequentially weakly closed inH 1(�;C), i.e. if {uk} ⊂H 1
a,D and

uk → u weakly inH 1(�;C), thenu ∈H 1
a,D.
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Proof. –Our hypotheses ona in � ensure that
√
a ∈H 1(�) and

√
a∇θj ∈L2(�) for

eachj ∈ {1, . . . , n} (see (27)); hence
√
a ei[

∑n

j=1
dj θj ] ∈ H 1

a,D andH 1
a,D �= ∅. To prove

thatH 1
a,D is open inH 1

a , assume thatu0 = √
a ei[ϕ+∑n

j=1
dj θj ] ∈H 1

a,D and let

BR(u0)= {
u ∈H 1

a : ‖u− u0‖H1(�;C) < R
}

whereR > 0. Sinceu ∈ H 1
a , there existsϕ̃ ∈ H 1

loc(� \ {x1, . . . , xn}) and D̃ ∈ Zn such

thatu= √
a ei[ϕ̃+∑n

j=1
d̃j θj ]. Setv0 = u0/|u0| = u0/

√
a andv = u/|u| = u/

√
a. By (25),

there exist positive numbersr1 < r2 such that for eachj ∈ {1, . . . , n},

dj = − i

2π(r2 − r1)

∫
Sj

v∗
0(v0)τ dx (28)

and

d̃j = − i

2π(r2 − r1)

∫
Sj

v∗(v)τ dx

whereSj = Br2(xj ) \ Br1(xj ). Sincea is C1 and |a|> 0 onSj for eachj ∈ {1, . . . , n},
we have∥∥v∗

0∇v0 − v∗∇v∥∥
L1(Sj )

�
∥∥v∗(∇v0 − ∇v)∥∥

L1(Sj )
+ ∥∥(v∗

0 − v∗)∇v0
∥∥
L1(Sj )

�C(a, r1, r2, v0) · [1+ ‖u0‖H1(Sj )

] · ‖u− u0‖H1(Sj )
.

From this and (28), it follows that ifR is sufficiently small (depending onr1, r2, �, a,
andu0), we havedj = d̃j andu ∈ H 1

a,D. ThusBR(u0)⊂ H 1
a,D for R sufficiently small

and we conclude thatH 1
a,D is an open subset ofH 1

a . Now sinceH 1
a = ⋃

D∈Zn H 1
a,D and

Ha,D ∩H 1
a,D′ = ∅ for D �=D′ in Zn, H 1

a,D is also a closed subset ofH 1
a .

Finally, to prove thatH 1
a,D is weakly sequentially closed inH 1

a , assume that{uk} ⊂
H 1
a,D and uk → u weakly in H 1(�;C). By compactness, a subsequence (which

relabel as{uk}) satisfiesuk → u in L2(�). Thus|u| = √
a a.e. in� and henceu ∈H 1

a,D̃

for someD̃ ∈ Zn. It follows from (28) (withv0 replaced byuk/
√
a andv replaced by

u/
√
a and the weak convergence ofuk to u thatD = D̃ andu ∈H 1

a,D. ✷
2. A weighted Sobolev space

Set

V ≡
{
g ∈H 1(�):

∫
�

a−1|∇g|2 <∞
}
.

ThenV is a Hilbert space with norm

‖g‖V =
(∫ [

a−1|∇g|2 + g2])1/2

.

�
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We prove in Section 3 that if(ψD,AD) is an equilibrium forJ0 in H 1
a,D ×H 1(�;R

2)

andhD is defined byhDe3 = ∇ ×AD , thenhD ∈ V and

div
(
a−1∇hD)− hD = −2π

n∑
j=1

dj δxj

in the weak sense inV ; moreover, we can evaluate the minimum energy ofJ0 in
H 1
a,D ×H 1(�;R

2) andH 1
a ×H 1(�;R

2) using Hilbert space properties ofV ∩H 1
0 (�).

We need:

LEMMA 2.1. –The mapg ∈ V → g(xi) is continuous onV for each1 � i � n where
g(xi) is defined by

g(xi)≡ lim
r→0

∫
−

∂Br (xi)

g. (29)

Moreover, anyg ∈ V satisfies:

lim
r→0

∫
−

∂Br (xi)

(
g− g(xi)

)2
a−1 = 0. (30)

Proof. –Let 0< s < r . Theng has a trace on∂Br(xi) and∂Bs(xi), and∣∣∣∣ ∫−
∂Br(xi)

g−
∫
−

∂Bs(xi)

g

∣∣∣∣� 1

2π

∫
Br(xi)\Bs(xi)

[|∇g|/|x|] · a−1/2 · a1/2

� 1

2π

( ∫
Br(xi)\Bx(xi)

a−1|∇g|2
)1/2

·
( ∫
Br (xi)\Bs(xi)

|x|αi−2
)1/2

� 1

2π
‖g‖V · (rαi − sαi )1/2.

