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ABSTRACT. — We give conditions for a vector-valued functiane
wln(2, R"), satisfying deDu(x) > 0 on a bounded domaif?, which
imply that detDu(x) is globally higher integrable of2. We also give
conditions foru e W1"(£2,R") such that debu belongs to the Hardy
spacehi(.Q) and exhibit some examples which show that our conditions
are in some sense optimal. Applications to the weak convergence of
Jacobians follow. Div-curl type extensions of these results to forms are
also considered.
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RESUME. — Pour une fonction & valeurs vectorielles W (2, R")
telle que deDu(x) > 0 dans un ouvert born&, nous donnons des
conditions conduisant a une amélioration de l'intégrabilité globale de
detDu(x) dans un ouvert born®. Nous donnons aussi des conditions
suru € Wt(2,R") pour que deDu appartienne a I'espace de Hardy
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hg(Q). Quelques exemples démontrent que ces conditions sont dans un
certain sens optimales. Ces résultats sont appliqués a la convergence
faible des jacobiens. Nous examinons aussi I'extension de ces résultats
du type div-curl aux formes différentielles.

© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

The work of S. Miller [17] has led to many interesting new results
regarding important nonlinear quantities such as Jacobians and some
guadratic forms in compensated compactness [12,4]. However, the results
found there are local or interior in nature. For example, Muller’'s result
states that if: is an element of the Sobolev spa@é" (2, R") (2 C R"),
and deDu(x) = det(aﬂ) > 0 in £2 almost everywhere, then for every

X
compact subsek of £2,

detDu(x) )

IZ detDu(x)log <e + [, detDu(y)dy

éC(K,n)/lDu(x)V’dx. (1.2
o)

We are interested in finding additional conditions @runder which
detDu(x)log(e + detDu(x)) is globally integrable on a bounded do-
main §2.

Higher integrability results are partly motivated by applications of
Jacobians to nonlinear elasticity. A model problem in [7] is that of
determining the infimum

inf /F(x, detDu(x)) dx,
ulpge=i J

where F : 2 x (0, 00) — [0, 00) is continuous, lim..q, F(x, ) = +o0,
lim,, .« F(x,t) = 400 andid is the identity mapping. Leff: 2 —
(0, 00) be a measurable function such thatx, f(x)) = min{F(x, 1),

t > 0} for every fixedx € £2. Then the minimizing problem is reduced to
solving

detDu(x) = f(x) in$2, u(x)=x onas2.
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This problem is studied in [8] under the condition thatis Holder
continuous, in [24] forf in Sobolev spaces, but has not yet been solved
in the case off € L”(£2). Our global integrability result (Theorem 3.1)
gives a necessary condition for the solvability of the above problem
for u e W' (2, R"). The necessary condition is thalog(e + | f|) €
LY(£2) which we abbreviate by writing € L log L(£2).

If v e WH{R",R), we denote byVv the vector-valued function
Vo= (3%, ..., 2). It was established in [6] that if = (u1, ..., u,) €
wir@R" R™), then detDu belongs to the Hardy spacH*(R") and
ldetDu|| ;1 < C(n)l‘[’}:1 Vu;ll}.. (For relevant details pertaining to
the Hardy spacéf'(R"), the reader is referred to Appendix A. Further
details can be found in [21].) In [5], Hardy spaces defined on bounded
domainss2 are studied. One such space is

HY($2):={f e LX2); f.e H'(R")},

where f, is the zero extension off to R". Every function f e
H(£2) satisfies[, f(x)dx = 0. The space obtained by removing this
cancellation condition is

hi($2):= {f e LYR): f— & /f € Hzl(.Q)}.
2

Norms on these spaces are defined in the obvious way:

”f”Hzl(Q) = /2l arwny

IIfIIhg(sz)=Hf—%/f
2

+ ! ’/f’
HX(2) |$2] '
Q

A natural question to ask is: under what conditionsuon W"(£2, R")
does it follow that deDu € h1(£2)?

In order to solve these problems, in Section 2 we introduce a subspace
K,(082) of Wi17(352) which containsW' 77 (382) for all p > n
and which gives better integrability of gradients. We establish our main
results under this extra condition. We also discuss the weak continuity of
Jacobians o2. A crucial element in the proofs is a version of Hélder's
inequality adapted td. log L($2).

In Section 3, we discuss the higher integrability of Jacobians in
LlogL($2) by applying the Hardy space result obtained in Section 2. It
might be tempting to try to prove this higher integrability by extending
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to a larger domaii2’ so that the extension is bounded fréwt” (£2, R")

to Wl"(£2’,R") and the positivity of deDu is preserved, thus enabling
us to use Muller’s result to obtain higher integrability &€n We show by
an example that in general this is not possible.

It is known that questions about Jacobians are special cases of the div-
curl problem. In Section 4, we discuss the corresponding Hardy space
result, weak continuity and higher integrability for this problem. For
the sake of simple notation in describing the extension property, we
use the language of differential forms. However, the results obtained on
differential forms are interesting in themselves. Many people such as
Robbin, Rogers and Temple [19,20] and Iwaniec [11] have considered
differential forms in this context.

The authors wish to thank Stephen Montgomery-Smith and Richard
O’Neil for several helpful suggestions and references regarding the proof
of Proposition 2.2.

