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1. INTRODUCTION

We are concerned with the local boundedness of local minimizers of
integral functionals having the form

J(u, 2) =/f(x,u, Du) dx, (1.2)
2

wheref2 isanopensubset®” (n >2)andf: 2 xRxR"— Risa
Carathéodory function.

In the classical theory of regularity (see e.g. [5,8,11,14]), as well
as in more recent developments (including [1-3,6,7,10,12,13,15,16,18—
25)]), the integrandf is usually assumed to satisfy growth conditions

1 E-mail: cianchi@cesit1.unifi.it.
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depending on the gradiemu only through its length Du|, or through
the sum of functions of the single partial derivatives, i =1, ..., n.

The main novelty in the present paper is that bounds forre
allowed involving functions (not necessarily of polynomial type) of the
whole Du. An example of the functionals, not falling within the classes
considered in the papers mentioned above, which we are able to deal with
is

T, 2) = / (it 1P+ ity — | + gty )] derdre,  (L.2)
22

where2 c R?, p1, p» > 1 andg is any bounded continuous function.
The local boundedness of (possible) local minimizersJottan be
discussed via Theorem 1, Section 2—see Example 3. Theorem 1 is
a special case of the main result of this paper, which is contained
in Theorem 2 of the same section. Let us point out that, even in
standard situations, Theorem 2 slightly refines some of the results already
available in the literature, in that it enables to include also certain
borderline cases (Examples 1, 2, 4).

2. MAIN RESULTS

Our assumption on the integrarfdin (1.1) reads as follows:
A) —b()B(ls)) —alx) < f(x,s,§)
< c(AE) 4+ bx)B(|s]) +a(x)) (2.1)
fors eR, £ e R" and a.ex € 2. Here,A:R" — [0, +00) is a convex
function such that

AQ=0.  lim A®)=-too (2.2)

and
AE)=A(—-&) foreveryé e R"; (2.3)

B:[0, +00) — [0, +00) is an increasing functiory and b are locally
integrable nonnegative functions @; ¢ is a constant= 1. Both A and
B are required to satisfy the so-called-condition; namely, we assume
that

A(28) <kAE) foréeR” (2.4)
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and
B(2s) <kB(s) fors>0, (2.5)

for some positive constaiit
A precise definition of a local minimizer of the functiondlin (1.1)
involves the functiom , : [0, +00) — [0, +00) associated withd by

Ay (s) = |r?Igle(f;‘) fors > 0. (2.6)

In other words A, (|€]) is the smallest radial function which dominates
A(). It is easily verified thatd,, is a Young function, i.e., a convex
function vanishing at zero. Notice also thay; satisfies the\,-condition
wheneverA does.

A weakly differentiable function::$2 — R will be called a local
minimizer of J if

/AM(|u|) + A(Du) dx < 00 2.7)
2

for every open se@’ € £2 and

J (u, supp@)) < J (u + ¢, SUPA®)) (2.8)

for every weakly differentiable functiop such that supf@) € £2 and
Ja An(lo]) + A(D@) dx < oo.

As shown by the counterexamples of [9,17] and [12], regularity of
minimizers ofJ cannot be expected, even in the simplest situation where
f is independent of ands, if A is subject to the sole assumptions
(2.2)—(2.4). Those counterexamples and the results of [7] suggest that
a suitable additional assumption for minimizers to be locally bounded
should amount to a bound fot in terms of its Sobolev conjugate. An
optimal Sobolev conjugate of is the functionA, defined as follows
(see [4]). LetA,:[0,4+00) — [0, 4+00) be the increasing continuous
function such that

(£ eR™: AE) <1} = |{E eR": A, (E])<1}| foreveryr >0,
where| - | stands for Lebesgue measure; namely,

A.(s) =sup(r: [{EeR": A(§) <t}| <C,s"} fors >0, (2.9)
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where C, is the measure of the-dimensional unit ball. Them, :
[0, +00) — [0, +00] is defined as

1/n

! n'—1
A,=A,0oH™, whereH(r)= (/ ( d ) dr) forr >0,
0

A,(r)

(2.10)

n’ =n/(n — 1) and H~! is the left-continuous inverse df. Note that,
by the Brunn—Minkowski inequality{& € R": A(&) < t}|¥" is a concave
function ofz. ThusA, is a Young function and, sincH is concave and
vanishes only at 0, Ais a Young function as well.

