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ABSTRACT. – The local boundedness of minimizers of functionals is
proved under growth conditions depending on the full gradient.

1. INTRODUCTION

We are concerned with the local boundedness of local minimizers of
integral functionals having the form

J (u,Ω)=
∫
Ω

f (x,u,Du)dx, (1.1)

whereΩ is an open subset ofRn (n> 2) andf :Ω ×R×Rn→ R is a
Carathéodory function.

In the classical theory of regularity (see e.g. [5,8,11,14]), as well
as in more recent developments (including [1–3,6,7,10,12,13,15,16,18–
25]), the integrandf is usually assumed to satisfy growth conditions
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depending on the gradientDu only through its length|Du|, or through
the sum of functions of the single partial derivativesuxi , i = 1, . . . , n.

The main novelty in the present paper is that bounds onf are
allowed involving functions (not necessarily of polynomial type) of the
wholeDu. An example of the functionals, not falling within the classes
considered in the papers mentioned above, which we are able to deal with
is

J (u,Ω)=
∫
Ω

[|uxi |p1 + |ux1 − ux2|p2 + g(ux1, ux2)
]
dx1 dx2, (1.2)

whereΩ ⊂ R2, p1,p2 > 1 andg is any bounded continuous function.
The local boundedness of (possible) local minimizers ofJ can be
discussed via Theorem 1, Section 2—see Example 3. Theorem 1 is
a special case of the main result of this paper, which is contained
in Theorem 2 of the same section. Let us point out that, even in
standard situations, Theorem 2 slightly refines some of the results already
available in the literature, in that it enables to include also certain
borderline cases (Examples 1, 2, 4).

2. MAIN RESULTS

Our assumption on the integrandf in (1.1) reads as follows:

A(ξ)− b(x)B(|s|)− a(x)6 f (x, s, ξ)
6 c
(
A(ξ)+ b(x)B(|s|)+ a(x)) (2.1)

for s ∈ R, ξ ∈ Rn and a.e.x ∈Ω . Here,A :Rn→ [0,+∞) is a convex
function such that

A(0)= 0, lim|ξ |→+∞A(ξ)=+∞ (2.2)

and

A(ξ)=A(−ξ) for everyξ ∈Rn; (2.3)

B : [0,+∞)→ [0,+∞) is an increasing function;a and b are locally
integrable nonnegative functions onΩ ; c is a constant> 1. BothA and
B are required to satisfy the so-called12-condition; namely, we assume
that

A(2ξ)6 kA(ξ) for ξ ∈Rn (2.4)
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and

B(2s)6 kB(s) for s > 0, (2.5)

for some positive constantk.
A precise definition of a local minimizer of the functionalJ in (1.1)

involves the functionAM : [0,+∞)→[0,+∞) associated withA by

AM(s)=max|ξ |=s A(ξ) for s > 0. (2.6)

In other words,AM(|ξ |) is the smallest radial function which dominates
A(ξ). It is easily verified thatAM is a Young function, i.e., a convex
function vanishing at zero. Notice also thatAM satisfies the12-condition
wheneverA does.

A weakly differentiable functionu :Ω → R will be called a local
minimizer ofJ if ∫

Ω ′
AM(|u|)+A(Du)dx <∞ (2.7)

for every open setΩ ′ bΩ and

J
(
u,supp(φ)

)
6 J

(
u+ φ,supp(φ)

)
(2.8)

for every weakly differentiable functionφ such that supp(φ) b Ω and∫
Ω AM(|φ|)+A(Dφ)dx <∞.

As shown by the counterexamples of [9,17] and [12], regularity of
minimizers ofJ cannot be expected, even in the simplest situation where
f is independent ofx and s, if A is subject to the sole assumptions
(2.2)–(2.4). Those counterexamples and the results of [7] suggest that
a suitable additional assumption for minimizers to be locally bounded
should amount to a bound forA in terms of its Sobolev conjugate. An
optimal Sobolev conjugate ofA is the functionAn defined as follows
(see [4]). LetA? : [0,+∞) → [0,+∞) be the increasing continuous
function such that∣∣{ξ ∈Rn: A(ξ)6 t}∣∣= ∣∣{ξ ∈Rn: A?(|ξ |)6 t}∣∣ for everyt > 0,

where| · | stands for Lebesgue measure; namely,

A?(s)= sup
{
t :
∣∣{ξ ∈ Rn: A(ξ)6 t}∣∣<Cnsn} for s > 0, (2.9)
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where Cn is the measure of then-dimensional unit ball. ThenAn :
[0,+∞)→[0,+∞] is defined as

An =A? ◦H−1, whereH(t)=
( t∫

0

(
r

A?(r)

)n′−1

dr

)1/n′

for t > 0,

(2.10)
n′ = n/(n− 1) andH−1 is the left-continuous inverse ofH . Note that,
by the Brunn–Minkowski inequality,|{ξ ∈Rn: A(ξ)6 t}|1/n is a concave
function of t . ThusA? is a Young function and, sinceH is concave and
vanishes only at 0, An is a Young function as well.

