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ABSTRACT. — We investigate vortex pinning in solutions to the Ginzburg—Landau equation.
The coefficienta(x), in the Ginzburg—Landau free energy modeling non-uniform superconduc-
tivity is nonnegative and is allowed to vanish at a finite number of points. For a sufficiently large
applied magnetic field and for all sufficiently large values of the Ginzburg—Landau parameter
x = 1/¢e, we show that minimizers have nontrivial vortex structures. We also show the existence
of local minimizers exhibiting arbitrary vortex patterns, pinned near the zero6:of
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On étudie la localisation des vortex des solutions de I'équation de Ginzburg—
Landau. Dans I'énergie libre de Ginzburg—Landau, le coefficiént modélise la supraconduc-
tivité non uniforme. Ce coefficient est positif et s'annule en un nombre fini de points. On montre
gue, pour un champ magnétique assez grand et pour toutes les valeurs du parametre de Ginzbi
Landaux = 1/¢ assez grandes, les minimiseurs présentent des structures de vortex non triviale:
On montre aussi I'existence de minimiseurs locaux présentant une structure prescrite de vorte
situés au voisinage des zérosadg).
© 2003 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

I ntroduction

In this paper we analyze several aspects of vortex pinning in superconductivity using
the Ginzburg—Landau theory as our model. To describe these phenomena consider t
energy
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for ¢ > 0. HereQ is a bounded simply connected domainRa with a smooth(C??1)
boundary and:: 2 — R. The domainQ2 represents the cross-section of an infinite
cylindrical body withe; as its generator. The body is subjected to an applied magnetic
field, h.e3 whereh, > 0 is constant. The functiod : Q@ — R? is the magnetic potential
andV x A =V x (A%, A2, 0) is the induced magnetic field in the cylinder. The function
¥ is complex-valued whergy|?> = y*y represents the density of superconducting
election pairs and

j= =5 VY = V) — [ PA 2)

denotes the superconducting current density circulating in the cross-séttidime
parameters = 1/k is a positive number where is the Ginzburg—Landau parameter
associated to the material. We analyze the sm@#irgex) regime. It is here that vortex
dominated current patterns are expected in stable equilibriag.fof he prototypical
picture of this phenomenon is that of a finite humber of non-superconducting points
in Q (at whichy = 0, called vortices), each of which is surrounded by a ring of the
super curreny.

If the material is homogeneous, the functienin J, is taken to be a constant,
proportional toT, — T. HereT is the body’s temperature affg is the material’s critical
temperature. Fol' > T, (a < 0), it is easy to show that the only equilibria fér are
completely non-superconducting and hawe=0,V x A =h.e3. ForT < T, (a > 0),
superconducting minimizers exist if the applied field strerigtis not too large. There
are a number of mathematical investigations of the relationship betweamd the
nature of stable superconducting states for this case. In [11] Sandier and Serfaty showe
that there exists a constaft, proportional to| log(e)| ase — 0, such that ifz, < H,,,
then minimizers for/, are purely superconducting, satisfying| > 0 in 2. In [12] they
showed that for:, slightly greater tharfi., and such thak, < =2, minimizers are in
a mixed state having a vortex-like structure. It was shown by Giorgi and Phillips in [5]
that fori, > Ce=2 for some constant, superconductivity is completely suppressed, in
that all equilibria forJ, haveyr = 0.

Inhomogeneous superconducting materials can arise naturally due to material defec
or the presence of grain boundaries. Inhomogeneities can be inserted intentionally
as well, by adding non-superconducting (normal) impurities to the material. (See [3]
and [4].) A consequence of having material inhomogeneities is that they tend to pin ol
stabilize supercurrent patterns. The classical Ginzburg—Landau theory can be modifie
to take normal inclusions into account. This is done by having the critical temperature,
T., depend on position which is equivalent to having a(x). (See [10].) It is possible
thata(x) may vanish or change sign within the domain.

A mathematical study for the Ginzburg—Landau equations corresponding to the energ
(1) with variablea(x) was done by Aftalion, Sandier, and Serfaty in [1] where the case
% < a(x) <1 was considered. They proved among other things, thatremains of
order|log(e)| ase — 0. In this paper we consider the case wh@eontains a finite
number of point impuritiesxy, ..., x,}, and thatz(x) vanishes at these normal sites. In
this instance, the strong pinning enables us to show that the transition threshhald for
denoted byH,, = H,,(¢), separating the presence or absence of vortices, is of order 1 as
¢ — 0. (See Corollary 4.4.) In addition, for eaghand alle sufficiently small, we show
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that there are local minimizers fog with prescribed vortex structure about each of the
x; corresponding to the homotopy classeSiR {xy, ..., x,}. (See Theorem 4.6.) In this
way we are able to pin supercurrent patterns near the zewg pf(See Theorem 4.6.)
Another way of introducing inhomogeneities is by making holes (voids) in the body.
In [8,9,13] J. was studied witlu = 1, 1, = 0 but with Q multiply connected by Jimbo
and Morita, Jimbo and Zhai, and Rubinstein and Sternberg, respectively. In that setting
local minimizers with prescribed vortex structures associated to the homotopy classe
of  were shown to exist.
We require that:(x) satisfy the following.
Assume:a € CH(Q\{x1, ..., x,}) N CP(Q) for somes > 0, /a € HY(Q), a(x) >0
for all x in Q, anda(x) =0 iff x € {x4, ..., x,} Wherexy, ..., x, are distinct points ir©2
andn € N. Moreover, assume that there are positive constanid/; and «; so that
mi|lx — x;|% <a(x) < M;|x — x;]% in some neighborhoolf; of x; for 1 <i <n.

DEFINITION. —Let ¢ > 0 and let (y,, A,) € HY(Q; C) x HYQ;R? = M. Then
(Y., A;) is an equilibrium forJ, if and only if (v, A,) is a weak solution of the Euler—
Lagrange equations and natural boundary conditions for critical points/,oin M,
namely

1 .
—(V—iA)*Ye = S(a—¥l) ¥ inQ,
& (3)

(V—iA)Y, - n=0 0ndQ,

and

VXV x A= —= (VI Vi, — 0. VY7) — [ A, = jo N,
2 @)
VxA,=h,63 0noL2.

Fore =0 we set

Jo(¥, A)z/[l(V—iA>vf|2+|V><A—heesf-‘]. (5)
Q

Denote
H! = {4 € HY(Q; C) such thaly| = +/a almost everywherg

Note that H! is nonempty, since/a € H! by our assumptions on. We prove in
Section 1 (see Theorem 1.4) that eaghe H! can be written asy = /a€?®,
where6(x) = 6o(x) + >_i_,d;0:(x), 6o is a measurable function determined up to an
additive constant, 2k for k € Z, satisfyinnga|V90|2 <00, D=(dy,...,d,) €eZ"is
uniquely determined, angl (x) is the azimuthal angle about for 1 <i < n (so that
(Cosh; (x), Sinb; (x)) = (x — x;)/|x — x;| for all x # x; in R?). Thusy corresponds to a
unique D € Z" describing a homotopy class fgrin Q\{xy, ..., x,}. We write

Hi= ] H; ).