Thus, the limit in (29) exists andg(xi) is well defined by (29). Lettings → 0, we have

∣∣∣∣g(xi)−
∫
−

∂Br(xi)

g

∣∣∣∣� 1

2π

( ∫
Br(xi)

a−1|∇g|2
)1/2

· rαi/2

and hence

lim
r→0

r−αi/2
∣∣∣∣g(xi)− ∫

−
∂Br(xi)

g

∣∣∣∣= 0. (31)

Multiplying the above inequality byr and integrating from 0 toR for R < dist(xi, ∂�),
we obtain ∣∣g(xi)∣∣� C

(∫
B

g + ‖g‖V
)

� C
(‖g‖L2(BR) + ‖g‖V )� C‖g‖v
R
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d
e

e

whereBR denotes the ball of radiusR centered atxi , andC is a constant depending on
onR anda. This proves the continuity of the mapg → g(xi) onV .

Next setg̃ = g− g(xi). We have fors < r < dist(xi, ∂�)∣∣∣∣ ∫−
∂Br

g̃2 −
∫
−
∂Bs

g̃2
∣∣∣∣� ∫

Br\Bs
|g̃||∇g|/|x|

�
( ∫
Br\Bs

|∇g|2a−1
)1/2( ∫

Br\Bs
g̃2|x|αi−2

)1/2

(32)

� ‖g‖V
( ∫
Br\Bs

g̃2|x|αi−2
)1/2

whereBr andBs are centered atxi . Set

F(s)=
∫

Br\Bs
g̃2|x|αi−2 = 2π

r∫
s

∫
−
∂Bτ

g̃2ταi−1dτ.

CLAIM 1. – lims→0F(s) is finite.

To prove this, note thatF ′(s)= −sαi−2
∫
∂Bs

g̃2 and thus (32) can be rewritten as∣∣∣∣ 1

2π
r1−αiF ′(r)− 1

2π
s1−αiF ′(s)

∣∣∣∣�C1(r) · F(s)1/2

whereC1(r)= (
∫
Br

|∇g|2a−1)1/2 � ‖g‖V <∞ for 0< r �R. Thus

−F ′(s)� sαi−1[C1(r) · F(s)1/2 +C2(r)
]

for 0< s < r . SinceF(s) is monotone nonincreasing on(0, r), we obtain the claime
result if we prove thatF is bounded on(0, r). Without loss of generality, we can assum
thatF(s) � c0 > 0 for 0< s < r

2 (if not, the result follows easily). Dividing the abov
inequality byF 1/2(s), we have

−(F 1/2(s)
)′ �C

(
sαi−1 + 1

)
.

Integrating from s tor/2 we find that

F 1/2(s)�C(r) <∞ for s < r/2,

which proves Claim 1.
It follows from Claim 1 and (32) that{∫−∂Br g̃

2} is Cauchy asr → 0.

CLAIM 2. – limr→0
∫−∂Br(xi)g̃

2 = 0.

To prove this, setγ ≡ limr→0
∫−∂Br (xi)g̃

2. Integrating (29), we haveg(xi) =
limr→0

∫−Br (xi)g. Thus from (31),
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e

e

erning
lim
r→0

∫
−
Br

∣∣∣∣g−
∫
−
Br

g

∣∣∣∣2 = lim
r→0

∫
−
Br

∣∣g− g(xi)
∣∣2 = lim

r→0
2r−2

r∫
0

s

∫
−
∂Bs

g̃2 ds = γ

whereBr = Br(xi). By the Sobolev inequality in two dimensions we have∫
−
Br

∣∣∣∣g −
∫
−
Br

g

∣∣∣∣2 �C

∫
Br

|∇g|2 → 0 asr → 0

and thusγ = 0, which proves Claim 2.
We are now in a position to prove (30). Lettings → 0 in (32) and using Claim 2, w

obtain ∫
−
∂Br

g̃2 � d(r)

(∫
Br

g̃2|x|αi−2
)1/2

where d(r) ≡ (
∫
Br

|∇g|2a−1)1/2 and limr→0 d(r) = 0 since g ∈ V . Set G(r) =∫ r
0 τ

αi−1 ∫−∂Bτ g̃
2 dτ . ThenG(0)= 0 and from the above inequality,

rαi−1
∫
−
∂Br

g̃2 =G′(r)� d(r)G1/2(r)rαi−1.

Separating and integrating and using the fact thatd(r) is monotone nondecreasing, w
get

G1/2(r)� Cd(r)rαi .

Inserting this in the estimate onG′(r) gives

r−αi
∫
−
∂Br

g̃2 = r1−2αiG′(r)� Cd2(r).

Sincea(x)∼ |x − xi |αi in a neighborhood ofxi , we see that (30) follows. ✷
3. Analysis of the case ε = 0

Recall thatJ0(ψ,A)= ∫
�[|(∇ − iA)ψ |2 + |∇ ×A− hee3|2].

