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ABSTRACT. – We give conditions for a vector-valued functionu ∈
W 1,n(Ω,Rn), satisfying detDu(x)> 0 on a bounded domainΩ, which
imply that detDu(x) is globally higher integrable onΩ. We also give
conditions foru ∈ W 1,n(Ω,Rn) such that detDu belongs to the Hardy
spaceh1

z(Ω) and exhibit some examples which show that our conditions
are in some sense optimal. Applications to the weak convergence of
Jacobians follow. Div-curl type extensions of these results to forms are
also considered.

AMS classification: 42B20, 42B30, 49K99

RÉSUMÉ. – Pour une fonction à valeurs vectoriellesu ∈W 1,n(Ω,Rn)
telle que detDu(x) > 0 dans un ouvert bornéΩ, nous donnons des
conditions conduisant à une amélioration de l’intégrabilité globale de
detDu(x) dans un ouvert bornéΩ. Nous donnons aussi des conditions
sur u ∈W 1,n(Ω,Rn) pour que detDu appartienne à l’espace de Hardy
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h1
z(Ω). Quelques exemples démontrent que ces conditions sont dans un

certain sens optimales. Ces résultats sont appliqués à la convergence
faible des jacobiens. Nous examinons aussi l’extension de ces résultats
du type div-curl aux formes différentielles.

1. INTRODUCTION

The work of S. Müller [17] has led to many interesting new results
regarding important nonlinear quantities such as Jacobians and some
quadratic forms in compensated compactness [12,4]. However, the results
found there are local or interior in nature. For example, Müller’s result
states that ifu is an element of the Sobolev spaceW 1,n(Ω,Rn) (Ω ⊂Rn),
and detDu(x) = det( ∂uj

∂xk
) > 0 in Ω almost everywhere, then for every

compact subsetK of Ω ,∫
K

detDu(x) log
(
e+ detDu(x)∫

Ω detDu(y)dy

)
dx

6 C(K,n)
∫
Ω

|Du(x)|n dx. (1.1)

We are interested in finding additional conditions onu under which
detDu(x) log(e + detDu(x)) is globally integrable on a bounded do-
mainΩ .

Higher integrability results are partly motivated by applications of
Jacobians to nonlinear elasticity. A model problem in [7] is that of
determining the infimum

inf
u|∂Ω=id

∫
Ω

F
(
x,detDu(x)

)
dx,

whereF :Ω × (0,∞)→ [0,∞) is continuous, limt→0+ F(x, t) =+∞,
lim t→+∞F(x, t) = +∞ and id is the identity mapping. Letf :Ω →
(0,∞) be a measurable function such thatF(x,f (x)) = min{F(x, t),
t > 0} for every fixedx ∈Ω . Then the minimizing problem is reduced to
solving

detDu(x)= f (x) in Ω, u(x)= x on ∂Ω.
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This problem is studied in [8] under the condition thatf is Hölder
continuous, in [24] forf in Sobolev spaces, but has not yet been solved
in the case off ∈ Lp(Ω). Our global integrability result (Theorem 3.1)
gives a necessary condition for the solvability of the above problem
for u ∈W 1,n(Ω,RN). The necessary condition is thatf log(e + |f |) ∈
L1(Ω) which we abbreviate by writingf ∈ L logL(Ω).

If v ∈ W 1(Rn,R), we denote by∇v the vector-valued function
∇v = ( ∂v

∂x1
, . . . , ∂v

∂xn
). It was established in [6] that ifu = (u1, . . . , un) ∈

W 1,n(Rn,Rn), then detDu belongs to the Hardy spaceH 1(Rn) and
‖detDu‖H1 6 C(n)∏n

j=1‖∇uj‖nLn . (For relevant details pertaining to
the Hardy spaceH 1(Rn), the reader is referred to Appendix A. Further
details can be found in [21].) In [5], Hardy spaces defined on bounded
domainsΩ are studied. One such space is

H 1
z (Ω) :=

{
f ∈ L1(Ω); fz ∈H 1(Rn)},

where fz is the zero extension off to Rn. Every function f ∈
H 1
z (Ω) satisfies

∫
Ω f (x) dx = 0. The space obtained by removing this

cancellation condition is

h1
z(Ω) :=

{
f ∈L1(Ω); f − 1

|Ω|
∫
Ω

f ∈H 1
z (Ω)

}
.

Norms on these spaces are defined in the obvious way:

‖f ‖H1
z (Ω)
= ‖fz‖H1(Rn),

‖f ‖h1
z(Ω)
=
∥∥∥∥f − 1

|Ω|
∫
Ω

f

∥∥∥∥
H1
z (Ω)

+ 1

|Ω|
∣∣∣∣ ∫
Ω

f

∣∣∣∣.
A natural question to ask is: under what conditions onu ∈W 1,n(Ω,Rn)
does it follow that detDu ∈ h1

z(Ω)?
In order to solve these problems, in Section 2 we introduce a subspace

Kα(∂Ω) of W 1− 1
n
,n(∂Ω) which containsW 1− 1

p ,p(∂Ω) for all p > n

and which gives better integrability of gradients. We establish our main
results under this extra condition. We also discuss the weak continuity of
Jacobians onΩ . A crucial element in the proofs is a version of Hölder’s
inequality adapted toL logL(Ω).

In Section 3, we discuss the higher integrability of Jacobians in
L logL(Ω) by applying the Hardy space result obtained in Section 2. It
might be tempting to try to prove this higher integrability by extendingu
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to a larger domainΩ ′ so that the extension is bounded fromW 1,n(Ω,Rn)
toW 1,n(Ω ′,Rn) and the positivity of detDu is preserved, thus enabling
us to use Müller’s result to obtain higher integrability onΩ . We show by
an example that in general this is not possible.

It is known that questions about Jacobians are special cases of the div-
curl problem. In Section 4, we discuss the corresponding Hardy space
result, weak continuity and higher integrability for this problem. For
the sake of simple notation in describing the extension property, we
use the language of differential forms. However, the results obtained on
differential forms are interesting in themselves. Many people such as
Robbin, Rogers and Temple [19,20] and Iwaniec [11] have considered
differential forms in this context.

The authors wish to thank Stephen Montgomery-Smith and Richard
O’Neil for several helpful suggestions and references regarding the proof
of Proposition 2.2.

2. HARDY SPACES ON BOUNDED DOMAINS AND WEAK
CONTINUITY

In [6] it is shown that ifu = (u1, . . . , un) ∈ Ẇ 1,n(Rn,Rn), then the
Jacobian detDu ∈H 1(Rn), and

‖detDu‖H1(Rn) 6 C
n∏
j=1

‖∇uj‖nLn(Rn). (2.1)

SupposeΩ is a bounded open domain inRn. We are interested in
the following question: Ifu ∈ W 1,n(Ω,Rn), is detDu ∈ h1

z(Ω) with a
similar estimate to that above? The following example from [2] shows
that without extra conditions, the answer is negative, even whenΩ is a
rectangle inR2.