In what follows we may always assume, without loss of generality, that
the integral in the definition off in (2.10) is convergent—see Remark 2
below. Moreover, we shall suppose that

+00

/ (A*s(s)y—lds — o0 (2.11)

Indeed, if the integral in (2.11) converges, then any functiGatisfying
(2.7) is automatically locally bounded—see Lemma 2, Section 2.

We are now in a position to state our regularity result. Because of its
transparency, we give a separate statement in the basic case where the
estimates in (2.1) are independentvadinds, i.e., when

AE) —c < fx,5,6) <c(A®) +1) (2.12)

forseR, £ eR"and a.ex € £2.

THEOREM 1. —-Assume that conditiof2.12) is fulfilled for someA
satisfying the above hypotheses. If a consktant0 exists such that

AE) < A, (k|E]) +k foreverys e R, (2.13)

then any local minimizer of is locally bounded in2.

In the general case, a balance has to be imposed between the degrees
of summability ofa and b, and the growths ofA, B and A,. Such
a balance involves the lower index at infinity of the functiofs and
Ay + B. Recall that such an index is defined for an increasing function
@ (0, +00) = (0, +00) as

log(liminf,_, ;o 2%8))
io(®) = lim I 2w 7

2.14
A—>—+00 Iogk ( )
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THEOREM 2. —Assume that conditio¢2.1)is fulfilled for someA and
B satisfying the above hypotheses. Suppose that
(i) be LL () for someg e (1, 00] such thatB > n/is(Ay + B)
and

(A@E) + B(ED)” < Au(k|E) +k for& eR", (2.15)

for some positive constaht
(i) ae Ly ($2) for somex > n/ix(A,).
Then any local minimizer of is locally bounded irf2.

Remark 1. — Assumption (2.11) implies, in particular, that(A,) < n
(see Proposition 1, Section 3).

Remark 2. — Given any radial convex function vanishing at O and
satisfying theA,-condition, we may assume, without loss of generality,
that A(§) = A(€) if |&] is small enough. Actually, it is not difficult to
see that there exist positive constantsc,, so andzy such that, ifA(£) is
the function which equalgl (¢) for |£] < sg, agrees withe; A(€) — ¢, in
(€ e R": A(£) > 1o} and is extended by convexity otherwise, theiis a
convex function fulfilling (2.2)—(2.4) and

1. 1.
C—l(A(%‘)JrCz)—toéA(S)éc—l(A(S)JrCz)tho for§ e R".

Thus, f satisfies (2.1) withA(¢) replaced byA(£)/c; and with a(x)
replaced bya(x) = a(x) + fo + ¢2/c1; moreover, conditions (i)—(ii) of
Theorem 2 withA and a replaced byA/c; and @, respectively, are
equivalent to the original ones.

Example 1. — Consider the classical case whetét) = |£]7 and
B(s) = s9. In this caseA, (s) is equivalent ta”", wherep* =np/(n —
p), if 1 < p <n, and is equivalent near infinity to efgy) — 1 if
p = n. Recall that two functiong,, @, : [0, +00) — [0, +00) are called
equivalent if there exist positive constamisandc, such that®,(c1s) <
P,(s) < D1(ces), for s > 0, and are called equivalent near infinity if the
same inequalities hold for large Thus, when X p < n, Theorem 2
tells us that any local minimizer of is locally bounded, provided that
0<q <p* be Ll (£2)with B = p*/(p* —q) or B > n/p according to
whetherp < g or p > ¢, anda € L}, .(£2) for somea > n/p. If p=n,
the same conclusion is true for eveyy> 0, provided thab < L[ .(2)
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anda € L§ .(£2) for someg, « > 1. This reproduces the result of [10] and
shows that the limiting valueg = p* andg = p*/(p* — ¢g) are allowed.

