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ABSTRACT. – In this paper we prove some Liouville theorems for non-
negative viscosity supersolutions of a class of fully nonlinear uniformly
elliptic problems inRN .

RÉSUMÉ. – Dans ce travail nous démontrons des théorèmes de
Liouville pour des sur-solutions de viscosité positives de problèmes
uniformement elliptique complètement non linéaires dansRN .

1. INTRODUCTION

The aim of this paper is to prove the Liouville property for nonnegative
viscosity supersolutions of a class of fully nonlinear uniformly elliptic
equations in the whole spaceRN . We consider problems of the form

u> 0, M+λ,Λ
(
D2u

)
6 0 inRN, (1.1)
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whereM+λ,Λ, for fixed 0< λ6Λ, is the Pucci extremal operator

M+λ,Λ
(
D2u

)= sup
A∈Aλ,Λ

tr
(
AD2u

)
with

Aλ,Λ = {A ∈ SN :λ|ξ |26Aξ · ξ 6Λ|ξ |2, ∀ξ ∈RN}
(SN denotes the space of all real symmetricN ×N matrices), or of the
form

u> 0, F
(
x,D2u

)+ h(x)up 6 0 inRN, (1.2)

whereF is a uniformly elliptic operator with ellipticity constants 0< λ6
Λ. Precisely, we assume thatF :RN × SN→ R is a continuous function
satisfying, for some 0< λ6Λ, the following conditions:

λ tr(P )6 F(x,M + P)− F(x,M)6Λ tr(P )

for all M,P ∈ SN with P > 0 (i.e. nonnegative definite) and

F(x,0)≡ 0 for all x ∈RN.
For problem (1.1) we prove thatu is necessarily a constant, provided that
N 6 1+ Λ

λ
(see Theorem 3.2).

On the other hand for problem (1.2), under some restrictions onh and
p (see Theorem 4.1), the only solution isu≡ 0.

Note that in the caseλ = Λ = 1 the operatorM+λ,Λ reduces to
the Laplace operator so that the first result generalizes the well-known
Liouville property for nonnegative superharmonic function inRN , with
N 6 2.

A major step in the proof of Theorem 3.2 is to establish a convexity
result for viscosity solutions of (1.1) in the spirit of the Hadamard three
circles theorem (see Theorem 3.1).

The result of Theorem 3.2 is optimal: there are examples of nontrivial
solutions of (1.1) ifN > 1+ Λ

λ
(see Remark 2).

Moreover, for a general fully nonlinear uniformly elliptic operator
F :RN × SN→R, the problem

u> 0, F
(
x,D2u

)
6 0 inRN, (1.3)

with N > 2, may have nonconstant viscosity solutions (see Remark 3).
Let us observe at this purpose that, in the case of equality, the Liouville
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property holds true: the constant functions are the only bounded either
from above or from below viscosity solutions of

F
(
x,D2u

)= 0 inRN.

This result can be found in [8]; its proof relies on the Krylov–Safonov–
Harnack inequality (see also [15]).

The fully nonlinear problem (1.2) will be considered in our Section 4:
in Theorem 4.1 we obtain the Liouville property assuming thath is a
nonnegative continuous function onRN satisfying the growth condition

h(x)>H |x|γ if |x|> r0 (1.4)

for some constantsr0,H > 0 andγ >−2 and provided that the exponent
p satisfies

0< p 6
Λ
λ
(N − 1)+ 1+ γ
Λ
λ
(N − 1)− 1

if γ >−2, (1.5)

and

0<p < 1 if γ =−2. (1.6)

Let us recall that the semilinear case

u> 0, 1u+ h(x)up 6 0 inRN, (1.7)

has been already treated in the casep > 1 andγ >−2 (see [2,3,6,9,10]):
it is known that if

1< p 6 N + γ
N − 2

, (1.8)

then zero is the only solution, as well as ifp > (N + γ )/(N − 2) then
there exists a nontrivial solution (see [6,10] for a counterexample). We
notice that, settingβ = Λ

λ
(N − 1)+ 1, condition (1.5) reads as

0< p6 β + γ
β − 2

if γ >−2; (1.9)

it is then clear the analogy between (1.8) and (1.9) and their consistency,
beingβ =N in the caseΛ= λ. Moreover we consider the cases 0< p <
1 and γ=−2.
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We also prove that the result is optimal: adapting the counterexample
produced in [10], we show the existence of nontrivial solutions of (1.2)
(for a particularF ) in the cases

p >

Λ
λ
(N − 1)+ 1+ γ
Λ
λ
(N − 1)− 1

whenγ >−2,

p > 1 when γ=−2 andp > 0 whenγ <−2.
Let us finally remark that the Liouville property for semilinear elliptic

and degenerate elliptic equations, posed in the whole spaceRN or in
cones or halfspaces, has been the object of a keen interest in the literature
also for its connection with the problem of the a priori bounds and the
existence of positive solutions of superlinear boundary value problems
in bounded domains. The first results in this direction are contained in
[13,14] in which the semilinear uniformly elliptic equation inRN and in
halfspaces is considered; under different assumptions, analogous results
for the equation have been subsequently obtained also in [1,22]. Again
the equation but in an elliptic degenerate case is considered in [18,24,25].
The inequality in the whole space and in cones has been treated in [2,3,6]
and in [4,5,10,12] for some elliptic degenerate cases. Anyway, we refer to
[9] for a general overview on this subject. The extension of these results
to the fully nonlinear case will be the subject of a forthcoming paper.

2. PRELIMINARIES

In this section we recall some basic notions and known results about
fully nonlinear elliptic equations. For further details we refer to, e.g., [8,
11].

Here and in the sequelSN denotes the set of all symmetricN × N
matrices, and the dimensionN will be always assumed to satisfyN > 2.