2. HARDY SPACES ON BOUNDED DOMAINS AND WEAK
CONTINUITY

In [6] it is shown that ifu = (uq, ..., u,) € W-"(R", R"), then the
Jacobian debu € HY(R"), and

n
detDul| yageny < C [T IVjlln - (2.1)
j=1

Supposes? is a bounded open domain R”. We are interested in
the following question: Ifu € W1 (2, R"), is detDu ¢ h%(.Q) with a
similar estimate to that above? The following example from [2] shows
that without extra conditions, the answer is negative, even vheés a
rectangle inR2.

Example—Letn =2 and$2 = (0, 27) x (—1, 1). Define a sequence
w2 —-R?% j=1,2,..., by
w! (x,y) = j 2|yl (cosjx, sin jx).
Then detDu’/(x, y) = —jy?~1. Thus [, detDu’ (x, y) = 0. Notice also
that the normg|Du/ ||, - are bounded. Suppose the estimate holds. Then
detDu/ is bounded inf}(£2), and we can extract a subsequence which
converges weak-in H}(£2). On the other hand, dét’ converges
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pointwise to zero. Therefore according to [13], the wedkmit of the
subsequence is also zero. However, §oe Cgo(]Rz) with ¢(x, 1) <

¢(x’ _1)1

liminf /¢(x, y)detDu’ (x, y)dx dy
j—o00
R2

2
> %0/ $(r. —1) — $(x. 1) dx > 0,

which is a contradiction.

In the sequel,£2 will denote a bounded open domain " with
strongly Lipschitz boundary 2—an assumption which is enough to
ensure

(i) the existence of a bounded extension map fréd"(£2) to

wln(R"), and

(ii) the boundedness of the extension by zertW@Lf”(.Q) to Wl (R"),

whereWOl’”(.Q) is the closure o€€5°(£2) in W (R™).
For details, the reader is referred to [1, Section 4]. Although many of the
results generalise to non-Lipschitz domains for which these extensions
are bounded, we will restrict ourselves to considering domains with
strongly Lipschitz boundaries, so that we have concrete realisations of
the trace spaces.

In Theorem 2.5 below, we give a sufficient condition under which a
modified version of the estimate holds. Before we state the theorem,
we introduce some relevant function spaces and state some technical
lemmas.

DEFINITION 2.1.-Let A:[0, o0) — [0, o0) be a monotone increas-
ing function. Under certain technical conditions @n(see[1] and[3])
which are satisfied by all the examples we shall consider in this pa-
per, we consider the Orlicz spack,(§2) consisting of(equivalence
classes modulo equality a.e.)aheasurable functiong on §2 for which
Jo A(lf (x)]) dx < oco. The functional

1fla = inf{kl; k> 0and /A(klf(x)|) dx < 1}
2

is then a norm(the Luxemburg norjron L 4(£2) under which it becomes
a rearrangement-invariant Banach space.
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WhenA@) =t”(log(e + 1)* (1< p <00, a = 0) L,(£2) is referred
to asL”(log L)*($2) and the associated norm is Writtgif || . jog )= (2)-
The space€.”(log L)°(£2) and L1(log L)(£2) are usually referred to as
L7(£2) andL log L(£2) respectively.

Sinces2 is bounded, an argument based on rearrangements, maximal
functions and Hardy inequalities can be used to prove the equivalence

| £l rdogrye(2) = (/ ’f(x)]p<|og<e + ||{J£)|C|1| ))adx> 1/P‘

2

Hence the quantity on the left-hand-side of (1.1) (Mduller's result)
is equivalent to|| detDul|.109.(k)- The following generalised Holder
inequality, the proof of which is deferred to Appendix A, will be a crucial
element in the proofs of many of our results.

PROPOSITION 2.2. -Letl < p,g <o0,a,8>0,1/p+1/qg =1/r,
a/p+B/qg=y/rand f e LP(logL)*(£2), g € L?(logL)?(£2). Then
fg e L (logL)”(£2) and

| fgllzraogryr2) < cll fllLraogrye ) 1€l Latogr ) (2)-

Remark— The caser = 8 = y is presented in Lemma 4.2 of [10].

In the proof of our main result, we need the following lemma, the first
part of which is a consequence of [23, Chapter |, Section 5.2] (a statement
of which appears in Appendix A as Lemma A.3) while the second part is
an immediate corollary of the first.

LEMMA 2.3.— (i) Supposef € L(logL)(£2), and [, f = 0. Then
feHX) and

I f 2y < €l fllLaogry)-
(i) L(ogL)(£2) C hi(-(?) with ”f”hzl(_(z) <cll fllLaogry2)-

By the Trace Theorem, Wi"(2) = Wi~"(352). Fora > 0, we
define a subspack, (02) of Wl—%»”(aQ) as follows.

DEFINITION 2.4.—-Leta > 0. For ¢ € Wl—%’"(afz), we say that
¢ € K,(3R2) if ¢ can be extended int@2 as v € W"(£2) so that
B e L*(logL)*(£2) for 1< j < n.

