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ABSTRACT. — In this paper we extend a classical result of Serrin to a class of elliptic problems
Au+ f(u, |Vul) = 0in exterior domain®" \ G (or £2 \ G with £2 andG bounded). In casé is
an union of a finite number of disjoint2-domainsG; andu = a; > 0, du/dn = a; <0 0ndG;,
u — 0 at infinity, we show that if a non-negative solution of such a problem exists,Ghleas
only one component and it is a ball. As a consequence we establish two results in electrostatic
and capillarity theory. We further obtain symmetry results for quasilinear elliptic equations in the

exterior of a ball.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous étendons un résultat classique de Serrin a des problemes elliptique:
Au + f(u,|Vu|) = 0 dans des domaines extérieures du tRde\ G (ou 2 \ G, avecs? et
G bornés). En supposant que= Uf.‘zl G;, ou G; sont des domaines disjoints de clagse
et queu =qa; > 0, 0u/on = o; <0 surdG;, u — 0 a l'infini, nous montrons que ce probleme
admet une solution classique seulemeldt si une seule composante connexé &st une boule.
Comme conséquence nous obtenons deux résultats sur des problemes provenant de I'électro:
tique et de la théorie de la capillarité. Nous obtenons aussi des résultats de symétrie pour d
équations elliptiques quasi-linéaires dans I'extérieur d’'une boule.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction and main results

This paper is a contribution to the study of symmetry properties of non-negative
solutions of elliptic partial differential equations, which started with the classical papers
by Serrin and by Gidas, Ni and Nirenberg ([13] and [6]; see also [4] for a more
recent approach). We concentrate on exterior and annuli-like domains, possibly multiply-
connected, with different boundary conditions on each connected component of th
boundary.

Consider the model problem

Au+ fu)=0 IinRV\G,
u=>0 iNnRN \ G, Q)
u—0 as|x| — oo,
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where f € C1([0, 00)), with f/(0) < 0. We suppose that
G=|JGi, (2)

wherek € N andG; are bounded™>-domains such tha&;, N G; =@ for i # j.
The boundary conditions that we imposed are the following

0
u=a; >0 and a—”:aigo ondaG;, i=1,...,k, 3)
n
whereq;, o;,i =1, ..., k, are constants anddenotes the inward normal to the boundary

of 2\ G.
Our main result (Theorem 2 below), applied to problem (1), gives the following
statement.

THEOREM 1. — Suppose: € C?(RV\ G) is a solution of(1), satisfying(3). ThenG
has only one connected componérd. k = 1). Moreover,G is a ball and the solutiomw
is radial with respect to the center of this ball.

Let us now describe the general setting that we consider. We study boundary-valu
problems of the type

{Qu+f(u,|vu|)=o,u>o,uec2 in2\G, @)
Boundary Conditions (BC),

whereQ is a (nonlinear) strongly elliptic operata2 C RY, N > 2, is aC?-domain,G
isasin (2),G C £2 and$2 \ G is connected.
We distinguish two cases f@e.

Case A. £2is bounded. Here the boundary conditionsdgh read
ou
u=0 and a—:ﬂ onos2, (5)
n

whereg is a constant.

CaseB. £ =R".Then we suppose that
Vu(x) -0 and u(x) - 0 as|x| — occ. (6)
In the particular case whefi does not depend oiVu|, instead of (6) we only suppose
that
u(x) - 0 as|x| - oco. (7)

A positive solution satisfying (7) is often called a ground state.
We consider the following assumptions on the elliptic operator and the fung¢tion
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() Qu =div(g(|Vu|)Vu), whereg € C?([0, 0)), g(s) > 0 and(sg(s))’ > O for all
s > 0. In other words, we suppose thatis a regular strongly elliptic operator.
() f(u, p)is alocally Lipschitz continuous function {0, c0)? and, in Case B, is a
non-increasing function af for small positive values af and p.

These assumptions are satisfied in the applications we present below. Our resul
remain true for any generalisation of (q) and (f) which leads to a “good” equation for
the comparison function in the “moving planes” method (see Step 1 in Section 2.2). In
particular, a natural question is whether we can consider nonlinearities which are no
Lipschitz continuous i at the origin. See Remark 2 at the end of this section.

In the sequel we denote by (BC) either (3) and (5), or (3) and (6), or (3) and (7),
depending on the case we consider. The following theorem contains our main result.

THEOREM 2. — Suppos€(q) and (f) hold. If u is a solution of(4) satisfying(BC),
thenk = 1, £2 and G are concentric balls centered at some poifitc R", u is radial,
that isu = u(jx — x°|), and

d
aw 0 forr=|x —x0| € (p1, p2),
dr

wherep; and p, denote the radii of5 and$2 (0 < p1 < p2 < 00).

The presence of assumptions on both the solution and its normal derivative on th
boundary makes problem (4) overdetermined. It can be viewed as a free boundary typ
problem. This kind of problem was introduced in Serrin’s classical paper [13], where he
considered the case> 0, G = ¢, 2 bounded.