Example. – Let n = 2 andΩ = (0,2π)× (−1,1). Define a sequence
uj :Ω→R2, j = 1,2, . . . , by

uj(x, y)= j−1/2|y|j (cosjx,sinjx).

Then detDuj(x, y) =−jy2j−1. Thus
∫
Ω detDuj(x, y) = 0. Notice also

that the norms‖Duj‖L2 are bounded. Suppose the estimate holds. Then
detDuj is bounded inH 1

z (Ω), and we can extract a subsequence which
converges weak-∗ in H 1

z (Ω). On the other hand, detDuj converges
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pointwise to zero. Therefore according to [13], the weak-∗ limit of the
subsequence is also zero. However, forφ ∈ C∞0 (R2) with φ(x,1) <
φ(x,−1),

lim inf
j→∞

∫
R2

φ(x, y)detDuj(x, y) dx dy

> 1

2

2π∫
0

[
φ(x,−1)− φ(x,1)] dx > 0,

which is a contradiction.

In the sequel,Ω will denote a bounded open domain inRn with
strongly Lipschitz boundary∂Ω—an assumption which is enough to
ensure

(i) the existence of a bounded extension map fromW 1,n(Ω) to
W 1,n(Rn), and

(ii) the boundedness of the extension by zero ofW
1,n
0 (Ω) toW 1,n(Rn),

whereW 1,n
0 (Ω) is the closure ofC∞0 (Ω) in W 1,n(Rn).

For details, the reader is referred to [1, Section 4]. Although many of the
results generalise to non-Lipschitz domains for which these extensions
are bounded, we will restrict ourselves to considering domains with
strongly Lipschitz boundaries, so that we have concrete realisations of
the trace spaces.

In Theorem 2.5 below, we give a sufficient condition under which a
modified version of the estimate holds. Before we state the theorem,
we introduce some relevant function spaces and state some technical
lemmas.

DEFINITION 2.1. –Let A : [0,∞)→ [0,∞) be a monotone increas-
ing function. Under certain technical conditions onA (see[1] and [3])
which are satisfied by all the examples we shall consider in this pa-
per, we consider the Orlicz spaceLA(Ω) consisting of(equivalence
classes modulo equality a.e. of) measurable functionsf onΩ for which∫
Ω A(|f (x)|) dx <∞. The functional

‖f ‖A = inf
{
k−1; k > 0 and

∫
Ω

A
(
k|f (x)|) dx 6 1

}

is then a norm(the Luxemburg norm) onLA(Ω) under which it becomes
a rearrangement-invariant Banach space.
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WhenA(t) = tp(log(e + t))α (16 p <∞, α > 0) LA(Ω) is referred
to asLp(logL)α(Ω) and the associated norm is written‖f ‖Lp(logL)α(Ω).
The spacesLp(logL)0(Ω) andL1(logL)1(Ω) are usually referred to as
Lp(Ω) andL logL(Ω) respectively.

SinceΩ is bounded, an argument based on rearrangements, maximal
functions and Hardy inequalities can be used to prove the equivalence

‖f ‖Lp(logL)α(Ω) ≈
(∫
Ω

∣∣f (x)∣∣p(log
(
e+ |f (x)|‖f ‖p

))α
dx

)1/p

.

Hence the quantity on the left-hand-side of (1.1) (Müller’s result)
is equivalent to‖detDu‖L logL(K). The following generalised Hölder
inequality, the proof of which is deferred to Appendix A, will be a crucial
element in the proofs of many of our results.

PROPOSITION 2.2. –Let 1< p,q <∞, α,β > 0, 1/p + 1/q = 1/r ,
α/p + β/q = γ /r and f ∈ Lp(logL)α(Ω), g ∈ Lq(logL)β(Ω). Then
fg ∈Lr(logL)γ (Ω) and

‖fg‖Lr(logL)γ (Ω) 6 c‖f ‖Lp(logL)α(Ω)‖g‖Lq(logL)β(Ω).

Remark. – The caseα = β = γ is presented in Lemma 4.2 of [10].

In the proof of our main result, we need the following lemma, the first
part of which is a consequence of [23, Chapter I, Section 5.2] (a statement
of which appears in Appendix A as Lemma A.3) while the second part is
an immediate corollary of the first.

LEMMA 2.3. – (i) Supposef ∈ L(logL)(Ω), and
∫
Ω f = 0. Then

f ∈H 1
z (Ω) and

‖f ‖H1
z (Ω)
6 c‖f ‖L(logL)(Ω).

(ii) L(logL)(Ω)⊂ h1
z(Ω) with ‖f ‖h1

z (Ω)
6 c‖f ‖L(logL)(Ω).

By the Trace Theorem, TrW 1,n(Ω) = W 1− 1
n ,n(∂Ω). For α > 0, we

define a subspaceKα(∂Ω) of W 1− 1
n ,n(∂Ω) as follows.

DEFINITION 2.4. –Let α > 0. For φ ∈ W 1− 1
n ,n(∂Ω), we say that

φ ∈ Kα(∂Ω) if φ can be extended intoΩ as v ∈ W 1,n(Ω) so that
∂v
∂xj
∈Ln(logL)α(Ω) for 16 j 6 n.
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Remark. – Clearly,

W
1− 1

p ,p(∂Ω)⊂Kα(∂Ω)⊂K0(∂Ω)=W 1− 1
n ,n(∂Ω)

for all p > n. Moreover, in [14],Kα(∂Ω) is realised as the class of those
u ∈Ln(logL)α(∂Ω) for which∫

∂Ω

∫
∂Ω

Φ

( |u(x)− u(y)|
|x − y|

)
dx dy

|x − y|n−2
<∞,

whereΦ(t) = tn(log(e + t))α . It follows thatKα(∂Ω) $ W 1− 1
n ,n(∂Ω)

whenα > 0. Actually, we shall not make use of this realisation. Instead,
we define the following semi-norm onKα(∂Ω):

‖φ‖Kα = inf
{‖∇v‖Ln(logL)α(Ω), v|∂Ω = φ}.

We come now to the main theorem of this section.

THEOREM 2.5. –Supposeu ∈ W 1,n(Ω,Rn), uj |∂Ω ∈ Kαj (∂Ω), j =
1,2, . . . , n, for αj > 0 and

∑n
j=1αj = n. ThendetDu ∈ h1

z(Ω) and

‖detDu‖h1
z(Ω)
6 C

n∏
j=1

(‖∇uj‖Ln(Ω) + ‖uj |∂Ω‖Kαj (∂Ω)).
Remark. – In the case whenα1 = n, αj = 0 for j > 2, we have

detDu ∈ h1
z(Ω) under the single restrictionu1|∂Ω ∈Kn(∂Ω). In the case

whenαj = 1 for all j , we have detDu ∈ h1
z(Ω) and

‖detDu‖h1
z(Ω)
6 C

(‖Du‖Ln(Ω) +max
j
‖uj |∂Ω‖K1(∂Ω)

)n
.