J
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Remark— Clearly,
WP (082) C Ko (382) C Ko(382) = W (32)

for all p > n. Moreover, in [14],K,(952) is realised as the class of those
u € L"(logL)*(952) for which

/'/'cD(lM(x)—M(y)I) dxdy oo
Ix — yl lx — y|"=2 ’

082082

where ® (1) = " (log(e + 1))*. It follows that K, (32) G Wi n"(32)
whena > 0. Actually, we shall not make use of this realisation. Instead,
we define the following semi-norm ok, (3£2):

lollk, = inf{ IVl Lrgogrye 2y, Ve = ¢}-

We come now to the main theorem of this section.

THEOREM 2.5. —~Supposa: € W"(2,R"), u;lye € Ko, (382), j =
1,2,...,n,fore; >0and}_; a; =n. ThendetDu € h}(s2) and

n
IdetDulle) < C TT (1Vujllni) + lujlae k., @o)-
j=1

Remark—In the case whem; =n, o; =0 for j > 2, we have
detDu € hi((z) under the single restrictiom |, € K, (352). In the case
whena; =1 for all j, we have debu € h1(£2) and

n
IdetDully o) < C(I1Dulln ) + mjaX||Mj|a(z||K1(am) :

Remark— Clearly the boundary condition is satisfied in the important
special casa(x) = x on 952, mentioned in the introduction.

Proof of Theorem 2.5. Assume without loss of generality that
Jou; =0 for eachj. Sinces2 has a strongly Lipschitz boundary, we
can extend:; to R” so that

IVl nwey < lujllwinmey < cllujllwin ey < cllVujllone)-

(The last inequality comes from an application of the Poincaré inequality
and the assumption tha, »; = O for eachj. For details on Poincaré and
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the extension result which provides the second inequality, the reader is
referred to [1].) Sincex |3 € K,,(0£2), we can choose; € W (R
with
IVjllLrogryi @) < Cllujlaellk,, o2),
andv; =u; onR"\ 2. (We have used the factthat; —u ;). € wLln(R")
since(v; —u;)|ye = 0.) Note that
IVjllinwny < [Vujllon@ny + IVl n(2)
<c(IVujllne + lujlag ||Kaj(8(2))-
If we now put
wey = Uy —v1, Uz, ..., uy,)

W) = (V1, U2 — V2, ..., Uy)

Wn) = (Ul, V2, ..., Uy, — vn),

thenwgy, € W (R", R"), and
detDu = detDw) + detDwy) + - - - + detDw,) + detDv.  (2.2)

On applying (2.1) we see that detv, € H*(R") and

n
[detDw g || g1y < € H IVw i ll n @y
=1

n
<c [T UIvu;line) + 1ol ko, 02))-
j=1

Sinceu; — v, = 0 outsides2, the support ofDw, is contained in(2.
Thus deDwg, € HX(£2) and

||detDU)(k)||hzl(Q) = ||detDw(k)||H11(Q) = ”detDU)(k)HHl(Rn)

<c [T UIvu;line + lujloe k., @2)-  (2.3)
j=1

Now consider the final term in (2.2). As a consequence of Proposition 2.2
and Lemma 2.3, we have

n
[detDv]|1 ) < clldetDvllLiogr(2) < ¢ H VUil Lrgogry®i )
j=1
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< CH lujloellk,, @)- (2.4)
j
Combining (2.2), (2.3) and (2.4) completes the proof of Theorem 5.

Now we discuss the weak convergence of Jacobians. Suppésec
Wwi(2,R") is a bounded sequence whose componénfs|;o} (j =
1,2,...,n) are bounded ik, (052) with ; as in Theorem 2.5. Then
we have

HdetDu<’<> - / detDu®
PA HY ()

<cII(Ive?

L"(£2) + ||MF/k)|3Q||Kaj (m)) <C.
Jj=1

Let
VMO(R2) = {b|o: b € VMO(R")}.

Then since VMQR")* = H(R"), there existg € H}(£2) such that for
all b e VMO(£2),

/ b(detDu(k) — / detDu(")> — / bg
2 2 2

up to a subsequence. We can suppose that for such a subsequence,

/detDu(") —delR.
7)

Therefore, sincé € VMO (£2) C L*(£2), we have

/b(/detDW) — 8/b.
Q Q Q

Thus up to a subsequence,

/ bdetDu® — /b(g +8)
2 2

for all b € VMO(£2), whereg + § € h1(£2).
The following theorem shows that if furthermoue® — u weakly in
Win(£2), theng + § = detDu.
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THEOREM 2.6. —Suppose:® ¢ Wi (£, R") is a bounded sequence
for whichu'” |0 € Ko, (882) (j = 1,2...,n) is also boundedy; > 0
and)"_, a; = n. Suppose further that® — u weakly inw*" (2, R").
Then up to a subsequence,

/ bdetDu® — / bdetDu
2 2

forall b e VMO (£2).
Proof. —As discussed before, we can suppose that for any

VMO(£2),
/ b<detDu(k) — / detDu(")> — / bg
2 2 22

for someg € H1(£2). We first prove thag = detDu — [, detDu. As
in the proof of Theorem 2.5, extend® to all of R”, and letv® be
the chosen function correspondingit® . Then up to a subsequence, we
can supposa® — i weakly in W"(R”, R") andv® — v weakly in
Win(R", R") for somei andv. By uniquenessii = u on £2. Let w(;)

andw;, be the functions corresponding 48” andu as in the proof of
Theorem 2.5. Then

detDu® = detDwy) + detDw) + - - - + detDw}) + detDv™®
and
detDu = detDU)(l) + detDU)(z) + -+ detDw(,,) + detDv.