Example2. — Assume, more generally, that is just radial, so that
AE)=A,(€])) = Ay (|€]). SinceH ~* grows more than linearly at infin-
ity, condition (2.13) is always fulfilled; thus, the results on boundedness
contained in [21,22] are recovered by Theorem 1 and extended by Theo-
rem 2. The latter also improves a result from [16].

Example 3. — Let us take into account the functional defined by
(1.2). An estimate of type (2.12) obviously holds with

AE) =151" + |61 — 5217,

wheret = (&1, &) € R2. The straight line§; = 4171 andg, = &, 1Y/72
are tangent to the (convex) level §éte R?: A(&) <t} for everyr > 0.
Consequently,

2012 (g e R%: AE) <1} <4e/rttrz fore > 0.

Thus, A,(s) is equivalent tas?rir2/(r1+pr2) g0 thatA, (s) is equivalent
to s2P1p2/(P1tr2=p1P2) if pyps, < p1 + po, and is equivalent near infinity
to exps?) — 1 if pip> = p1 + po. Theorem 1 (and the remark about
condition (2.11)) tell us that the local minimizers.bfre locally bounded
either if py1p, > p1 + p or if pipr < p1 + p2 and mir{py, po} >
max{ p1, p2}/(1+ max{p1, p2}).

Consider now the special case whdréas the form
AE) =) Ai(&D, (2.16)
i=1

whereé = (&1,...,§,) and A; are Young functions. In this casd,
is equivalent to the functiom :[0, +o0) — [0, +00) whose (right-
continuous) inverse is defined by

n 1/n
AN = ( 11 Ail(t)) forz>0.
i=1

Indeed, since{é € R": A(§) < t} is a convex set containing the
points (O, ..., 0, iA;l(t), 0,...,0) and contained in the parallelepiped
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bounded by the hyperplanés= +A-*(r), then

2n n n
;HA;%) < g eR™ AE) <t} <2'[[ A7 ().
ti=1

i=1

Hence the equivalence of, and A follows. Moreover, the functiom,,

is easily seen to be equivalent to the functibndefined as in (2.10), but
with A, replaced byA. Notice also tha# ,, (s) is equivalent to maxA; (s)
(and to}"7_; Ai(s)). Theorem 2, combined with these considerations,
yields the following corollary.

COROLLARY. —Assume that conditiori2.1) is fulfilled for someA
having the forn{2.16)and that the Young funtions; and the functiomB
satisfy theA,-condition. Suppose that

(i) b e LL (2) for someB € (1,00] such thatB > n/ix(B +

max A;) and

(maxa;(&)) + B())” <A, (kg +k forg eR", (2.17)

for some positive constaht
(i) ae Ly ($2) for somex > n/is(A).
Then any local minimizer of is locally bounded in2.

Obviously, maxA; can be replaced by~:_, A; in assumption (i) of
the Corollary.

Let us mention that a result in the same direction as the Corollary is
contained in [13].

Example4. —Let A;(s) = sP for somep; > 1, i =1,...,n, and
B(s) = s9. Then A(s) = s”, where ¥p = (1/n)>'_;(1/p:), so that
A,(s) is equivalent tos? if p < n, and is equivalent near infinity to
exp(s”) — 1 if 7 =n. Setm = maX{p4, ..., pn.q}. Whenp < n, the
Corollary yields the local boundedness of local minimizerd of m <
Pt be L{ZC(Q) with 8 =p*/(p*—m) or 8 > n/p according to whether
p<morp>=m,anda € Lf (£2) for somea > n/p. Whenp = n,
the same conclusion holds for eveyy> 0, provided that e L{.(£2)
anda € L .(£2) for somep, o > 1. This example includes Theorem 3.1

loc
of [7], whereb(x) was taken= 1.
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3. SOBOLEV AND CACCIOPPOLI INEQUALITIES

Basic tools in the proof of Theorem 2 are a general anisotropic version
of the Sobolev inequality and a Caccioppoli type inequality for local
minimizers ofJ.