A continuous functionF :RN × SN → R will be referred to as a
uniformly ellipticoperator with ellipticity constants 0< λ6Λ if, for all
M,P ∈ SN with P > 0 (i.e., nonnegative definite), and for allx ∈RN , it
results

λ tr(P )6 F(x,M +P)− F(x,M)6Λ tr(P ). (2.1)

In the rest of the paper we will always consider uniformly elliptic
operatorsF(x,M) such that

F(x,0)≡ 0. (2.2)
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The simplest example of operatorF satisfying (2.1) (and (2.2)) is the
linear map

LA(x,M)≡ LA(M)= tr(AM),

whereA ∈ SN is a positive definite matrix the eigenvalues of which
belong to[λ,Λ].

Let us indicate withAλ,Λ the set of all such matricesA, i.e.

Aλ,Λ = {A ∈ SN : λ|ξ |26Aξ · ξ 6Λ|ξ |2, ∀ξ ∈RN}.
Since the family of uniformly elliptic operators having common elliptic-
ity constants is closed under the sup or the inf process, the definitions

M−λ,Λ(M)= inf
A∈Aλ,Λ

LA(M), M+λ,Λ(M)= sup
A∈Aλ,Λ

LA(M),

produce other two significant examples of uniformly elliptic operators,
calledextremal operators(see [7,8]), related by the identity

M+λ,Λ(M)=−M−λ,Λ(−M) ∀M ∈ SN. (2.3)

Slightly different extremal operators have been firstly introduced by
Pucci in [20], where the inf and sup are taken on the classBα, α > 0,
defined as

Bα = {A ∈ SN : Aξ · ξ > α|ξ |2, trA= 1, ∀ξ ∈RN}
(see also [15]). Thus, thePucci extremal operatorsare defined as

P−α (M)= inf
A∈Bα
LA(M), P+α (M)= sup

A∈Bα
LA(M). (2.4)

Observing that ifA belongs toAλ,Λ then the normalized matrix1
trAA

belongs toBλ/(ΛN) and, conversely, ifA belongs toBα thenA belongs to
Aα,1−(N−1)α, it results

M+λ,Λ(M)6NΛP+λ/(ΛN)(M), P+α (M)6M+α,1−(N−1)α(M)

and, analogously,

M−λ,Λ(M)>NλP−λ/(ΛN)(M), P−α (M)>M−α,1−(N−1)α(M).
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In the sequel we will always deal with the extremal operatorsM+λ,Λ and
M−λ,Λ, even if the previous inequalities show that every argument could
be carried out for the Pucci operatorsP+α andP−α , with α appropriately
chosen.

It is not hard to check that the operatorsM−λ,Λ andM+λ,Λ may be
equivalently defined respectively as

M−λ,Λ(M)= λ
∑
ei>0

ei +Λ
∑
ei<0

ei, (2.5)

and

M+λ,Λ(M)=Λ
∑
ei>0

ei + λ
∑
ei<0

ei, (2.6)

whereei (i = 1, . . . ,N ) denote the eigenvalues of the matrixM .
The adjective “extremal” is also due to the fact that for every operator

F satisfying (2.1) and (2.2) with ellipticity constantsλ andΛ, it results:

M−λ,Λ(M)6 F(x,M)6M+λ,Λ(M) (2.7)

for all x ∈RN andM ∈ SN .
Next, let us recall the notion of viscosity sub and supersolutions of the

equation

F
(
x,u,D2u

)= 0 inΩ (2.8)

where F :Ω × R × SN → R is a continuous map withF(x, t,M)
satisfying (2.1) for every fixedt ∈ R and for all x ∈ Ω , andΩ ⊆ RN
is an open domain (for more details see, e.g., [11]).

Definition 2.1. – A continuous functionu :Ω → R is a viscosity
supersolution(subsolution) of (2.8) if, for all ζ ∈ C2(Ω) and x0 ∈ Ω
such thatu− ζ has a local minimum (maximum) atx0, it results

F
(
x0, u(x0),D

2ζ(x0)
)
6 (>)0.

If u is a viscosity supersolution (subsolution) we also say thatu verifies

F
(
x,u,D2u

)
6 (>)0

in the viscosity sense.
Finally u is a viscosity solution of (2.8) if it simultaneously is a

viscosity sub and supersolution.
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Let us observe that inequalities (2.7) still hold in the viscosity sense,
that is if a functionu is a viscosity solution ofF(x,D2u)6 (>)0, withF
as in (2.7), thenM−λ,Λ(D2u) 6 0 (respectively,M+λ,Λ(D2u) > 0) in the
viscosity sense.

In the following sections we will make use of the so called Comparison
Principle and Strong Maximum Principle for viscosity solutions of
the extremal operatorsM−λ,Λ andM+λ,Λ, the proofs of which can be
respectively found in [16] and [8].

THEOREM 2.1 (Comparison Principle). –LetΩ ⊂ RN be a bounded
open set and letf ∈ C(Ω); if u1 andu2 are respectively a super- and a
subsolution either ofM−λ,Λ(D2u) = f (x) or ofM+λ,Λ(D2u) = f (x) in
Ω and ifu1> u2 on ∂Ω , thenu1> u2 in Ω .

THEOREM 2.2 (Strong Maximum Principle). –Let Ω ⊂ RN be a
bounded open set and letu be a viscosity supersolution(subsolution)
either ofM−λ,Λ(D2u) = 0 or ofM+λ,Λ(D2u) = 0 in Ω . If u attains its
minimum(maximum)at an interior point ofΩ , thenu is constant.

3. HADAMARD TYPE THEOREMS AND THE LIOUVILLE
PROPERTY FOR EXTREMAL OPERATORS

In this section we extend to viscosity sub- and supersolutions of the
nonlinear operatorsM+ andM− the classical Hadamard’s three circles
and three spheres theorems about sub- and superharmonic functions.