Dez"
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We note thatH_ , is both open and closed i} and that if{u,} C H} , such that
u, —~uin H* thenu € H} ,. (See Theorem 1.5.)

DEFINITION. —Let (Yo, Ag) € H! x H(Q2; R?) = M,. Then(yo, Ao) is an equilib-
rium for Jp if and only if (1o, Ap) is a weak solution of the Euler—Lagrange equations
and natural boundary conditions for critical points & in Mg, namely

div [—’—(x/févl/fo —YoVYg) — |1/fo|2Ao] =0 ingQ,
i ’ N (6)
[—é(wgv‘ﬁo—lﬁovlﬁé) —Il/fo|2Ao} .n=0 onaQ,

and

i .
VXVXAF{‘#%V%—WWWQ—W“mJEE inQ, o
V x Ag=h,e; 0Ndg.

The functionals/,, for ¢ > 0, are gauge invariant. By this we mean thatiff A) €
M (Mo) and if ¢ € H?(Q), then the gauge transformatioy’, A’) = G4(, A)
defined by

v =y e’
A'=A+Vep,

satisfies(y’, A’) e M (My), J. (¥, A) = J.(¢', A'), and(y’, A") is an equilibrium for
J.(Jo) if (¢, A) is one. In this paper we will fix a gauge by requiring (without loss of
generality) thatA satisfy

dvA=0 inQ,
(8)
A-n=0 o0no<,

since this can be accomplished by an appropriate gauge transformation. With thi
choice of gauge (the Coulomb gaugd),is determined from the value &f x A =
(0x A1 — 0,Ao)€3 = hes by first solving

AE=h InQ,
)
E=0 onoQ.

From (8), (9), and the fact tha® is simply connected we hava = V£ where
(0, 3y)* = (—9,, d,). An important feature of the gauge choice (8) is that the boundary
conditions in (3) and (6) can be replaced by

Vi -n=0 onaQ
and, sinceV x Vx A=—AA+ V(divA), the termV x V x A in Egs. (4) and (7) is

equal to—AA.
We establish the following main results in this paper.
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THEOREM 1. —Fix h, > 0. For eachD € Z", Jy has an equilibrium(with our choice
of gauge, (¥p, Ap),in H} , x H'(Q; R?). Moreover(yp, Ap) is unique up to uniform
rotations ofyp in , vp — Yp € for c € R. (See TheorerB.2.)

We remark thaty, A) — (¥ €€, A) is a gauge transformation it (M,), and thus
J.(y, A) = J, (v €, A) forall c e R ande > 0.

THEOREM 2. —Fix h, > 0. Let (y,, A,) be an equilibrium forJ,, fork=1,2,...
such thats; — 0™ and

I|m |nf o, (We, s Ag) < € < 00. (20)

There exists a finite subs&t = D(c, h,) of Z", a subsequencés,}, and (y°, A°) €
H} , x HY(Q; R?) for someD € D such that

(e, Acy,) = (W2, A% in M.

Moreover(y°, A% is an equilibrium forJy. (See Theorem.1.)
Note that

J(Ja) =122+ [[Vyaf fore>0 (11)
Q

Thus, given,, it follows from Theorem 2 that a sequence of minimizers wjth> 0"
will satisfy (10).

THEOREM 3. —Fix i, > 0. Let (¢, , A, ) be a minimizer off,, in M fork=1,2,...
with ¢, — 0+. Then a subsequenc{% , Ag,,)) = (Yp, Ap) in M, where(¥p, Ap)
is a minimizer ofJ; in Mo and (Yp, Ap) € H} ;, x H*(2;R?). Moreover, ifR > 0
and By (x;) are disjoint subsets a2 for i =1, ..., n, then for all £ sufficiently large,
Ve, | > OoutsidelJ'_; Bg(x;) and the degree o,a‘rgkZ in Br(x;)isd; foralli e{1,...,n}
whereD = (dy, ..., d,). (See Theorem.2.)

We prove in Corollary 3.6 that fok, > O fixed, the set of allD in Z" such that
H} , x H(; R?) contains a minimizer of in M, is a nonempty finite set (depending
only on€2, a(x), andh,), which we denote b¥Pg = Dy(h.).

THEOREM 4. —Let (v, A;) be a minimizer of/, for eache > 0. Fix R > 0 as in
Theorem3 and k., > 0. There existsg = (R, h,) > 0 such that for all0 < ¢ < &g,
|| >0 outsideU 1 Br(x;) and the degree of, in Bg(x;) fori =1,...,n, denoted
by D, = (die, ..., d,, 8) is in Dy. Moreover, there exists, > 0 (dependlng only oif2
anda(x)) such that ifh, > h, and0 < & < eo(R, h.), thenD, # 0. (See Theorem.3.)

We remark that Theorem 4 implies tHa&,., (¢)} is uniformly bounded i ase — O*.
(See Corollary 4.4.)

The equilibrium found in Theorem 1 is (by uniqueness) the minimizerJgpin
H}, x HY(Q;R?). Since H} , is open inH}, it is also a local minimizer fot/, in
M. Givenh, > 0, let (¥p, Ap) be such a solutlon For local minimizers &fin M,
we have (in contrast to Theorem 4) that all degree®’imearx,, ..., x, are attainable:
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THEOREM 5. —Fix h, > 0 and anyD in Z". For eache > 0 sufficiently small, there
exists a local minimize(y,, A,), of J, in M such that(y,,, A,) — (¥p, Ap) In M as
¢ — 0. In addition, for anyR > 0 as in Theoren8, there existg1(R, k.) > 0 such that
|| > O outsidelJ!_, Bg(x;), and the degree af, in Bg(x;) is d; for all ¢ < ¢1, where
D= (dy,...,d,). (See Theorer.6.)

1. Preliminaries

It is well known that if (, A) e M andy = p€?, thenV4 is uniquely determined
almost everywhere ifio > 0}, p € WL2(Q), pV6 € L2(Q; R?),

|V —id)y|* = Vol +|p(Vo — A)[* W
and j= —’E(xp*vw —YVY) — [P 2A = p2(VH — A) a.e. inQ.

If (Y., Ae) € M and(y,, A,) is an equilibrium forJ, with ¢ > 0, then from (3) we can
derive the equations

— V(P Vo) + V24 L = Sla—pl)p? inQ,
P &

2
3

0eVp,-n=0 o0nog, (13)

divj,=0 inQ, and
jo-n=0 onag,

where ¢, = p. €% and j. = p2(V6. — A,). These equations are obtained by using
test functions of the fornp = /¢ in the formulation (3) such that € L*°(Q) and
1+ |v.DIVe| € L?(R). Moreover, if we defing:i, by V x A, = h.e; then (4) can be
rewritten as

_vlhs = (aya —0)he =j. InQ,
(14)
he —he 0NOS.