The Sobolev inequality we allude to is stated in the following theorem.

THEOREM. —Let A be any convex function satisfyitig.2)—(2.3)and
making the integral ir{2.10)converge. Then there exists a constaat),
depending only upon, such that

()|
R[ (o A a ) & < R/ Atbode G

for every real-valued weakly differentiable functianon R" decaying
to 0 at infinity, in the sense thafx € R": |u(x)| > t}| < +oo for every

t > 0. The function4,, is optimal, in the sense that(8.1) holds withA,,
replaced by any Young functioty for everyA satisfying(2.2)—(2.3)and
with prescribedA,, then the integral in(2.10) must converge and there
existsc > 0 such thatAg(s) < A, (cs) fors > 0.

A proof of this theorem can be found in [4]. We shall need the
consequences contained in Lemmas 1 and 2 below.

LEMMA 1.-—Let A be any convex function satisfyirig.2)—(2.3)and
making the integral in(2.10) converge. Letb, ¥ : [0, +00) — [0, +00)
be increasing functions such that

D(As) KYW)D(s) fora,s>0. (3.2)
Assume that
D(s) <A,(s) fors>=0. (3.3)
Then
1/n
/Q§(k|u(x)|)dx < lI/(kc(n)( /A(Du)dx) )/A(Du)dx (3.4)
R" R” R”

for everyk > 0 and every real-valued weakly differentiable functioan
R" decaying td at infinity. Here,c(n) is the constant appearing 3.1).

The derivation of Lemma 1 from inequality (3.1) is straightforward.
Let us notice that the existence of a functign rendering (3.2) true
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is equivalent to theA,-condition for ¢. This is a consequence of
Proposition 1 below containing standard results relating the growth
of an increasing function® : (0, +00) — (0, +00) with its indices
(D), [(P),in(P) and I (D). Here,i(P) is the number defined by
(2.14); I.(®) is defined similarly, but with liminf. .., replaced by
limsup,_,,.; i(®) and I(®) are defined a$..(®) and /.(®), save
that liminf,_, . and limsup_ ., are replaced by info and sup.,
respectively. Obviously, & i (@) < i (D) < I(P) < I (D) < +00;in
particular, if® is a Young function, then 0 can be replaced by 1 in these
inequalities.

PrROPOSITION 1. —Let @:(0, +o0) — (0, +00) be any increasing
function.
(i) @ satisfies the\,-condition if and only iff (@) < oo. In this case,
for everys > O there exists a constaidt > 0 such that
1
E mln{)\,l(¢)78, )\](¢)+8}¢(S)
< P (rhs) < CMax{A' @2 A @+ g (s)  for A, s > 0. (3.5)
(i) If Io(®) < o0, then for every > 0 there exist positive constants
C andsg such that
1 .
—)\190@)75@
C (s)
<P (hs) < CA@PHp(5) fors >spandir > 1. (3.6)
In what follows, B will denote a ball of radiuse in R”.

LEMMA 2.—Let A be any convex function fulfilling2.2)—(2.4)and
letu be any weakly differentiable function shsuch that/,,, A (Jul) +
A(Du) dx < oo for every open se®’ € £2.

(i) If [T°(s/A.(s))" ~*ds < 400, thenu is locally bounded.

(i) If [T°(s/A,(s))" Lds = +o0, then

/A,,(kyumy) dv < +oo (3.7)
Br

for everyk > 0 and every ballB € £2.