In recent years there have been some partial results for non-eGpaynd un-
boundeds2. In particular, whens2 is bounded, Alessandrini [1] obtained Theorem 2
when f = 0. In the same cas&X bounded), Willms, Gladwell and Siegel [15] obtained
the result forf =1 andQ = A, providedN = 2, 2 andG; are convex and satisfy some
additional curvature conditions. The most general previous results were derived by Re
ichel [10-12]. He proved Theorem 2 under the additional hypotheses

() ai=-=agr=a and O<u<a INn2\G.

Notice that in our result (r) is not assumed a priori, but is rather derived as a consequenc
of Theorem 2.

The statement of Theorem 2 thus unifies and extends all the above results fo
problem (4).

Another related result was derived by Aftalion and Busca [3]. Using a method basec
on the Kelvin transform in exterior domains, they obtained Theore® =R", Q0 =
A) for a different class of functiong, including power nonlinearities lika?, for
% <p< x—jg Aftalion and Busca suppose= 1 and 0< u < a. One can see, using
their method together with our approach here, that their result holds if in their work the
latter two hypotheses are replaced by (2) and (3).

As a consequence of Theorem 2, we obtain two results in electrostatics and capillarit
theory. These problems have been open for some time.

THEOREM 3. — Two or moreC?%*-regular conducting bodies ilRY do not admit
constant equilibrium charge distributions on their boundaries.
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THEOREM 4. — Two or moreC>*-regular solid cylinders, dipped into an infinite
plain liquid reservoir, cannot raise a capillary surface to constant heights on their walls.

As far as Theorem 3 is concerned, we recall that2ifis a domain inR", a
charge distributiorp € C(952) is said to be in equilibrium if the induced single-layer
potential

w<x>=/'p(y>y<|x—y|>do—y

082

is constant in2; herey (1) = —5-logr if N =2 andy (1) = —z% if N =3. Then the
function ¢ satisfies an equation of type (4) with = A and f = 0. Note that when
N = 2 we haveyr — —o0 as|x| — oo, but this creates no problems when we apply
Theorem 2 (see a remark by Reichel in [11]).

The physical setting described in Theorem 4 leads to an equation of type (4), with

and f(u)=-«xu, k>0

1
g(s) = N

(the original discussion on this problem can be found in [13]; see also [11] and [12],
where the cases of one conducting body or one cylinder were studied).
Our next result concerns the case whenor G (or both) is a priori supposed to

be a ball. In this situation, to obtain a symmetry result on the solution, we do not
need to assume that its normal derivative is constant on the corresponding boundar
A previous result in this sense was obtained by Reichel, who considered the case whe
£2 is bounded, and assumed condition (r) (with weak instead of strict inequalities, see
[10]).

THEOREM 5. — Supposds is a ball. Then the conclusion of Theorénholds true if
(3) is replaced by

)
u=a>0 and a—”go on 9G. (8)
n

Analogously, if2 is a ball, the same conclusion holdg%) is replaced by
u=0 onaJsf.

There is no difficulty in extending Theorem 5 (with the same proof) to the limiting
caseG = {xo} (i.e. p1 = 0), wherex® € R¥ is such thai«(x°) = max.co u(x) > 0. This
actually means that, whe@ is a ball andG = {xg}, Theorem 5 reduces to the classical
symmetry result of Gidas, Ni and Nirenberg ([6], see also [5]). Furthermore, in the same
situation G = {xo}), when £2 is arbitrary, we obtain an extension of Serrin’s result to
non-negative solutions.
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THEOREM 6. — Supposg(q) and (f) hold and letu € C?(2) be a solution of the
following problem

Qu+ f(u,|Vul) =0 in £,
u>0,uz0 in £,

0
u:O,—M:COHSt onos2.
on

(9)

Theng? is a ball with radiusp,, centered at®, u is radial, and

d
M0 forr= |x —xO] € (0, p2).
dr

The result which we get by putting = R" andG = {x°} in Theorem 5 was recently
obtained independently by Serrin and Zou in [14] (see also [8]). In this paper they study
the symmetry properties of a larger class of elliptic equation®8nwhich includes
singular operators like thg-Laplacian.

Our theorems rely on the widely used method of “moving planes”, introduced by
Alexandrov and developed in this setting by Serrin.

Finally, we describe several possible extensions of our theorems.

Remark 1. — We can weaken the hypothesis on the regularity of the solution by adding
an extra assumption on the shape of the domainG. All our theorems remain true for
weak solutions inC1(22'\ G) (as in [14]), provided2 and G are such that the critical
positionsA, and Ao in the moving planes method are always attained when internal
tangency occurs (see Section 2 for definitions of these). In particular, this assumption i
satisfied for symmetric domains.

If we want to considelC!-weak solutions, we need also to suppose that the function
f vanishes att = 0. Note that this hypothesis is a consequence of the existence of a
C?-solution.