In this section, we prove the results stated as Theorem 1 in the introduction conc
equilibria ofJ0. (See Theorem 3.2.) We also establish a formula forJ0(ψD,AD) where
(ψD,AD) is an equilibrium forJ0 in H 1

a,D × H 1(�;R
2). We shall need the following

results concerning∇ ×AD:

LEMMA 3.1. –Let (ψD,AD) be an equilibrium forJ0 in H 1
a,D ×H 1(�;R

2). Define
hD by∇ ×AD = hDe3. Thenh= hD is the unique solution of:∫

�

a−1∇h · ∇ζ +
∫
�

hζ = 2π
n∑
i=1

diζ(xi) ∀ζ ∈ V ∩H 1
0 (�),

h− he ∈ V ∩H 1
0 (�).

(33)
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nt
Proof. –SinceψD ∈ H 1
a,D, we haveψD = √

a eiθ and
√
a∇θ ∈ L2(�). In addition,

since
√
a ∈ H 1(�) and a ∈ C1(�\{x1, . . . , xn}) ∩ Cβ(�) by assumption, it follows

from (7), (12), and (14) thatJ0(ψD,AD) < ∞, jD ∈ L2(�), andhD − he ∈ H 1
0 (�).

By (12), (16), and (17),−∇⊥hD = jD ≡ (j1
D, j

2
D) = a(∇θ − AD). Thus |∇hD|/√a =√

a|∇θ −AD| ∈L2(�) andhd − he ∈ V ∩H 1
0 (�). Moreover,

div
(

1

a
∇hD

)
= −∇ ×

(
1

a
jD

)
= −∇ × (∇θ −AD)= hD in �\{x1, . . . , xn}

in the sense of distributions. Sincea isC1 and positive in�\{x1, . . . , xn}, it follows that
hD ∈H 2

loc(�\{x1, . . . , xn}) and henceθ ∈H 2
loc(�\{x1, . . . , xn}).

Now let ζ ∈ V ∩H 1
0 (�) and consider∫

�

a−1∇hD · ∇ζ = lim
r→0

∫
�\⋃n

i=1
Br (xi)

−∇θ · ∇⊥ζ −
∫
�

hDζ.

For r > 0 fixed and small we can integrate by parts to obtain∫
�\⋃n

i=1
Br (xi)

−∇θ∇⊥ζ =
n∑
i=1

∫
∂Br(xi)

ζ θτ

= 2π
n∑
i=1

ζ(xi)di +
n∑
i=1

∫
∂Br(xi)

(
ζ − ζ(xi)

)
θτ , (34)

whereτ = ν⊥ andν is the outward pointing unit normal to∂Br(xi). By (12) and (16),
the last term can be written as

n∑
i=1

∫
∂Br(xi)

(
ζ − ζ(xi)

)[−∂νhDa−1 +AD · τ ].
Using (22) and (29) for eachi,

lim
r→0

∫
∂Br(xi)

(
ζ − ζ(xi)

)
AD · τ = 0.

Now∫
∂Br(xi)

∣∣ζ − ζ(xi)
∣∣|∇hD|a−1 �C

( ∫
−
∂Br

∣∣ζ − ζ(xi)
∣∣2a−1

)1/2(
r

∫
∂Br (xi)

|∇hD|2a−1
)1/2

.

By (30) the first term in the product tends to zero asr → 0. As for the second term, w
claim that lim infr→0 r ·∑n

i=1

∫
∂Br(xi)

|∇hD|2a−1 = 0. Indeed if not, there exists a consta
C > 0 and r0 > 0 such that

∞ =
r0∫

0

C

r
dr �

n∑
i=1

∫
Br (xi)

|∇hD|2a−1,
0
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.

in

f
ge

y
at

Using
which contradicts the fact thathD − he ∈ V . It follows that there is a sequencerj → 0
such that the last term on the right side of (34) tends to zero asr = rj → 0, and hence
h= hD satisfies (33).

Now to prove that solutions of (33) are unique, assume thath1 andh2 are solutions
Thenh1 − h2 ∈ V ∩H 1

0 (�) and

0=
∫
�

[
a−1∣∣∇(h1 − h2)

∣∣2 + |h1 − h2|2],
whenceh1 − h2 = 0. ✷

THEOREM 3.2. –Fix he � 0. For eachD ∈ Zn, J0 has an equilibrium(with our
choice of gauge(8)), denoted by(ψD,AD), in H 1

a,D ×H 1(�;R
2), which is unique up to

uniform rotations ofψD in �, ψD →ψD eic wherec ∈ R.