It is easy to see thaw(;) — w;, weakly in Wi"(R",R"). Since
suppw(s), suppwy;, C £2, by Corollary IV.1 of [6], for anyb € VMO (R™),
then up to a subsequence,

/bdetDwEf;:/bdetDw((ﬁ;e/bdetDw(.j):/bdetDw(.,-).
0 Rn R7 2

As for detDv®, we can assume that thé€” we choose are supported
in a compact set2; O 2, and Dv® e L"(log L)% (R") are uniformly
bounded. Then dé&v® are uniformly bounded inZlogL(£2). By
the criteria of de La Vallée Poussin [9], there is a subsequence of
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detDv® which converges weakly i (£2;). Suppose dabv® is such
a convergent sequence (otherwise replace it by a subsequence).
Moreover, again by Corollary 1V.1 of [6], d&v® has a subsequence
which converges to dév weaks in H(R"). Again replace debv®
by such a convergent subsequence. Then we have tha&tvéfétcon-
verges weakly inL1(£2,) to some functionz and dethv® converges
weak= in HY(R") to detDv. Since both convergences imply the con-
vergence in the distributional sensel®t, by uniqueness of the limit we
haveh = detDv (takingZ a function onR” with compact support iti2;).
Thus, we have shown that dev® converges to debv weakly in
L(£2;) and thus also weakly ifi'(£2). Combining the above results we
get, forb € C(2) C L>®(£2) NVMO(£2),

3 3 n
/ bdetDu® = / b detbw® + / bdetDy®
2 2

e J=t

—>/bZdetij+/bdetDv:/bdetDu.
2 /=1 2 2

Therefore, fob € C(£2),

/b(detDu(") - /detDu(k)) — /b(detDu —/detDu>,
2 2 2 2

which impliesg = detDu — [, detDu.
Thus, for anyb € VMO(£2),

/ bdetDu® — / bdetDu,
2 2
and the proof is completed.o

As a corollary of this theorem, we have the following result.

COROLLARY 2.7.-Suppose:® € Wi (£2) is a bounded sequence,
u® — u weakly in Wt (2) and @® — u)|yo € K,(082) is also
bounded. Then up to a subsequence,

/bdetDu(") — /bdetDu.
22 2

forall b e VMO (£2).
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Remark— In [11], Iwaniec proves the same result under the stronger
assumptions thau® — u)|,, = 0 and that2 has a smooth boundary.

Proof of Corollary 2.7. or eachk, write

detDu® =" detDw () + detDu,
j=1

where

k) _ (k) (k) (k)
U)(/)—(ul,...,ujfl,uj _uj,uj_"_l,...,un ).

Apply Theorem 2.6 withy; =n ando; = 0 for i # j to see that, up to a
subsequence,

[ pdetbuif) 0
2

for all b € VMO(£2). Therefore,

/bdetDu(k)—> /bdetDu. O
22 22

3. GLOBAL HIGHER INTEGRABILITY OF JACOBIANSON £

As seen in [17], fou € W1"(£2, R") with detDu > 0 on £2, we have
the interior estimate déu € LlogL(K) for compact subsetk C 2.
One may think that given some control on the boundary value, of
should be possible to obtain global higher integrability. In this section we
show that this is indeed the case, and also show that in some sense the
boundary condition we give is optimal.

THEOREM 3.1. —Supposex € W1 (2, R") and detDu(x) > 0 on
Q. If furthermore u;|se € Ko (082), j =1,2,...,n, for ; > 0 and
> i—1a;=n, thendetDu € LlogL(£2) and

n
IdetDullLiogri2) < ¢ [] (IVu;llince) + llujloek,, 02))-
j=1

This is an immediate consequence of Theorem 2.5 and the following
result, which is a partial converse to Lemma 2.3.
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PROPOSITION 3.2. —Supposef € hi(.Q) and f > 0 on £2. Then
feLlogL(£2)and

I fllLiogrie) < call fllaiq)-

The proof of Proposition 3.2 relies on a few well-known properties of
maximal functions and Hardy spaces. We defer the proof to Appendix A.

The next result demonstrates that in certain circumstances, the bound-
ary condition of Theorem 3.1 is necessary.

THEOREM 3.3.—Let 2 Cc R? be a bounded open domain with
Lipschitz boundary and/ = (u1, u) € WH2(£2) with h(z) = uy + iu»
analytic on 2. ThendetDU € LlogL($2) if and only if u;|so €
K1(082).

Proof. —Sinceu; andu, satisfy the Cauchy—Riemannn equations, we
have deDU = |h'(2)|? = |Vu1|?> = |Vuz|?> > 0. If detDU € LlogL($2),
then Vu; € L%logL(£2), SO u;lse € K1(352). The converse is an
immediate consequence of Theorem 3.1 with 2 anday =, =1. O

As mentioned in the introduction, Muller's result (1.1) is interior in
nature. One might hope that by extending a larger domai2’ in such
a way that the extensiom satisfies deDu > 0 on 2" and ||| 120 <
cllullw2.qy, ONe might obtain a global result g@ by applying (1.1) on
£2’. The following example shows that in general this is not possible.