Similarly, if (y°, A% e Mg and(y°, A is an equilibrium forJ, then (6) and (7) can
be rewritten as

divjo=0 inQ,
R (15)
Jjo-n=0 o0onoQ
and
—Vlho = jo in ,
(16)

ho=h, 0nd,
wherey® = po €% = \/a €%, hq is defined byV x A® = hoes, and jo = p3 (VO — A°).
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The following three results concern maximum principles and regularity for equilibria
of J.. The proofs are only a slight variation of the proofs for the case in whiehl
in Q. (See [5] and [6].)

LEMMA 1.1.—If (¢, A,) € M(Mp) and (¢¥,, A,) is an equilibrium for J.(Jo)
wheree > 0, then|vy. | < sup, /a.

Proof. —For (v, Ag) € My, we havey| = 4/a in  and hence the result is trivial in
this case. It > 0 and(y,, A.) is an equilibrium forJ,, the result follows by using

¢, = max{0,

Yo (x)| — sgpﬁ}/|wg(x)| = (pe(x) — sgpﬁ )"/ pe(x)

as a test function in the weak formulation of the first two equations in (13), which yields

0< [1Vol2= [(-0)-
E E

whereE = {x € Q: ¢.(x) > 0}. It follows that E has zero measure. Thygs < 0 a.e. in
© which proves the lemma. O

I R
praR ps)pide <O,
E

LEMMA 1.2. —For ¢ > 0 equilibria are of classC?#(Q) for someg > 0.

Proof. —With our choice of gauge (8), we ha¥ex V x A, = —AA,. The system (3)
and (4) is thus uniformly elliptic and regularity follows from the classical theory. (See
[6]) O

LEMMA 1.3.—Fix h, > 0. Assume > 0 and (v, A,) is an equilibrium forJ,.
SetM = max(J. (Y, A;), Je(/a, 0), maxga). Then

[Aellz2 < C(M, ), (17)
Vel < C(M, ), (18)

and ife >0
VY| <C(M, )/ inQ, (19)

where C(M, ) denotes a constant depending only &h a(x), and 2, and the
subscriptk, 2 denotes the norm iW*2(Q).

Proof. -We argue fore > 0. The proofs of (17) and (18) for the case= 0 are
identical.
We write (using (12))

1
J: (¥, A) =/[IVIWII2+ [ [2IVe — AI* + E(“ — W)+ |V x A—hes)?|.
Q

Recall thatj, = |.|2(V6, — A,) andh, is defined by

hees=V x A,. (20)
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From this and (12), we have

1
Jg(wg,A»=/[|V|ws||2+|ws|—2|jg|2+@(a—|w8|2)2+|hg—he|2 . (21)
Q

Thus||je|13 < sup,a - Je (¥, As) < C(M, Q), where|| j. || denotes thd.? norm of j,
in 2. Then from (14), we have

Vh|l2 < C(M.€).
Using this estimate together with (9) we see thet |, < C(M, ). Thus
[Acllz2=1VEl22 < C(M, ).
Note that this implies
IAcllcr @ < C(M,Q,y) foreachy € (0, 1). (22)

Now
VY5 < C([|(V - iAs)llng; + 1A l13).
So we see
IVl < C(M, Q).
This proves (17) and (18) fer> 0 (ande = 0). y
To prove (19) lety = x/e, Q. = Q/¢, ¥:(y) = Y(ey), andA, =cA.. We have
from the Ginzburg—Landau equation
~ .z ~ - 2~ ~ ~
Ayl = 20 Ag -V, — 1A Ve = (atey) — [0:1) P in Q.
3. =0 onag,.

Here we have used the choice of gauge. From (22) we seeAb@t)l =|eA:(y)| <
eC(M, ). It follows from local elliptic estimates and Lemma 1.1 thate W27(<Q,)
for p < o0 and

V¥ | SC(M, Q) inQ, for0<e<1.
(Here we use thatQ is of classC?1.) Thus|Vy,| < C(M,Q)/ein Q. O
The remaining results in this section are facts about

H'={y e HY(Q; C): |¢| = Va a.e.inQ}

which are used later in this paper.
THEOREM 1.4. —Eachu € H! can be written as

dj
u(x) = ax) - H(l - |) .g@Pe) — /a(x)_eie(x)
zj
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wherez = z(x) =x!+ix?forx = (x1,x?) in Q, z; = z(x;), ¢ € HE(Q\ {x1, ..., x,}),
0(x) = px) + Z’]’.Zldjej(x), and 0;(x) is the azimuthal angle of about x; for
1< j <n. Moreover, for each € HY, D = (ds, ..., d,) € Z" is unique,p € HL.(Q\
{x1,...,x,}) is unique up to an additive consta@rk for k € Z, and ¢ satisfies
[qalVel? < C(R,a, D)+ [o|Vul®

Proof. —Fix u € H! and setv(x) = u(x)/y/a(x) = u(x)/|u(x)|. Thenv € HX.(Q\
{x1, ..., x,}: SY) whereSt = {z € C: |z] = 1}). It follows from Schoen and Uhlenbeck
[14] that there exists a sequeng,} such that

U € C2<§\ U Bi(xj);Sl>
=1 "
form=1,23,...and
Uy — U iN ngc(Q \ {x1,...,x,}) @asm — oo.

(See also [2].) We compute the degree of eagimearx;; as follows:

We say that a radius is admissiblefor a givenx; andv,, if B.(x;) N {xy,...,x,} =
{x;} anddB,(x;) C 2\ U, B1(x;). For any suchr, sincev,, is smooth andv,,| =1
in 2\ ULlB%(M, e X)), themvvinding number of,, ond B, (x;) is defined by:

dj,m = _Z U:;l(vm)r (23)

Z)Br(xj)

wheret = v+ = (—vp, v1), v is the exterior unit normal on the boundary Bf(x;), and
(vm). is the derivative o, in the directionz. It is well known from degree theory that
d; . is integer-valued and independent-dbr all admissible- with respect tor; andm.
Thus if 0< ry < r2 < oo andr; satisfiesB,, (x;) C Q andB,,(x;) N {x1, ..., x,} = {x;},
then for allm sufficiently large, any € [ry, ] is admissible fox; andv,,, and we may
integrate (23) to obtain

i

djm= vy (V) dx. (24)

2m(r2—ry)
By, (x_/')\Brl (x_/')

Sinced; ,, is integer-valued and,, — v in H@,C(Q \ {x1, ..., x,}) asm — o0, it follows
from (24) thatd, ,, is independent ofn for all m sufficiently large. Thus there exists
d; € Z such that/; =d, ,, for all m sufficiently large and, letting: — oo, we have

dj=— ' v v, dx. (25)

! 21 (ry —r1)
Br2 (xj)\Brl (x_/')

We may use this to define the degree ofearx ;, since (25) is independentof > r; > 0
provided thatB,,(x;) C 2 and B,,(x;) N {x1,...,x,} = {x;} and it is clear (25) is
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independent of the particular converging sequefigg. In particular, we can define
the degree of u itB, (x;) by (25), forv =u/|u| andr; < r, as above. (See also [7].)
Now consider the real two-dimensional vector field

=Y d;Vb; —iv; Vo, (26)

in CY(2\ U;Zl B1(x;)), whered;(x) is the (multivalued) azimuthal angle efaboutx ;
and thusve; (x) is well defined i\ {x;} for1< j <n.SinceV x VH; =0inQ\ {x]}
andv,, is C2 with |r,, 1> = v,v* =1iInQ\ U] lBl (x;), it follows thatV x F, =0in

Q\ Uj=1 B% (x;). Thus ifm is sufﬁuently large so that; =d; ,, for 1 < j <n, then by
Stokes’ Theorem and (23§, F,, - dr =0 for any closed curver, in @\ UJ}_; B% (x;).
Moreover, there exisig,, € Cz(ﬁ\u’j’.:l B% (x;))suchthaVy, = F,form=1,2,....
From this and (26) we obtain

UV, = —vy (Zdjv9j> —iVu,,
j=1

and hence

V(v eion g Z';:ldj@/) it @i 2140

Vo, —i (vmwm + U Zdjvej)

j=1

=0.