Remark. – Clearly the boundary condition is satisfied in the important
special caseu(x)= x on ∂Ω , mentioned in the introduction.

Proof of Theorem 2.5. –Assume without loss of generality that∫
Ω uj = 0 for eachj . SinceΩ has a strongly Lipschitz boundary, we

can extenduj toRn so that

‖∇uj‖Ln(Rn) 6 ‖uj‖W1,n(Rn) 6 c‖uj‖W1,n(Ω) 6 c‖∇uj‖Ln(Ω).
(The last inequality comes from an application of the Poincaré inequality
and the assumption that

∫
Ω uj = 0 for eachj . For details on Poincaré and
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the extension result which provides the second inequality, the reader is
referred to [1].) Sinceuj |∂Ω ∈ Kαj (∂Ω), we can choosevj ∈W 1,n(Rn)
with

‖∇vj‖Ln(logL)αj (Ω) 6 C‖uj |∂Ω‖Kαj (∂Ω),
andvj = uj onRn \Ω . (We have used the fact that(vj−uj)z ∈W 1,n(Rn)
since(vj − uj)|∂Ω = 0.) Note that

‖∇vj‖Ln(Rn)6 ‖∇uj‖Ln(Rn) + ‖∇vj‖Ln(Ω)
6 c
(‖∇uj‖Ln(Ω) + ‖uj |∂Ω‖Kαj (∂Ω)).

If we now put

w(1)= (u1− v1, u2, . . . , un)

w(2)= (v1, u2− v2, . . . , un)

...

w(n)= (v1, v2, . . . , un − vn),
thenw(k) ∈W 1,n(Rn,Rn), and

detDu= detDw(1)+ detDw(2)+ · · · + detDw(n)+ detDv. (2.2)

On applying (2.1) we see that detDw(k) ∈H 1(Rn) and

‖detDw(k)‖H1(Rn) 6 c
n∏
j=1

‖∇w(k)j‖Ln(Rn)

6 c
n∏
j=1

(‖∇uj‖Ln(Ω) + ‖uj |∂Ω‖Kαj (∂Ω)).
Sinceuk − vk = 0 outsideΩ , the support ofDw(k) is contained inΩ .
Thus detDw(k) ∈H 1

z (Ω) and

‖detDw(k)‖h1
z(Ω)
=‖detDw(k)‖H1

z (Ω)
= ‖detDw(k)‖H1(Rn)

6 c
n∏
j=1

(‖∇uj‖Ln(Ω) + ‖uj |∂Ω‖Kαj (∂Ω)). (2.3)

Now consider the final term in (2.2). As a consequence of Proposition 2.2
and Lemma 2.3, we have

‖detDv‖h1
z(Ω)
6 c‖detDv‖L logL(Ω) 6 c

n∏
j=1

‖∇vj‖Ln(logL)αj (Ω)
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6 c
∏
j

‖uj |∂Ω‖Kαj (Ω). (2.4)

Combining (2.2), (2.3) and (2.4) completes the proof of Theorem 2.5.2
Now we discuss the weak convergence of Jacobians. Suppose{u(k)} ⊂

W 1,n(Ω,Rn) is a bounded sequence whose components{u(k)j |∂Ω} (j =
1,2, . . . , n) are bounded inKαj (∂Ω) with αj as in Theorem 2.5. Then
we have ∥∥∥∥detDu(k)−

∫
Ω

detDu(k)
∥∥∥∥
H1
z (Ω)

6C
n∏
j=1

(∥∥∇u(k)j ∥∥Ln(Ω) + ∥∥u(k)j |∂Ω∥∥Kαj (∂Ω))6 C ′.
Let

VMO(Ω)= {b|Ω : b ∈ VMO
(
Rn
)}
.

Then since VMO(Rn)∗ =H 1(Rn), there existsg ∈H 1
z (Ω) such that for

all b ∈ VMO(Ω),∫
Ω

b

(
detDu(k)−

∫
Ω

detDu(k)
)
→
∫
Ω

bg

up to a subsequence. We can suppose that for such a subsequence,∫
Ω

detDu(k)→ δ ∈ R.

Therefore, sinceb ∈ VMO(Ω)⊂ L1(Ω), we have∫
Ω

b

(∫
Ω

detDu(k)
)
→ δ

∫
Ω

b.

Thus up to a subsequence,∫
Ω

bdetDu(k)→
∫
Ω

b(g + δ)

for all b ∈ VMO(Ω), whereg + δ ∈ h1
z(Ω).

The following theorem shows that if furthermore,u(k)→ u weakly in
W 1,n(Ω), theng+ δ = detDu.
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THEOREM 2.6. –Supposeu(k) ∈W 1,n(Ω,Rn) is a bounded sequence
for which u(k)j |∂Ω ∈ Kαj (∂Ω) (j = 1,2. . . , n) is also bounded,αj > 0
and

∑n
j=1αj = n. Suppose further thatu(k)→ u weakly inW 1,n(Ω,Rn).

Then up to a subsequence,∫
Ω

bdetDu(k)→
∫
Ω

bdetDu

for all b ∈ VMO(Ω).

Proof. –As discussed before, we can suppose that for anyb ∈
VMO(Ω), ∫

Ω

b

(
detDu(k)−

∫
Ω

detDu(k)
)
→
∫
Ω

bg

for someg ∈ H 1
z (Ω). We first prove thatg = detDu − ∫Ω detDu. As

in the proof of Theorem 2.5, extendu(k) to all of Rn, and letv(k) be
the chosen function corresponding tou(k). Then up to a subsequence, we
can supposeu(k)→ ũ weakly inW 1,n(Rn,Rn) andv(k)→ v weakly in
W 1,n(Rn,Rn) for someũ andv. By uniqueness,̃u = u onΩ . Let w(k)(j)
andw(j) be the functions corresponding tou(k) andu as in the proof of
Theorem 2.5. Then

detDu(k) = detDw(k)(1) + detDw(k)(2) + · · · + detDw(k)(n) + detDv(k)

and

detDu= detDw(1)+ detDw(2)+ · · · + detDw(n)+ detDv.

It is easy to see thatw(k)(j) → w(j) weakly in W 1,n(Rn,Rn). Since

suppw(k)(j), suppw(j) ⊂Ω , by Corollary IV.1 of [6], for anyb ∈ VMO(Rn),
then up to a subsequence,∫

Ω

bdetDw(k)(j) =
∫
Rn

bdetDw(k)(j)→
∫
Rn

bdetDw(j) =
∫
Ω

bdetDw(j).