Example— We specialise the situation in Theorem 3.3 to the case
where2 =D ={z € C; |z| < 1} is the unit disc inC andd2 =T =
{z € C; |z| = 1} is its boundary, the unit circle.

Chooseap € W¥%2(T) \ K1(T) real-valued. (This choice is possible by
the remark after Definition 2.4.) Thenadmits the Fourier series expan-
siong(e’®) =320 ¢, with c_, =¢, forall n and>°° _ (|n| +
1)|c,|? < oo. Defineh(z) = 3-2° ¢, z". Thenh = u; + iu, is an analytic
function onD, U = (u1, up) € WH2(2, R?), andu1|;, = ¢. Moreover,

detDU = |h'(z)|?> = |Vu1|?> >0 (3.1)

as in the proof of Theorem 3.3. Suppose now that we could extend
to U on 22 D D, an open set ifR? in such a way that d&?U > 0 on
£2. Then by Miller's result, debU e L log L(D). However (3.1) then
implies Vu; € L?log L(D) and hencey € K1(T) thus contradicting the
choice ofp. We conclude that extensions suchlasare in general not
possible.
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A simple application. The motivation of the following problem is
from [8].
Consider the following boundary value problem:

{detDu(x) =f(x), xe$, (%)
M(X)=.x, Xeag,

wheres2 is a smooth domain ifR” and f > 0 is a measurable function
satisfying [, f(x) dx = 0. We seek a necessary condition 6to ensure
that the problem is solvable fare Wt (£2, R").

COROLLARY 3.4. —Supposa: € W1"(£2,R") is a solution of prob-
lem(x). Thenf € L(logL)($2).

This is a direct consequence of Theorem 3.1. It leads to the following
guestion.

Question— Given f € LlogL(s2), does (x) have a solutionu e
Wt (2)?

Remark— Theorems 2.5 and 3.1 can be easily generalized to the
cases when = (u1, uy, ..., u,) € WH(£2,R") is replaced byu; €
Wiri(2,R", p;>1,j=12...,n,with}"_; L =1.

J=1p;

4. DIV-CURL RESULTS FOR FORMS

The setting of this section is that of forms on open domans R”.
We give a brief outline of the basic formalism.

The space of-linear, alternating functions: (R")! — R is denoted by
A'R", or just A! when there is no possibility of confusion. In particular
AR" = (R"), the dual toR” and A°R"” = R. The exterior algebraof
forms is denoted

A(R") =£‘%AZ(R”)

and the wedge product gfe A’ andn € A* is the (k + [)-form £ A g
given by

EANXa, o, Xer) =D 8(@)EXy, -, Xi)n(Xjy, 0 Xj),

where the sum is taken over all permutatiens- {i4, ..., i, j1,..., ji}
of {1,...,k+1} satisfyingi; < --- <i;andj; < --- < j; ande(o) is the
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signature of the permutatiom. The exterior product is alternating, i.e.,
EAn=—nAnE.Fixabasidey,...,e,} for R". An r-form is defined to
be a functioru : R” — A" (R") of the form

u = E Uijy,...irCiq N Nej,
i1 iy

where the sum is taken over subsgts. .., i .} of {1,...,n} andu;,
are (real-valued) functions dR". We denote by.7”(§2, A") the space of
p-integrabler-forms ons2.

The Hodge—deRham operatbacts on smooth forms defined éhby

n

duzzaiek/\u

=1 Xk

and satisfied (du) = 0.

In [6], it is proved that ifu € L?(R", R"), divu =0, v € LY(R", R"),
curlv =0, where ¥p + 1/g =1, thenu - v € H*(R"). This is equivalent
to the statement that, if € L?(R", A”Y), du = 0, v € L1(R", AY),
dv =0, thenu Av e HY(R", A"). More generally, the following is true.

PROPOSITION 4.1. —If 1 < p <00, 1/p +1/qg =1, u € LP(R", A¥),
ve LIR", A" %), du=0,dv=00nR", thenu Ave H'R", A") and

llu Avllgr < cllullzrllvllze.

Supposes? is a bounded open domain R" with strongly Lipschitz
boundary. In this section, we provide the extra conditionszcnd v
which, together withu € L?(£2, A"™Y), du =0, v € L1(2, AY) and
dv =0, imply thatu A v e h}(£2, A").

To state and prove the theorem, we first introduce some notation and
state several known results.

Stokes’ theorem in this context is as follows:ife C1($2, A*) and
¢ e CY(R2, A" * 1) then

/du/\ga—i—(—1)"/14/\d(p:/u/\(pz/nv(n/\u/\(p)
o) Q a2

082
= <n ANulpe, §0>3_Q'

Heren v (n A u A @) is the tangential component of thie — 1) form
u A ¢ on ds2, while the final expression is the natural pairing between
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(k + 1) forms and(n — k — 1) forms on the boundary. This provides a
natural meaning for the statemeht = 0:

DEFINITION 4.2. —LetD(£2, A" *~1) be the space of — k — 1 forms
on R" whose support is contained 2. If u € L?(£2, A¥), we say that
du=00n$if [,undn=0forall neD(2, A" 1.