In what follows we may always assume, without loss of generality, that
the integral in the definition ofH in (2.10) is convergent—see Remark 2
below. Moreover, we shall suppose that

+∞∫ (
s

A?(s)

)n′−1

ds =+∞ (2.11)

Indeed, if the integral in (2.11) converges, then any functionu satisfying
(2.7) is automatically locally bounded—see Lemma 2, Section 2.

We are now in a position to state our regularity result. Because of its
transparency, we give a separate statement in the basic case where the
estimates in (2.1) are independent ofx ands, i.e., when

A(ξ)− c6 f (x, s, ξ)6 c(A(ξ)+ 1
)

(2.12)

for s ∈R, ξ ∈Rn and a.e.x ∈Ω .

THEOREM 1. –Assume that condition(2.12) is fulfilled for someA
satisfying the above hypotheses. If a constantk > 0 exists such that

A(ξ)6An(k|ξ |)+ k for everyξ ∈Rn, (2.13)

then any local minimizer ofJ is locally bounded inΩ .

In the general case, a balance has to be imposed between the degrees
of summability of a and b, and the growths ofA, B and An. Such
a balance involves the lower index at infinity of the functionsA? and
AM + B. Recall that such an index is defined for an increasing function
Φ : (0,+∞)→ (0,+∞) as

i∞(Φ)= lim
λ→+∞

log(lim inf s→+∞ Φ(λs)

Φ(s)
)

logλ
. (2.14)
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THEOREM 2. –Assume that condition(2.1) is fulfilled for someA and
B satisfying the above hypotheses. Suppose that:

(i) b ∈ Lβloc(Ω) for someβ ∈ (1,∞] such thatβ > n/i∞(AM + B)
and (

A(ξ)+B(|ξ |))β ′ 6An(k|ξ |)+ k for ξ ∈Rn, (2.15)

for some positive constantk;
(ii) a ∈Lαloc(Ω) for someα > n/i∞(A?).

Then any local minimizer ofJ is locally bounded inΩ .

Remark1. – Assumption (2.11) implies, in particular, thati∞(A?)6 n
(see Proposition 1, Section 3).

Remark2. – Given any radial convex functionΛ vanishing at 0 and
satisfying the12-condition, we may assume, without loss of generality,
thatA(ξ) = Λ(ξ) if |ξ | is small enough. Actually, it is not difficult to
see that there exist positive constantsc1, c2, s0 andt0 such that, ifA(ξ) is
the function which equalsΛ(ξ) for |ξ |6 s0, agrees withc1A(ξ)− c2 in
{ξ ∈ Rn: A(ξ) > t0} and is extended by convexity otherwise, thenA is a
convex function fulfilling (2.2)–(2.4) and

1

c1

(
A(ξ)+ c2

)− t06A(ξ)6 1

c1

(
A(ξ)+ c2

)+ t0 for ξ ∈Rn.

Thus,f satisfies (2.1) withA(ξ) replaced byA(ξ)/c1 and with a(x)
replaced bya(x) = a(x) + t0 + c2/c1; moreover, conditions (i)–(ii) of
Theorem 2 withA and a replaced byA/c1 and a, respectively, are
equivalent to the original ones.

Example1. – Consider the classical case whereA(ξ) = |ξ |p and
B(s)= sq . In this case,An(s) is equivalent tosp

∗
, wherep∗ = np/(n−

p), if 1 6 p < n, and is equivalent near infinity to exp(sn
′
) − 1 if

p= n. Recall that two functionsΦ1,Φ2 : [0,+∞)→[0,+∞) are called
equivalent if there exist positive constantsc1 andc2 such thatΦ1(c1s)6
Φ2(s)6Φ1(c2s), for s > 0, and are called equivalent near infinity if the
same inequalities hold for larges. Thus, when 16 p < n, Theorem 2
tells us that any local minimizer ofJ is locally bounded, provided that
0< q 6 p∗, b ∈ Lβloc(Ω) with β = p∗/(p∗ − q) or β > n/p according to
whetherp < q or p > q, anda ∈ Lαloc(Ω) for someα > n/p. If p = n,
the same conclusion is true for everyq > 0, provided thatb ∈ Lβloc(Ω)
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anda ∈Lαloc(Ω) for someβ,α > 1. This reproduces the result of [10] and
shows that the limiting valuesq = p∗ andβ = p∗/(p∗ − q) are allowed.

