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ABSTRACT. — In this paper we prove some Liouville theorems for non-
negative viscosity supersolutions of a class of fully nonlinear uniformly
elliptic problems inR".
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RESUME. — Dans ce travail nous démontrons des théorémes de
Liouville pour des sur-solutions de viscosité positives de problémes

uniformement elliptique complétement non linéaires d&A's
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1. INTRODUCTION

The aim of this paper is to prove the Liouville property for nonnegative
viscosity supersolutions of a class of fully nonlinear uniformly elliptic
equations in the whole spa&. We consider problems of the form

u>0, M, (D%u)<0 inRY, (1.2

*This work was partially supported by the TMR Network “Viscosity Solutions and
Applications”.
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whereM;A, for fixed O0< A < A, is the Pucci extremal operator

M; 4 (D%u) = sup tr(AD%u)
AeA; 4

with
Aa={AcSy MEPP<AE-E < AE? VEeRY)

(Sy denotes the space of all real symmetsicx N matrices), or of the
form

u>=0, F(x,D%)+h(x)u”<0 inR", (1.2)

whereF is a uniformly elliptic operator with ellipticity constants<Ox <
A. Precisely, we assume that RY x Sy — R is a continuous function
satisfying, for some & A < A, the following conditions:

Ar(P) < F(x, M + P) — F(x, M) < Atr(P)
forall M, P € Sy with P > 0 (i.e. nonnegative definite) and
F(x,00=0 forallx eR".

For problem (1.1) we prove thatis necessarily a constant, provided that
N <1+ 4 (see Theorem 3.2).

On the other hand for problem (1.2), under some restrictions amd
p (see Theorem 4.1), the only solutioruis= 0.

Note that in the case. = A = 1 the operatorM; , reduces to
the Laplace operator so that the first result generalizes the well-known
Liouville property for nonnegative superharmonic functioniifi, with
N < 2.

A major step in the proof of Theorem 3.2 is to establish a convexity
result for viscosity solutions of (1.1) in the spirit of the Hadamard three
circles theorem (see Theorem 3.1).

The result of Theorem 3.2 is optimal: there are examples of nontrivial
solutions of (1.1) ifN > 1+ £ (see Remark 2).

Moreover, for a general fully nonlinear uniformly elliptic operator
F:RY x Sy — R, the problem

u>0, F(x,Dzu)<0 inRY, (1.3)

with N > 2, may have nonconstant viscosity solutions (see Remark 3).
Let us observe at this purpose that, in the case of equality, the Liouville
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property holds true: the constant functions are the only bounded either
from above or from below viscosity solutions of

F(x, Dzu) =0 inRY,

This result can be found in [8]; its proof relies on the Krylov—Safonov—
Harnack inequality (see also [15]).

The fully nonlinear problem (1.2) will be considered in our Section 4:
in Theorem 4.1 we obtain the Liouville property assuming thas a
nonnegative continuous function & satisfying the growth condition

h(x) = Hlx|" if [x] = ro (1.4)

for some constantg), H > 0 andy > —2 and provided that the exponent
p satisfies

AN-D+1+y

O<p< if y > -2, 1.5
PSTAN-D-1 1 (1.5)
and
O<p<1 ify=-2 (1.6)
Let us recall that the semilinear case
u>0, Au+h(x)u”<0 inR", (1.7)

has been already treated in the case 1 andy > —2 (see [2,3,6,9,10]):
it is known that if

Nty
N-2’
then zero is the only solution, as well aspif> (N + y)/(N — 2) then

there exists a nontrivial solution (see [6,10] for a counterexample). We
notice that, settingg = %(N — 1)+ 1, condition (1.5) reads as

l<p< (1.8)

gﬂ+y
:B —
it is then clear the analogy between (1.8) and (1.9) and their consistency,

beingB = N inthe cased = 1. Moreover we consider the casesQ® <
1land y=-2.

O<p ify >—2; (1.9)
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We also prove that the result is optimal: adapting the counterexample
produced in [10], we show the existence of nontrivial solutions of (1.2)
(for a particularF) in the cases

ZN-1+1+y
AN-D-1

wheny > —2,

p > 1when y=—-2andp > 0wheny < -2.

Let us finally remark that the Liouville property for semilinear elliptic
and degenerate elliptic equations, posed in the whole spédcer in
cones or halfspaces, has been the object of a keen interest in the literature
also for its connection with the problem of the a priori bounds and the
existence of positive solutions of superlinear boundary value problems
in bounded domains. The first results in this direction are contained in
[13,14] in which the semilinear uniformly elliptic equation®" and in
halfspaces is considered; under different assumptions, analogous results
for the equation have been subsequently obtained also in [1,22]. Again
the equation but in an elliptic degenerate case is considered in [18,24,25].
The inequality in the whole space and in cones has been treated in [2,3,6]
and in [4,5,10,12] for some elliptic degenerate cases. Anyway, we refer to
[9] for a general overview on this subject. The extension of these results
to the fully nonlinear case will be the subject of a forthcoming paper.