DEFINITION 4.3. —For thoseu € L?(§2, A¥) with du = 0 on £2,
definen A ulyo € WYPP(32, AL by

(1 Aulag.9)0 = (-D* [undo,
2
where® € CY(2, A" Y andg = @|;,.
It is a simple matter to show that the definition @fA u|yo, )0 IS
independent of the choice of the extensidnNote that

Hn A u|3.Q HW*l/I’J’(BQ,Ak*l) < C”””LP(Q,AI‘)

for all u € LP(£2, A¥) such thatdu = 0.
LEMMA 4.4, —Supposes € Wy'? (2, A%). Thenn A dG|yg = 0.

Proof. —By the density ofC1(£2, A%) in Wy”(£2, A¥) and the pre-
ceding estimate, it is enough to considere C1(£2, A¥). Then if @ ¢
CY(2, A" 1 and ifp = @50,

(nANdGlyo, 9),, = (—1)’</dG AdD
ko)
:—/G/\dz(b +(G,n AdP|ye),, =0
2

sinced?® =0 andG|yo =0. O
We need several extension results. The first of these is as follows:

LEMMA 4.5. —Suppose: € L?(£2, A¥),du =00n2 andn Aulyo =
0. Letu, be the zero extension ofto R". Thendu, =0 onR".

Proof. —If ¢ € C2(R", A"~*~1), by Stokes’ theorem we have
/duz Ap= (—1)k+l/uz Ady = (—1)’<+1/u Ady
R~ R~ 2

=_<” Nulpe, ¢>3_Q =0.
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Hencedu, =0onR". O

DEFINITION 4.6. —Letl< p <ooanda > 0. Define

whr(2) = {f e WP (2); §7f e LP(logL)*($2) for j =1, .. n}
J

and give it the seminorm

af

0x;

e

LP(IogL)“(Q)
Whena = 0, this is written|| £ [l i, ) -

DEFINITION 4.7.—-Let p, « be as above. TheW?(£2, A) is the
class ofk-forms f each of whose components liesii}? (£2).

We are now in a position to prove analogues of Proposition 4.1 on
bounded domains. Let us first consider the case where certain boundary
conditions are zero.

PROPOSITION 4.8. —=Supposd. < p<o0,1/p+1/g=1,u=dF €
LP(82, AF) for someF € WLP (2, A¥1), v e L1(2, A" ) withdv =0
in 2 andn A vy =0. Thenu A v e HX(2, A") and

lu Avllgr < cllvllzall Fllyiwp-

Proof. —Without loss of generality, we may assume that each compo-
nent F; of F satisfies[, F; = 0. SinceF € W7 (£2, A¥=1), it may be
extended taR” with

”F”Wlﬁ(R” ALy X C”FllWlP(.Q Ak=1y.

Letu =dF onR". Thendu = 0. By Lemma 4.5, the zero extension
of v to R” satisfiesdv, = 0. By Proposition 4.1, the extensions:ofind
v satisfyu A v, e HY(R", A") and since: A v, = 0 outsides2 we have
[l A v”HZl(Q,An) =lun vz”Hl(]Rn An) < C”M”LP(R")”vz”L‘I(]R"
=cl|dF|lLr@®mllviiee) < cllFlwir@n, a1 llvliLee)
< cllFllyirr @ ar-1) V] La(2) s
where in the last step we have used the Poincaré inequality.

In the special cask= 1, this can be written in more classical notation
as follows.
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COROLLARY 4.9. —-Supposel < p < o0, 1/p+1/g =1, F €
WLr(2), u=VF,veLi(2,R"), dvv=0o0on £ andn - v|ye = 0.
Thenu - v e H}(£2) and

- vl s < cllullollvlzo.

We turn now to general boundary conditions.

DEFINITION 4.10. —Let p, « be as above. Thean(a.Q,A") is
the class of thosef € W-Y/7.r (32, A*) for which there existsF e
WLr (2, A%) with Flyo = f. Itis given the seminorm

||f||K5<aQ,Ak) = inf{”F”WO:(Lp(Q,Ak); Floe = f}-
Supposef € Wi=Yrr(3, A%). Define (n A d)f € W=YPr (922,
Ak+2) by
(nAd)f=nAdF|yg,

where F € WiP (2, A¥) is an extension off to £2, i.e., Flyo = f.
That this definition is independent of the choice of extensiors a
consequence of Lemma 4.4.

DEFINITION 4.11. -Let p, « be as above. Defind? (352, A*) =
(n Ad)KP (082, A¥=2) with
gl o0, a0 = inf{||f||1<5<a:2,/1k72)2 g=mnd)f}.

A second extension result, this time for extensions fréf to $2,
follows.

PROPOSITION 4.12. —Let p, « be as above and let e J7 (952, AF).
Then there exist& € WP (R", Ak1) such thatn A dF|yo =g, Flo €
wir(g2, Ak-1) and

||F||W1,1:(Rn,Ak—1) < C”F”W(}P(Q’Ak—l) < C||8||J§(39,Ak)-

Proof. —The proof is simply a matter of checking definitions. Since
g € JP (092, A%), there existsf € K7 (352, A*=2) with g = (n A d) f and

”f”[((f(a.Q,Ak*Z) < 2||8||J§(3:2,Ak)-
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Since f € K2(382, A¥=2), there existsF’ € W17 (2, A¥=2) with F|gp =
f and