Proof. —Let k be any positive number. Fix any balty € £2 and
let Bz be a ball, concentric wittBg, such thatB; € Bx € £2. Letn
be any real-valued smooth function & such that 0< n(x) < 1 for
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everyx € R", n=1in Bg, n =0 outsideBz and|Dn| < 2/(R — R)
everywhere. Given any> 0, we have

/An(k|u|)dx </An(k|u|n)dx

Br R

- / A, (klun) dx + / Ay (kluln) dx

{luln>t} {luln<rt}
1 1
<5 [ Ad@(un-n)er+s [ A
{luln>t} {luln>t}
+ [ Ankluln) . (3.8)

{luln<t}

since A, is convex. The convexity ofd, our assumptions om and
Proposition 1 applied tod,, easily imply that there exists a positive
constantC (independent ofi and¢), such that

A(D[|u|n])dx<c< /A(Du)dx+ / AM<|u|>dx>.
{luln>1) {luln>1) {luln>1}

By (2.7), the right-hand side of the last inequality is finite. Thusan be
chosen so large that

1/n
2k6(n)< A(D[luln) dX> <1, (3.9)

{luln>1}

where c¢(n) is the constant of inequality (3.1). Sincg, is a Young
function, A, (As) < 1A, (s) for 0 < A < 1 ands > 0. Thus, inequalities
(3.1) and (3.9) imply that

Ay (2k(Juln — 1)) dx

{luln>1}

1/n
<2kc(n>< / A(Dnum])dx)
{luln>1}
(@)l () — t )
A, dx
) / (c(n)(,f{lL,l,,>[}A(Duu(y)m(y)])dy)l/"

{luln>1}
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14+1/n
< 2kc(n)< / A(D[luln]) dx) < +00. (3.10)
{luln>1}
Now, if

-1

“+o00 P n
/(&@J dr < +oo,

then there existsg > 0 such thatA,(s) = +oo for s > sg. Hence,
inequality (3.10) tells us that| < (so/2k) + ¢ in Bg.
If, on the contrary,

+00

n'—1
S
/(AGJ d = oo,

then A, is everywhere finite, so that the last two integrals in (3.8) are
finite. Thus, inequality (3.7) follows from (3.8) and (3.10)

The Caccioppoli inequality for a local minimizerof J is contained
in the next lemma. In the statement, given any &l C £ and any
t € R, E, g will denote the set defined by

Egr={x€Bg:ulx)>r}. (3.11)

LEMMA 3.-Let A and B satisfy assumption§2.2)—(2.5) Let F:
[0, +00) — [0,+00) be an increasing function satisfying tha&.-
condition. Suppose that a numbgr> 0 exists such that

A€) + B(E]) < F(I§])  for [§] > so. (3.12)

Let u be any local minimizer off. Then, given any positive numbers
3, Ro and r;, there exists a constan€C > 0, depending only on
I(F), 8, Ry, so andtq, such that

1 n
E

Et.p R

+F(t)/b(x)dx+ / (14 a() dx) (3.13)
Eir

Ei R

for every0 < p < R < Rg and every > 1.
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Proof. —All the balls considered throughout the proof will be centered
at a fixed point of$2. Moreover, all the constants will be allowed to
depend on the same quantities as the congfant(3.13).

Letp <t <o < R < Rpand letp be any real-valued smooth function
on R” such that 0< n(x) < 1 for everyx e R", n=1in B, n=0
outsideB, and|Dn| < 2/(o — t) everywhere. Fix any > r; and choose

¢=—n"""w—0),

in (2.8). Here, subscript denotes positive part. Let us set=u + ¢.
Since ¢ vanishes outsideE, ,, inequality (2.8) and assumption (2.1)
imply that

/A(Du)dx<c1< /A(Dv)dx—i— /b(x)[B(|u|)+B(|v|)]dx
Ei o Ei o Eio

n / a(x)dx) (3.14)

Et.rr

for a suitable constant > 0. Consider the first integral on the right-hand
side of (3.14). We have

Dv=(1-n""%) Dy
D
+(I(F) + s)n”FWT”(z —u) forxek,.