As for detDv(k), we can assume that thev(k) we choose are supported
in a compact setΩk ⊃ Ω , andDv(k) ∈ Ln(logL)αj (Rn) are uniformly
bounded. Then detDv(k) are uniformly bounded inL logL(Ω). By
the criteria of de La Vallée Poussin [9], there is a subsequence of
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detDv(k) which converges weakly inL1(Ωk). Suppose detDv(k) is such
a convergent sequence (otherwise replace it by a subsequence).

Moreover, again by Corollary IV.1 of [6], detDv(k) has a subsequence
which converges to detDv weak-∗ in H 1(Rn). Again replace detDv(k)

by such a convergent subsequence. Then we have that detDv(k) con-
verges weakly inL1(Ωk) to some functionh and detDv(k) converges
weak-∗ in H 1(Rn) to detDv. Since both convergences imply the con-
vergence in the distributional sense onRn, by uniqueness of the limit we
haveh= detDv (takingh a function onRn with compact support inΩk).

Thus, we have shown that detDv(k) converges to detDv weakly in
L1(Ωk) and thus also weakly inL1(Ω). Combining the above results we
get, forb ∈C(Ω)⊂ L∞(Ω)∩ VMO(Ω),∫

Ω

bdetDu(k) =
∫
Ω

b

n∑
j=1

detDw(k)j +
∫
Ω

bdetDv(k)

→
∫
Ω

b

n∑
j=1

detDwj +
∫
Ω

bdetDv =
∫
Ω

bdetDu.

Therefore, forb ∈C(Ω),∫
Ω

b

(
detDu(k)−

∫
Ω

detDu(k)
)
→
∫
Ω

b

(
detDu−

∫
Ω

detDu
)
,

which impliesg = detDu− ∫Ω detDu.
Thus, for anyb ∈ VMO(Ω),∫

Ω

bdetDu(k)→
∫
Ω

bdetDu,

and the proof is completed.2
As a corollary of this theorem, we have the following result.

COROLLARY 2.7. –Supposeu(k) ∈W 1,n(Ω) is a bounded sequence,
u(k) → u weakly in W 1,n(Ω) and (u(k) − u)|∂Ω ∈ Kn(∂Ω) is also
bounded. Then up to a subsequence,∫

Ω

bdetDu(k)→
∫
Ω

bdetDu.

for all b ∈ VMO(Ω).
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Remark. – In [11], Iwaniec proves the same result under the stronger
assumptions that(u(k) − u)|∂Ω = 0 and thatΩ has a smooth boundary.

Proof of Corollary 2.7. –For eachk, write

detDu(k) =
n∑
j=1

detDw(k)(j) + detDu,

where

w
(k)
(j) =

(
u1, . . . , uj−1, u

(k)
j − uj , u(k)j+1, . . . , u

(k)
n

)
.

Apply Theorem 2.6 withαj = n andαi = 0 for i 6= j to see that, up to a
subsequence, ∫

Ω

bdetDw(k)(j)→ 0

for all b ∈ VMO(Ω). Therefore,∫
Ω

bdetDu(k)→
∫
Ω

bdetDu. 2

3. GLOBAL HIGHER INTEGRABILITY OF JACOBIANS ON Ω

As seen in [17], foru ∈W 1,n(Ω,Rn) with detDu> 0 onΩ , we have
the interior estimate detDu ∈ L logL(K) for compact subsetsK ⊂ Ω .
One may think that given some control on the boundary value ofu, it
should be possible to obtain global higher integrability. In this section we
show that this is indeed the case, and also show that in some sense the
boundary condition we give is optimal.

THEOREM 3.1. –Supposeu ∈ W 1,n(Ω,Rn) and detDu(x) > 0 on
Ω . If furthermoreuj |∂Ω ∈ Kαj (∂Ω), j = 1,2, . . . , n, for αj > 0 and∑n
j=1αj = n, thendetDu ∈L logL(Ω) and

‖detDu‖L logL(Ω) 6 c
n∏
j=1

(‖∇uj‖Ln(Ω) +‖uj |∂Ω‖Kαj (∂Ω)).
This is an immediate consequence of Theorem 2.5 and the following

result, which is a partial converse to Lemma 2.3.
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PROPOSITION 3.2. –Supposef ∈ h1
z(Ω) and f > 0 on Ω . Then

f ∈L logL(Ω) and

‖f ‖L logL(Ω) 6 cΩ‖f ‖h1
z (Ω)

.

The proof of Proposition 3.2 relies on a few well-known properties of
maximal functions and Hardy spaces. We defer the proof to Appendix A.

The next result demonstrates that in certain circumstances, the bound-
ary condition of Theorem 3.1 is necessary.

THEOREM 3.3. –Let Ω ⊂ R2 be a bounded open domain with
Lipschitz boundary andU = (u1, u2) ∈ W 1,2(Ω) with h(z) = u1 + iu2

analytic on Ω . Then detDU ∈ L logL(Ω) if and only if uj |∂Ω ∈
K1(∂Ω).

Proof. –Sinceu1 andu2 satisfy the Cauchy–Riemannn equations, we
have detDU = |h′(z)|2= |∇u1|2= |∇u2|2> 0. If detDU ∈L logL(Ω),
then ∇uj ∈ L2 logL(Ω), so uj |∂Ω ∈ K1(∂Ω). The converse is an
immediate consequence of Theorem 3.1 withn= 2 andα1= α2= 1. 2

As mentioned in the introduction, Müller’s result (1.1) is interior in
nature. One might hope that by extendingu to a larger domainΩ ′ in such
a way that the extensioñu satisfies detDũ> 0 onΩ ′ and‖ũ‖W1,2(Ω ′) 6
c‖u‖W1,2(Ω), one might obtain a global result onΩ by applying (1.1) on
Ω ′. The following example shows that in general this is not possible.

Example. – We specialise the situation in Theorem 3.3 to the case
whereΩ = D = {z ∈ C; |z| < 1} is the unit disc inC and∂Ω = T =
{z ∈ C; |z| = 1} is its boundary, the unit circle.

Chooseϕ ∈W 1/2,2(T)\K1(T) real-valued. (This choice is possible by
the remark after Definition 2.4.) Thenϕ admits the Fourier series expan-
sion ϕ(eiθ ) =∑∞n=−∞ cneinθ with c−n = cn for all n and

∑∞
n=−∞(|n| +

1)|cn|2<∞. Defineh(z)=∑∞n=0 cnz
n. Thenh= u1+ iu2 is an analytic

function onD, U = (u1, u2) ∈W 1,2(Ω,R2), andu1|∂Ω = ϕ. Moreover,

detDU = |h′(z)|2= |∇u1|2> 0 (3.1)

as in the proof of Theorem 3.3. Suppose now that we could extendU

to Ũ on Ω ⊃ D, an open set inR2 in such a way that detDŨ > 0 on
Ω . Then by Müller’s result, detDU ∈ L logL(D). However (3.1) then
implies∇u1 ∈ L2 logL(D) and henceϕ ∈ K1(T) thus contradicting the
choice ofϕ. We conclude that extensions such asŨ are in general not
possible.
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A simple application. The motivation of the following problem is
from [8].