As a result (adding a constantgsg, if necessary), we have
. n d]
VU, (x) = gom® Zj:ldej(X) gm0 H( )
lz =zl

By (26), Vo, = —>_}_1d;V0; — iv}, Vv, and sincey,, — v in Hg (R \ {x1,...,x,}),
we haveVe,, — —37_;d;V8; —iv*Vv and

eimevm_ﬁ(Z—Zj> J . H(z—z] >—d_/

o1 |z — 2] |z —z;]

in L2 .(Q2\ {x1, ..., x,}). It follows that{g,} (after possibly subtracting constantsi,
wherek,, € Z) converges inHt (2 \ {x1, ..., x,}), to somep € HL(Q2\ {x1, ..., x.}),

andu = /av = ﬁei(¢+zf:1d-’9-f) a.e. inQ.
Settingfd (x) = ¢(x) + Z?zl d;0;(x), we have

|Vul? = |V/al> +a|Vo|* > a|VO|2.
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Since|V;(x)| = c(d;)|x —le_l anda(x) < clx — x;|* wherea; > 0for 1< j <n,

/a(x)|v9j(x)|2<C(sz,a,D)<oo (27)
Q

whereD = (dy, ...,d,). Thus

/aIVg0|2</|Vu|2+C-Z/a|V9j|2</|Vu|2+C(Q,a,D).
Q Q i=1g Q

Finally, to show thatD € Z" is unique andp € H:.(\ {x1, ..., x,}) iS unique (up to
an additive constant 2mtherel € Z) for eachu € H?, assume thab = (ds, ..., d,) €
7" and @ € HL(Q\ {x1....,x,}) such thatu = /a2 %™ Thenv = u//a
satisfies—iv*Vv = V@ + Y\, d V6, in Q\ {x1,...,x,}). Fixing j € {1,...,n} and
integrating oveB,,(x;) \ B, (x;) for 0 < ry <r; asin (25), we have

i
dj=—— — / Ve d
T 2n(ra—r) e
Bry(x))\Bry (x))
1 / ( +§n:c2 6)) >d
N (23 k\Yk )t X
27r(r2—r1)B O =
2\ ri\ty

=m'[o+dj'2ﬂ(r2_rl)]

=d,

wheret = t(x) = (x — x;)*/|x — x;| for all j € {1,...,n}. Thus = =1 in
Q\ {x1,...,x, ) with  — @ in H(Q2\ {x1, ..., x,}) and it follows thaty — ¢ = 2! for
somele Z. O

For eachD € Z"; we define

Hip={ueH:u= Jag¥r il \wherep e HE(Q\ {x1, ..., x)) )

By Theorem 1.4, it follows that

Hal: U Hal,D

Dezn
andHa{D N Ha{D/ =@ for D # D'in Z". We will need the following additional properties
of H! ,:

THEOREM 1.5. —For eachD € Z", HiD is a nonempty, open and closed subset of
H}.n addition, H} , is sequentially weakly closed #*($2; C), i.e. if {us} C H} , and
ur — u weakly inH*(Q; C), thenu € H} ,.
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Proof. —Our hypotheses omin 2 ensure that/a € H'(Q) and/aV6; € L*(Q) for
eachj € {1,...,n} (see (27)); hence/c_zé[zf=ldf9f] € H!, and H} , # §. To prove
that H} , is open inH}, assume thato = JaeWriiadil ¢ H} , and let

Bg(ug) = {u € H}: |lu — uoll gra:c) < R}

whereR > 0. Sinceu € H}, there existsp € HL.(Q\ {x1,...,x,}) and D € Z" such

thatu = \/Eei[wzj’:lg"ej]. Setvg = ug/|uol = uo//a andv =u/|u| =u//a. By (25),
there exist positive numbers < r, such that for eachi € {1, ..., n},

i
dj=———"— 5(vo). d 28
j 2n(rz—r1)s/v°(v0) X (28)
J

and

i
di=————— [ v"(v).d
! 27T(Vz—l”1)s/v (©)cdx
J

whereS; = B,,(x;) \ B, (x;). Sincea is Cltand|a| >0 onS; for eachj € {1,...,n},
we have
|vg Vo — U*VUHLl(s,») < o (Vo — vv)”Ll(Sj) + | (v — v*)vaHLl(Sj)
<

C(a,r,r2,v0) - [1+ ||M0||H1(sj)] M —uollgs;).-

From this and (28), it follows that iR is sufficiently small (depending on, r,, 2, a,
anduo), we haved; = d; andu € H} ,. Thus Bg(uo) C H, , for R sufficiently small
and we conclude thatf! ,, is an open subset @f}. Now sinceH;} = ., H; ;, and
H,pNH!, =¢for D+#D'inZ", H} , is also a closed subset &f’.

Finally, to prove thatHa{ » is weakly sequentially closed i}, assume thafu,} C
Hal,D and u; — u weakly in H3(Q; C). By compactness, a subsequence (which we
relabel aqu,}) satisfiesi, — u in L?(Q). Thus|u| = \/a a.e. inQ and hence € H:B

for someD € Z". It follows from (28) (with vg replaced by, /./a andv replaced by
u/+/a and the weak convergencegfto u that D = D andu € HiD. O

2. A weighted Sobolev space

Set
V= {g e HY(Q): /a—1|Vg|2 < oo}.
Q

ThenV is a Hilbert space with norm

lglly = (/[a‘1|Vg|2+g2])1/2.

Q
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We prove in Section 3 that ifyp, Ap) is an equilibrium forJy in H} , x H'(Q; R?)
andhp is defined byhpes =V x Ap, thenhp € V and

div(atVhp) —hp=—21 Zd 8,

in the weak sense iV; moreover, we can evaluate the minimum energyJefin
H}, x HY(Q;R?) and H} x H'(Q2; R?) using Hilbert space properties &fn H} ().
We need:

LEMMA 2.1.-The mape € V — g(x;) is continuous orV for eachl <i < n where
g(x;) is defined by

goo=tim [ (29)
By (x;)
Moreover, anyg € V satisfies:
IIm ][ (g — g(xl-))za_l =0. (30)
(’Br(xi)

Proof. -LetO0< s < r. Theng has a trace o8B, (x;) andd B,(x;), and

Hg‘J[ ‘ o / IVel/Ix]] -a2 . a*?