Example2. – Assume, more generally, thatA is just radial, so that
A(ξ)=A?(|ξ |)=AM(|ξ |). SinceH−1 grows more than linearly at infin-
ity, condition (2.13) is always fulfilled; thus, the results on boundedness
contained in [21,22] are recovered by Theorem 1 and extended by Theo-
rem 2. The latter also improves a result from [16].

Example3. – Let us take into account the functionalJ defined by
(1.2). An estimate of type (2.12) obviously holds with

A(ξ)= |ξ1|p1 + |ξ1− ξ2|p2,

whereξ = (ξ1, ξ2) ∈ R2. The straight linesξ1=±t1/p1 andξ2= ξ1± t1/p2

are tangent to the (convex) level set{ξ ∈ R2: A(ξ)6 t} for everyt > 0.
Consequently,

2t1/p1+1/p2 6
∣∣{ξ ∈R2: A(ξ)6 t}∣∣6 4t1/p1+1/p2 for t > 0.

Thus,A?(s) is equivalent tos2p1p2/(p1+p2), so thatAn(s) is equivalent
to s2p1p2/(p1+p2−p1p2) if p1p2 < p1 + p2, and is equivalent near infinity
to exp(s2) − 1 if p1p2 = p1 + p2. Theorem 1 (and the remark about
condition (2.11)) tell us that the local minimizers ofJ are locally bounded
either if p1p2 > p1 + p2 or if p1p2 < p1 + p2 and min{p1,p2} >
max{p1,p2}/(1+max{p1,p2}).

Consider now the special case whereA has the form

A(ξ)=
n∑
i=1

Ai(|ξi|), (2.16)

where ξ = (ξ1, . . . , ξn) and Ai are Young functions. In this case,A?
is equivalent to the functionA : [0,+∞) → [0,+∞) whose (right-
continuous) inverse is defined by

A
−1
(t)=

( n∏
i=1

A−1
i (t)

)1/n

for t > 0.

Indeed, since{ξ ∈ Rn: A(ξ) 6 t} is a convex set containing the
points (0, . . . ,0,±A−1

i (t),0, . . . ,0) and contained in the parallelepiped
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bounded by the hyperplanesξi =±A−1
i (t), then

2n

n!
n∏
i=1

A−1
i (r)6

∣∣{ξ ∈Rn: A(ξ)6 t}∣∣6 2n
n∏
i=1

A−1
i (r).

Hence the equivalence ofA? andA follows. Moreover, the functionAn
is easily seen to be equivalent to the functionAn defined as in (2.10), but
withA? replaced byA. Notice also thatAM(s) is equivalent to maxi Ai(s)
(and to

∑n
i=1Ai(s)). Theorem 2, combined with these considerations,

yields the following corollary.

COROLLARY. – Assume that condition(2.1) is fulfilled for someA
having the form(2.16)and that the Young funtionsAi and the functionB
satisfy the12-condition. Suppose that:

(i) b ∈ Lβloc(Ω) for someβ ∈ (1,∞] such thatβ > n/i∞(B +
maxi Ai) and

(
max
i
Ai(|ξi|)+B(|ξ |))β ′ 6An(k|ξ |)+ k for ξ ∈Rn, (2.17)

for some positive constantk;
(ii) a ∈Lαloc(Ω) for someα > n/i∞(A).

Then any local minimizer ofJ is locally bounded inΩ .

Obviously, maxi Ai can be replaced by
∑n
i=1Ai in assumption (i) of

the Corollary.
Let us mention that a result in the same direction as the Corollary is

contained in [13].

Example4. – Let Ai(s) = spi for somepi > 1, i = 1, . . . , n, and
B(s) = sq . ThenA(s) = sp , where 1/p = (1/n)∑n

i=1(1/pi), so that
An(s) is equivalent tosp

∗
if p < n, and is equivalent near infinity to

exp(sn
′
) − 1 if p = n. Setm = max{p1, . . . , pn, q}. Whenp < n, the

Corollary yields the local boundedness of local minimizers ofJ if m6
p∗, b ∈Lβloc(Ω) with β = p∗/(p∗−m) orβ > n/p according to whether
p < m or p > m, anda ∈ Lαloc(Ω) for someα > n/p. Whenp = n,
the same conclusion holds for everyq > 0, provided thatb ∈ Lαloc(Ω)

anda ∈ Lαloc(Ω) for someβ,α > 1. This example includes Theorem 3.1
of [7], whereb(x) was taken≡ 1.
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3. SOBOLEV AND CACCIOPPOLI INEQUALITIES

Basic tools in the proof of Theorem 2 are a general anisotropic version
of the Sobolev inequality and a Caccioppoli type inequality for local
minimizers ofJ .

The Sobolev inequality we allude to is stated in the following theorem.