2. PRELIMINARIES

In this section we recall some basic notions and known results about
fully nonlinear elliptic equations. For further details we refer to, e.g., [8,
11].

Here and in the sequely denotes the set of all symmetri¢ x N
matrices, and the dimensiav will be always assumed to satisiy > 2.

A continuous functionF :RY x Sy — R will be referred to as a
uniformly elliptic operator with ellipticity constants @ 1 < A if, for all
M, P € Sy with P > 0 (i.e., nonnegative definite), and for alk RV, it
results

Ar(P) < F(x, M + P) — F(x, M) < Atr(P). (2.1)

In the rest of the paper we will always consider uniformly elliptic
operatorsF(x, M) such that

F(x,0)=0. (2.2)
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The simplest example of operatdt satisfying (2.1) (and (2.2)) is the
linear map

Lax,M)=LA(M)=1r(AM),

where A € Sy is a positive definite matrix the eigenvalues of which
belong to[A, A].
Let us indicate with4,_, the set of all such matrices, i.e.

Aia={AeSy: MEP < AE-E < A|E?, VEERYL

Since the family of uniformly elliptic operators having common elliptic-
ity constants is closed under the sup or the inf process, the definitions

M a(M) = inf Ly(M), MIA(M)=ASE|O Lx(M),
A A e A

produce other two significant examples of uniformly elliptic operators,
calledextremal operatorgsee [7,8]), related by the identity

M A(M) = =M ,(~M) VM € Sy. (2.3)

Slightly different extremal operators have been firstly introduced by
Pucci in [20], where the inf and sup are taken on the classe > 0,
defined as

B,={AeSy: Af-E>alt>, rA=1 VEeR")}
(see also [15]). Thus, thHeucci extremal operatorsre defined as

P;(M):Aienl]; La(M), Pr(M) = sup Ls(M). (2.4)

AeBy
Observing that ifA belongs toA, 4 then the normalized matri%gl—AA
belongs ta3;,4n) and, conversely, iA belongs ta3, thenA belongs to
Ay 1-(N-1)a, it results
M4 (M) < NAPY 4py (M), Py (M) < MF 1 (y_10(M)

and, analogously,

M (M) = NAP;/(AN)(M), Py (M) =M1 (nv_1ye(M).
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In the sequel we will always deal with the extremal operathS,A and
M;. 4, even if the previous inequalities show that every argument could
be carried out for the Pucci operatd?y and P, , with « appropriately
chosen.

It is not hard to check that the operatatd; , and M; , may be
equivalently defined respectively as

M (M) =2 e+ A e, (2.5)
;>0 e; <0
and
ML) =AD e +1> e, (2.6)
e;>0 e; <0

wheree; (i =1, ..., N) denote the eigenvalues of the mathix
The adjective “extremal” is also due to the fact that for every operator
F satisfying (2.1) and (2.2) with ellipticity constanitsand A, it results:

M A(M) < F(x, M) < M (M) (2.7)

forall x e RN andM € Sy.
Next, let us recall the notion of viscosity sub and supersolutions of the
equation
F(x,u,D?) =0 ing (2.8)

where F: 2 x R x Sy — R is a continuous map withF (x, ¢, M)
satisfying (2.1) for every fixed € R and for allx € £, and2 € RV
is an open domain (for more details see, e.g., [11]).

Definition 2.1. — A continuous function:: 2 — R is a viscosity
supersolution(subsolutiop of (2.8) if, for all ¢ € C2(2) andxp € 2
such thats — ¢ has a local minimum (maximum) ag, it results

F (x0, u(x0), D*¢ (x0)) < ()0,
If u is a viscosity supersolution (subsolution) we also say#hadrifies
F(x,u, Dzu) < (=)0

in the viscosity sense.
Finally u is a viscosity solution of (2.8) if it simultaneously is a
viscosity sub and supersolution.
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Let us observe that inequalities (2.7) still hold in the viscosity sense,
that is if a functionu is a viscosity solution of (x, D?u) < (=)0, with F
as in (2.7), thenM;_ ,(D?u) < 0 (respectively M ,(D?u) > 0) in the
viscosity sense.

In the following sections we will make use of the so called Comparison
Principle and Strong Maximum Principle for viscosity solutions of
the extremal operatordA; , and M; ,, the proofs of which can be
respectively found in [16] and [8].

THEOREM 2.1 (Comparison Principle). et 2 ¢ RY be a bounded
open set and lef € C(£2); if uy andu, are respectively a super- and a
subsolution either of\1; ,(D?u) = f(x) or of M ,(D?u) = f(x) in
2 and ifu; > uy, 0N 382, thenuy > u, in 2.

THEOREM 2.2 (Strong Maximum Principle). et 2 c RY be a
bounded open set and letbe a viscosity supersolutiofsubsolutiof
either of M ,(D?u) = 0 or of M ,(D%) =0in 2. If u attains its
minimum(maximumat an interior point ofs2, thenu is constant.

3. HADAMARD TYPE THEOREMS AND THE LIOUVILLE
PROPERTY FOR EXTREMAL OPERATORS

In this section we extend to viscosity sub- and supersolutions of the
nonlinear operatordA* and M~ the classical Hadamard'’s three circles
and three spheres theorems about sub- and superharmonic functions.