0B (x;) 9B (x;) Br(xt)\BA(xz
1 1/2 1/2
() amwer) ([ we?)
By (xi)\ Bx (x;) By (xi)\ Bs (x;)
1 . )
< Ellgllv S (ro — )2,

Thus, the limit in (29) exists angl(x;) is well defined by (29). Letting — 0, we have

1 172
’g(xi)— ][ 8’<£< / a‘1|Vg|2) S peil?

3By (x;) By (x;)
and hence

lim /2
r—0

g(x) — ][ g’ —o. (31)
By (x;)

Multiplying the above inequality by and integrating from O t® for R < dist(x;, 92),
we obtain

g (x| < C(/g + ||g||v> < C(lglLzsy +lglv) < Cliglh

Br
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whereBy denotes the ball of radiu8 centered at;, andC is a constant depending only
on R anda. This proves the continuity of the magp— g(x;) onV.
Next setg = ¢ — g(x;). We have fors < r < dist(x;, 32)

]][gz—][gz < / 1211gl/Ix]
3By 0 By B\ By
1/2 1/2
<( / |Vg|2a—1) ( / g2|x|“f—2) (32)
B\ B, B/ \B;
1/2
<||g||v< / 2| )

By \Bs
whereB, and B, are centered af;. Set

F(s) = / g%|x|%i—? 271/][ g2r% 1.

B\ B;s s 9B
CLAIM 1.-lim,_q F(s) is finite.

To prove this, note thak’(s) = —s* 2 [, 3B, g2 and thus (32) can be rewritten as

TUF () — i TUF(5)| < Culr) - F(9)Y?

’27r

whereCi(r) = ([, |Vg[Pa Y2 < ||gllv < oo for 0<r < R. Thus
—F'(s) <s% 7 [Cy(r) - F()Y? + Co(r)]

for 0 < s < r. SinceF(s) is monotone nonincreasing @A, r), we obtain the claimed
result if we prove thaf is bounded ori0, r). Without loss of generality, we can assume
that F(s) > co > 0 for 0 < s < 5 (if not, the result follows easily). Dividing the above
inequality by F¥/?(s), we have

—(FY2(s)) < C (st 4 1).
Integrating from s to-/2 we find that
FY2(5) < C@r) <oo fors <r/2,

which proves Claim 1.
It follows from Claim 1 and (32) tha{f; 32} is Cauchy as — 0.
CLAIM 2. —1im, 038,82 =0.

To prove this, sety = lim,_ofss )&% Integrating (29), we haveg(x;) =
lim, .o+ 5, g Thus from (31),
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r

2
Iimo][‘g - ][g‘ _ Iimo][|g — g’ = Iin%zr—z/s ][g2ds —y
B, B, B, 0 d By
whereB, = B,(x;). By the Sobolev inequality in two dimensions we have

fle-fs

r r

2
<C/|Vg|2—>0 asr - 0
B,

and thusy = 0, which proves Claim 2.
We are now in a position to prove (30). Letting— 0 in (32) and using Claim 2, we

obtain
12
][ < d(r)( / §2|x|“f—2)
B,

dB,
where d(r) = ([ IVgl?%a™")"? and lim_od(r) = 0 since g € V. Set G(r) =
Jo T 1 f45,8%dt. ThenG(0) = 0 and from the above inequality,

rei=t ][ g2 =G'(r) <dr)GY*(ryr*i .
B,
Separating and integrating and using the fact th@j is monotone nondecreasing, we
get
GY*(r) < Cd(r)r.
Inserting this in the estimate ai' (r) gives

poo ][ §2=ri% G/ (r) < Cd%(r).

B,

Sincea(x) ~ |x — x;|% in a neighborhood af;, we see that (30) follows. O

3. Analysisof thecasee =0

Recall that/o(y, A) = [o[|(V —iA)Y >+ |V x A — h,&)?].

In this section, we prove the results stated as Theorem 1 in the introduction concernini
equilibria of Jo. (See Theorem 3.2.) We also establish a formula/§gtp, Ap) where
(¥p, Ap) is an equilibrium forJo in H! ,, x H*(2;R?). We shall need the following
results concerniny x Ap:

LEMMA 3.1.—Let (¥p, Ap) be an equilibrium forjy in H} ;, x H*(Q; R?). Define
hp byV x Ap = hpes. Thenh = hp is the unique solution of

[avn-Ve+ [he=2n 3 dir) veevnHQ.
a i=1

Q
h—h,eVNHRQ).

(33)
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Proof. —Sinceyp € H; ;,, we havey, = Ja€’ and/aV6 € L*(). In addition,
since a € HY(Q) anda € CY(Q\{x1,...,x,}) N C#(Q) by assumption, it follows
from (7), (12), and (14) thatlo(yp, Ap) < oo, jp € L?(R), andhp — h, € HF ().
By (12), (16), and (17)~V-'thp = jp = (j}, j3) = a(VO — Ap). Thus|Vhp|//a =
JalvVe — Ap| e L3(Q) andhy — h, € V N H(Q). Moreover,

1 1
diV(-VhD>=—VX (-]D>=—VX(V9—AD):]/ID in Q\{x1, ..., x,}
a a

in the sense of distributions. Sinags C* and positive ir\{x1, ..., x,}, it follows that
hp € H2.(Q\{x1, ..., x,}) and henc® € HZ (Q\{x1, ..., x,}).
Now let¢ € V N H3 () and consider

/a—lsz V¢ =lim / —Vo .Vt — /hDg.
Q

& U, B @)

Forr > O fixed and small we can integrate by parts to obtain

—V@V%:i / 0,

o\, B () =Las, )

=2y e+ [ -t @4
i=1 =L B, (xi)

wheretr = vt andv is the outward pointing unit normal @B, (x;). By (12) and (16),

the last term can be written as

n

> [ - ctn)-ahoat+ap 7.

=198, (x;)

Using (22) and (29) for each

im, / (¢ =¢G)Ap-T=0.

aBr(Xi)
Now
, 12 1/2
/|¢—;(x,->||VhD|a—l<C<][y;—;(xl->| a-l) (r / |VhD|2a—1)
9B, (xi) 9B, 3B, (xi)

By (30) the first term in the product tends to zeraras 0. As for the second term, we
claimthat liminf_or-3>7_; 5 .., IVAp|?a~* = 0. Indeed if not, there exists a constant
C > 0 and p > 0 such that

ro
C n
= [ Zdr< Vhpl?a=?t,
o= [Far<y [ hola

0 =1g, 00
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which contradicts the fact that, — i, € V. It follows that there is a sequeneg— 0
such that the last term on the right side of (34) tends to zevo-as; — 0, and hence
h = hp satisfies (33).