Proof. –First, we note thatJ0 has a minimizer,(ψD,AD), in{
(ψ,A) ∈H 1

a,D ×H 1(�;R
2): divA= 0 in � andA · �n= 0 on∂�

}
(and hence inH 1

a,D × H 1(�;R
2) by gauge equivalence), by the direct method

the calculus of variations sinceH 1
a,D is sequentially weakly closed inH 1(�;C) by

Theorem 1.5. Such a minimizer is an equilibrium forJ0 by considering variations o
the form(ψD,AD)→ (ψD eεif ,AD + εB), which yields (6) and (7) as Euler–Lagran
equations.

Now to prove uniqueness of equilibria forJ0 in H 1
a,D × H 1(�;R

2) satisfying the
gauge condition (8), assume that(ψ,A) and (ψ ′,A′) are two such equilibria. B
Lemma 3.1, we must have∇ × A = ∇ × A′. By the choice of gauge, this implies th
A=A′. From (12), (16), and Lemma 3.1, it follows thatj = j ′ and hence∇θ = ∇θ ′ and
ψ =ψ ′ eic for somec ∈ R. ✷

We next evaluateJ0 on equilibria. Consider then + 1 functions inV ∩ H 1
0 (�),{η0, . . . , ηn}, solving

div
(
a−1∇η0

)= η0 + 1, (35)

div
(
a−1∇ηi)= ηi − 2πδ(xi) for 1� i � n. (36)

Note that by Lemma 2.1,δ(xi) ∈ V ′, the dual space ofV , and clearly 1∈ V ′. Thus
the existence and uniqueness of solutions follows from the Lax–Milgram lemma.
min(ηi,0), as test functions in (36) we see thatηi > 0 in� for i = 1, . . . , n. Set

aij = aji ≡
∫
�

[
a−1∇ηi∇ηj + ηiηj

]
for 1 � i, j � n (37)

and

bi =
∫
�

[
a−1∇η0∇ηi + η0ηi

]
for 0� i � n. (38)

Thenbi = − ∫� ηi < 0 for 1� i � n.
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For any �C = (c1, . . . , cn) ∈ R
n setη �C =∑n

i=1 ciηi . Then∫
�

[
a−1∇η �C∇η �C + η �Cη �C

]=∑
aij cicj � 0 (39)

with equality iff η �C ≡ 0. Moreover, we have:

LEMMA 3.3. –The matrix[aij ] defined by(37) is positive definite.

Proof. –By (39), it is sufficient to prove thatη �C ≡ 0 in� implies �C = 0. If not, let �C
be a nonzero vector inRn satisfying�ηC ≡ 0 in�. Thenηq =∑n

i �=q(ci/cq)ηi for someq
satisfyingcq �= 0. Whence

2πδ(xq)= −div
(
a−1ηq

)+ ηq = −div
(
a−1

(∑
i �=q

(ci/cq)ηi

))
+∑

i �=q
(ci/cq)ηi

= 2π
∑
i �=q

(ci/cq)δ(xi),

which is impossible. ✷
Set

E( �C,he)≡∑
aij cicj + 2

n∑
i=1

bicihe + b0h
2
e . (40)

THEOREM 3.4. –Fix he � 0. If (ψD,AD) is an equilibrium forJ0 with ψD ∈ H 1
a,D,

thenhD =∑n
i=1 diηi + heη0 + he and

J0(ψD,AD)=
∫
�

|∇√
a|2 + E(D,he). (41)

Thus(ψD,AD) is a minimizer ofJ0 in M0 if and only ifE(D,he)= inf{E( �C,he): �C ∈
Zn}.

Proof. –Indeed,

J0(ψD,AD)=
∫
�

[|∇√
a|2 + a|∇θD −AD|2 + |∇ ×AD − hee3|2].

SincehDe3 = ∇ ×AD we see from (12) and (16) that

J0(ψD,AD)=
∫
�

[|∇√
a|2 + a−1|∇hD|2 + |hD − he|2].

Now hD is the unique solution to (33). Thus

hD =
n∑
i=1

diηi + heη0 + he.

Using (39) and (40) we see that (41) holds.✷
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Using Theorem 1.4 and Theorem 3.4, we can conclude that minimizers ofJ0 in M0

(or families of equilibria ofJ0 in M0 with uniformly bounded energies) are contain
in a finite number of the spacesH 1

a,D ×H 1(�;R
2). More precisely, we have:

THEOREM 3.5. –Fix he � 0. Let c � inf(ψ,A)∈M0 J0(ψ,A) and let F = F(c, he)
be the family of all equilibria,(ψ,A), of J0 in M0 satisfying J0(ψ,A) � c. Then
there exists a nonempty, finite subsetD of Zn (depending on c andhe) suchF ⊂⋃
D∈D[H 1

a,D ×H 1(�;R
2)].