THEOREM. – LetA be any convex function satisfying(2.2)–(2.3)and
making the integral in(2.10)converge. Then there exists a constantc(n),
depending only uponn, such that∫

Rn

An

( |u(x)|
c(n)(

∫
Rn A(Du)dy)

1/n

)
dx 6

∫
Rn

A(Du)dx (3.1)

for every real-valued weakly differentiable functionu on Rn decaying
to 0 at infinity, in the sense that|{x ∈ Rn: |u(x)| > t}| <+∞ for every
t > 0. The functionAn is optimal, in the sense that if(3.1)holds withAn
replaced by any Young functionA0 for everyA satisfying(2.2)–(2.3)and
with prescribedA?, then the integral in(2.10) must converge and there
existsc > 0 such thatA0(s)6An(cs) for s > 0.

A proof of this theorem can be found in [4]. We shall need the
consequences contained in Lemmas 1 and 2 below.

LEMMA 1. –LetA be any convex function satisfying(2.2)–(2.3)and
making the integral in(2.10)converge. LetΦ,Ψ : [0,+∞)→ [0,+∞)
be increasing functions such that

Φ(λs)6Ψ (λ)Φ(s) for λ, s > 0. (3.2)

Assume that

Φ(s)6An(s) for s > 0. (3.3)

Then

∫
Rn

Φ(k|u(x)|)dx 6Ψ
(
kc(n)

( ∫
Rn

A(Du)dx

)1/n)∫
Rn

A(Du)dx (3.4)

for everyk > 0 and every real-valued weakly differentiable functionu on
Rn decaying to0 at infinity. Here,c(n) is the constant appearing in(3.1).

The derivation of Lemma 1 from inequality (3.1) is straightforward.
Let us notice that the existence of a functionΨ rendering (3.2) true
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is equivalent to the12-condition for Φ. This is a consequence of
Proposition 1 below containing standard results relating the growth
of an increasing functionΦ : (0,+∞) → (0,+∞) with its indices
i(Φ), I (Φ), i∞(Φ) and I∞(Φ). Here,i∞(Φ) is the number defined by
(2.14); I∞(Φ) is defined similarly, but with lim infs→+∞ replaced by
limsups→+∞; i(Φ) and I (Φ) are defined asi∞(Φ) and I∞(Φ), save
that lim infs→+∞ and lim sups→+∞ are replaced by infs>0 and sups>0,
respectively. Obviously, 06 i(Φ)6 i∞(Φ)6 I∞(Φ)6 I (Φ)6+∞; in
particular, ifΦ is a Young function, then 0 can be replaced by 1 in these
inequalities.

PROPOSITION 1. –Let Φ : (0,+∞) → (0,+∞) be any increasing
function.

(i) Φ satisfies the12-condition if and only ifI (Φ) <∞. In this case,
for everyδ > 0 there exists a constantC > 0 such that

1

C
min

{
λi(Φ)−δ, λI (Φ)+δ

}
Φ(s)

6Φ(λs)6 Cmax
{
λi(Φ)−δ, λI (Φ)+δ

}
Φ(s) for λ, s > 0. (3.5)

(ii) If I∞(Φ) <∞, then for everyδ > 0 there exist positive constants
C ands0 such that

1

C
λi∞(Φ)−δΦ(s)

6Φ(λs)6 CλI∞(Φ)+δΦ(s) for s > s0 andλ> 1. (3.6)

In what follows,BR will denote a ball of radiusR in Rn.

LEMMA 2. –Let A be any convex function fulfilling(2.2)–(2.4)and
let u be any weakly differentiable function onΩ such that

∫
Ω ′ AM(|u|)+

A(Du)dx <∞ for every open setΩ ′ bΩ .
(i) If

∫ +∞
(s/A?(s))

n′−1 ds <+∞, thenu is locally bounded.
(ii) If

∫ +∞
(s/A?(s))

n′−1 ds =+∞, then∫
BR

An
(
k
∣∣u(x)∣∣)dx <+∞ (3.7)

for everyk > 0 and every ballB bΩ .

Proof. –Let k be any positive number. Fix any ballBR b Ω and
let BR be a ball, concentric withBR, such thatBR b BR b Ω . Let η
be any real-valued smooth function onRn such that 06 η(x) 6 1 for
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everyx ∈ Rn, η ≡ 1 in BR, η ≡ 0 outsideBR and |Dη| 6 2/(R − R)
everywhere. Given anyt > 0, we have∫
BR

An
(
k|u|)dx 6

∫
B
R

An
(
k|u|η)dx

=
∫

{|u|η>t}
An
(
k|u|η)dx +

∫
{|u|η6t}

An
(
k|u|η)dx

6 1

2

∫
{|u|η>t}

An
(
2k
(|u|η− t))dx + 1

2

∫
{|u|η>t}

An(2kt)dx

+
∫

{|u|η6t}
An
(
k|u|η)dx, (3.8)

sinceAn is convex. The convexity ofA, our assumptions onη and
Proposition 1 applied toAM easily imply that there exists a positive
constantC (independent ofu andt), such that∫
{|u|η>t}

A
(
D[|u|η])dx 6 C

( ∫
{|u|η>t}

A(Du)dx +
∫

{|u|η>t}
AM(|u|)dx

)
.