Now to prove that solutions of (33) are unique, assume/tha@nd’, are solutions.
Thenhy — hy € VN HH(Q) and

0= /[a‘lw(hl ~ )|+ 1y — hal?,
Q

whenceh; —hy=0. O

THEOREM 3.2. —Fix h, > 0. For each D € Z", Jy has an equilibrium(with our
choice of gaug¢8)), denoted byyp, Ap), in H} , x H*(Q2; R?), which is unique up to
uniform rotations ofyp in Q, ¥p — ¥p €° wherec € R.

Proof. —First, we note thatly has a minimizer(y/p, Ap), in
{(y,A) e H! , x HY(;R?): dvA=0inQandA -7 =00naQ}

(and hence inH}, x H(Q;R? by gauge equivalence), by the direct method in
the calculus of variations smcHa{ p is sequentially weakly closed if1(Q2; C) by
Theorem 1.5. Such a minimizer is an equilibrium &y by considering variations of
the form(yp, Ap) — (Yp €/, Ap 4+ eB), which yields (6) and (7) as Euler—Lagrange
equations.

Now to prove uniqueness of equilibria fdg in H D x HY(Q;R?) satisfying the
gauge condition (8), assume that, A) and (v, A) are two such equilibria. By
Lemma 3.1, we must havé x A =V x A’. By the choice of gauge, this implies that
A= A’. From (12), (16), and Lemma 3.1, it follows that ;' and henc&/6 = V6’ and
Y=y € forsomeceR. O

We next evaluate/; on equilibria. Consider the + 1 functions inV N H}(Q),
{no, ..., nx}, solving

div(a=*Vno) = no + 1, (35)
div(atVy) =n —218(x;) forl<i<n. (36)

Note that by Lemma 2.15(x;) € V', the dual space o¥, and clearly 1 V’'. Thus
the existence and uniqueness of solutions follows from the Lax—Milgram lemma. Using
min(n;, 0), as test functions in (36) we see thgt- 0in Q2 fori=1,...,n. Set

aij = aji E/[a_lvnivnj+ninj] forl1<i,j<n (37)

and

/ “IVnoVn: + noni] for0<i<n. (38)
Q

Thenb;, = — [ n; <0 for 1<
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For anyé =(c1,...,cn) €R" setnz =>"7_;¢;in;i. Then

/[a_lVUEVnE +nengl = Zaijc,-cj >0 (39)
Q
with equality iff nz = 0. Moreover, we have:

LEMMA 3.3. —The matrix[a;;] defined by37)is positive definite.

Proof. —By (39), it is sufficient to prove thajz = 0 in © implies C = 0. If not, letC
be a nonzero vector iR" satisfying7c =0 in Q. Thenyp, = > iz (€i/cg)n; for someg
satisfyingc, # 0. Whence

2r8(xy) = — div(a—lnq) +n,=— diV<a‘l<Z(Ci/Cq)Tli)> + Z(ci/cq)n,-

i#q i#q
=27 ) (ci/cg)8(xi),
i#q
which is impossible. O
Set
EC h) =" ayeic; +2§n:b,-c,-he+boh§. (40)

i=1
THEOREM 3.4. —Fix h, > 0. If (yp, Ap) is an equilibrium forJy with v € H;D,
thenhp =371 dini + heno + h. and

Jo(Wp, Ap) = / Va2 +ED.hy). (41)
Q

Thus(yp, Ap) is a minimizer ofJyin Mg ifandonly if£(D, h,) = inf{E(C‘, h,): Ce
z".

Proof. —Indeed,

Jo(Wp, Ap) = /[|Vﬁ|2+a|ve0 —ApP 4|V x Ap — hoesf?].
Q

Sincehpe; =V x Ap we see from (12) and (16) that

Jo(wD,Aw=/[|w3|2+a—1|wn|2+|hn—he|2].
Q

Now % p is the unigue solution to (33). Thus

n

hD = Zdini + he’”lo + he~
i=1

Using (39) and (40) we see that (41) holdsa



N. ANDRE ET AL./ Ann. I. H. Poincaré — AN 20 (2003) 705-729 723

Using Theorem 1.4 and Theorem 3.4, we can conclude that minimizeksinfig
(or families of equilibria ofJg in /\/lo with uniformly bounded energies) are contained
in a finite number of the spacds D x H(Q;RR?). More precisely, we have:

THEOREM 3.5. —Fix h, > 0. Let ¢ > infqy a)enm, Jo(¥, A) and let F = F(c, h,)
be the family of all equilibria,(y, A), of Jy in Mg satisfying Jo(¥, A) < ¢. Then
there exists a nonempty, finite subgetof Z" (depending on ¢ and,) such F C
UDeD[ D X Hl(Q Rz)]

Proof. —If (y, A) € F, then by Theorem 1.4y, A) is an equilibrium forJy in
H} , x HY(Q; R?) for someD in Z". By Theorems 3.2 and 3.4, we have

¢ = Jo(h. A) = Jo(Yrp. Ap) = / \V/al? + £D, h). (42)
Q

Now since[a;;] > I for someun > 0 by Lemma 3.3, we have (by (40)):
E(C,he) = pICI? = 21b| - |h,| - IC| + boh?

b 2 b2k,
(ICI—ulh |> —7| Il + boh?
u2

whereb = (by, ..., b,), for all C in Z". From this and (42), we obtain

b1 )
: —bohf—/IV«/C_l|2>M(|D|— P, |)
Q

The set of all suctD in Z" is finite, which proves the theorem

We remark that when, > 0 and c=inf, a)ert, Jo(x, A) = c(h,), we have
¢ < Io(/a, 0 = [ 1Vl +EO.h0) = [ 19/al + boh?.
Q Q

Inthis caseF = F(c(h.), h.) is the family of minimizers ofly in M (for fixed i, > 0).
Letting Do = Dy(h,.) be the finite setD corresponding taF in this case, it follows
from (40), Theorem 3.4, and the above inequality that

boh? > 11| D|? — 2|b||h,|| D| + boh?

and thus
2|b| - |h,
D) < 2211l (43)
"

for all D in Dgy. Thus we have:

COROLLARY 3.6. —Fix h, > 0. Let Dy = Dqy(h,) be the set of all D inZ" such that
HlD x H(Q; R?) contains a minimizer ofy in Mg. ThenDy is a finite, nonempty set
in Z".

We conclude this section with a result which will be used later to estinate=
H. (¢). Recall that; <0 for 1<i <n.
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THEOREM 3.7. -Seth, = min{—a;;/2b;: i =1,2,...,n}. I hy > h, and (Y, Ap)
is a minimizer of/o in Mo with ¥, € H! ,, thenD # 0.

Proof. —Let j € {1,...,n} satisfyr, = —a;;/2b;. Leté; be the vector inZ" whose
ith component i$;; fori =1,...,n. If h, > h,, then by (40), we have:

E@;,he) =aj; + 2bjh, + boh? = —2b;(h, — h,) + boh? < boh? = £(0, h,).
By Theorem 3.4, we must have # 0. O

4. Limiting results

In this section, we prove that minimizersy., A.) of J, exhibit “pinning” of vortices
near{xy, ..., x,}, the zeroes ofi(x), for ¢ sufficiently small. In addition, the behavior
of ¥, near vortices (i.e., near the zeroes/q) is determined by the s&,(4.) for each
h, > 0. These results were stated as Theorems 2-5 in the introduction.