We recall (for more details see [17,21]) thatufis a continuous
superharmonic function in a plane domain containing the closed ring
{x € RZ rp, < |x| < r1}, with r; > r, > 0, then the Hadamard’s three
circles theorem states that the functidr) = min;,—, u(x) is a concave
function of logr, that is, forr, <r < rq, it satisfies

m(r2) log(r1/r) + m(ry)log(r/ro)
log(r1/r2) '

m(r) > (3.1)

If u is a superharmonic function in a domain BfY, with N > 3,

containing the closed rindx € RY: r < |x| < r1}, then, by the
Hadamard’s three spheres theoredr) is a concave function of>~",

that is, forr, < r < rq, it satisfies

() (KN — ) F i) N — 2N

rzz_N — rlz_N

m(r)

WV

(3.2)
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Of course, there are the “reversed” results for subharmonic functions:
if u is subharmonic in a plane domain, then the functir) =
max, = u(x) is a convex function of log, that is, forr, <r <rq, it
satisfies

M(ra)1g(r1/r) + M(r1) 1g(r/r2)
lg(r1/r2)

as well as ifz is subharmonic in a domain &, with N > 3, thenM(r)
is a convex function of2=", that is, forr, < r < ry it satisfies

=
N

(r) (3.3)

o M) =N £ M) TN -2
M(@r) < 11‘22_N 7 2 . (3.4)

From inequality (3.1) (respectively, (3.3)), the classical Liouville’s
theorem easily follows, stating the nonexistence of nonconstant bounded
from below (above) superharmonic (subharmonic) functiori®?n {0}.

On the contrary, it is well known that inequality (3.2) does not lead to a
Liouville type theorem; indeed, for example the radial function

{ NN +2) = 2N2 = B)x 2+ NN = 2)1xY, i v <1,
ux)=< 8

1/1xV 2, if x| > 1,

is a nonconstant bounded superharmonic function in ak¥bf N > 3.
These different results are evidently due to the different behaviour of the
fundamental solution of the Laplace equatiorRifi, which, as it is well
known, is unbounded ds| — +oc if and only if N = 2.

In order to generalize these results to the nonlinear case, first of all we
have to determine the corresponding “fundamental solutions”. We need
the following simple technical Lemma.

LEMMA 3.1.— Let ¢: (0, +0c0) — R be a C? function. For every
x € RV \ {0} the eigenvalues of the Hessian matrix of the radial function
@ (x) = ¢(|x]) are ¢”(Jx]), which is simple, an@’(|x|)/|x|, which has
multiplicity (N — 1).

Proof. —A direct computation shows that:

¢'(1x) ¢"(Ix])  ¢'(Ix])
D*®(x) = X Iy + UREANNE

xXQx,
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wherely is the identity matrix and ® x is the matrix whose entries are
x;x;. Hence we have

D2¢()C)i =(p”(|_x|)i and DZ¢(}C)§ — (0/(|X|)
| x| |x| x|

§

for every vectok suchthat - x=0. O
Using this lemma one can find, by a similar argument as in [20], radial
functions® (x) = ¢(|x|) which are classical solutions of the equation

M 4(D*®) =0 inRY\ {0}, (3.5)

and are either concave and increasing or convex and decreasing.

By Lemma 3.1 and the identity (2.5), the concave and increasing
functions¢ have to be looked for among the solutions of the ordinary
differential equation

@' (r)
r

AN —1) + A¢"(r) =0 in (0, +00),

as well as the convex and decreasing solutipmsust satisfy

@' (r)

r

rp"(r)+ AN — 1)

=0 in(0,+o00).

In both cases the solutions depend on the values of the dimensin
and of the ellipticity constants and A. More precisely, in the first case,
setting
A
a=Z(N—1)+1 (3.6)
and observing that > 1, we obtain the solutions

Clrz_"‘ + C»y, if o <2,
p1(r) =4 Cilogr + C,, ifa=2, (3.7)
_Cer—a +Cy, ifa>2,

with constants”; > 0 andC, € R, whereas in the second case, setting

A

p=T(N-D+1 (3.8)
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and observing that > 2 (sinceN > 2), the solutions are given by

—C1|OQV+C2, |f,3=2,

ve(r) = { Clrz_ﬁ + C», if B> 2.

(3.9)

Therefore, the radial functions

D1(x) = ga(lx]) and Po(x) = pa(|x]),

with ¢; and ¢, respectively given by (3.7) and (3.9), are classical
solutions (in particular, viscosity solutions) of Eq. (3.5).

In the following theorems they will play the same role played in the
Hadamard and Liouville Theorems by the fundamental solution of the
Laplace equation, and it is in this respect that they will be considered
as the “fundamental solutions” of Eq. (3.5). Let us point out, moreover,
that in the particular case in which= A, Eq. (3.5) reduces to Laplace
equation; in this case, it resulis= 8 = N and the functiond, = &,
coincides with the classical fundamental solution.