By (2.7), the right-hand side of the last inequality is finite. Thus,t can be
chosen so large that

2kc(n)

( ∫
{|u|η>t}

A
(
D[|u|η])dx

)1/n

6 1, (3.9)

where c(n) is the constant of inequality (3.1). SinceAn is a Young
function,An(λs) 6 λAn(s) for 06 λ 6 1 ands > 0. Thus, inequalities
(3.1) and (3.9) imply that∫

{|u|η>t}
An
(
2k(|u|η− t))dx

6 2kc(n)

( ∫
{|u|η>t}

A
(
D[|u|η])dx

)1/n

×
∫

{|u|η>t}
An

( |u(x)|η(x)− t
c(n)(

∫
{|u|η>t}A(D[|u(y)|η(y)])dy)1/n

)
dx
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6 2kc(n)

( ∫
{|u|η>t}

A
(
D[|u|η])dx

)1+1/n

<+∞. (3.10)

Now, if
+∞∫ (

s

A?(s)

)n′−1

ds <+∞,
then there existss0 > 0 such thatAn(s) = +∞ for s > s0. Hence,
inequality (3.10) tells us that|u|6 (s0/2k)+ t in BR .

If, on the contrary,

+∞∫ (
s

A?(s)

)n′−1

ds =+∞,

thenAn is everywhere finite, so that the last two integrals in (3.8) are
finite. Thus, inequality (3.7) follows from (3.8) and (3.10).2

The Caccioppoli inequality for a local minimizeru of J is contained
in the next lemma. In the statement, given any ballBR ⊂ Ω and any
t ∈R, Et,R will denote the set defined by

Et,R = {x ∈ BR: u(x) > t
}
. (3.11)

LEMMA 3. –Let A and B satisfy assumptions(2.2)–(2.5). Let F :
[0,+∞) → [0,+∞) be an increasing function satisfying the12-
condition. Suppose that a numbers0> 0 exists such that

A(ξ)+B(|ξ |)6 F(|ξ |) for |ξ |> s0. (3.12)

Let u be any local minimizer ofJ . Then, given any positive numbers
δ, R0 and t1, there exists a constantC > 0, depending only on
I (F ), δ,R0, s0 and t1, such that∫

Et,ρ

A(Du)dx 6C
(

1

(R− ρ)I (F )+δ
∫
Et,R

(
1+ b(x))F(u− t)dx

+F(t)
∫
Et,R

b(x)dx +
∫
Et,R

(
1+ a(x))dx

)
(3.13)

for every0< ρ <R 6R0 and everyt > t1.
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Proof. –All the balls considered throughout the proof will be centered
at a fixed point ofΩ . Moreover, all the constants will be allowed to
depend on the same quantities as the constantC in (3.13).

Let ρ < τ 6 σ 6 R 6R0 and letη be any real-valued smooth function
on Rn such that 06 η(x) 6 1 for everyx ∈ Rn, η ≡ 1 in Bτ , η ≡ 0
outsideBσ and|Dη|6 2/(σ − τ) everywhere. Fix anyt > t1 and choose

φ =−ηI(F )+δ(u− t)+
in (2.8). Here, subscript+ denotes positive part. Let us setv = u + φ.
Since φ vanishes outsideEt,σ , inequality (2.8) and assumption (2.1)
imply that∫

Et,σ

A(Du)dx 6 c1

( ∫
Et,σ

A(Dv)dx +
∫
Et,σ

b(x)
[
B(|u|)+B(|v|)]dx

+
∫
Et,σ

a(x)dx

)
(3.14)

for a suitable constantc1> 0. Consider the first integral on the right-hand
side of (3.14). We have

Dv= (1− ηI(F )+δ)Du
+ (I (F )+ δ)ηI(F )+δ Dη

η
(t − u) for x ∈Et,σ .