Throughout this section, we assume without loss of generality that any equilibrium
of J. in M (or Jy in M) considered here satisfies our gauge choice (8). For ease of
notation in stating the theorems, we leftp, Ap) denote an (appropriate) equilibrium
of Join H! , x H(Q;R?). Recall that any suckyp, Ap) is unique up to a uniform
rotation ofyrp in Q.

THEOREM 4.1. -Fix h, > 0. Let (¥, , A,,) be a sequence of equilibria fof, such
thate, — 0T andliminf,_ o Jor (Wep.a,,) < 00. Then there exists a subsequetige}, a
vectorD in Z", and(yp, Ap) such that(xpgke, Ag,) = (¥p, Ap) in M.

Proof. —-By compactness, Lemmas 1.1 and 1.3, there exigtsd) in M and a
subsequencézy, } of {e} satisfying |y, | < M, ¢, = ¢ in HY(Q; C), Ve, > ¥
pointwise almost everywhere @, andA,, — A in HY(Q; R?). Furthermore [, (a —
|1/fg,%|2)2 < M - ¢}, where M is a positive number independent gf . It follows that

|| = /a a.e.inQ and hencéyr, A) € My. Thus(y, A) = (Yp, Ap) forsomeD € Z".
Since{y,, } is uniformly bounded and converges pointwise almost everywhesevire
have j,, — j in L?(Q2) where; is defined by (2). By (3), (4), and our choice of gauge,
we see thatd,, — A in H*(Q;R?). Passing to the limit in (6) and (7) we find that
(¢, A) is a weak solution. O

Recall that in Section 3, we defined
Do(h,) ={D e Z": J JAp)= inf  Jo(y, A
o(he) ={D € o(¥p, Ap) (w’/ir;eMo oV, A)}

for each fixedh, > 0. For minimizers of/, in M ase — 0, we have:

THEOREM 4.2. —Fix h, > 0. Let{(y,,, A;,)} be a sequence of minimizers ff in
M with g; — 0F ask — oo. Then|y,, | — +/a in C(2), and there exists a subsequence
(Vey,» Aer,) = (Y, Ap) in M, whereD = (da, ..., d,) € Do(h,) (and henceyp, Ap)
is a minimizer ofJy in Mg). Moreover, if R > 0 and Bg(x;) are disjoint subsets of
Qfori=1,...,n,then for all¢ sufficiently large,[y,, | is uniformly positive outside

U, Br(x;), and the degree o,tf% in Br(x;) isd;.
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Proof. -We may apply Theorem 4.1, since
2
ToWesn,) < Ju Va0 <1021-12+ [ V(@) < oo,
Q

to obtain a subsequendey,} of {s} such that{(vfg,%, Ag,)} converges weakly inVt
to (¥p, Ap), an equilibrium forJy in H;, x H'(S2;R?) for someD in Z". Since
(Ve,» Ag,) Is @ minimizer ofJ,, for eachk and(vp, Ap) € H; ;, x H(Q; R?) we have:

1 2
ToWa Ao+ 5 (a1, B = o, (0 A
tQ

< Je,, Wp, Ap) = Jo(¥p, Ap).
Also, Jy is weakly lower semicontinuous with respect to the topology\dnand thus
JO(WDa AD) < Ilm Inf JO(])&‘E‘/(Z ) Aé‘ke)
{—00
L L. 1 2\ 2
< Hminf Jo(Wr, A+ limint 5 [a=1we,2)
< ”mio[}f Jee, Wey,» Aey,)
< Jo(¥p, Ap).
In fact both integrals making ugh, are weakly lower semicontinuous. As a result

fim 109 =iaq, 00, = [19 = iAnn]’ (44)
Q Q
Jim [V x Ay, —heesl* = / IV x Ap — h.&s, (45)
Q Q
. 1 212
Jim 2—2/(a— e, P2 =0, (46)
— 00 8k1{ A .

Egs. (44), (45), and the weak convergence(gf,, . A, )} imply that

[19%0, 2> [1wol? and [ a2~ [
Q Q Q Q

as? — oo. Weak convergence and convergence of norms implies strong convergence i
a Hilbert space. ThuS'y,,, — Vyp andh,,, — hp in L?(2). By our choice of gauge,
A, = V%% for somet;,, in Hol(Q) satisfyingAgske = hg, inQ.Asa resultgw — &p
in H*(2), where), € Hy(Q2) andAép = hp in , andA,, — Ap in HY(Q; R?). By
this and elliptic estimatem/fsk[, Ag,) =~ (Yp, Ap) in M.
Next, we prove thaly,, | — +/a uniformly in Q for the given sequencé(y., , A.,)},
ask — oo. If not, we may choose a subsequen(:@//gw, Ae, ) of {(Ye,, A}, @
sequencgy,} C 2, and a constant > 0 such that

(ave) = [Ye,, G0 = ¥
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for £=1,2,.... By passing to a subsequence (which we relabe{(ds,,. A, )},
reasoning as we did fO{'(l[/akl,Agkl)} above, we may assume thapgw Ag,,) =
(Yp, Ap) for someD’ in Z" where (Yp, Ap) is an equilibrium forJy in HlD, X
HY(Q;R?) and (¥, As,, ), (Yo, Ap) satisfy (44), (45), and (46). By the Holder
continuity ofa and (19), we havéa(x) — |, (x)[%)? > % for all x in N B, (y,)
for somer > 0 and all¢ sufficiently large. This implies that

1
2 2 /(a_lw(ﬁ‘inelz)Z}C

m Y

for somec > 0 independent of, which contradicts (46). Thug.,| — +/a uniformly in
Q andk — oo.

Returning to the analysis Qfl/f%, Ay} and (¥p, Ap), it follows from the uniform
convergence ofi, | to J/a that for each G< § < R, there exist positive constamsand
t; depending ord so thatlvfg,%| > 1110 Q\U),_q Bs(xn) if &, <10. If R>r >4, then

1 / Ve, <W> _
21 [We | \ [, [ /o "

r(Xm

is a well-defined integer independentrofSincey,,, — ¥p in HY(Q; C), it follows (as
in Section 2) thatigkl,m =d, forallm e {1, ...,n} and all¢ sufficiently large, where
=(d1,...,d,).
SlnceJo(xpD, Ap) =Ilim,_ o Jer, Wy, » Agy,) and Jo(y, A) = J. (¢, A) for all (¢, A)
in Mo, it follows that (vp, Ap) is a minimizer forJy in Mo, i.e. D € Dy(h,). Finally
the assertion thdty,, | — +/a in C(£2) has been proved for a subsequence of an arbitrary
sequence. As a result the assertion is true for the original sequence.