We recall (for more details see [17,21]) that ifu is a continuous
superharmonic function in a plane domain containing the closed ring
{x ∈ R2: r2 6 |x| 6 r1}, with r1 > r2 > 0, then the Hadamard’s three
circles theorem states that the functionm̂(r) = min|x|=r u(x) is a concave
function of logr , that is, forr26 r 6 r1, it satisfies

m̂(r)> m̂(r2) log(r1/r)+ m̂(r1) log(r/r2)

log(r1/r2)
. (3.1)

If u is a superharmonic function in a domain ofRN , with N > 3,
containing the closed ring{x ∈ RN : r2 6 |x| 6 r1}, then, by the
Hadamard’s three spheres theorem,m̂(r) is a concave function ofr2−N ,
that is, forr26 r 6 r1, it satisfies

m̂(r)> m̂(r2)(r
2−N − r2−N

1 )+ m̂(r1)(r2−N
2 − r2−N)

r2−N
2 − r2−N

1

. (3.2)
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Of course, there are the “reversed” results for subharmonic functions:
if u is subharmonic in a plane domain, then the functionM̂(r) =
max|x|=r u(x) is a convex function of logr , that is, for r2 6 r 6 r1, it
satisfies

M̂(r)6 M̂(r2) lg(r1/r)+ M̂(r1) lg(r/r2)
lg(r1/r2)

(3.3)

as well as ifu is subharmonic in a domain ofRN , withN > 3, thenM̂(r)
is a convex function ofr2−N , that is, forr26 r 6 r1 it satisfies

M̂(r)6 M̂(r2)(r
2−N − r2−N

1 )+ M̂(r1)(r2−N
2 − r2−N)

r2−N
2 − r2−N

1

. (3.4)

From inequality (3.1) (respectively, (3.3)), the classical Liouville’s
theorem easily follows, stating the nonexistence of nonconstant bounded
from below (above) superharmonic (subharmonic) functions inR2 \ {0}.
On the contrary, it is well known that inequality (3.2) does not lead to a
Liouville type theorem; indeed, for example the radial function

u(x)=


1

8
(N(N + 2)− 2(N2− 4)|x|2+N(N − 2)|x|4), if |x|6 1,

1/|x|N−2, if |x|> 1,

is a nonconstant bounded superharmonic function in all ofRN , N > 3.
These different results are evidently due to the different behaviour of the
fundamental solution of the Laplace equation inRN , which, as it is well
known, is unbounded as|x| →+∞ if and only ifN = 2.

In order to generalize these results to the nonlinear case, first of all we
have to determine the corresponding “fundamental solutions”. We need
the following simple technical Lemma.

LEMMA 3.1. – Let ϕ : (0,+∞)→ R be a C2 function. For every
x ∈ RN \ {0} the eigenvalues of the Hessian matrix of the radial function
Φ(x) = ϕ(|x|) are ϕ′′(|x|), which is simple, andϕ′(|x|)/|x|, which has
multiplicity (N − 1).

Proof. –A direct computation shows that:

D2Φ(x)= ϕ
′(|x|)
|x| IN +

[
ϕ′′(|x|)
|x|2 −

ϕ′(|x|)
|x|3

]
x ⊗ x,
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whereIN is the identity matrix andx ⊗ x is the matrix whose entries are
xixj . Hence we have

D2Φ(x)
x

|x| = ϕ
′′(|x|) x|x| and D2Φ(x)ξ = ϕ

′(|x|)
|x| ξ

for every vectorξ such thatξ · x = 0. 2
Using this lemma one can find, by a similar argument as in [20], radial

functionsΦ(x)= ϕ(|x|) which are classical solutions of the equation

M−λ,Λ
(
D2Φ

)= 0 inRN \ {0}, (3.5)

and are either concave and increasing or convex and decreasing.
By Lemma 3.1 and the identity (2.5), the concave and increasing

functionsϕ have to be looked for among the solutions of the ordinary
differential equation

λ(N − 1)
ϕ′(r)
r
+Λϕ′′(r)= 0 in (0,+∞),

as well as the convex and decreasing solutionsϕ must satisfy

λϕ′′(r)+Λ(N − 1)
ϕ′(r)
r
= 0 in (0,+∞).

In both cases the solutionsϕ depend on the values of the dimensionN
and of the ellipticity constantsλ andΛ. More precisely, in the first case,
setting

α = λ

Λ
(N − 1)+ 1 (3.6)

and observing thatα > 1, we obtain the solutions

ϕ1(r)=

C1r

2−α +C2, if α < 2,

C1 logr +C2, if α = 2,

−C1r
2−α +C2, if α > 2,

(3.7)

with constantsC1> 0 andC2 ∈R, whereas in the second case, setting

β = Λ
λ
(N − 1)+ 1 (3.8)
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and observing thatβ > 2 (sinceN > 2), the solutions are given by

ϕ2(r)=
{−C1 logr +C2, if β = 2,

C1r
2−β +C2, if β > 2.

(3.9)

Therefore, the radial functions

Φ1(x)= ϕ1(|x|) and Φ2(x)= ϕ2(|x|),

with ϕ1 and ϕ2 respectively given by (3.7) and (3.9), are classical
solutions (in particular, viscosity solutions) of Eq. (3.5).

In the following theorems they will play the same role played in the
Hadamard and Liouville Theorems by the fundamental solution of the
Laplace equation, and it is in this respect that they will be considered
as the “fundamental solutions” of Eq. (3.5). Let us point out, moreover,
that in the particular case in whichλ=Λ, Eq. (3.5) reduces to Laplace
equation; in this case, it resultsα = β = N and the functionΦ1 ≡ Φ2

coincides with the classical fundamental solution.
Remembering the relationship (2.3) betweenM+λ,Λ andM−λ,Λ, we

have also found that the functions

Ψ1(x)=−Φ2(x) and Ψ2(x)=−Φ1(x)

are the “fundamental solutions” of the equation

M+λ,Λ
(
D2Ψ

)= 0 inRN \ {0}, (3.10)

with Ψ1(x) ≡ ψ1(|x|) = −ϕ2(|x|) such thatψ1(r) is a concave and
increasing function in(0,∞), andΨ2(x)≡ψ2(|x|)=−ϕ1(|x|) such that
ψ2(r) is a convex and decreasing function in(0,∞).