Proof. –If (ψ,A) ∈ F , then by Theorem 1.4,(ψ,A) is an equilibrium forJ0 in
H 1
a,D ×H 1(�;R

2) for someD in Zn. By Theorems 3.2 and 3.4, we have

c� J0(ψ,A)= J0(ψD,AD)=
∫
�

|∇√
a|2 + E(D,he). (42)

Now since[aij ] � µI for someµ> 0 by Lemma 3.3, we have (by (40)):

E( �C,he)�µ| �C|2 − 2|b| · |he| · | �C| + b0h
2
e

=µ

(
| �C| − |b|

µ
|he|

)2

− |b|2 · |he|2
µ2

+ b0h
2
e

whereb= (b1, . . . , bn), for all �C in Zn. From this and (42), we obtain

c+ |b|2|he|2
µ2

− b0h
2
e −

∫
�

|∇√
a|2 �µ

(
|D| − |b|

µ
|he|

)2

.

The set of all suchD in Zn is finite, which proves the theorem.✷
We remark that whenhe � 0 and c= inf(χ,A)∈M0 J0(χ,A)≡ c(he), we have

c� J0(
√
a,0)=

∫
�

|∇√
a|2 + E(0, he)=

∫
�

|∇√
a|2 + b0h

2
e.

In this case,F = F(c(he), he) is the family of minimizers ofJ0 in M0 (for fixedhe � 0).
Letting D0 ≡ D0(he) be the finite setD corresponding toF in this case, it follows
from (40), Theorem 3.4, and the above inequality that

b0h
2
e � µ|D|2 − 2|b||he||D| + b0h

2
e

and thus

|D| � 2|b| · |he|
µ

(43)

for all D in D0. Thus we have:

COROLLARY 3.6. –Fix he � 0. LetD0 = D0(he) be the set of all D inZn such that
H 1
a,D ×H 1(�;R

2) contains a minimizer ofJ0 in M0. ThenD0 is a finite, nonempty se
in Zn.

We conclude this section with a result which will be used later to estimateHc1 =
Hc1(ε). Recall thatbi < 0 for 1� i � n.



724 N. ANDRE ET AL. / Ann. I. H. Poincaré – AN 20 (2003) 705–729

r

rium
se of
m

ge,
at

ce

f
e

THEOREM 3.7. –Seth̄e = min{−aii/2bi : i = 1,2, . . . , n}. If he > h̄e and (ψD,AD)

is a minimizer ofJ0 in M0 withψD ∈H 1
a,D, thenD �= �0.

Proof. –Let j ∈ {1, . . . , n} satisfy h̄e = −ajj/2bj . Let �ej be the vector inZn whose
ith component isδij for i = 1, . . . , n. If he > h̄e, then by (40), we have:

E(�ej , he)= ajj + 2bjhe + b0h
2
e = −2bj (h̄e − he)+ b0h

2
e < b0h

2
e = E(�0, he).

By Theorem 3.4, we must haveD �= �0. ✷
4. Limiting results

In this section, we prove that minimizers,(ψε,Aε) of Jε exhibit “pinning” of vortices
near{x1, . . . , xn}, the zeroes ofa(x), for ε sufficiently small. In addition, the behavio
of ψε near vortices (i.e., near the zeroes ofψε) is determined by the setD0(he) for each
he � 0. These results were stated as Theorems 2–5 in the introduction.

Throughout this section, we assume without loss of generality that any equilib
of Jε in M (or J0 in M0) considered here satisfies our gauge choice (8). For ea
notation in stating the theorems, we let(ψD,AD) denote an (appropriate) equilibriu
of J0 in H 1

a,D × H 1(�;R
2). Recall that any such(ψD,AD) is unique up to a uniform

rotation ofψD in �.

THEOREM 4.1. –Fix he � 0. Let (ψεk ,Aεk ) be a sequence of equilibria forJεk such
that εk → 0+ and lim inf k→∞ Jεk (ψεk,Aεk

) <∞. Then there exists a subsequence{εk+}, a
vectorD in Zn, and(ψD,AD) such that(ψεk+

,Aεk+
)⇀ (ψD,AD) in M.

Proof. –By compactness, Lemmas 1.1 and 1.3, there exists(ψ,A) in M and a
subsequence{εk+} of {εk} satisfying |ψεk+

| � M, ψεk+
⇀ ψ in H 1(�;C), ψεk+

→ ψ

pointwise almost everywhere in�, andAεk+
⇀ A in H 1(�;R

2). Furthermore,
∫
�(a −

|ψεk+
|2)2 � M · ε2

k+
whereM is a positive number independent ofεk+ . It follows that

|ψ | = √
a a.e. in� and hence(ψ,A) ∈M0. Thus(ψ,A)= (ψD,AD) for someD ∈Zn.