By the convexity ofA, by our assumptions onη and by Proposition 1
applied toAM , there exists a constantc2> 0 such that∫

Et,σ

A(Dv)dx 6
∫
Et,σ

(
1− ηI(F )+δ)A(Du)dx

+
∫
Et,σ

ηI (F )+δA
((
I (F )+ δ)Dη

η
(t − u)

)
dx

6
∫

Et,σ \Et,τ
A(Du)dx

+ c2

∫
Et,σ

AM

(
2

σ − τ (u− t)
)

dx. (3.15)

On the other hand, assumption (3.12) and Proposition 1 ensure that
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Et,σ

AM

(
2

σ − τ (u− t)
)

dx

6
∫
Et,σ

F

(
2

σ − τ (u− t)
)

dx +AM(s0)|Et,σ |

6 c3

(σ − τ)I (F )+δ
∫
Et,σ

F (u− t)dx +AM(s0)|Et,σ | (3.16)

for some positive constantc3. Combining (3.15) and (3.16) yields∫
Et,σ

A(Dv)dx 6
∫

Et,σ \Et,τ
A(Du)dx + c2c3

(σ − τ)I (F )+δ
∫
Et,σ

F (u− t)dx

+ c2AM(s0)|Et,σ |. (3.17)

Let us now take into account the second integral on the right-hand side of
(3.14). Since|u|6 |u− t| + t and|v|6 |u| + |u− t|6 t + 2|u− t|, we
have by (3.12)∫

Et,σ

b(x)
[
B(|u|)+B(|v|)]dx

6 2
∫
Et,σ

b(x)B
(
t + 2(u− t))dx

6 2
∫
Et,σ

b(x)F
(
t + 2(u− t))dx + 2B(s0)

∫
Et,σ

b(x)dx

6 2
∫
Et,σ

b(x)F
(
4(u− t))dx + 2

(
F(2t)

+B(s0)) ∫
Et,σ

b(x)dx. (3.18)

Hence, a constantc4> 0 exists such that∫
Et,σ

b(x)
[
B(|u|)+B(|v|)]dx 6 c4

(
1

(σ − τ)I (F )+δ
∫
Et,σ

b(x)F (u− t)dx

+F(t)
∫
Et,σ

b(x)dx

)
. (3.19)
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From (3.14), (3.17) and (3.19) we deduce that∫
Et,τ

A(Du)dx

6 c5

( ∫
Et,σ \Et,τ

A(Du)dx + 1

(σ − τ)I (F )+δ
∫
Et,R

(
1+ b(x))F(u− t)dx

+F(t)
∫
Et,R

b(x)dx +
∫
Et,R

(
1+ a(x))dx

)
(3.20)

for somec5> 0. Summing up the quantityc5
∫
Et,τ

A(Du)dx to both sides
of (3.20), dividing through by(1+ c5) and applying a standard iteration
argument (see, e.g., Lemma 3.1, Chapter 5 of [8]) yield (3.13).2

4. PROOF OF THEOREM 2

Our approach is related to that of [5,7,10]. By Remark 1 we may
assume, without loss of generality, that

A(ξ)= |ξ |i∞(A?)−rε for small|ξ |. (4.1)

Here,rε = ε or rε = 0 according to whetheri∞(A?) > 1 or i∞(A?)= 1,
andε is a positive number to be chosen later. To begin with, we require
thatε is so small that

i∞(A?)− rε > 1 (4.2)

and

ε < i∞(AM +B). (4.3)

Set

γ =max
{
(i∞(A?)− rε)∗/β ′, i∞(AM +B)− ε} (4.4)

and letF : [0,+∞)→[0,+∞) be any increasing function such that

F(s)=
 sγ for smalls,

AM(s)+B(s) for larges.
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Let us fix a ballBR bΩ with which every ball considered throughout the
proof will be concentric. For every nonnegative integerh we set

ρh = R
2
+ R

2h+1
, ρh = ρh + ρh+1

2

and, givent > 1,

th = t(1− 2−(h+1)).
Clearly,ρh decreases toR/2 andth increases tot ash goes to+∞.

Let u be any local minimizer ofJ . We set

Jh=
∫

Eth,ρh

(
1+ b(x))F(u− th)dx

+
∫

Eth,ρh

(
1+ a(x))(u− th)i∞(A?)+ε dx, (4.5)

whereEth,ρh is defined as in (3.11). We claim thatJh <+∞ for everyh.
Indeed, by Hölder’s inequality,∫

Eth,ρh

(
1+ b(x))F(u− th)dx

6
( ∫
Eth,ρh

F (u− th)β ′ dx
)1/β ′( ∫

Eth,ρh

(
1+ b(x))β dx

)1/β

, (4.6)

with the usual modification ifβ = ∞. Owing to (4.1) and (4.4), there
exists a constantc1 such thatF(s)β

′ 6 c1An(s) if s is sufficiently small
andF(s)β

′ = (AM(s)+B(s))β ′ if s is sufficiently large. Hence, by (2.15),
there existsc2> 0 such that

F(s)β
′ 6An(c2s) for s > 0. (4.7)