”F”W;W(Q,Ak—Z) < 2||f||l(£(8(2,/\k’2)'
Without loss of generality, by adding a constént- 2)-form if necessary,
we may assume thaf, F = 0. Also, g = (n Ad)f =n AdF|ye by
the definition of(n A d) f and its independence from the choice of the
extension off. Further,F € WP (2, A*~?) and sinced 2 is Lipschitz,
F can be extended f&" with

”F”WLP(R",A"*Z) < ||F||W1-p(Rn,AH) < ClIF”WLP(Q,Ak*Z)

< C” F”Wé'p(Q,Akfz)’

where the last step is a consequence of the Poincaré inequatity.
The main result of this section is:

THEOREM 4.13. —Supposel < p < oo, o, 820, /p + B/q = 1,
ueLP(2, AF), ve L1(2, A"), du =0, dv =0 on 2. Suppose also
that n A ulye € JP(382, A" and n A vlye € J§ (052, A"7F1). Then
UANDVE h%(.Q, A" and

lu Avllye < clullr +ln Aulagllp) (Ille + lin Avlagll ).

Proof. —By Proposition 4.12, since A ulyp € JP (352, A¥t1) and
n Avlsn € JJ(052, A"FHY), there existF € WP (R", A1) and G
Wla@®® A"*=1) such thatn A dF|so =n Au, n AdGlyg =n A v,
Flo € W (82, A1), Gl € Wy? (2, A7*1) and

||F||W1-p(Rn,Akfl) < C”F”WLP(Q,Ak*l) <clna “|39”J§(3(2,Ak+1),

”G”Wl,q(Rn’An—k—l) < C”G”Wl,q(Q’An—k—l) < C||n A\ U|3_Q ”Jg(B.Q,A"’k*l)'
Alsod(u—dF)=du—d?F =00on2 andn A (u —dF)|yo =nAulyo —
nAdF|y;o =0. Similarly,d(v—dG) =00n$2 andn A (v—dG)|;o = 0.
So(u—dF),, the zero extension af—d F toR" satisfiesi(u—dF),) =
OonR and

Il (u — dF)z”LP(R",Ak)
= llu —dFlrr@ a0 < lullLre, a9y + 1 e, a6

||M”LP(.Q,AI‘) + ||F”W(i--l’(g’Ak)

<
<c(llulliro ey + In Aulagllyr oo, avm)-
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Similarly, (v — dG), satisfiesd((v — dG),) =0 onR" and
(v —dG);llLan ant) < C(”v”Lq(Q,A"*k) =+ H” A U|39H,g(3Q’An7k+1)>-

LetU =dF onR". ThenU e L?(R", A%), and

||U||LP(1R<n,Ak) = ”dF”LP(]R”,Ak) < C||F||W1.p(Rn,Ak71)
< CH” Aulae ’|J§(3(2,Ak+1)'

LetV =dG onR". ThenV e L4(R", A"~ %), and
”V”L‘I(]R”,A”*k) < CH” N U|afz||]g(39,,‘nfk+1)-

Now letit = uxqo + U xor Where xg, is the characteristic function a®
andygo =1— xo. Then

lall Lo @e aky = U Lrcar aky + Ul L2, a0

<c(lullpr@.ary + |jn Aulsel

Joi’(afz,AkH))-
Also, we may writeix = U + (u — U),, from which we see easily that
du=0o0nR. Similarly, letv =vxo + V xo. Then

HEHL‘J(R",A”*") < C(”v”L‘I(Q,A"*k) =+ H” A U|BQH‘]g(3_Q’Anfk+1))

anddv = 0 onRR”. Now we write, ons2,
uANv=uA@@-=-V)+u—-U)AV+UAV
=uA@W=V), +u—-U),AVH+UAYV. (4.2)

To deal with the first term on the right hand side of (4.1), notice that
ie LP(R", AF), (v — V). e LIR", A" %), dii =0 onR" andd((v —
V).) = 0 onR". Hence, by an application of Proposition 4.1, we have
iA@w—V), e H(R", A™) with the bound

@ A=V g <cllilLr

(U - V)Z L4

<c(llullpe + ||n A MlaszHJOg)(llvHLq + [[n Avlse]

). (42)

Similarly for the second term on the right hand side of (4.1) we have
(u—U), e LP(R", A¥), V € L1(R", A"*), d((u — U),) =0 onR" and

dV =0 on R, so again by Proposition 4.1 we hawe — U), AV €
HY(R", A™) and
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|(w—U), A VHH1 <cf|(u— U)ZHLPHV”L‘I

Lc(llullpr + ||n A M|a:2HJap) |n A U|aQHJg- (4.3)

Finally, sinceU = dF e L?(logL)*(2, A¥), V =dG e Li(logL)*#
(2,A" %y and [,U AV =0, we haveU AV € LlogL(£2, A") C
hl($2, A") and

IUAVI<cllUAViviogLe)

<cllUlrgogrye(2, a1V I Laqogryp 2, an—+)

g C” F”ij(ﬂ,/\k) ||G||W;1L‘I(Qy/‘nfk)

Sclln Aullyr oo, avmlln A U||J§(39,Anfk+1)~ (4.4)
Combining Egs. (4.1)—(4.4) now gives the result

Note that Proposition 4.8 can be obtained from this theorem on
choosingyr =0, 8 =4.

The discussion of weak continuity and higher integrability of this
bilinear differential form is very similar to that of Jacobians. We will
skip the details and only state the results.