Since{ψεk+
} is uniformly bounded and converges pointwise almost everywhere in� we

havejεk+ ⇀ j in L2(�) wherej is defined by (2). By (3), (4), and our choice of gau
we see thatAεk+

⇀ A in H 2(�;R
2). Passing to the limit in (6) and (7) we find th

(ψ,A) is a weak solution. ✷
Recall that in Section 3, we defined

D0(he)= {
D ∈Zn: J0(ψD,AD)= inf

(ψ,A)∈M0

J0(ψ,A)
}

for each fixedhe � 0. For minimizers ofJε in M asε → 0, we have:

THEOREM 4.2. –Fix he � 0. Let {(ψεk ,Aεk )} be a sequence of minimizers ofJεk in
M with εk → 0+ ask → ∞. Then|ψεk | →

√
a in C(�), and there exists a subsequen

(ψεk+
,Aεk+

)→ (ψD,AD) in M, whereD = (d1, . . . , dn) ∈D0(he) (and hence(ψD,AD)

is a minimizer ofJ0 in M0). Moreover, ifR > 0 and BR(xi) are disjoint subsets o
� for i = 1, . . . , n, then for all+ sufficiently large,|ψεk+

| is uniformly positive outsid⋃n
i=1BR(xi), and the degree ofψεk in BR(xi) is di .
+
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Proof. –We may apply Theorem 4.1, since

Jεk (ψεk,Aεk
)� Jεk (

√
a,0)� |�| · h2

e +
∫
�

∣∣∇(√a)
∣∣2 <∞,

to obtain a subsequence{εk+} of {εk} such that{(ψεk+
,Aεk+

)} converges weakly inM
to (ψD,AD), an equilibrium forJ0 in H 1

a,D × H 1(�;R
2) for someD in Zn. Since

(ψεk,Aεk ) is a minimizer ofJεk for eachk and(ψD,AD) ∈H 1
a,D ×H 1(�;R

2) we have:

J0(ψεk+
,Aεk+

)+ 1

2ε2
k+

∫
�

(
a − |ψεk+

|2)2 = Jεk+ (ψεk+
,Aεk+

)

� Jεk+ (ψD,AD)= J0(ψD,AD).

Also, J0 is weakly lower semicontinuous with respect to the topology onM, and thus

J0(ψD,AD)� lim inf
+→∞ J0(ψεk+

,Aεk+
)

� lim inf
+→∞ J0(ψεk+

,Aεk+
)+ lim inf

+→∞
1

2ε2
k+

∫
�

(
a − |ψεk+

|2)2
� lim inf

+→∞ Jεk+ (ψεk+
,Aek+

)

� J0(ψD,AD).

In fact both integrals making upJ0 are weakly lower semicontinuous. As a result

lim
+→∞

∫
�

∣∣(∇ − iAεk+
)ψεk+

∣∣2 =
∫
�

∣∣(∇ − iAD)ψD

∣∣2, (44)

lim
+→∞

∫
�

|∇ ×Aεk+
− hee3|2 =

∫
�

|∇ ×AD − hee3|2, (45)

lim
+→∞

1

2ε2
k+

∫
�

(
a − |ψεk+

|2)2 = 0. (46)

Eqs. (44), (45), and the weak convergence of{(ψεk+
,Aεk+

)} imply that∫
�

|∇ψεk+
|2 →

∫
�

|∇ψD|2 and
∫
�

|hεk+ |2 →
∫
�

|hD|2

as+→ ∞. Weak convergence and convergence of norms implies strong converge
a Hilbert space. Thus∇ψεk+

→ ∇ψD andhεk+ → hD in L2(�). By our choice of gauge
Aεk+

= ∇⊥ξεk+ for someξεk+ inH 1
0 (�) satisfying)ξεk+ = hεk+ in�. As a result,ξεk+ → ξD

in H 2(�), whereξD ∈H 1
0 (�) and)ξD = hD in �, andAεk+

→ AD in H 1(�;R
2). By

this and elliptic estimates,(ψεk+
,Aεk+

)→ (ψD,AD) in M.
Next, we prove that|ψεk | →

√
a uniformly in� for the given sequence,{(ψεk ,Aεk )},

as k → ∞. If not, we may choose a subsequence,{(ψεm+
,Aεm+

)}, of {(ψεk ,Aεk )}, a
sequence{y+} ⊂�, and a constantγ > 0 such that(

a(y+)− ∣∣ψεm (y+)
∣∣2)2 � γ
+
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for + = 1,2, . . . . By passing to a subsequence (which we relabel as{(ψεm+
,Aεm+

)},
reasoning as we did for{(ψεk+

,Aεk+
)} above, we may assume that(ψεm+

,Aεm+
) →

(ψD′,AD′) for someD′ in Zn where(ψD′,AD′) is an equilibrium forJ0 in H 1
a,D′ ×

H 1(�;R
2) and (ψεm+

,Aεm+
), (ψD′,AD′) satisfy (44), (45), and (46). By the Höld

continuity of a and (19), we have(a(x) − |ψεm+
(x)|2)2 � γ

2 for all x in � ∩ Brε+(y+)

for somer > 0 and all+ sufficiently large. This implies that

1

2ε2
m+

∫
�

(
a − |ψεm+

|2)2 � c

for somec > 0 independent of+, which contradicts (46). Thus|ψεk | →
√
a uniformly in