Remembering the relationship (2.3) betwe#fi’ , and M; ,, we
have also found that the functions

U1(x) = —P2(x) and ¥r(x) = —P1(x)
are the “fundamental solutions” of the equation
M (D*) =0 inR"\ {0}, (3.10)

with @1 (x) = ¥(]x]) = —@2(]x]) such thaty(r) is a concave and
increasing function 0, co), and¥,(x) = ¥»(|x|) = —¢1(]x]) such that
Yo(r) is a convex and decreasing function(@ co).

THEOREM 3.1 (Nonlinear Hadamard Theorems).l-et D be a do-
main of RV containing the closed balB,, centered at the origin and
with radiusry > 0. Then

(i) if u e C(D) is a viscosity solution of

M;A(Dzu) <0,

then the function

m(r) = er|1i<n u(x)

X|Ir
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is, respectively, a concave functionlo§jr if « = 2 and of >~
if a £ 2, with « given by(3.6). More precisely, for every fixed
ro < rpand for allrs < r <y, it results

m(rz)10g(r1/r) + m(ry)log(r/r2)

, if o =2,
() > log(r1/r2)
| meET ) A m e )
(r3 = — 2% ’ .
(3.11)
if u € C(D) is a viscosity solution of

M; 4 (D2“> <0,

thenm(r) is a concave function dbgr if g =2, and ofr?~#
if B> 2, with 8 given by(3.8). More precisely, for every fixed
ro < rpand for allrs < r < ryq, it results

m(r2) log(r1/r) +m(ry) log(r/r)

: if p=2,

m(r) = |Og(2r_l/r2) 2—
Dm0 = D meoeg Tt
(rzzfﬁ — rlzfﬁ) ’ .
(3.12)

Before giving the proof of the theorem, let us observe that, by the

relationship (2.3) betweeM{A and M;_,, statement (i) is equivalent
to the following one:

() if u e C(D) is a viscosity solution of

M(r) <

M;a (D%u) >0,

then the function

M(r)= mgi(u (x)

satisfies, for alk, <r <rq,

M (r2)log(r1/r) + M(r1) log(r/r2)
log(r1/r2)
M) (r*™ =17 ) + Mr) (5™ = r*™)

(5™ =17

, if o =2,

, Ifas#2
(3.13)
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Analogously, an equivalent form of (ii) is
(i) if u e C(D) is a viscosity solution of

M;A(Dzu) >0,
thenM (r) satisfies, for alk> <r < rq,

M (rz)109(r1/r) + M(r1) log(r/rp)

, if =2,
M < log(r1/r2)
O SN Mo 2P =2y 4 M) (2 = 125 £ 8> 2
GRS ’ |
(3.14)

Proof. —By the assumptions, the respectively increasing and decreas-
ing functionsM (r) andm (r) are well defined if0, r1].

Let us consider the case (i), that is,det C (D) be a viscosity solution
of Mj ,(D?) <O0.

Fixedr; > rp, > 0, lety (r) = —1(r), With @1 (r) defined by (3.7), with
constantsC; > 0 andC» € R chosen in such a way that(r,) = m(ry)
andyr (rp) = m(r,). This yields:

m(r)l0g(r1/r) +m(r1)10g(r/ra)
log(r1/r2)
m(r) (r* —rf" ) +m(r)(ry* = r>*)

(3 —=ri™®)

, if o =2,
Y(r) =

, ifa#2.

We know that the function (x) = ¥ (|x|) is a viscosity solution of
equation (3.10). Applying the Comparison Principle (Theorem 2.1) to
the functionsu(x) and¥ (x) in the ring{r, < |x| < r1} C D, we deduce
that

ux) =¥ (x) inf{ro< x| <r).

Hencem(r) = ¢ (r) for all r in [r,, r1] and the claim is proved.

The proof of (ii) is completely analogous to that of (i), with the
obvious difference that now has to be compared with the function
@5(x) = @o(|x|), whereg, is given by (3.9). O

Looking at the previous result, as well as at the just constructed
“fundamental solutions” of Egs. (3.5) and (3.10), and having in mind
the linear case, we expect a Liouville type theorem in two cases:
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e the case of bounded from below (above) viscosity supersolutions
(subsolutions) of (3.10) ((3.5)) in all &", with the paramete,
defined by (3.6), satisfying < 2,

e the case of bounded from below (above) viscosity supersolutions
(subsolutions) of (3.5) ((3.10)) in all &", with the parameteg,
defined by (3.8), satisfying = 2.

Let us observe that the cage= 2 only occurs when. = A andN = 2,
i.e., the case of the Laplace operator in the plane.

Since viscosity subsolutions (supersolutions) of the Laplace equation
are precisely the same as continuous subharmonic (superharmonic)
functions (as it can be deduced, for example, from Proposition 3.2.10
of [17]), this case reduces to the well-known Liouville theorem for
subharmonic (superharmonic) functionsRA.

Therefore, the first case is the only one which has to be considered.

THEOREM 3.2. — Letu € C(R") be a viscosity solution either of
M, (D?) <0 inRY, (3.15)
or of

M; 4(D?u) >0 inR". (3.16)

If u is, respectively, bounded either from below or from above, and if the
parameterx, defined by(3.6), satisfiesx < 2 (i.e.,N < % + 1), thenu is
constant.