By the convexity ofA, by our assumptions on and by Proposition 1
applied toA,,, there exists a constast > 0 such that

/A(Dv)dx< / (1— ') A(Du) dx

Et,v Et.rr

+E/. n](F)+8A<([(F) +5)%(z —u)) dx

t,o

< / A(Du) dx

Eto\Ei ¢

te / AM(G f — —t)) dlx. (3.15)

t,o

On the other hand, assumption (3.12) and Proposition 1 ensure that
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o—T

t,o

g/F( 2 (M—l))dx+AM(SO)|Et,U|
o—1

t,o

<8
~ (o — .,:)I(F)+8

/ Flu—0de+ Ay(so)lErol  (3.16)

to

for some positive constaag. Combining (3.15) and (3.16) yields

C2C3
Eio Eto\Eix Eio
+c2Am (o) Er o |- (3.17)

Let us now take into account the second integral on the right-hand side of
(3.14). Sincu| < |u —t|+rand|v| < |u| + |u —t] <t + 2lu —t|, we
have by (3.12)

/b(x)[B(lul) 1 B(lo)] dv
E/ o

<2 / b(x)B(t+2(u — 1)) dx
E

t,o

<2 / b(x)F(t 4 2(u —t)) dx + 2B(so) / b(x) dx
E E

t,o t,o0

<2 / b(x)F (4(u — 1)) dx + 2(F(2r)
E

t,o

+ B(s0)) / b(x) dx. (3.18)

Eio

Hence, a constanry > 0 exists such that

1
/b(x)[B(|u|)+B(|v|)]dx<C4<m /b(x)F(u—t)dx
Ei o Et o

+F() / b(x)dx). (3.19)
E: o



160 A. CIANCHI / Ann. Inst. Henri Poincaré 17 (2000) 147-168

From (3.14), (3.17) and (3.19) we deduce that

/QA(Du)dx
o
1
<cs / A(Du)dx+m/(l+b(x))F(u—t)dx
Eio\Eic Evr
FF@) / b(x) dx + / (1+a()) dx> (3.20)
E; R E: R

for somecs > 0. Summing up the quantitys fE,_, A(Du) dx to both sides
of (3.20), dividing through by1 + ¢5) and applying a standard iteration
argument (see, e.g., Lemma 3.1, Chapter 5 of [8]) yield (3.18).

4. PROOF OF THEOREM 2

Our approach is related to that of [5,7,10]. By Remark 1 we may
assume, without loss of generality, that

A(E) = |g|"=UD7" for small|£|. (4.1)
Here,r, = ¢ or r, = 0 according to whethet, (A,) > 1 oriy(A,) =1,

ande is a positive number to be chosen later. To begin with, we require
thate is so small that

loo(Ay) —1e 21 (4.2)

and
€ <iw(Ay + B). (4.3)

Set
y =max{(ix(A,) = 7:)*/B isc(Ay + B) — £} (4.4)

and letF : [0, +00) — [0, +00) be any increasing function such that

s for smalls,
F(s)=
Ay (s) + B(s) forlarges.
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Let us fix a ballB € £2 with which every ball considered throughout the
proof will be concentric. For every nonnegative integeve set

_ R R — Pt s
ph_i—i_ﬁ’ Ph—T
and, giverr > 1,
th=1(1—27"D),

Clearly, o, decreases t& /2 andy, increases to ash goes to4-oo.
Letu be any local minimizer off . We set

Jy, = / (1—|—b(x))F(u — 1) dx
Erhvph
+ / (L4 a(0) (e — 1) dx, (4.5)
Erhvph

whereE,, ,, is defined as in (3.11). We claim thaf < +-oo for everyh.
Indeed, by Hdélder’s inequality,

| @b P =
1/8

Ey,
/ 1/ /

g( F(u—th)ﬂ’dx> ( (1+b(x))’3dx> , (4.6)
"

Bty thePh

with the usual modification iB = co. Owing to (4.1) and (4.4), there
exists a constant; such thatF (s)? < c¢14,(s) if s is sufficiently small
andF (s)? = (Ay(s)+ B(s))? if sis sufficiently large. Hence, by (2.15),
there existg, > 0 such that

F(s)? < A,(cps) fors>0. (4.7)