THEOREM 3.1 (Nonlinear Hadamard Theorems). –Let D be a do-
main ofRN containing the closed ballBr1 centered at the origin and
with radiusr1> 0. Then:

(i) if u ∈C(D) is a viscosity solution of

M+λ,Λ
(
D2u

)
6 0,

then the function

m(r)= min|x|6r u(x)
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is, respectively, a concave function oflogr if α = 2 and ofr2−α
if α 6= 2, with α given by(3.6). More precisely, for every fixed
r2< r1 and for all r26 r 6 r1, it results

m(r)>


m(r2) log(r1/r)+m(r1) log(r/r2)

log(r1/r2)
, if α = 2,

m(r2)(r
2−α − r2−α

1 )+m(r1)(r2−α
2 − r2−α)

(r2−α
2 − r2−α

1 )
, if α 6= 2.

(3.11)
(ii) if u ∈C(D) is a viscosity solution of

M−λ,Λ
(
D2u

)
6 0,

thenm(r) is a concave function oflogr if β = 2, and of r2−β
if β > 2, with β given by(3.8). More precisely, for every fixed
r2< r1 and for all r26 r 6 r1, it results

m(r)>


m(r2) log(r1/r)+m(r1) log(r/r2)

log(r1/r2)
, if β = 2,

m(r2)(r
2−β − r2−β

1 )+m(r1)(r2−β
2 − r2−β)

(r
2−β
2 − r2−β

1 )
, if β > 2.

(3.12)

Before giving the proof of the theorem, let us observe that, by the
relationship (2.3) betweenM+λ,Λ andM−λ,Λ, statement (i) is equivalent
to the following one:

(j) if u ∈C(D) is a viscosity solution of

M−λ,Λ
(
D2u

)
> 0,

then the function

M(r)=max
|x|6r

u(x)

satisfies, for allr26 r 6 r1,

M(r)6


M(r2) log(r1/r)+M(r1) log(r/r2)

log(r1/r2)
, if α = 2,

M(r2)(r
2−α − r2−α

1 )+M(r1)(r2−α
2 − r2−α)

(r2−α
2 − r2−α

1 )
, if α 6= 2.

(3.13)
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Analogously, an equivalent form of (ii) is
(jj) if u ∈C(D) is a viscosity solution of

M+λ,Λ
(
D2u

)
> 0,

thenM(r) satisfies, for allr26 r 6 r1,

M(r)6


M(r2) log(r1/r)+M(r1) log(r/r2)

log(r1/r2)
, if β = 2,

M(r2)(r
2−β − r2−β

1 )+M(r1)(r2−β
2 − r2−β)

(r
2−β
2 − r2−β

1 )
, if β > 2.

(3.14)

Proof. –By the assumptions, the respectively increasing and decreas-
ing functionsM(r) andm(r) are well defined in[0, r1].

Let us consider the case (i), that is, letu ∈C(D) be a viscosity solution
ofM+λ,Λ(D2u)6 0.

Fixedr1> r2> 0, letψ(r)=−ϕ1(r), with ϕ1(r) defined by (3.7), with
constantsC1 > 0 andC2 ∈ R chosen in such a way thatψ(r1) = m(r1)
andψ(r2)=m(r2). This yields:

ψ(r)=


m(r2) log(r1/r)+m(r1) log(r/r2)

log(r1/r2)
, if α = 2,

m(r2)(r
2−α − r2−α

1 )+m(r1)(r2−α
2 − r2−α)

(r2−α
2 − r2−α

1 )
, if α 6= 2.

We know that the functionΨ (x) = ψ(|x|) is a viscosity solution of
equation (3.10). Applying the Comparison Principle (Theorem 2.1) to
the functionsu(x) andΨ (x) in the ring{r2 < |x| < r1} ⊂D, we deduce
that

u(x)> Ψ (x) in {r26 |x|6 r1}.
Hence,m(r)> ψ(r) for all r in [r2, r1] and the claim is proved.

The proof of (ii) is completely analogous to that of (i), with the
obvious difference that nowu has to be compared with the function
Φ2(x)= ϕ2(|x|), whereϕ2 is given by (3.9). 2

Looking at the previous result, as well as at the just constructed
“fundamental solutions” of Eqs. (3.5) and (3.10), and having in mind
the linear case, we expect a Liouville type theorem in two cases:
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• the case of bounded from below (above) viscosity supersolutions
(subsolutions) of (3.10) ((3.5)) in all ofRN , with the parameterα,
defined by (3.6), satisfyingα 6 2,
• the case of bounded from below (above) viscosity supersolutions

(subsolutions) of (3.5) ((3.10)) in all ofRN , with the parameterβ,
defined by (3.8), satisfyingβ = 2.

Let us observe that the caseβ = 2 only occurs whenλ=Λ andN = 2,
i.e., the case of the Laplace operator in the plane.

Since viscosity subsolutions (supersolutions) of the Laplace equation
are precisely the same as continuous subharmonic (superharmonic)
functions (as it can be deduced, for example, from Proposition 3.2.10′
of [17]), this case reduces to the well-known Liouville theorem for
subharmonic (superharmonic) functions inR2.

Therefore, the first case is the only one which has to be considered.