Proof. —Consider the casé ;" ,(D?) < 0, u bounded from below.
By the previous theorem (case (i))satisfies (3.11) for alt in [r, r1],
for every fixedr; > r, > 0.

Beingm(r) a bounded function since is bounded from below, and
beinga < 2, passing to the limit ag, — 400 in (3.11) leads to

m(r)>=m(r;) Vr>=rp,>0.

Sincem (r) is obviously a decreasing function, we deduce thét) =
const= m(0) = u(0). Therefore,u attains its minimum at an interior
point and, by the Strong Maximum Principle (Theorem 2.2),s
constant. O
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Remark 1. — The assumption on the boundednesg iof the previous
Theorem can be weakened: indeed, in the proof we only needed that

lim supmz(r), if o <2,
0= r—s4o00 FT¢
lim supm(r) if o =2.

r—-+o0o |Ogr ’

Thus the Liouville Theorem for inequality (3.15) can be reformulated
by saying that, for every nonconstant viscosity solution of (3.15), the
function m(r) decreases as— +oo at least like—r?* if « < 2 and

like —logr if o =2.

The result is optimal; indeed, the function

1
gle@= x|’ =24 - a?)x|?
—a(2+ a)], ifo<2 |y <1,
— 1. 4 2 -
Ug(x) = Z[|x| —4x|?+3], fa=2
—|x)>, if o <2,
if [x]>1,
—log|x]|, if @« =2,

satisfies (3.15).

Remark 2. — The previous result does not holdvif> 2, i.e., if N >
% + 1. Indeed, in this case, the function

u(x) = { %[“(0{ —x* = 22— DHxP+ala+2)], if x| <1,
1/ ke, if x| > 1,

provides an example of a non constant bounded classical solution of
(3.15), —u obviously being a non constant bounded classical solution
of (3.16).

Remark 3. — Referring to the discussion before Theorem 3.2, we
observe that a Liouville type theorem does not hold in fact neither for
viscosity solutions of

M; 4(D?u) <0 inRY (3.17)
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nor, equivalently, for viscosity solutions of
M 4 (D%u) >0 inRY, (3.18)
except that foB = 2, 8 being defined in (3.8). Indeed, #f > 2, then the
function
1 4 2 2 i
é[ﬂ(ﬁ = 2Ix* =28 = DIx|*+ BB +2)], if x| <1,

1/]x1A-2, if x| > 1,

(3.19)
works as a counterexample for (3.17), as wellasdoes for (3.18).

u(x) =

Remark4. — If (3.15) or (3.16) are required to hold as equalities, then
the Liouville theorem can be obtained without any assumption on the
parameterx. More in general, for bounded either from above or from
below viscosity solutions of a uniformly elliptic equation such as

F(x,D?u)=0 inR",

with F satisfying (2.1) and (2.2), the Liouville property may be derived
in a standard way as a consequence of the strong Harnack inequality, see
[8].

We have seen that in the cases3 > 2 a Liouville type result does
not hold respectively for nonnegative viscosity solutiansf (3.15) and
(3.17). Nevertheless we can still deduce in such cases some important
properties of the functiom (r) = inf, <, u(x). Since we are going to use
them in the next section, we state the result separately.

COROLLARY 3.1. - Letu € C(R") be a viscosity solution of
u>0, M ,(D%)<0 inRY
(respectively of
u >0, MIA(DZM) <0 inRY);
then, sefp = 24(N — 1) + 1 (@ = £ (N — 1) + 1), the function
r € [0, +00) > m(r)rf=2 (r €0, +00) > m(r)r"‘_z)

is increasing.



234 A. CUTRI, F. LEONI/ Ann. Inst. Henri Poincaré 17 (2000) 219-245

Proof. —We can consider only the casd;,A(Dzu) < 0, the other one
being absolutely analogous.

From inequality (3.12), letting; — +o0o0 and beingm(ry) > O, it
follows

m(rz), if =2,
m@r) = p-2 Vr>ro>0. O
" {% itf>2, ‘

,

Remark5. — If u € C(R") is a viscosity solution of
u>0, M; ,(Du)<0 inRY

the same holds true for the radial functiar|x|) =infp_, u.

Indeed, since the operata¥!; , is rotations invarianty(Px) is again
a supersolution for every matriR satisfying PT = P~ (PT and P~
denote respectively the transposed and the inverse matriaeys dhen
the claim follows observing that the minimum of supersolutions is again
a supersolution and that, in view of the Strong Maximum Principle
(Theorem 2.2)m can be written as

m(|x|) = gr;inu = mPinu(Pxo) for somexg with |xg| = |x]|.
x|

An analogous result holds true for subsolutions.
4. LIOUVILLE THEOREM FOR FULLY NONLINEAR
EQUATIONS HAVING ZERO ORDER TERMS

In this section we are concerned with the Liouville property for
viscosity supersolutions of the uniformly elliptic equation

u>0, F(x,D%)+h(x)u?=0 inRY, (4.1)
with N > 2 as usual, whergr' satisfies (2.1) and (2.2}(x) is a
nonnegative continuous function B" and p is a positive exponent.
First of all, we observe that if € C(R") is a viscosity supersolution
of (4.1), then, by (2.7)y satisfies

u>0, M; ,(D%)+h(x)u” <0 inRY, (4.2)
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and thereforek being nonnegative, it results
u>0, M ,(D%)<0 inRY. (4.3)

As it was pointed out in the previous section, in the cAdse 2, with 8
defined in (3.8), conditions (4.3) suffice to conclude tha constant and
then, by (4.2), thak is identically equal to zero.