Consider the following boundary value problem:{
detDu(x)= f (x), x ∈Ω,
u(x)= x, x ∈ ∂Ω,

(∗)

whereΩ is a smooth domain inRn andf > 0 is a measurable function
satisfying

∫
Ω f (x) dx = 0. We seek a necessary condition onf to ensure

that the problem is solvable foru ∈W 1,n(Ω,Rn).

COROLLARY 3.4. –Supposeu ∈ W 1,n(Ω,Rn) is a solution of prob-
lem(∗). Thenf ∈L(logL)(Ω).

This is a direct consequence of Theorem 3.1. It leads to the following
question.

Question. – Given f ∈ L logL(Ω), does (∗) have a solutionu ∈
W 1,n(Ω)?

Remark. – Theorems 2.5 and 3.1 can be easily generalized to the
cases whenu = (u1, u2, . . . , un) ∈ W 1,n(Ω,Rn) is replaced byuj ∈
W 1,pj (Ω,Rn), pj > 1, j = 1,2, . . . , n, with

∑n
j=1

1
pj
= 1.

4. DIV-CURL RESULTS FOR FORMS

The setting of this section is that of forms on open domainsΩ ⊂ Rn.
We give a brief outline of the basic formalism.

The space ofl-linear, alternating functionsξ : (Rn)l→R is denoted by
ΛlRn, or justΛl when there is no possibility of confusion. In particular
Λ1Rn = (Rn)′, the dual toRn andΛ0Rn = R. The exterior algebraof
forms is denoted

Λ
(
Rn
)= n⊕

l=0

Λl
(
Rn
)

and the wedge product ofξ ∈ Λl andη ∈ Λk is the (k + l)-form ξ ∧ η
given by

(ξ ∧ η)(X1, . . . ,Xk+l)=
∑

ε(σ )ξ(Xi1, . . . ,Xil )η(Xj1, . . . ,Xjk ),

where the sum is taken over all permutationsσ = {i1, . . . , il, j1, . . . , jk}
of {1, . . . , k+ l} satisfyingi1< · · ·< il andj1< · · ·< jk andε(σ ) is the
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signature of the permutationσ . The exterior product is alternating, i.e.,
ξ ∧ η =−η ∧ ξ . Fix a basis{e1, . . . , en} for Rn. An r-form is defined to
be a functionu :Rn→Λr(Rn) of the form

u= ∑
i1,...,ir

ui1,...,ir ei1 ∧ · · · ∧ eir ,

where the sum is taken over subsets{i1, . . . , ir} of {1, . . . , n} andui1,...,ir
are (real-valued) functions onRn. We denote byLp(Ω,Λr) the space of
p-integrabler-forms onΩ .

The Hodge–deRham operatord acts on smooth forms defined onΩ by

du=
n∑
k=1

∂

∂xk
ek ∧ u

and satisfiesd(du)= 0.
In [6], it is proved that ifu ∈ Lp(Rn,Rn), divu = 0, v ∈ Lq(Rn,Rn),

curlv = 0, where 1/p+ 1/q = 1, thenu · v ∈H 1(Rn). This is equivalent
to the statement that, ifu ∈ Lp(Rn,Λn−1), du = 0, v ∈ Lq(Rn,Λ1),
dv = 0, thenu∧ v ∈H 1(Rn,Λn). More generally, the following is true.

PROPOSITION 4.1. –If 1< p <∞, 1/p + 1/q = 1, u ∈ Lp(Rn,Λk),
v ∈ Lq(Rn,Λn−k), du= 0, dv = 0 onRn, thenu∧ v ∈H 1(Rn,Λn) and

‖u∧ v‖H1 6 c‖u‖Lp‖v‖Lq .
SupposeΩ is a bounded open domain inRn with strongly Lipschitz

boundary. In this section, we provide the extra conditions onu and v
which, together withu ∈ Lp(Ω,Λn−1), du = 0, v ∈ Lq(Ω,Λ1) and
dv = 0, imply thatu∧ v ∈ h1

z(Ω,Λ
n).

To state and prove the theorem, we first introduce some notation and
state several known results.

Stokes’ theorem in this context is as follows: ifu ∈ C1(Ω,Λk) and
ϕ ∈C1(Ω,Λn−k−1) then∫

Ω

du∧ ϕ + (−1)k
∫
Ω

u∧ dϕ =
∫
∂Ω

u∧ ϕ =
∫
∂Ω

n∨ (n∧ u∧ ϕ)

= 〈n∧ u|∂Ω,ϕ〉∂Ω.
Heren ∨ (n ∧ u ∧ ϕ) is the tangential component of the(n − 1) form
u ∧ ϕ on ∂Ω , while the final expression is the natural pairing between
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(k + 1) forms and(n − k − 1) forms on the boundary. This provides a
natural meaning for the statementdu= 0:

DEFINITION 4.2. –LetD(Ω,Λn−k−1) be the space ofn−k−1 forms
onRn whose support is contained inΩ . If u ∈ Lp(Ω,Λk), we say that
du= 0 onΩ if

∫
Ω u∧ dη= 0 for all η ∈D(Ω,Λn−k−1).

DEFINITION 4.3. –For those u ∈ Lp(Ω,Λk) with du = 0 on Ω ,
definen∧ u|∂Ω ∈W−1/p,p(∂Ω,Λk+1) by

〈
n∧ u|∂Ω,ϕ〉∂Ω = (−1)k

∫
Ω

u∧ dΦ,

whereΦ ∈C1(Ω,Λn−k−1) andϕ =Φ|∂Ω .

It is a simple matter to show that the definition of〈n ∧ u|∂Ω,ϕ〉∂Ω is
independent of the choice of the extensionΦ. Note that∥∥n∧ u|∂Ω∥∥W−1/p,p(∂Ω,Λk+1)

6 c‖u‖Lp(Ω,Λk)
for all u ∈Lp(Ω,Λk) such thatdu= 0.

LEMMA 4.4. –SupposeG ∈W 1,p
0 (Ω,Λk). Thenn∧ dG|∂Ω = 0.

Proof. –By the density ofC1
c (Ω,Λ

k) in W
1,p
0 (Ω,Λk) and the pre-

ceding estimate, it is enough to considerG ∈ C1
c (Ω,Λ

k). Then ifΦ ∈
C1(Ω,Λn−k−1), and ifϕ =Φ|∂Ω ,〈

n∧ dG|∂Ω,ϕ〉∂Ω = (−1)k
∫
Ω

dG∧ dΦ

=−
∫
Ω

G∧ d2Φ + 〈G,n∧ dΦ|∂Ω〉∂Ω = 0

sinced2Φ = 0 andG|∂Ω = 0. 2
We need several extension results. The first of these is as follows:

LEMMA 4.5. –Supposeu ∈ Lp(Ω,Λk), du= 0 onΩ andn∧u|∂Ω =
0. Letuz be the zero extension ofu toRn. Thenduz = 0 onRn.