THEOREM 3.2. – Letu ∈ C(RN) be a viscosity solution either of

M+λ,Λ
(
D2u

)
6 0 in RN, (3.15)

or of

M−λ,Λ
(
D2u

)
> 0 in RN. (3.16)

If u is, respectively, bounded either from below or from above, and if the
parameterα, defined by(3.6), satisfiesα 6 2 (i.e.,N 6 Λ

λ
+ 1), thenu is

constant.

Proof. –Consider the caseM+λ,Λ(D2u) 6 0, u bounded from below.
By the previous theorem (case (i)),u satisfies (3.11) for allr in [r2, r1],
for every fixedr1> r2> 0.

Beingm(r) a bounded function sinceu is bounded from below, and
beingα 6 2, passing to the limit asr1→+∞ in (3.11) leads to

m(r)>m(r2) ∀r > r2> 0.

Sincem(r) is obviously a decreasing function, we deduce thatm(r) ≡
const= m(0) = u(0). Therefore,u attains its minimum at an interior
point and, by the Strong Maximum Principle (Theorem 2.2),u is
constant. 2
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Remark1. – The assumption on the boundedness ofu in the previous
Theorem can be weakened: indeed, in the proof we only needed that

0=


lim sup
r→+∞

m(r)

r2−α , if α < 2,

lim sup
r→+∞

m(r)

logr
, if α = 2.

Thus the Liouville Theorem for inequality (3.15) can be reformulated
by saying that, for every nonconstant viscosity solution of (3.15), the
functionm(r) decreases asr →+∞ at least like−r2−α if α < 2 and
like − logr if α = 2.
The result is optimal; indeed, the function

uα(x)=





1

8

[
α(2− α)|x|4− 2(4− α2)|x|2

−α(2+ α)], if α < 2,

1

4

[|x|4− 4|x|2+ 3
]
, if α = 2,

if |x|< 1,


−|x|2−α, if α < 2,

− log|x|, if α = 2,
if |x|> 1,

satisfies (3.15).

Remark2. – The previous result does not hold ifα > 2, i.e., if N >
Λ
λ
+ 1. Indeed, in this case, the function

u(x)=


1

8
[α(α− 2)|x|4− 2(α2− 4)|x|2+ α(α+ 2)], if |x|< 1,

1/|x|α−2, if |x|> 1,

provides an example of a non constant bounded classical solution of
(3.15),−u obviously being a non constant bounded classical solution
of (3.16).

Remark3. – Referring to the discussion before Theorem 3.2, we
observe that a Liouville type theorem does not hold in fact neither for
viscosity solutions of

M−λ,Λ
(
D2u

)
6 0 inRN (3.17)
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nor, equivalently, for viscosity solutions of

M+λ,Λ
(
D2u

)
> 0 inRN, (3.18)

except that forβ = 2, β being defined in (3.8). Indeed, ifβ > 2, then the
function

u(x)=


1

8
[β(β − 2)|x|4− 2(β2− 4)|x|2+ β(β + 2)], if |x|< 1,

1/|x|β−2, if |x|> 1,

(3.19)
works as a counterexample for (3.17), as well as−u does for (3.18).

Remark4. – If (3.15) or (3.16) are required to hold as equalities, then
the Liouville theorem can be obtained without any assumption on the
parameterα. More in general, for bounded either from above or from
below viscosity solutions of a uniformly elliptic equation such as

F
(
x,D2u

)= 0 inRN,

with F satisfying (2.1) and (2.2), the Liouville property may be derived
in a standard way as a consequence of the strong Harnack inequality, see
[8].

We have seen that in the casesα,β > 2 a Liouville type result does
not hold respectively for nonnegative viscosity solutionsu of (3.15) and
(3.17). Nevertheless we can still deduce in such cases some important
properties of the functionm(r)= inf |x|6r u(x). Since we are going to use
them in the next section, we state the result separately.

COROLLARY 3.1. – Letu ∈ C(RN) be a viscosity solution of

u> 0, M−λ,Λ
(
D2u

)
6 0 in RN

(respectively of

u> 0, M+λ,Λ
(
D2u

)
6 0 in RN);

then, setβ = Λ
λ
(N − 1)+ 1 (α = λ

Λ
(N − 1)+ 1), the function

r ∈ [0,+∞) 7→m(r)rβ−2 (
r ∈ [0,+∞) 7→m(r)rα−2)

is increasing.
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Proof. –We can consider only the caseM−λ,Λ(D2u)6 0, the other one
being absolutely analogous.

From inequality (3.12), lettingr1 → +∞ and beingm(r1) > 0, it
follows

m(r)>


m(r2), if β = 2,

m(r2)r
β−2
2

rβ−2
, if β > 2,

∀r > r2> 0. 2

Remark5. – If u ∈C(RN) is a viscosity solution of

u> 0, M−λ,Λ(D2u)6 0 inRN

the same holds true for the radial functionm(|x|)= infB|x| u.
Indeed, since the operatorM−λ,Λ is rotations invariant,u(Px) is again

a supersolution for every matrixP satisfyingP T = P−1 (P T andP−1

denote respectively the transposed and the inverse matrices ofP ). Then
the claim follows observing that the minimum of supersolutions is again
a supersolution and that, in view of the Strong Maximum Principle
(Theorem 2.2),m can be written as

m(|x|)=min
∂B|x|

u=min
P
u(Px0) for somex0 with |x0| = |x|.

An analogous result holds true for subsolutions.

4. LIOUVILLE THEOREM FOR FULLY NONLINEAR
EQUATIONS HAVING ZERO ORDER TERMS

In this section we are concerned with the Liouville property for
viscosity supersolutions of the uniformly elliptic equation

u> 0, F
(
x,D2u

)+ h(x)up = 0 inRN, (4.1)

with N > 2 as usual, whereF satisfies (2.1) and (2.2),h(x) is a
nonnegative continuous function inRN andp is a positive exponent.