� andk → ∞.
Returning to the analysis of{(ψεk+

,Aεk+
)} and(ψD,AD), it follows from the uniform

convergence of|ψεk+
| to

√
a that for each 0< δ � R, there exist positive constantst0 and

t1 depending onδ so that|ψεk+
| � t1 in �\⋃n

m=1Bδ(xm) if εk+ � t0. If R � r � δ, then

1

2πi

∫
∂Br(xm)

ψε∗
k+

|ψεk+
|
(
ψεk+

|ψεk+
|
)
τ

≡ dεk+ ,m

is a well-defined integer independent ofr . Sinceψεk+
→ψD in H 1(�;C), it follows (as

in Section 2) thatdεk+ ,m = dm for all m ∈ {1, . . . , n} and all+ sufficiently large, where
D = (d1, . . . , dn).

SinceJ0(ψD,AD)= lim+→∞ Jεk+ (ψεk+
,Aεk+

) andJ0(ψ,A)= Jε(ψ,A) for all (ψ,A)
in M0, it follows that (ψD,AD) is a minimizer forJ0 in M0, i.e.D ∈ D0(he). Finally
the assertion that|ψεk | →

√
a in C(�) has been proved for a subsequence of an arbi

sequence. As a result the assertion is true for the original sequence.✷
From the above result and Theorem 3.7, we obtain:

THEOREM 4.3. –Fix R > 0 as in Theorem4.2 and he � 0. For each ε > 0, let
(ψε,Aε) be a minimizer ofJε in M. There existsε0 = ε0(R,he) > 0 such that for all
0< ε < ε0, |ψε|> 0 outside

⋃n
i=1BR(xi) and the degree ofψε inBR(xi) for i = 1, . . . , n,

denoted byDε = (d1,ε, . . . , dn,ε), is inD0(he). If, in addition,he > h̄e ( for h̄e defined as
in Theorem3.7), thenDε �= �0.

Proof. –The first assertion of the theorem follows from Theorem 4.2 and an argu
by contradiction, since|ψε| → √

a uniformly in � asε → 0+. If he > h̄e and 0< ε <

ε0(R,he), then �0 /∈ D0 ≡ D0(he) by Theorem 3.7. Thus the degree ofψε in � for ε
sufficiently small is nontrivial. ✷

Given ε > 0, the lower critical fieldHc1(ε) is defined as the supremum of
nonnegative numbershe such that any minimizer,(ψε,Aε), of Jε(ψ,A)= Jε(ψ,A;he)
in M satisfies|ψε| > 0 in �. (Note that whenhe = 0, then every minimizer(ψε,Aε)

satisfiesAε = 0 andαψε > 0 for someα ∈ C with |α| = 1. Thus the set of nonnegativ
numbers described above is nonempty, andHc1(ε) is well-defined for eachε > 0.) From
Theorem 4.3, we have:
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COROLLARY 4.4. –Defineh̄e > 0 as in Theorem3.7. Thenlim supε→0Hc1(ε)� he.

Proof. –ChooseR > 0 so thatBR(xi) are disjoint subsets of� for i = 1, . . . , n. If the
inequality is false, there existsδ > 0 and a sequenceεk → 0+ such thatHc1(εk) > he + δ

for all k. Letting (ψεk ,Aεk ) be a minimizer ofJεk for he = he + δ andk = 1,2, . . . , we
have|ψεk |> 0 in � for all k, which contradicts Theorem 4.3 sinceεk � ε0(R,he + δ)

for all k sufficiently large. ✷
Our results thus far show that for eachhe � 0, the set of minimizers ofJ0 in M0 are

given precisely by the set of minimizers,(ψD,AD), of J0 in H 1
a,D × H 1(�;R

2) with
D in D0(he), whereD0(he) is the finite set of allD in Zn which minimizeE(C;he).
Moreover,(ψD,AD) is unique inH 1

a,D ×H 1(�;R
2) up to uniform rotations ofψD in �.

In addition, forε sufficiently small, minimizers ofJε in M have vortices “pinned” nea
x1, . . . , xn with an order parameter having degrees(d1,ε, . . . , dn,ε)=Dε nearx1, . . . , xn,
respectively, for someDε in D0(he). This proves the results stated as Theorems 1–
the introduction.