Proof. –If ϕ ∈C∞c (Rn,Λn−k−1), by Stokes’ theorem we have∫
Rn

duz ∧ ϕ= (−1)k+1
∫
Rn

uz ∧ dϕ = (−1)k+1
∫
Ω

u∧ dϕ

=−〈n∧ u|∂Ω,ϕ〉∂Ω = 0.
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Henceduz = 0 onRn. 2
DEFINITION 4.6. –Let16 p 6∞ andα > 0. Define

W 1,p
α (Ω)=

{
f ∈W 1,p(Ω); ∂f

∂xj
∈ Lp(logL)α(Ω) for j = 1, . . . , n

}
and give it the seminorm

‖f ‖
Ẇ

1,p
α (Ω)

=max
j

∥∥∥∥ ∂f∂xj
∥∥∥∥
Lp(logL)α(Ω)

.

Whenα = 0, this is written‖f ‖Ẇ1,p(Ω).

DEFINITION 4.7. –Let p, α be as above. ThenW 1,p
α (Ω,Λk) is the

class ofk-formsf each of whose components lies inW 1,p
α (Ω).

We are now in a position to prove analogues of Proposition 4.1 on
bounded domains. Let us first consider the case where certain boundary
conditions are zero.

PROPOSITION 4.8. –Suppose16 p <∞, 1/p+ 1/q = 1, u= dF ∈
Lp(Ω,Λk) for someF ∈W 1,p(Ω,Λk−1), v ∈Lq(Ω,Λn−k) with dv = 0
in Ω andn∧ v|∂Ω = 0. Thenu∧ v ∈H 1

z (Ω,Λ
n) and

‖u∧ v‖H1
z
6 c‖v‖Lq‖F‖Ẇ1,p .

Proof. –Without loss of generality, we may assume that each compo-
nentFj of F satisfies

∫
Ω Fj = 0. SinceF ∈W 1,p(Ω,Λk−1), it may be

extended toRn with

‖F‖W1,p(Rn,Λk−1) 6 c‖F‖W1,p (Ω,Λk−1).

Let u= dF onRn. Thendu = 0. By Lemma 4.5, the zero extensionvz
of v to Rn satisfiesdvz = 0. By Proposition 4.1, the extensions ofu and
v satisfyu∧ vz ∈H 1(Rn,Λn) and sinceu∧ vz = 0 outsideΩ we have

‖u∧ v‖H1
z (Ω,Λ

n)=‖u∧ vz‖H1
z (Rn,Λn) 6 c‖u‖Lp(Rn)‖vz‖Lq(Rn)

= c‖dF‖Lp(Rn)‖v‖Lq(Ω) 6 c‖F‖W1,p (Rn,Λk−1)‖v‖Lq(Ω)
6 c‖F‖Ẇ1,p (Rn,Λk−1)‖v‖Lq(Ω),

where in the last step we have used the Poincaré inequality.2
In the special casek = 1, this can be written in more classical notation

as follows.



210 J. HOGAN ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 193–217

COROLLARY 4.9. –Suppose1 6 p < ∞, 1/p + 1/q = 1, F ∈
W 1,p(Ω), u = ∇F , v ∈ Lq(Ω,Rn), div v = 0 on Ω and n · v|∂Ω = 0.
Thenu · v ∈H 1

z (Ω) and

‖u · v‖H1
z
6 c‖u‖Lp‖v‖Lq .

We turn now to general boundary conditions.

DEFINITION 4.10. –Let p, α be as above. ThenKp
α (∂Ω,Λ

k) is
the class of thosef ∈ W 1−1/p,p(∂Ω,Λk) for which there existsF ∈
W 1,p
α (Ω,Λk) with F |∂Ω = f . It is given the seminorm

‖f ‖Kp
α (∂Ω,Λ

k) = inf
{‖F‖

Ẇ
1,p
α (Ω,Λk)

; F |∂Ω = f }.
Supposef ∈ W 1−1/p,p(∂Ω,Λk). Define (n ∧ d)f ∈ W−1/p,p(∂Ω,

Λk+2) by

(n∧ d)f = n∧ dF |∂Ω,
whereF ∈ W 1,p(Ω,Λk) is an extension off to Ω , i.e., F |∂Ω = f .
That this definition is independent of the choice of extensionF is a
consequence of Lemma 4.4.

DEFINITION 4.11. –Let p, α be as above. DefineJ pα (∂Ω,Λ
k) =

(n∧ d)Kp
α (∂Ω,Λ

k−2) with

‖g‖Jpα (∂Ω,Λk) = inf
{‖f ‖Kp

α (∂Ω,Λ
k−2); g = (n∧ d)f

}
.

A second extension result, this time for extensions from∂Ω to Ω ,
follows.

PROPOSITION 4.12. –Letp, α be as above and letg ∈ J pα (∂Ω,Λk).
Then there existsF ∈W 1,p(Rn,Λk−1) such thatn ∧ dF |∂Ω = g, F |Ω ∈
W 1,p
α (Ω,Λk−1) and

‖F‖Ẇ1,p (Rn,Λk−1) 6 c‖F‖Ẇ1,p
α (Ω,Λk−1)

6 c‖g‖Jpα (∂Ω,Λk).

Proof. –The proof is simply a matter of checking definitions. Since
g ∈ Jpα (∂Ω,Λk), there existsf ∈Kp

α (∂Ω,Λ
k−2) with g = (n∧ d)f and

‖f ‖Kp
α (∂Ω,Λ

k−2) 6 2‖g‖Jpα (∂Ω,Λk).
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Sincef ∈Kp
α (∂Ω,Λ

k−2), there existsF ∈W 1,p
α (Ω,Λk−2) with F |Ω =

f and

‖F‖
Ẇ

1,p
α (Ω,Λk−2)

6 2‖f ‖Kp
α (∂Ω,Λ

k−2).