From the above result and Theorem 3.7, we obtain:

THEOREM 4.3. —Fix R > 0 as in Theoren¥4.2 and 4, > 0. For eache > 0, let
(¥e, A;) be a minimizer of/, in M. There existgo = ¢o(R, h.) > 0 such that for all
0 < ¢ <o, || > Ooutsidel J;_; Bg(x;) and the degree af, in Bg(x;)fori =1,...,n
denoted byD, = (dy,, ..., d,.), is in Dy(h,). If, in addition, h, > h, (for h, defined as
in TheorenB.7), thenD, # 0.

Proof. —The first assertion of the theorem follows from Theorem 4.2 and an argument
by contradiction, sincéy.| — /a uniformly in Q@ ase — 0*. If i, > h. and O< ¢ <
co(R, h,), then 0 ¢ Do = Do(he) by Theorem 3.7. Thus the degree wf in Q for ¢
sufficiently small is nontrivial.

Given ¢ > 0, the lower critical fieldH,,(¢) is defined as the supremum of all
nonnegative numbers, such that any minimize y,, A,), of J.(y, A) = J. (¥, A; h,)
in M satisfies|y,| > 0 in Q. (Note that wher:, = 0, then every minimizety,, A,)
satisfiesA, = 0 anda vy, > 0 for somex € C with |¢| = 1. Thus the set of nonnegative
numbers described above is nonempty, &hdce) is well-defined for eacl > 0.) From
Theorem 4.3, we have:
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COROLLARY 4.4. —Defineh, > 0 as in Theoren8.7. Therlimsup. H, (¢) < h,.

Proof. —ChooseR > 0 so thatBg (x;) are disjoint subsets @@ fori =1, ..., n. If the
inequality is false, there exisés> 0 and a sequeneg — 0 such thatH,, () > h, +§
for all k. Letting (¢, , A,) be a minimizer of/,, for h, =h,+8 andk=1,2,..., we
have|y,,| > 0 in Q for all k, which contradicts Theorem 4.3 sinee< &o(R, h, + §)
for all k sufficiently large. O

Our results thus far show that for eath> 0, the set of minimizers ofy in Mg are
given precisely by the set of minimizerjp, Ap), of Jo in H; , x H'(Q;R?) with
D in Dy(h,), whereDqy(h,) is the finite set of allD in Z" which minimize&(C; h,).
Moreover,(¥p, Ap) is unique inH} , x H*(2; R?) up to uniform rotations o/, in <.
In addition, fore sufficiently small, minimizers of, in M have vortices “pinned” near
X1, ..., X, with an order parameter having degréés,, ..., d,.) = D, nearx, ..., x,,
respectively, for somé®, in Dy(h.). This proves the results stated as Theorems 1-4 in
the introduction.

Our final result shows that in contrast to what we have shown for minimizers, there
existlocal minimizersof J, in M with ¢ sufficiently small, with arbitrarily prescribed
degrees of the order parameter near. . ., x,,, respectively. More precisely, we have:

LEMMA 4.5.—-Fix any D = (dy,...,d,) in Z" and h, > 0. Let (y/p, Ap) be an
equilibrium for Jo in H!, x H'(Q;R?). For each sequencey, — O there exists
local minimizers(y,,, A,,) of J., in M, such that(y,,, As,) > (¥p, Ap) iIn M as
ex — 0. Moreover for eachk > 0, as in Theorend.2, and allk sufficiently large,v., |
is uniformly positive outsid¢J;_; Bg(x;) and the degree ofy,, in Br(x;) is d;, for
i=1,...,n.

Proof. —Define

B, =B, (¥, Ap) = {(¥, A) € M: [|(, A) = Wp, Ap)|| <7}

and
N={{W,A)eM:dvA=0inQandA -n=00ndQ}.

By Theorem 3.2(yrp, Ap) € B, N N is a minimizer of Jo in A}, x HY(Q;R?). In
addition, forr > 0 sufficiently small,

B.NMo=B.N[H ,x H(Q;R?)] (47)

sinceHa{D is open inH! by Theorem 1.5. Thu&/p, Ap) is also a local minimizer for
Jo in M.

Fix r > 0 satisfying (47). For each > 0, let (., A;) be a minimizer forJ, in
B.NN.Thenthe sequendé(v.,, A:,)llr} is bounded. Thus there exists a subsequence
er, = 0 such that(y,, , A, ) = (¥°, A% in M. Moreover(y°, A%) € B, N N' N Mo
must be a minimizer foty on B,. (Here we use the weak lower semicontinuity Jof
the fact that/. (v, A) = Jo(y, A) for all (¥, A) in My, and that(yp, Ap) € B, NN.)

As in Theorem 4.2, we obtain
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Jim /y(v zAF,%)vakA = /y — i A%y O (48)
Jim /]VxAFk — hees|” :/vaAO—h (49)
Q
o [lo= =0
Q
Thus just as in Theorem 4.2 we find that
1y, Aci) = (7. A%)]| oy — O (51)

as ¢ — oo. Since (Yp, Ap) is the unique minimizer for/y in B, up to a uniform
rotation of ¥, (with our gauge assumption), and sin¢g®, A% is in A/ as well

it follows that (yp, Ap) = (¥°€¢, A% for somec € R. From this and (51) we
see that(xlfgkZ g, Ag,) = (Yp, Ap) in M. In particular(l//% €e, Ag,) is in B, for

all ¢ sufficiently large. Thus by replacingy., , A.,,) and (° A% by the gauge
equivalent pairgy,, ge, Ag,,) and(¥p, Ap) respectively we may assume without loss
of generality that(y/%, A% = (¥p, Ap). In this case it follows thaty,, , A, ) is an
interior point of B, for all £ sufficiently large. Asaresul(;glfgk s Agy, )|salocal minimizer
for Je, in \V. SlnceJFk is gauge invarient it follows the(ﬁ/fgk ,AF,{ ) is a local minimizer

in M as well. In partlcular it is an equilibrium solution. ‘From this and (50) it follows
just as in Theorem 4.2 thaﬂfgkz| — J/ain C(Q) asg, — 0. We see thaiifgkZ inherits

the same degree ds,, namelyd;, in Bi(x;) fori =1, ..., n and all¢ sufficiently large.
Since each sequeneg— 0" contains a subsequence for which our assertions hold the
same is true for the full sequencen

THEOREM 4.6. —Fix any D = (d, ...,d,) in Z" and h, > 0. Let (y/p, Ap) be an
equilibrium for Jo in H; , x H(2; R?) and choose > 0 satisfying(47). Then for all
¢ > 0 sufficiently smallB,(¥p, Ap) contains a local minimizeKy,, A,), of J. in M
such that for eactR > 0 as in Theorem.2and all ¢ sufficiently small|y,| is uniformly
positive outside J!_; Bg(x;) and the degree of, in Bg(x;) isd; fori =1,...,n

Proof. —The theorem follows from Lemma 4.5 using an argument by contradiction.
Indeed if the theorem’s assertion was false then there would exist a sequencé™
for which the lemma could not hold. O
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