First of all, we observe that ifu ∈ C(RN) is a viscosity supersolution
of (4.1), then, by (2.7),u satisfies

u> 0, M−λ,Λ
(
D2u

)+ h(x)up 6 0 inRN, (4.2)
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and therefore,h being nonnegative, it results

u> 0, M−λ,Λ
(
D2u

)
6 0 inRN. (4.3)

As it was pointed out in the previous section, in the caseβ = 2, with β
defined in (3.8), conditions (4.3) suffice to conclude thatu is constant and
then, by (4.2), thatu is identically equal to zero.

Thus, in the sequel we will always consider the nontrivial caseβ > 2,
in which the zero order term of inequality (4.2) becomes essential: we
will identify a range of values for the exponentp which constrains the
solutionu to vanish identically.

The proof we are going to present essentially makes use of the Compar-
ison Principle and of the Strong Maximum Principle (respectively, Theo-
rems 2.1 and 2.2).

THEOREM 4.1. – Assume thatβ = Λ
λ
(N − 1) + 1> 2 and let u ∈

C(RN) be a viscosity solution of

u> 0, F
(
x,D2u

)+ h(x)up 6 0 in RN, (4.4)

whereh ∈ C(RN) is a nonnegative function such that there existH,

r0> 0 andγ >−2 satisfying

h(x)>H |x|γ for |x|> r0. (4.5)

If γ = −2 and 0< p < 1 or if γ > −2 and 0< p 6 (β + γ )/(β − 2),
then

u≡ 0.

Proof. –Letu be as in the statement; by the Strong Maximum Principle
if there exists a point whereu is zero thenu vanishes identically. Thus
we will assume, by contradiction, thatu > 0 inRN .

For everyr > 0, let us setm(r) = min|x|6r u(x) as in Theorem 3.1;
observe that, in our assumption,m is strictly positive and, again by
Theorem 2.2, it is a strictly decreasing function ofr .

Moreover, sinceu in particular satisfies (4.3), by Corollary 3.1 we have

m(r)6 m(R)R
β−2

rβ−2
∀R > r > 0. (4.6)
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Let us now consider the radial function

ζ(x)=m(r)
{

1− [(|x| − r)
+]3

(R− r)3
}
,

whereR > r > r0 are arbitrarily fixed. Sinceζ(x)6 0< u(x) for |x|>R
andζ(x) ≡m(r) < u(x) for |x| < r , and beingζ(x) = u(x) for at least
one pointx with |x| = r , the minimum ofu− ζ in RN is nonpositive and
achieved at a certain pointxrR such thatr 6 |xrR|<R.

Applying Definition 2.1 withζ as test function and remembering (2.7),
from (4.4) it results

M−λ,Λ
(
D2ζ(xrR)

)+ h(xrR)(u(xrR))p 6 0.

On the other hand, by identity (2.5) and by Lemma 3.1, we have, for all
x ∈ RN \ {0},

M−λ,Λ
(
D2ζ(x)

)=− 3Λm(r)

(R− r)3
[
2+ (N − 1)

(|x| − r)+
|x|

](|x| − r)+,
and therefore, using also assumption (4.5) and the fact|xrR|> r > r0, we
get (

u(xrR)
)p 6 3ΛH−1m(r)

(R− r)3
[
2+ (N − 1)

(|xrR| − r)+
|xrR|

]
× (|xrR| − r)+|xrR|−γ . (4.7)

If |xrR| = r , we immediately reach the contradictionu(xrR)= 0; therefore
we can assumer < |xrR|<R and, by (4.7), it results

(
u(xrR)

)p 6 3Λ(N + 1)

H

|xrR|−γm(r)
(R− r)2 .

Beingu(xrR)>m(R) andr < |xrR|<R, we then have

m(R)6 C Rγ
−/pm(r)1/p

rγ
+/p(R− r)2/p , (4.8)

for all R > r > r0, with C = [3Λ(N + 1)/H ]1/p.
Combining (4.8) with (4.6) we get

m(R)6C R(γ
−+β−2)/pm(R)1/p

r(γ
++β−2)/p(R− r)2/p ∀R > r > r0,
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from which, choosingr =R/2, it follows

m(R)6 Cm(R)
1/p

R(γ+2)/p
∀R > 2r0, (4.9)

where the sameC denotes from now on different positive constants. We
have now to distinguish several cases.

Assume first thatγ =−2 and 0< p < 1; from (4.9) we deduce that

m(R)>C ∀R > 2r0. (4.10)

It then follows that the infimum

µ= inf
R>0

m(R)= lim
R→+∞m(R)

is strictly positive. Let us setv(x) = u(x) − µ; thus,v ∈ C(RN) is still
a viscosity solution of (4.4), as it is immediate to verify. Applying the
above arguments tov, we obtain that the functionmv(r)=min|x|6r v(x)
satisfies

mv(R)>C ∀R > 2r0,

accordingly to (4.10). But this evidentely contradicts the fact that

lim
R→+∞mv(R)= lim

R→+∞
(
m(R)−µ)= 0.

Assume now thatγ >−2 and 0< p 6 (β + γ )/(β − 2).
If 0 < p6 1, from (4.9) we immediately get the contradiction

R(γ+2)/p 6Cm(R)(1−p)/p 6Cm(0)(1−p)/p ∀R > 2r0.

If this is not the case, thenp > 1 and from (4.9) we obtain

m(R)6 C

R(γ+2)/(p−1)
∀R > 2r0,

which in turn implies

Rβ−2m(R)6 C

R
γ+2
p−1−β+2

∀R > 2r0. (4.11)

If p < (β + γ )/(β − 2), then (γ + 2)/(p− 1) − β + 2 > 0 and the
fact that the positive and increasing functionRβ−2m(R) tends to 0 as
R→+∞ gives the desired contradiction.
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Thus, it remains to consider only the limit casep = (β + γ )/(β − 2).
In such a case, from (4.11) we deduce that the functionRβ−2m(R) is

bounded from above; we will show that this information, combined with
(4.4), again leads to a contradiction. FixedR1 > r0, γ1 > 0 andγ2 ∈ R,
for x such that|x|>R1, let us define the radial function

Γ (x)= γ1
log(1+ |x|)
|x|β−2

+ γ2.