Without loss of generality, by adding a constant(k−2)-form if necessary,
we may assume that

∫
Ω F = 0. Also, g = (n ∧ d)f = n ∧ dF |∂Ω by

the definition of(n ∧ d)f and its independence from the choice of the
extension off . Further,F ∈W 1,p(Ω,Λk−2) and since∂Ω is Lipschitz,
F can be extended toRn with

‖F‖Ẇ1,p(Rn,Λk−2)6 ‖F‖W1,p(Rn,Λk−2) 6 c‖F‖W1,p (Ω,Λk−2)

6 c‖F‖
Ẇ

1,p
α (Ω,Λk−2)

,

where the last step is a consequence of the Poincaré inequality.2
The main result of this section is:

THEOREM 4.13. –Suppose1< p <∞, α, β > 0, α/p + β/q = 1,
u ∈ Lp(Ω,Λk), v ∈ Lq(Ω,Λn−k), du = 0, dv = 0 onΩ . Suppose also
that n ∧ u|∂Ω ∈ J pα (∂Ω,Λk+1) and n ∧ v|∂Ω ∈ J qβ (∂Ω,Λn−k+1). Then
u∧ v ∈ h1

z(Ω,Λ
n) and

‖u∧ v‖h1
z
6 c

(‖u‖Lp + ‖n∧ u|∂Ω‖Jpα )(‖v‖Lq + ‖n∧ v|∂Ω‖J qβ ).
Proof. –By Proposition 4.12, sincen ∧ u|∂Ω ∈ J pα (∂Ω,Λk+1) and

n ∧ v|∂Ω ∈ J qβ (∂Ω,Λn−k+1), there existF ∈ W 1,p(Rn,Λk−1) andG ∈
W 1,q(Rn,Λn−k−1) such thatn ∧ dF |∂Ω = n ∧ u, n ∧ dG|∂Ω = n ∧ v,
F |Ω ∈W 1,p

α (Ω,Λk−1),G|Ω ∈W 1,p′
β (Ω,Λn−k−1) and

‖F‖Ẇ1,p (Rn,Λk−1) 6 c‖F‖Ẇ1,p (Ω,Λk−1) 6 c‖n∧ u|∂Ω‖Jpα (∂Ω,Λk+1),

‖G‖Ẇ1,q (Rn,Λn−k−1) 6 c‖G‖Ẇ1,q (Ω,Λn−k−1) 6 c‖n∧ v|∂Ω‖J q
β
(∂Ω,Λn−k+1).

Alsod(u−dF)= du−d2F = 0 onΩ andn∧(u−dF)|∂Ω = n∧u|∂Ω−
n∧dF |∂Ω = 0. Similarly,d(v−dG)= 0 onΩ andn∧ (v−dG)|∂Ω = 0.
So(u−dF)z, the zero extension ofu−dF toRn satisfiesd((u−dF)z)=
0 on Rn and

‖(u− dF)z‖Lp(Rn,Λk)
= ‖u− dF‖Lp(Ω,Λk) 6 ‖u‖Lp(Ω,Λk) +‖F‖Ẇ1,p (Ω,Λk)

6 ‖u‖Lp(Ω,Λk) +‖F‖Ẇ1,p
α (Ω,Λk)

6 c
(‖u‖Lp(Ω,Λk) +‖n∧ u|∂Ω‖Jpα (∂Ω,Λk+1)

)
.
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Similarly, (v − dG)z satisfiesd((v− dG)z)= 0 onRn and

‖(v − dG)z‖Lq(Rn,Λn−k) 6 c
(‖v‖Lq(Ω,Λn−k) + ∥∥n∧ v|∂Ω∥∥J q

β
(∂Ω,Λn−k+1)

)
.

LetU = dF onRn. ThenU ∈ Lp(Rn,Λk), and

‖U‖Lp(Rn,Λk)=‖dF‖Lp(Rn,Λk) 6 c‖F‖Ẇ1,p (Rn,Λk−1)

6 c
∥∥n∧ u|∂Ω∥∥Jpα (∂Ω,Λk+1)

.

Let V = dG onRn. ThenV ∈ Lq(Rn,Λn−k), and

‖V ‖Lq(Rn,Λn−k) 6 c
∥∥n∧ v|∂Ω∥∥J q

β
(∂Ω,Λn−k+1)

.

Now let ũ= uχΩ + UχΩ ′ whereχΩ is the characteristic function ofΩ
andχΩ ′ = 1− χΩ . Then

‖ũ‖Lp(Rn,Λk)=‖U‖Lp(Ω ′,Λk) + ‖u‖Lp(Ω,Λk)
6 c
(‖u‖Lp(Ω,Λk) + ∥∥n∧ u|∂Ω∥∥Jpα (∂Ω,Λk+1)

)
.

Also, we may writeũ = U + (u − U)z, from which we see easily that
dũ= 0 on Rn. Similarly, let ṽ = vχΩ + V χΩ ′ . Then

‖ṽ‖Lq(Rn,Λn−k) 6 c
(‖v‖Lq(Ω,Λn−k) + ∥∥n∧ v|∂Ω∥∥J q

β
(∂Ω,Λn−k+1)

)
anddṽ = 0 onRn. Now we write, onΩ ,

u∧ v= u∧ (v − V )+ (u−U)∧ V +U ∧ V
= ũ∧ (v − V )z + (u−U)z ∧ V +U ∧ V. (4.1)

To deal with the first term on the right hand side of (4.1), notice that
ũ ∈ Lp(Rn,Λk), (v − V )z ∈ Lq(Rn,Λn−k), dũ = 0 onRn and d((v −
V )z) = 0 onRn. Hence, by an application of Proposition 4.1, we have
ũ∧ (v− V )z ∈H 1(Rn,Λn) with the bound∥∥ũ∧ (v − V )z∥∥H1 6 c‖ũ‖Lp

∥∥(v − V )z∥∥Lq
6 c
(‖u‖Lp + ∥∥n∧ u|∂Ω∥∥Jpα )(‖v‖Lq + ∥∥n∧ v|∂Ω∥∥J qβ ). (4.2)

Similarly for the second term on the right hand side of (4.1) we have
(u−U)z ∈Lp(Rn,Λk), V ∈ Lq(Rn,Λn−k), d((u−U)z)= 0 onRn and
dV = 0 on Rn, so again by Proposition 4.1 we have(u − U)z ∧ V ∈
H 1(Rn,Λn) and
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∥∥(u−U)z∥∥Lp‖V ‖Lq

6 c
(‖u‖Lp + ∥∥n∧ u|∂Ω∥∥Jpα )∥∥n∧ v|∂Ω∥∥J qβ . (4.3)

Finally, sinceU = dF ∈ Lp(logL)α(Ω,Λk), V = dG ∈ Lq(logL)β

(Ω,Λn−k) and
∫
Ω U ∧ V = 0, we haveU ∧ V ∈ L logL(Ω,Λn) ⊂

h1
z(Ω,Λ

n) and

‖U ∧ V ‖h1
z
6 c‖U ∧ V ‖L logL(Ω)

6 c‖U‖Lp(logL)α(Ω,Λk)‖V ‖Lq(logL)β(Ω,Λn−k)

6 c‖F‖
Ẇ

1,p
α (Ω,Λk)

‖G‖
Ẇ

1,q
β (Ω,Λn−k)

6 c‖n∧ u‖Jpα (∂Ω,Λk+1)‖n∧ v‖J q
β
(∂Ω,Λn−k+1). (4.4)

Combining Eqs. (4.1)–(4.4) now gives the result.2
Note that Proposition 4.8 can be obtained from this theorem on

choosingα = 0, β = q.
The discussion of weak continuity and higher integrability of this

bilinear differential form is very similar to that of Jacobians. We will
skip the details and only state the results.