Thus, by Lemma 2 and assumption (i), the first integral on the right-hand
side of (4.5) is finite. As far as the second integral is concerned, ifε is so
small that

i∞(A?)+ ε < (i∞(A?)− rε)∗, (4.8)

then, by Hölder’s inequality again, we have
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Eth,ρh

(
1+ a(x))(u− th)i∞(A?)+ε dx

6
( ∫
Eth,ρh

(u− th)(i∞(A?)−rε)∗ dx

) i∞(A?)+ε
(i∞(A?)−rε)∗

×
( ∫
Eth,ρh

(
1+ a(x))( (i∞(A?)−rε)∗i∞(A?)+ε )′

dx

)1/( (i∞(A?)−rε)
∗

i∞(A?)+ε )′

. (4.9)

Observe now that a positive constantc3 exists such that

si∞(A?)−rε 6 c3A?(s) for s > 0. (4.10)

Inequality (4.10) follows from (4.1) and Proposition 1 ifi∞(A?) > 1,
and from (4.1) and the convexity ofA? if i∞(A?)= 1. Inequality (4.10)
implies that a constantc4> 0 exists such that

s(i∞(A?)−rε)
∗ 6 c4An(s) for s > 0. (4.11)

Thus, the first integral on the right-hand side of (4.9) is finite by Lemma
2. The second is also finite, provided thatε is chosen so small that(

(i∞(A?)− rε)∗
i∞(A?)+ ε

)′
< α. (4.12)

Such a choice ofε is possible thanks to assumption (ii). The finiteness of
Jh is proved.

Inequalities (4.6) and (4.9) ensure that, ifR0 is any positive number
andR 6R0, then a constantc5 exists such that

Jh6 c5

{( ∫
Eth,ρh

F (u− th)β ′ dx
)1/β ′

+
( ∫
Eth,ρh

(u− th)(i∞(A?)−rε)∗ dx

) i∞(A?)+ε
(i∞(A?)−rε)∗}

(4.13)

for everyh. Fix now any smooth functionω : [0,+∞)→[0,1] such that
ω(s)= 1 if s ∈ [0,1/2], ω(s)= 0 if s > 3/4 and |dω/ds|6 4 for every
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s ∈ [0,+∞). On setting

ωh(x)= ω
(

2h+1

R

(
|x| − R

2

))
,

one hasωh = 1 in Bρh+1, ωh = 0 outsideBρh and |Dωh| 6 2h+3/R

everywhere. Inequalities (4.13), (4.7), (4.11) and Lemma 1 yield

Jh+16 c5

{( ∫
Eth+1,ρh

F
(
(u− th+1)ωh

)β ′
dx

)1/β ′

+
( ∫
Eth+1,ρh

(
(u− th+1)ωh

)(i∞(A?)−rε)∗ dx

) i∞(A?)+ε
(i∞(A?)−rε)∗}

6 c6

{{ ∫
Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

×Ψ
(
c2c(n)

( ∫
Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

)1/n)}1/β ′

+
( ∫
Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

) i∞(A?)+ε
i∞(A?)−rε}

(4.14)

for somec6 > 0, whereΨ : [0,+∞)→ [0,+∞) is any function such
that Fβ

′
(λs) 6 Ψ (λ)Fβ ′(s). Since i∞(F β

′
) = β ′i∞(F ) = β ′i∞(AM +

B), I (F β
′
)= β ′I (F ) andAM + B satisfies the12-condition, Eq. (4.4)

and Proposition 2 below ensure that one can take

Ψ (λ)= c7
(
λβ
′(i∞(AM+B)−ε) + λβ ′(I (F )+ε)) (4.15)

in (4.14), wherec7 is a suitable positive number. Notice now that∫
Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

6 c8

( ∫
Eth+1,ρh

A(Du)dx +
∫

Eth+1,ρh

AM
(
2h(u− th+1)

)
dx

)
(4.16)
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for some constantc8 independent ofh. One can make use of the
Caccioppoli inequality (3.13) to estimate the former integral on the right-
hand side of (4.16), and exploit the fact thatAM(s)6 F(s)+ c9 for s > 0
for somec9 > 0 and Proposition 1 to estimate the latter. So doing, we
deduce that, for everyδ > 0, a constantc10, independent ofh, exists such
that ∫

Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

6 c10

(
2h(I (F )+δ)

∫
Eth+1,ρh

(
1+ b(x))F(u− th+1)dx

+F(t)
∫

Eth+1,ρh

b(x)dx +
∫

Eth+1,ρh

(
1+ a(x))dx

)
. (4.17)

We have

Jh >
∫

Eth+1,ρh

(
1+ b(x))F(u− th+1)dx. (4.18)