Thus, in the sequel we will always consider the nontrivial gase2,
in which the zero order term of inequality (4.2) becomes essential: we
will identify a range of values for the exponeptwhich constrains the
solutionu to vanish identically.

The proof we are going to present essentially makes use of the Compar-
ison Principle and of the Strong Maximum Principle (respectively, Theo-
rems 2.1 and 2.2).

THEOREM 4.1. — Assume thaB = 4(N — 1) + 1 > 2 and letu €
C(R") be a viscosity solution of

u>0, Flx, Dzu) +h(x)u? <0 inRY, (4.4)

whereh € C(R") is a nonnegative function such that there extst
ro > 0andy > —2 satisfying

h(x) > H|x|¥ for|x| > ro. (4.5)

If y=—2andO0O<p<lorify>-2and0<p<(B+y)/(B—2),
then

u=0.

Proof. —Letu be as in the statement; by the Strong Maximum Principle
if there exists a point where is zero theru vanishes identically. Thus
we will assume, by contradiction, that> 0 in RV,

For everyr > 0, let us setn(r) = miny <, u(x) as in Theorem 3.1;
observe that, in our assumptiom, is strictly positive and, again by
Theorem 2.2, itis a strictly decreasing function-of

Moreover, since in particular satisfies (4.3), by Corollary 3.1 we have

m(R)RP~2

<
m(r) < s

VR>r>0. (4.6)
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Let us now consider the radial function

[(lx| = r)+]3}

;<x)=m(r>{1— g

whereR > r > rg are arbitrarily fixed. Since(x) <0< u(x) for |x| > R
and¢ (x) =m(r) < u(x) for |x| < r, and being; (x) = u(x) for at least
one pointx with |x| = r, the minimum ofu — ¢ in R" is nonpositive and
achieved at a certain poinf, such that < |xi| < R.

Applying Definition 2.1 with¢ as test function and remembering (2.7),
from (4.4) it results

M 4 (D5 (xR)) + h () (u(xp))” <O,

On the other hand, by identity (2.5) and by Lemma 3.1, we have, for all
x e RV \ {0},

3Am(r)

~ (x| = r)*
(R—1)?

3 ](|x| =",

and therefore, using also assumption (4.5) and the|f4¢t> r > ro, we
get

M; (D% () = [2+ (N -1

3AH Ym(r) (Jx% | — r)T
(R—r)3 |x&|
AR MRS 4.7)

If |x%| =r, we immediately reach the contradictiax}) = O; therefore
we can assume < |xk| < R and, by (4.7), it results

(u(xp) < [2+ (N -1

AN 4+ 1) [xk|77m(r)
H (R—r)2 "~

(u(xp)" <
Beingu(x%) > m(R) andr < |x}| < R, we then have

RV’/pm(r)l/p

m(R) < C—rW/P(R ~ 2

(4.8)

forall R > r > rg, with C = [3A(N + 1)/ H]Y?.
Combining (4.8) with (4.6) we get
RO +B=2/pyy (R)Y P

<
m(R) S C T 5=27n (R — 2o

VR >r >rg,
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from which, choosing = R/2, it follows

m(R)Y?

mR) < Coo

VR > 2ro, (4.9)

where the samé€ denotes from now on different positive constants. We
have now to distinguish several cases.
Assume first thay = —2 and O< p < 1; from (4.9) we deduce that

m(R)>C VR > 2r. (4.10)
It then follows that the infimum
u= o) = im_ ()

is strictly positive. Let us set(x) = u(x) — u; thus,v € C(R") is still

a viscosity solution of (4.4), as it is immediate to verify. Applying the
above arguments to, we obtain that the functiom, (r) = min <, v(x)
satisfies

my,(R)>C VYR > 2rg,
accordingly to (4.10). But this evidentely contradicts the fact that

Jim m, (R) = m(R) — ) =0.

lim (
R—+o00

Assume now thay > —2 and O< p < (B +y)/(B — 2).
If 0 < p <1, from (4.9) we immediately get the contradiction

RYT2/P < Cm(RYP/P < Cm(Q)EP/P VR > 2r.

If this is not the case, thep > 1 and from (4.9) we obtain

mR) S zoion  VR> 20,
which in turn implies
p-2 ¢
R*7Zm(R) < —5—— YR > 2n,. (4.11)
R[)717ﬂ+2

If p<@B+y)/(B—-2),then(y+2)/(p—1) —+2>0 and the
fact that the positive and increasing functi®{~2m(R) tends to 0 as
R — +o0 gives the desired contradiction.
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Thus, it remains to consider only the limit case= (8 + v) /(B — 2).