The choiceR1 > exp((2β − 3)/(β − 2)(β − 1))− 1 makesΓ a convex
decreasing function of|x|; in such a case, using Lemma 3.1 and
definitions (2.5) and (3.8), we can easily obtain:

M−λ,Λ
(
D2Γ (x)

)=−λγ1

[
β − 3

(1+ |x|)|x|β−1
+ 1

(1+ |x|)2|x|β−2

]
>−λγ1(β − 2)

|x|β ,

for all x such that|x|> R1.
We now arbitrarily choose a radiusR2 > R1 and fix the constants

γ1> 0 andγ2 ∈R in such a way that

Γ (R1)6m(R1) and Γ (R2)=m(R2);

this means that we have to pickγ1 in the interval

0< γ16
(
m(R1)−m(R2)

)/( log(1+R1)

R
β−2
1

− log(1+R2)

R
β−2
2

)
,

which is possible since

R1> exp
(

2β − 3

(β − 2)(β − 1)

)
− 1> exp

(
1

β − 2

)
− 1,

and then define

γ2=m(R2)− γ1
log(1+R2)

R
β−2
2

.

We then have

Γ 6 u on {|x| =R1} ∪ {|x| =R2} (4.12)
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and, moreover, by the previous calculation,

M−λ,Λ
(
D2Γ (x)

)
>−γ1λ(β − 2)

|x|β in {R1< |x|<R2}. (4.13)

On the other hand, by (4.6), for allx such that|x|> R1, u satisfies

u(x)>m(|x|)> m(R1)R
β−2
1

|x|β−2
, (4.14)

and then, from (4.4) withp = (β + γ )/(β − 2), and from (2.7) and (4.5),
if R1> r0 it follows that

M−λ,Λ
(
D2u

)
6−H(m(R1)R

β−2
1 )(β+γ )/(β−2)

|x|β in {R1< |x|<R2}
(4.15)

in the viscosity sense. From (4.13) and (4.15), choosing, if necessary, a
smallerγ1> 0, we deduce

M−λ,Λ
(
D2u(x)

)
6− C

|x|β 6M
−
λ,Λ

(
D2Γ (x)

)
in {R1< |x|<R2},

for some constantC > 0. This, combined with (4.12), allows us to apply
Theorem 2.1 and conclude

Γ 6 u in {R16 |x|6 R2}
for any R2 > R1. Letting R2 → +∞, being γ2 → 0, we obtain the
existence of a positive constantγ̃1 such that

u(x)> γ̃1
log(1+ |x|)
|x|β−2

(4.16)

for all |x|>R1. This implies that

Rβ−2m(R)> γ̃1 log(1+R) ∀R > R1,

which contradicts the obtained upper bound on the functionRβ−2m(R).2
Remark6. – The previous theorem extends to the nonlinear operators

the analogous result already known for the Laplacian (see [10,12]).
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Moreover, it also includes the case 0< p 6 1 and the caseγ = −2 for
the Laplace operator, which was not covered by [10,12].

Remark7. – Theorem 4.1 provides the optimal result.
Indeed, the problem

u> 0, M−λ,Λ
(
D2u

)+ (1+ |x|2)γ /2up 6 0 inRN

admits a nontrivial classical (and therefore viscosity) solution in the cases
p > 0 if γ <−2, p > 1 if γ =−2 and p > (β+ γ )/(β − 2) if γ >−2.
To see this, let us consider functionsuδ of the form

uδ(x)= Cδ

(1+ |x|2)δ x ∈RN,

with δ, Cδ > 0. A direct computation shows that, for allx such that
|x|2 6 1/(2δ + 1), uδ is a concave and decreasing function of|x| and,
taking into account thatΛ(N − 1)= λ(β − 1), it results

M−λ,Λ
(
D2uδ(x)

)=−2ΛCδδ
[

(N − 1)

(1+ |x|2)δ+1
− (2δ + 1)|x|2− 1

(1+ |x|2)δ+2

]
6−2Λ(N − 1)Cδδ

(1+ |x|2)δ+1
=−2λ(β − 1)Cδδ

(1+ |x|2)δ+1
.

If |x|2 > 1/(2δ + 1), thenuδ is a decreasing and convex function of|x|
and satisfies

M−λ,Λ
(
D2uδ(x)

)
=−2λCδδ

[
β − 1

(1+ |x|2)δ+1
− (2δ + 1)|x|2− 1

(1+ |x|2)δ+2

]
=−2λCδδ

(β − 2(δ+ 1))|x|2+ β
(1+ |x|2)δ+2

6−2λCδδ(β − 2(δ+ 1))

(1+ |x|2)δ+1
.

Therefore, in both cases, we have

M−λ,Λ
(
D2uδ(x)

)+ (1+ |x|2) γ2 [uδ(x)]p
6−2λCδδ(β − 2(δ + 1))

(1+ |x|2)δ+1
+ C

p
δ

(1+ |x|2)pδ− γ2 .



A. CUTRÌ, F. LEONI / Ann. Inst. Henri Poincaré 17 (2000) 219–245 241

It is easily seen that the right hand side is nonpositive if the constantsδ

andCδ satisfy 
2(δ + 1) < β,
δ+ 16 pδ− γ

2 ,

C
p−1
δ 6 2λδ(β − 2(δ + 1))

and we can find constantsδ, Cδ > 0 simultaneously satisfying the above
conditions exactly in the casesγ < −2 andp > 0, γ = −2 andp > 1,
γ >−2 andp > (β + γ )/(β − 2).