THEOREM 4.14. –Let 1< p <∞, α, β > 0, and α/p + β/q = 1.
Supposeuj ∈ Lp(Ω,Λk) is a bounded sequence,duj = 0 and uj → u

weakly inLp(Ω,Λk), vj ∈ Lq(Ω,Λn−k) is a bounded sequence,dvj = 0
and vj → v weakly inLq(Ω,Λk). If n ∧ uj |∂Ω ∈ J pα (∂Ω,Λk+1) and
n ∧ vj |∂Ω ∈ J qβ (∂Ω,Λn−k+1) are bounded sequences, then up to a
subsequence, ∫

Ω

buj ∧ vj→
∫
Ω

bu∧ v

for all b ∈ VMO(Ω,Λ0).

THEOREM 4.15. –Assume1< p <∞, α, β > 0, α/p + β/q = 1,
u ∈ Lp(Ω,Λk), v ∈ Lq(Ω,Λn−k), du = 0, dv = 0 on Ω and u ∧
v > 0. Suppose also thatn ∧ u|∂Ω ∈ J pα (∂Ω,Λk+1) and n ∧ v|∂Ω ∈
J
q
β (∂Ω,Λ

n−k+1). Thenu∧ v ∈ L logL(Ω,Λn) and

‖u∧ v‖L logL 6 c
(‖u‖Lp + ∥∥n∧ u|∂Ω∥∥Jpα )(‖v‖Lq + ∥∥n∧ v|∂Ω∥∥J qβ ).
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A. APPENDIX

This section is devoted to the proof of a generalised Hölder inequality,
of which Proposition 2.2 is a particular case, and to the proof of
Proposition 3.2. The proofs of Theorem A.1 and Lemma A.2 are an
amalgam of arguments found in [18], [15] and [16] and from private
correspondence between Stephen Montgomery-Smith, Richard O’Neil
and the authors.

THEOREM A.1. –SupposeA,B,C : [0,∞)→[0,∞) are continuous,
monotone increasing functions for which there exist positive constantsc

andd such that
(i) B−1(t)C−1(t)6 cA−1(t) for all t > 0, and

(ii) A( t
d
)6 1

2A(t) for all t > 0.
Suppose also thatΩ is an open subset ofRn, f ∈ LB(Ω) and g ∈
LC(Ω). Thenfg ∈LA(Ω) and

‖fg‖A 6 cd‖f ‖B‖g‖C.

As a preliminary to the proof of the theorem, we have the following
lemma:

LEMMA A.2. –LetA, B andC be as above. Then, for alls, t > 0,

A

(
st

c

)
6 B(s)+C(t).

Proof. –Let u= B(s) andv = C(t). Then

st = B−1(u)C−1(v)6B−1(u+ v)C−1(u+ v)6 cA−1(u+ v).

Dividing by c and applyingA to both sides gives the result.2
Proof of Theorem A.1. –Note that if f ∈ LA(Ω), the monotonicity

of A and an application of the monotone convergence theorem gives
us that

∫
Ω A(|f (x)|/‖f ‖A) dx 6 1. Hence, from the definition of the

Luxemburg norm

∫
Ω

A

(
f (x)g(x)

c‖f ‖B‖g‖C
)
dx 6

∫
Ω

B

(
f (x)

‖f ‖B
)
dx +

∫
Ω

C

(
g(x)

‖g‖C
)
dx 6 2.
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We therefore have ∫
Ω

A

(
f (x)g(x)

cd‖f ‖B‖g‖C
)
dx 6 1

and, again by the definition of the Luxemburg norm, we have the
result. 2

Proof of Proposition 2.2. –To prove the generalised Hölder inequality
of Proposition 2.2, we need only show that ifB(s) = sp logα(e + s),
then B−1(t) ≈ t1/p(log(e + t))−α/p. To see this, simply note that if
t = sp(log(e + s))α , there exist constants 0< c1(p,α)6 c2(p,α) <∞
such that for alls > 0,

c1(p,α) log(e+ t)6 log(e+ s)6 c2(p,α) log(e+ t).
Then t = sp(log(e + s))α ≈ sp(log(e + t))α and solving fors gives
s ≈ t1/p(log(e+ t))−α/p. This completes the proof.2

The proof of Proposition 3.2 relies on well-known facts about maximal
functions and Hardy space which we now collect.

LEMMA A.3. –Let f be supported in a ballB ⊂ Rn and letMf be
its Hardy–Littlewood maximal function. Thenf ∈L logL(B) if and only
if Mf ∈L1(B). Furthermore, there exist constantc1 andc2 independent
of f for which

c2‖Mf ‖L1(B) 6 ‖f ‖L logL(B) 6 c1‖Mf ‖L1(B).

For a proof of this result, the reader is referred to [22] or [23, Chapter 1,
Section 5.2, p. 23].

The spaceH 1(Rn) is defined in terms of the so-called “grand maximal
function”:

f ∗(x)= sup
t>0

sup
ϕ∈T

1

tn

∣∣∣∣ ∫
Rn
ϕ

(
x − y
t

)
f (y) dy

∣∣∣∣,
whereT = {ϕ ∈C∞(Rn);suppϕ ⊂ B(0,1), ‖∇ϕ‖∞ 6 1} andB(0,1)=
{y ∈ Rn: |y|6 1}. For further information, the reader is referred to [21].
A distribution f onRn lies inH 1(Rn) if f ∗ ∈ L1(Rn) and‖f ‖H1(Rn) =
‖f ∗‖L1(Rn). While it is always true thatf ∗ 6 cMf , we also haveMf 6
cf ∗ whenf > 0.
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Proof of Proposition 3.2. –Let K = 1
|Ω| |

∫
Ω f | andχB be the charac-

teristic function of a ballB containingΩ . Notice that by the normali-
sation on the test functions inT , ‖(χB)∗‖∞ is bounded, and hence that
‖(χB)∗‖L1(B) 6 c|B|. If we putF = f −K onΩ and extendF by zero
off Ω , thenf = F +K andF ∈H 1

z (Ω). Also,F +KχB > 0 on B, so

‖f ‖L logL(Ω)=‖F +K‖L logL(Ω)

6 c‖F +KχB‖L logL(B)

6 c‖M(F +KχB)‖L1(B) (by Lemma A.3)

6 c‖(F +KχB)∗‖L1(B) (since(F +KχB)|B > 0)

6 c‖F ∗‖L1(Rn) +K‖(χB)∗‖L1(B)

6 c‖F‖H1
z (Ω)
+ cK|B|

6 cΩ‖f ‖h1
z(Ω)

. 2
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