In such a case, from (4.11) we deduce that the funcién?m(R) is
bounded from above; we will show that this information, combined with
(4.4), again leads to a contradiction. Fix®¢ > rq, y1 > 0 andy, € R,
for x such thatx| > R4, let us define the radial function

log(L + [x)
I'x)= lW y2.
The choiceR; > exp((28 — 3)/(B — 2)(8 — 1)) — 1 makesI” a convex
decreasing function ofx|; in such a case, using Lemma 3.1 and
definitions (2.5) and (3.8), we can easily obtain:

o . p—3 1
M alDTT @) = =M G e T @ )P
5 _MnB-2

Ix[f 7
for all x such thafx| > R;.
We now arbitrarily choose a radiuB, > R; and fix the constants
y1 > 0 andy, € R in such a way that
I'(Ry) <m(Ry) and I'(Rp) =m(Ry);

this means that we have to pigk in the interval

log(1+ R log(1+ R
0< 1< (m(R) —m(ky) /(2L L 9L,
1 2

which is possible since

R >e _#$-3 1>e 1t 1
12 Xp((ﬁ—Z)(ﬁ—l))_ g Xp(ﬁ 2)_ !

and then define
log(1+ R
y2=m(Rz) — Vl%-
R2

We then have

I'<uon{jx| = Ri} U {|x| = Rz} (4.12)
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and, moreover, by the previous calculation,

_ni(B-2

- 2
M5 (DT (%)) > BT

in{Ry < |x| < Ry).  (4.13)

On the other hand, by (4.6), for allsuch thaix| > R,, u satisfies

m(Ry) Ry 2

> >
u(x) = m(|x|) = |X|ﬁ_2 s

(4.14)

and then, from (4.4) witp = (B + y) /(B — 2), and from (2.7) and (4.5),
if R1> rg it follows that

_ H(m(Ry)RY ™) F+)/6-2

<] in{Ry < |x| < Ry}

(4.15)
in the viscosity sense. From (4.13) and (4.15), choosing, if necessary, a
smallery; > 0, we deduce

M;,A (Dzu) <

c :
M; 4 (D?u(x)) < P <M; 4 (D’I(x)) in{Ry <lx| < Ry},

for some constanf’ > 0. This, combined with (4.12), allows us to apply
Theorem 2.1 and conclude

I'<u in{Ry < |x| <Rz}

for any R, > R;. Letting R, — +o00, being y» — 0, we obtain the
existence of a positive constagit such that

_ log(1+1xD

u(x) =y P2 (4.16)

for all |x| > R1. This implies that
R*7?m(R) > y1log(1+ R) VR =Ry,

which contradicts the obtained upper bound on the funcién?m (R).
O

Remark 6. — The previous theorem extends to the nonlinear operators
the analogous result already known for the Laplacian (see [10,12]).
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Moreover, it also includes the case<Op < 1 and the casg = —2 for
the Laplace operator, which was not covered by [10,12].

Remark 7. — Theorem 4.1 provides the optimal result.
Indeed, the problem

u>=0, M;’A(Dzu) +(1+ |x|2)y/2u” <0 inRY

admits a nontrivial classical (and therefore viscosity) solution in the cases
p>0ify<=-2,p>lify=-2and p> (B+y)/(B—2) if y > 2.
To see this, let us consider functiomgof the form

us(x) = x eRY,

)
L+ |x[2)?

with 8§, Cs > 0. A direct computation shows that, for all such that
x| < 1/(28 + 1), us is a concave and decreasing function|.of and,
taking into account thatt (N — 1) = A(8 — 1), it results

(N-1 25+ D|x|>—1
A+ x4 [xD)P+2
2AN —1)Cs8  20(B — 1)Cs6
- (1+ |x[2)5+L - (1+ |x[2)3+L

M; 4 (D?us(x)) = —2AC;8

~X

If |x|2>1/(28 + 1), thenu; is a decreasing and convex function|ef
and satisfies

M 5 (D?us(x))
g—1 25+ 1)|x]?—1
(1+ |x]2)+1 o (1+ [x]2)5+2
(B—26+1)Ix|>+ B < _DCH(B—-2(6+1)
A+ |xP+2 (1+ |x[2)?+

= —2)Cs6

= —2A1Cs8
Therefore, in both cases, we have

M54 (D2us () + (4 1x) 7 [u5 ()17
__2.C8(B -2 +1) c?
T @R @
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It is easily seen that the right hand side is nonpositive if the constants
andC; satisfy

§+1<ps—1%,

Cr < 208(B — 2(5 + 1))
and we can find constands C; > 0 simultaneously satisfying the above
conditions exactly in the casges< —2 andp >0,y =—-2andp > 1,
y>—2andp > (B+y)/(B—2).

Remark8. — If in Theorem 4.1 we add assumptions on the oper&tor
then we can obtain an accordingly extended range of admissible values
for the exponenp which guarantees the Liouville property for problem
(4.4).