Our final result shows that in contrast to what we have shown for minimizers,
exist local minimizersof Jε in M with ε sufficiently small, with arbitrarily prescribe
degrees of the order parameter nearx1, . . . , xn, respectively. More precisely, we have:

LEMMA 4.5. –Fix any D = (d1, . . . , dn) in Zn and he � 0. Let (ψD,AD) be an
equilibrium for J0 in H 1

a,D × H 1(�;R
2). For each sequence,εk → 0+ there exists

local minimizers(ψεk ,Aεk ) of Jεk in M, such that(ψεk ,Aεk ) → (ψD,AD) in M as
εk → 0. Moreover for eachR > 0, as in Theorem4.2, and allk sufficiently large,|ψεk |
is uniformly positive outside

⋃n
i=1BR(xi) and the degree ofψεk in BR(xi) is di , for

i = 1, . . . , n.

Proof. –Define

Br ≡ Br(ψD,AD)= {
(ψ,A) ∈ M:

∥∥(ψ,A)− (ψD,AD)
∥∥
M � r

}
and

N ≡ {
(ψ,A) ∈M: divA= 0 in� andA · �n= 0 on∂�

}
.

By Theorem 3.2,(ψD,AD) ∈ Br ∩ N is a minimizer ofJ0 in H 1
a,D × H 1(�;R

2). In
addition, forr > 0 sufficiently small,

Br ∩M0 = Br ∩ [H 1
a,D ×H 1(�;R

2)] (47)

sinceH 1
a,D is open inH 1

a by Theorem 1.5. Thus(ψD,AD) is also a local minimizer fo
J0 in M0.

Fix r > 0 satisfying (47). For eachε > 0, let (ψε,Aε) be a minimizer forJε in
Br ∩N . Then the sequence{‖(ψεk ,Aεk )‖M} is bounded. Thus there exists a subseque
εk+ → 0+ such that(ψεk+

,Aεk+
) ⇀ (ψ0,A0) in M. Moreover(ψ0,A0) ∈ Br ∩ N ∩ M0

must be a minimizer forJ0 on Br . (Here we use the weak lower semicontinuity ofJ0,
the fact thatJε(ψ,A)= J0(ψ,A) for all (ψ,A) in M0, and that(ψD,AD) ∈ Br ∩ N .)
As in Theorem 4.2, we obtain
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lim
+→∞

∫
�

∣∣(∇ − iAεk+
)ψεk+

∣∣2 =
∫
�

∣∣(∇ − iA0)ψ0∣∣2, (48)

lim
+→∞

∫
�

∣∣∇ ×Aεk+
− hee3

∣∣2 =
∫
�

∣∣∇ ×A0 − hee3
∣∣2, (49)

lim
+→∞

1

2ε2
k+

∫
�

(
a − |ψεk+

|2)2 = 0. (50)

Thus just as in Theorem 4.2 we find that∥∥(ψεk+
,Aεk+

)− (ψ0,A0)∥∥
M → 0 (51)

as + → ∞. Since (ψD,AD) is the unique minimizer forJ0 in Br up to a uniform
rotation of ψD (with our gauge assumption), and since(ψ0,A0) is in N as well
it follows that (ψD,AD) = (ψ0 eic,A0) for some c ∈ R. From this and (51) we
see that(ψεk+

eic,Aεk+
) → (ψD,AD) in M. In particular (ψεk+

eic,Aεk+
) is in Br for

all + sufficiently large. Thus by replacing(ψεk+
,Aεk+

) and (ψ0,A0) by the gauge
equivalent pairs(ψεk+

eic,Aεk+
) and(ψD,AD) respectively we may assume without lo

of generality that(ψ0,A0) = (ψD,AD). In this case it follows that(ψεk+
,Aεk+

) is an
interior point ofBr for all + sufficiently large. As a result,(ψεk+

,Aεk+
) is a local minimizer

for Jεk+ in N . SinceJεk+ is gauge invarient it follows that(ψεk+
,Aεk+

) is a local minimizer
in M as well. In particular it is an equilibrium solution. From this and (50) it follo
just as in Theorem 4.2 that|ψεk+

| → √
a in C(�) asεk+ → 0. We see thatψεk+

inherits

the same degree asψD, namelydi , in BR(xi) for i = 1, . . . , n and all+ sufficiently large.
Since each sequenceεk → 0+ contains a subsequence for which our assertions hol
same is true for the full sequence.✷

THEOREM 4.6. –Fix anyD = (d1, . . . , dn) in Zn and he � 0. Let (ψD,AD) be an
equilibrium forJ0 in H 1

a,D ×H 1(�;R
2) and chooser > 0 satisfying(47). Then for all

ε > 0 sufficiently small,Br (ψD,AD) contains a local minimizer,(ψε,Aε), of Jε in M
such that for eachR > 0 as in Theorem4.2and all ε sufficiently small,|ψε| is uniformly
positive outside

⋃n
i=1BR(xi) and the degree ofψε in BR(xi) is di for i = 1, . . . , n .

Proof. –The theorem follows from Lemma 4.5 using an argument by contradic
Indeed if the theorem’s assertion was false then there would exist a sequenceεk → 0+
for which the lemma could not hold.✷
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