Remark8. – If in Theorem 4.1 we add assumptions on the operatorF ,
then we can obtain an accordingly extended range of admissible values
for the exponentp which guarantees the Liouville property for problem
(4.4).

The most favourable case occurs whenF =M+λ,Λ; indeed, as a first
fact, one observes that ifu ∈ C(RN) is a viscosity solution of

u> 0, M+λ,Λ
(
D2u

)+ h(x)up 6 0 inRN,

thenu satisfies

u> 0, λ1u+ h(x)up 6 0 inRN

in the viscosity sense and thereforeu ≡ 0 provided that 0< p 6
(N + γ )/(N − 2) if γ > −2 and that 0< p < 1 if γ = −2. More
than that, by Corollary 3.1 we know that the functionr ∈ [0,+∞) 7→
m(r)rα−2 is increasing, withα = λ

Λ
(N − 1) + 1, and, applying exactly

the same arguments of the proof of Theorem 4.1, we conclude thatu≡ 0
under the assumption

0<p < 1 if γ =−2,

0<p 6 (α+ γ )/(α− 2) if γ >−2.

Remark9. – It is worth observing that a Liouville type result for
problem (4.4) could be obtained following an alternative procedure.
Indeed, it is known (see [8]) that ifu ∈ C(B2R) is a viscosity solution
of

u> 0, M−λ,Λ
(
D2u

)
6 0 inB2R,

whereB2R is a ball of radius 2R for a givenR > 0, then there exist
positive constantsq0 andC, depending only onN and on the ellipticity
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constantsλ andΛ, such thatu satisfies the following so called weak
Harnack inequality:

meas
(
BR/2∩ {u > t})6 CRN

tq0
(min
BR
u)q0 ∀t > 0, (4.17)

with {u > t} = {x ∈ B2R: u(x) > t} and meas(E) equals to the Lebesgue
measure of the measurable setE ⊂RN .

If β > 2, testing the previous inequality on the particular solution
particular solutionu defined by (3.19), produces the estimate

q06
N

β − 2
, (4.18)

already found in [23]. In the particular case in whichβ = N , that is
whenΛ= λ and the extremal operatorM−λ,Λ coincides with the Laplace
operator (up to the positive factorλ), inequality (4.18) reduces to equality.
Indeed, superharmonic functions satisfy the weak Harnack inequality
(4.17) with the exponentq0 = N/(N − 2). A proof of this fact can be
found in [19].

We conjecture that equality holds in (4.18) also in the general case
β >N .

Let us observe at this purpose that for the supersolutionm(|x|), (4.17)
holds true with the exponentq0 = N/(β − 2). Indeed, Corollary 3.1
yields:

meas
(
BR/2∩ {m(|x|) > t})

6meas
(
BR/2∩

{
m(R)Rβ−2

|x|β−2
> t

})
6 CRN

tN/(β−2)
(m(R))N/(β−2) ∀t > 0. (4.19)

Let nowu ∈ C(RN) be a viscosity solution of (4.4) withp > 1 and,
arguing by contradiction, assume thatu > 0 in RN . Sinceu satisfies
(4.17) and (4.11), forR large enough we obtain

meas
(
BR/2∩ {u > t})6 CRN−

q0(2+γ )
p−1

tq0
.
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LetR→+∞ and observe that

{u > t} = ⋃
R>0

(
BR/2∩ {u > t})

and that{BR/2 ∩ {u > t}} is an increasing family of open sets. Ifp <
1+ (q0(2+ γ )/N) then we find

meas({u > t})= 0 ∀t > 0,

which impliesu≡ 0.
If p= 1+ (q0(2+ γ )/N), from the above we obtain

meas({u > t})6 C

tq0
∀t > 0,

which means thatu belongs to the Marcinkiewicz spaceMq0(RN).
This implies, by (4.14), that the functionm(R1)R

β−2
1 /|x|β−2 belongs to

Mq0(RN \BR1), for every fixedR1> 0.
In particular, for everyR >R1, it follows that

meas
({

m(R1)R
β−2
1

|x|β−2
>
m(R1)R

β−2
1

Rβ−2

}
\BR1

)
= C(RN −RN1 )6 C( Rβ−2

m(R1)R
β−2
1

)q0

which implies

q0>
N

β − 2
.

Remembering (4.18), ifq0 < N/(β − 2), then we immediately have a
contradiction and we conclude thatu ≡ 0. Otherwise,q0 = N/(β − 2)
and thus

p= 1+ q0(2+ γ )
N

= β + γ
β − 2

.

In this case, reasoning as in the proof of Theorem 4.1, we obtain
inequality (4.16). Since the functioñγ1(log(1+ |x|)/|x|β−2) lies belowu

in RN \BR1 but it does not belong to the Marcinkievicz spaceM
N
β−2 (RN \

BR1), we again obtain a contradiction.
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Thus, by means of the weak Harnack inequality applied tou, we obtain
the Liouville property for problem (4.4) under the assumption

0< p 6 1+ (2+ γ )q0

N
.

In the semilinear case, beingq0 = N/(N − 2), the result is optimal; in
the fully nonlinear case, we have the same conclusion if and only if

q0= N

β − 2
.

On the other hand, reasoning onm(|x|) and applying (4.19) instead of
(4.17) we may obtain the same conclusions as those of Theorem 4.1.
Indeeed, from (4.19) and (4.11) we get that the functionm vanishes
identically in the casep < (β + γ )/(β − 2) whereas it belongs to

the Marcinkievicz spaceM
N
β−2 (RN) if p = (β + γ )/(β − 2). In the

first case we immediately obtain the contradiction, in the last case
the contradiction follows from the fact thatm lies above the function
γ̃1(log(1+ |x|))/(|x|β−2) which does not belong toM

N
β−2 (RN \BR1).
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