The most favourable case occurs when= M;A; indeed, as a first
fact, one observes thatife C(R") is a viscosity solution of

{2(8+1)<,3,

u>=0, MIA(Dzu) +h(x)u? <0 inRY,
thenu satisfies
u>0, AAu+hx)u? <0 inRY

in the viscosity sense and therefore= 0 provided that O< p <
(N+y)/((N=2) if y>—-2and that 0< p <1 if y = —2. More
than that, by Corollary 3.1 we know that the functiere [0, +o0)
m(r)r*=2 is increasing, withx = %(N — 1) + 1, and, applying exactly
the same arguments of the proof of Theorem 4.1, we conclude thdl
under the assumption

O<p<1 if y=-2,
O<p<a+y)/(@—2) ify>-2

Remark9. — It is worth observing that a Liouville type result for
problem (4.4) could be obtained following an alternative procedure.
Indeed, it is known (see [8]) that if € C(Byg) is a viscosity solution
of

u>0, M; ,(D%)<0 inBgg,

where By is a ball of radius R for a given R > 0, then there exist
positive constantgy, andC, depending only oV and on the ellipticity
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constantsi and A, such thatu satisfies the following so called weak
Harnack inequality:

N

C
meagBg,2 N{u > 1}) < o

(rr];inu)‘fO Vit > 0, 4.17)
R
with {u > 1} = {x € Bog: u(x) >t} and meagk) equals to the Lebesgue
measure of the measurable gett RV.

If 8 > 2, testing the previous inequality on the particular solution
particular solution: defined by (3.19), produces the estimate

N

et (4.18)

qgo <

already found in [23]. In the particular case in whigh= N, that is
when A = A and the extremal operatavt; , coincides with the Laplace
operator (up to the positive factay, inequality (4.18) reduces to equality.
Indeed, superharmonic functions satisfy the weak Harnack inequality
(4.17) with the exponengo = N/(N — 2). A proof of this fact can be
found in [19].

We conjecture that equality holds in (4.18) also in the general case
B> N.

Let us observe at this purpose that for the supersolutign|), (4.17)
holds true with the exponenjp = N/(8 — 2). Indeed, Corollary 3.1
yields:

meagBg,2 N {m(|x|) > 1})

< meas(B n {’"<R>R’“ t}>
NS —_— >
R/2 |x|/3—2
C RV N
/(B=2)
< N2 (m(R)) Vi > 0. (4.19)
Let nowu € C(RV) be a viscosity solution of (4.4) witlh > 1 and,
arguing by contradiction, assume that- 0 in R". Sinceu satisfies
(4.17) and (4.11), for large enough we obtain

90(2+y)
p—1

RN

meagBg, 2, N{u>1}) <C o
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Let R — +o0 and observe that

{u>t}= U (Brj2 N {u > t})

R>0

and that{Bg,» N {u > t}} is an increasing family of open sets. jf <
1+ (go(2+ y)/N) then we find

meas{u >t}) =0 Vr>0,

which impliesu = 0.
If p=1+ (go(2+ y)/N), from the above we obtain

C
measg{u > t}) < v vVt > 0,

which means thau belongs to the Marcinkiewicz spacé/ % (R"V).
This implies, by (4.14), that the function(Rl)Rlﬁ_z/m|/~"*2 belongs to
M (RN \ Bg,), for every fixedR; > 0.

In particular, for everyR > R, it follows that

-2 -2
nma{{nmRﬂRl :>nKRﬂR1 }\Bm)

|x|ﬁ—2 Rﬂ—2
Rﬂ—2 q0
:CmN—Rﬁgc(———73>
m(R1) Ry

which implies

> N
qgo = ,3 — 2
Remembering (4.18), o < N/(B — 2), then we immediately have a

contradiction and we conclude that= 0. Otherwisego = N/(8 — 2)
and thus

q2+y) B+y

N  Bg-2
In this case, reasoning as in the proof of Theorem 4.1, we obtain
inequality (4.16). Since the functiof (log(1 + |x|)/|x|#~2) lies belowu

in RV \ Bg, but it does not belong to the Marcinkievicz spadﬁ RN\
Bg,), We again obtain a contradiction.

p=1+
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Thus, by means of the weak Harnack inequality applied t@e obtain
the Liouville property for problem (4.4) under the assumption

. (2+J/)610.

0 <1
<p N

In the semilinear case, being = N/(N — 2), the result is optimal; in
the fully nonlinear case, we have the same conclusion if and only if

N
qo = B2
On the other hand, reasoning ari|x|) and applying (4.19) instead of
(4.17) we may obtain the same conclusions as those of Theorem 4.1.
Indeeed, from (4.19) and (4.11) we get that the functernvanishes
identically in the casep < (8 +y)/(8 —2) whereas it belongs to

the Marcinkievicz spaceM%(RN) if p=(@@B+y)/(B—2. In the

first case we immediately obtain the contradiction, in the last case
the contradiction follows from the fact that lies aQove the function
y1(log(1 + |x]))/(|x|#~2) which does not belong t& 72 (R" \ Bg,).
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