Moreover,

Jh>
∫

Eth+1,ρh

(
1+ b(x))F(u− th)dx

>F(th+1− th)
∫

Eth+1,ρh

(
1+ b(x))dx

=F (t2−(h+2)) ∫
Eth+1,ρh

(
1+ b(x))dx

> c11F(t)2
−(h+2)(I (F )+δ)

∫
Eth+1,ρh

b(x)dx (4.19)

for somec11> 0. Similarly, sincet > 1,

Jh>
∫

Eth+1,ρh

(
1+ a(x))(u− th)i∞(A?)+ε dx

>
(
t2−(h+2))i∞(A?)+ε ∫

Eth+1,ρh

(
1+ a(x))dx
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> 2−(h+2)(i∞(A?)+ε)
∫

Eth+1,ρh

(
1+ a(x))dx. (4.20)

From (4.17)–(4.20) we deduce that, ifδ is sufficiently large, then∫
Eth+1,ρh

A
(
D
[
(u− th+1)+ωh

])
dx

6 c12
(
2h(I (F )+δ)Jh + 2h(i∞(A?)+ε)Jh

)
6 c122

h(I (F )+δ)Jh, (4.21)

wherec12 is a positive constant independent ofh. Owing to (4.14), (4.15)
and (4.21), one has

Jh+16 c13
{{

2h(I (F )+δ)Jh
([2h(I (F )+δ)Jh]β ′(i∞(AM+B)−ε)

+[2h(I (F )+δ)Jh]β ′(I (F )+ε))1/n}1/β ′ + (2h(I (F )+δ)Jh) i∞(A?)+εi∞(A?)−rε

6 c142
hd
{
J

1
β′ +

i∞(AM+B)−ε
n

h + J
i∞(A?)+ε
i∞(A?)−rε
h

}
, (4.22)

wherec13, c14 are constants independent ofh, and

d = (I (F )+ δ)max
{

1

β ′
+ I (F )+ ε

n
,
i∞(A?)+ ε
i∞(A?)− rε

}
.

Notice that in (4.22) we have made use of the fact thati∞(AM + B) =
i∞(F )6 I (F ) and thatJh 6 J0 for everyh. Assumption (i) ensures that
we can chooseε so small that

1

β ′
+ i∞(AM +B)− ε

n
> 1. (4.23)

Thus, ifε is chosen so small that inequalities (4.2), (4.3), (4.8), (4.12) and
(4.23) are satisfied, then (4.22) and the inequalityJh 6 J0 again imply
that

Jh+16 c152
hdJ 1+θ

h ,

wherec15 is a constant independent ofh, andθ is the (positive) number
defined by

θ =min
{
i∞(AM +B)− ε

n
− 1

β
,

ε+ rε
i∞(A?)− rε

}
.
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Now, if t is so large thatJ06 c−1/θ
15 2−d/θ2

, then, by Lemma 4.7, Chapter 2
of [14], limh→+∞ Jh = 0, whence

u6 t in BR/2.

This proves thatu is locally bounded from above. The local boundedness
from below follows from the fact that−u is a local minimizer of
the functional obtained on replacingf (x, s, ξ) by f (x,−s,−ξ), an
integrand still satisfying (2.1). 2

PROPOSITION 2. –Let γ and s0 be positive numbers and letΦ :
(0,+∞)→ (0,+∞) be an increasing function such thatΦ(s) = sγ for
s 6 s0. Assume that

I∞(Φ) <+∞ and i∞(Φ)− δ 6 γ
for someδ ∈ (0, i∞(Φ)). ThenI (Φ) < +∞ and there exists a constant
C > 0 such that

Φ(λs)6 Cmax
{
λi∞(Φ)−δ, λI (Φ)+δ

}
Φ(s) for λ, s > 0. (4.24)

Proof. –By Proposition 1 there exist positive numbersc1 ands1 such
thatΦ(2s)6 c1Φ(s) for s > s1. On the other hand,Φ(2s)= 2γΦ(s) for
s 6 s0/2. SinceΦ(2s) 6 (2/s0)γΦ(2s1)Φ(s) if s0/2< s < s1, thenΦ
satisfies the12-condition, whenceI (Φ) <+∞.

Consider now inequality (4.24). Proposition 1 ensures that there exists
a constantc1> 0 such that

Φ(λs)6 c1λ
I(Φ)+δΦ(s) for λ> 1, s > 0.

Thus, it suffices to show that

Φ(λs)6 c2λ
i∞(Φ)−δΦ(s) for 0< λ6 1, s < 0, (4.25)

for somec2 > 0. By Proposition 1, there existss2 > 0 such that (4.25)
is true for s > s2. Sinceγ > i∞(Φ) − δ, (4.25) is trivially true (with
c2= 1) also fors 6 s0. It is then easily verified that (4.25) holds for every
s > 0. 2
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