Thus, by Lemma 2 and assumption (i), the first integral on the right-hand
side of (4.5) is finite. As far as the second integral is concernedsito
small that

ino(AL) + & < (ino(A) —76) 7, (4.8)

then, by Hoélder’s inequality again, we have
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| (1 ae0) = )~ e

Ety.pp

ico (Ax)te

(ico (Ax)—re)*
/ (1 — 1) (A=) dx)

Etyy.op

/(w)
((loo(A*) re)* y ico (Ax)+e
X / (1+a(x)) io(Ante )y . (4.9
E’h’/’h

Observe now that a positive constagtexists such that
gloo(A)=re < eaA (s) fors > 0. (4.10)

Inequality (4.10) follows from (4.1) and Proposition 1iif,(A,) > 1,
and from (4.1) and the convexity df, if i,,(A,) = 1. Inequality (4.10)
implies that a constant, > 0 exists such that

slie(A=r)" <0 A (s) fors > 0. (4.11)

Thus, the first integral on the right-hand side of (4.9) is finite by Lemma

2. The second is also finite, provided tlrds chosen so small that

‘oo A* —le “\’

(M) — (4.12)
io(AL) + &

Such a choice of is possible thanks to assumption (ii). The finiteness of

Jy, is proved.

Inequalities (4.6) and (4.9) ensure thatRi is any positive number
andR < Ry, then a constants exists such that

1/8
Jh<65{< / F(M—fh)ﬂ/dx>

Eiy.op
ico (Ax)te
) . (ico (Ax)—re)*
+( / (1 — 1) oA 7e) dx) } (4.13)
Ety.op

for everyh. Fix now any smooth functiow: [0, +00) — [0, 1] such that
w(s)=1if s €[0,1/2], w(s) =0if s > 3/4 and |dv/ds| < 4 for every
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s € [0, +00). On setting

2h+1 R
wp(x) =W(T (|X| - E))’

one hasw, =1 in B,,.,, w, =0 outside B;, and |Dw;| < 2"*3/R
everywhere. Inequalities (4.13), (4.7), (4.11) and Lemma 1 yield

/ 1/p
Jhy1 < 65{ ( / F((u— th+1)0)h)ﬂ dx)

Eyyp1.7n
ico(Ax)te
ool Ay —r)® (oo (A0)—1e)*
loo(Ax)—Te
+< / ((u — tyy1) ) dx) }
Eyy 17
<66{{ / A(D[(u — thy1)+o,]) dx
Ey i1
1/n

XW(CZC(H)< / A(D[(u—thH)erh])dx)

Eipya0

) }l/ﬂ/
ico(Ax)+e

o (An) 72
+ ( / A(D[(u = th11)+ 1)) dx> } (4.14)

E

"h1-Ph

for somecg > 0, where? : [0, +00) — [0, +00) is any function such
that FF' (Ls) < W) FFP (s). SinCein(FF) = Blicg(F) = Blics(Ay +
B), I1(FFy=B'I(F) andA, + B satisfies the\,-condition, Eq. (4.4)
and Proposition 2 below ensure that one can take

UL = 67()\’/3/(1'00(AM+B)*5) + )\ﬂ’(l(FHS)) (4.15)
in (4.14), wherez7 is a suitable positive number. Notice now that

/ A(D[( — ths1) o)) dr

Ey 15

<c8< / A(Du)dx + / AM(Zh(u—th+l))dx>(4.16)

Eyyp1.n Eypa.n
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for some constantg independent ofi. One can make use of the
Caccioppoli inequality (3.13) to estimate the former integral on the right-
hand side of (4.16), and exploit the fact thiaf; (s) < F(s) +cgfors >0

for somecg > 0 and Proposition 1 to estimate the latter. So doing, we
deduce that, for every > 0, a constant,o, independent ok, exists such
that

[ ADIw =)o)

Etpi1.n
<c1o <2h(1(F)+3) / (14 b(x)) F(u — ty41) dx
Ety 1.0
+F(@) / b(x)dx + / (1+ax)) dx> . (417
E’h+l=/’h E’h+lvl’h
We have
Jp = / (1+b(x))F(u — tpy1) dx. (4.18)
Etpy1.0n
Moreover,