THEOREM 4.14. —-letl < p <00, o, B 20, anda/p + B/q = 1.
Suppose:; € L7(£2, A¥) is a bounded sequencéy; =0 andu; — u
weakly inL”($2, A%),v; € LI($2, A"~*) is a bounded sequenagy; =0
and v; — v weakly inL7(£2, AY). If n Aujlaq € JP (352, AF1) and
n A vilye € J§(882, A"**h) are bounded sequences, then up to a

subsequence,
/buj/\vj—>/bu/\v
2 2

for all b € VMO(£2, AY).

THEOREM 4.15. -Assumel < p < o0, a, 20, a/p + B/q = 1,
ueLP(2, A5, ve L1(2,A" %), du =0, dv=0o0n £ and u A
v > 0. Suppose also that A ulye € JP (02, A and n A v|3p €
J§ (052, A" *1). Thenu Av e LlogL(£2, A") and

lu Avlizioge < c(luliee + |ln Aulyell,r) (Ivllee +[[n A vlae Jg)-
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A. APPENDIX

This section is devoted to the proof of a generalised Holder inequality,
of which Proposition 2.2 is a particular case, and to the proof of
Proposition 3.2. The proofs of Theorem A.1 and Lemma A.2 are an
amalgam of arguments found in [18], [15] and [16] and from private
correspondence between Stephen Montgomery-Smith, Richard O’Neil
and the authors.

THEOREM A.1. —Supposé, B, C : [0, co) — [0, co) are continuous,
monotone increasing functions for which there exist positive constants
andd such that

(i) B *(t)C1(t) <cAi(t) forall t > 0, and

(i) A(t)<3A@) forallt>0.

Suppose also tha® is an open subset ofR”, f € Lz(£2) and g €
Lc(£2). Thenfg e L,(£2) and

I fglla<cdlflzlglc.

As a preliminary to the proof of the theorem, we have the following
lemma:

LEMMA A.2.—LetA, B andC be as above. Then, for all r > 0,

St
A (—) < B(s) +C(@).
C
Proof. —Letu = B(s) andv = C(¢). Then
st = B_l(u)C_l(v) < B_l(u + v)C_l(u +v) < cA_l(u + v).

Dividing by ¢ and applyingA to both sides gives the resulto

Proof of Theorem A.1. Note that if f € L,(£2), the monotonicity
of A and an application of the monotone convergence theorem gives
us that [, A(|f(x)I/Il flla)dx < 1. Hence, from the definition of the
Luxemburg norm

([A<C{J(jﬁlﬁ|(;ﬁc> . <JB<IIff(ﬁ) . +([C(ﬁ'§ﬁ> o

N
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[4( f@gw) Jar<a
J “\edlflislgle) ™ ™

and, again by the definition of the Luxemburg norm, we have the
result. O

We therefore have

Proof of Proposition 2.2. Fo prove the generalised Hdlder inequality
of Proposition 2.2, we need only show thatBf(s) = s”log“(e + s),
then B~1(r) ~ t¥P(log(e + t))~*/?. To see this, simply note that if
t = s”(log(e + s5))*, there exist constants 9 c1(p, a) < co2(p, a) < 00
such that for alk > 0,

c1(p, @)log(e + 1) <log(e + s) < c2(p, @) log(e +1).

Thent = sP(log(e + 5))* ~ s”(log(e + 1))* and solving fors gives
s ~ tYP(log(e 4 t))~%/?. This completes the proof.O

The proof of Proposition 3.2 relies on well-known facts about maximal
functions and Hardy space which we now collect.

LEMMA A.3.-—Let f be supported in a balB c R" and letMf be
its Hardy—Littlewood maximal function. Thehe L log L(B) if and only
if Mf e L*(B). Furthermore, there exist constant and c, independent
of f for which

Cz||Mf||L1(B) ||f||L|ogL(B) Cl||Mf||L1(B)-

For a proof of this result, the reader is referred to [22] or [23, Chapter 1,
Section 5.2, p. 23].

The spaceéd*(R") is defined in terms of the so-called “grand maximal
function”:

frx) =sur>sup—’/ ( )f(y) dy|,

1>0 geT 1§

where7 = {p € C*(R"); suppy C B(0, 1), [Vells <1} andB(0,1) =

{y e R": |y| < 1}. For further information, the reader is referred to [21].
A distribution f onR" lies in HX(R") if f* e LYR") and || f || g1y =

I f*ll L2 wny- While it is always true thay™ < cMf, we also haveM f <
cf*whenf > 0.
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Proof of Proposition 3.2. et K = ﬁ| [o f1 and xp be the charac-
teristic function of a ballB containing2. Notice that by the normali-
sation on the test functions iR, ||(x3)*|l« IS bounded, and hence that
I(x8)*llLrpy < c|B|. Ifwe put F = f — K on 2 and extendr by zero
off 2, thenf = F + K andF € H}(£2). Also, F + K x5 > 0 on B, so

I flziogzc2) = I1F + KllL1ogL(2)
<cllF+KxgllLiogrs)
clIM(F + K xp)ll 1z (by LemmaA.3)
cl(F +Kxp) Ly (since(F + Kxp)lp > 0)
N F* Nl reny + Kl (x8)* [l L2¢8)
clIFll g+ cKIB]

ce ”f”h}(g) 0

/
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