Jp = / (1—|—b(x))F(u—th)dx

E’h+l'ph

> Ftyn — 1) / (14 b)) dx

Ep 1.0

= F (127 "*2) / (14 b(x)) dx

Epi1.0p

> c11F (1)2- 20+ / b(x) dx (4.19)
ETthlvph

for somecy; > 0. Similarly, sincer > 1,

= / (L+a(x) @ —t)="% dy

Eup 1.0

> (tz_(h+2))ioo(A*)+8 / (1+a(x)) dx

E’h+1~ph
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S -+ isc(An)+e) / (1+a(x)) dx. (4.20)
Ety 1.0

From (4.17)—(4.20) we deduce thatgifs sufficiently large, then

| AP o)
h+1:Ph
< 612(211<1(F)+6> Jj, + 2l (A0+e) )
< 21O g (4.21)

E,

wherec;, is a positive constant independentofOwing to (4.14), (4.15)
and (4.21), one has

Jni1 < clg{{Zh(l(F)+5)Jh([Zh(l(F)+5)Jh]ﬂ’(ioo(AM+B)*€)
ino (Asx)+e

4 [2HIE+D) Jh]ﬁ’<1(F)+s))1/"}l/ﬂ’ + (2h<1(F)+6> ) oA re

1 ico(Ap+B)—¢ oo (Ax)+e

<a2 T g (4.22)

wherecys, c14 are constants independentigfand

- + [
B’ n Ioo(AL) — 71

1 I(F oo (A
d:(I(F)—i-(S)max{ (F)Fe  iul HE}.
Notice that in (4.22) we have made use of the fact thatA,; + B) =
io(F) < I(F) and thatJ, < Jp for everyh. Assumption (i) ensures that
we can choose so small that

1 [0 (A B) —

1 AutBme (4.23)

p n
Thus, ife is chosen so small that inequalities (4.2), (4.3), (4.8), (4.12) and
(4.23) are satisfied, then (4.22) and the inequaljty< Jo again imply
that

hd 7146
Jhy1 <152 T,

wherec;s is a constant independent bf andé is the (positive) number
defined by

9:min{i°°(AM+B)_8_i,7. et }
n /3 loo(A*)_rs
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Now, if tis so large thatlp < 1o/’ 2-¢/%*, then, by Lemma 4.7, Chapter 2
of [14], lim;,_, .« J» =0, whence

u<t in BR/2~

This proves that is locally bounded from above. The local boundedness
from below follows from the fact that-u is a local minimizer of
the functional obtained on replacing(x, s, &) by f(x,—s,—£&), an
integrand still satisfying (2.1). O

PROPOSITION 2. —Let y and sg be positive numbers and lep:
(0, +00) — (0, +00) be an increasing function such thdt(s) = s¥ for
s < 5. Assume that

Io(@) < 400 and is(P) —8<y

for somes € (0, i, (®P)). ThenI (@) < +oo and there exists a constant
C > O such that

@ (As) < Cmax{A =@ IO p(5)  for A, s > 0. (4.24)

Proof. —By Proposition 1 there exist positive numbegsands; such
that @ (2s) < c1@(s) for s > s1. On the other handp (2s) = 2" @ (s) for
s < 80/2. Sinced (2s) < (2/s0)? P (251)D(s) if 50/2 < s < 51, thend
satisfies theA,-condition, whencd (®) < +oo.

Consider now inequality (4.24). Proposition 1 ensures that there exists
a constant; > 0 such that

D (hs) <A @P@(s) fora>15>0.
Thus, it suffices to show that
D (Ls) < oA PP (s) for0O<a<1,s <0, (4.25)
for somec, > 0. By Proposition 1, there exisis > 0 such that (4.25)
is true fors > s,. Sincey = i (®) — 8, (4.25) is trivially true (with

¢ = 1) also fors < 5. Itis then easily verified that (4.25) holds for every
s>0. O
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