Remark 2. — After this work was completed the author learned of a recent paper on the
strong maximum principle by Pucci, Serrin and Zou [9], where, extending earlier results
by Vasquez [16], they establish essentially optimal conditions on the fungtionder
which a non-negative solution @u + f (u, |Vul|) = 0 is strictly positive everywhere.
They consider differential inequalities and singular elliptic operators.

For instance, whery is independent ofVu|, one of their results says the strong
maximum principle holds provided

du .
] VF@ =

(10)

whereF (u) = [y f(s)ds. Itis elementary to check that (10) is satisfied'ifs Lipschitz
continuous at: = 0.

It is not difficult to see that condition (f) can be replaced by the hypotheses in [9]
which ensure the validity of the strong maximum principle.
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2. Proofs

We apply the method of “moving planes”, in order to show that for any direction
y € RV \ {0} there existsh = A(y) € R, such that the domain and the solution are
symmetric with respect to the hyperplane

T, ={x eRY | (x,y)=21};

here(-, -) denotes the scalar producti'.

We fix y, sayy =e; = (1,0,...,0). For anyx = (x1,...,xy) € R we put
x = (x1,x") € R x RM~! and denote byB;(x) the open ball with radiug centered at
x. For everyA c RN andx, r € R we set

Dy ={xeR" |x1>1};

A* =the reflection ofd with respect tdl} ;
N(A)=A—tey={x eRY | (x1 +1,x') € A},
' A= U I (A).

teR
Fori =1, ..., k, we define the quantities
di=inf{AeR|T,NG;,=0forall u>1r};
r=inf{1 <d; | (G;ND,)" c G, and(n(z), e1) >0
forallu >xandallze 7,N3G, };

d = maxd;, A, = MAaxA;.
1<i<k 1<i<k

In other wordsd; is the x;-coordinate of the right-hand cap df;. Note that7,, is
tangent todG; and thaty; < d; (this is well-known, see [2]). For a bounded domain
we denote byl, andig the corresponding values fez.

)

&

Ty
(b)

i

Fig. 1. Two types of domain6&;: the critical positionk; is attained at a point of orthogonality
(a), or at a point of tangency (b). For all> 1; the part ofG; to the right of7,, has its reflection
inside G; and the outward normal t&G; at each point of the boundary of this part makes an
acute angle with the directian .
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We call &; (respectivelyr,) the critical position forG; (respectivelyG). We say that
A; is attained at a position of internal tangencyd; N DM)’\" ¢ G; (see Fig. 1). When
A; IS not attained at a position of internal tangency, we say it is attained at a position of
orthogonality.

We setX;, = (D, N £2) \ (G* U G) and consider the function

w; (x) = u(x*) —u(x).

This function is well defined inZ,. Our goal is to show thai, =0 in X, for some
A € R such thatT; is a hyperplane of symmetry fa2 andG.

In the next section we establish some properties of the reflected sathich we use
in Sections 2.2 and 2.3 to prove our theorems.

2.1. Somereéflection properties of theset G

The following easy property of; will permit us to treat this set in most cases like
consisting of only one domain.

LEMMA 2.1.—LetA > A,. Foranyi €{1,..., k}, we have

Gin (U(G_?UG_/')) ND,=9.
j#i

Hence any point 0dG} N D, has a neighbourhood which does not interdget; (G_§U
Gj).
Proof. —It is obvious thatG; N G, = ¢ implies G} N G’ = ¢. It is also clear that
A > A, implies, by the definition of.,,
GiND, SG}ND;,
foralli €{1,...,k}. Hence, for any # j,
G'N(GiUG;)ND,C(GING:)ND,=0. O

We use Lemma 2.1 to obtain a characterisation of the boundary points of the reflecte!
regionsG*. It will be crucial in the subsequent discussion.

Let z € 3G* N D; be such thaf;(z) belongs toG?* for small positive values of. We
define the quantities

f=7(z):=min{t > 0| I1(z) € 9G] };
t=t(z):=min{t > 0| I(z) €3G} UIG,;}; (11)
o =p(z):=dist(z, T,) > 0.
Itis clear that O< r <7 < o0, sinceG; is smooth and bounded.

LEMMA 2.2.— If A > A,, then anyz € dG* N D;, i =1,...,k, has one of the
following propertiegexclusively)
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Fig. 2. Four types of points 0dG} N D;: the arcs (A,B], [H,1), (J,K) are of type (I), the arcs
(B,C], [E,F], [G,H) are of type (ll), the arcs (C,D), (D,E), (F,G) are of type (lll), and the point D
is of type (IV).

() I;(z) € X, for small positive values afor there exists a sequengg ™\ 0 such
that I, (z) € 3G} N Dy;
(1) 0 <t(z) < pz), the open segment;(z), z) belongs toG}, and I;(z) € IG};
(1) 0 <1(z) < pz), the open segmenif;(z), z) belongs toG}, and I;,(z) € 3G;;
(IV) A =2, andz € 3G* N3G, (the symmetry case)

The four cases of Lemma 2.2 are shown on Fig. 2. In this way we obtain four types of
points ondG} N D;.

Proof of Lemma 2.2. Fix a pointz € 3G* N D, and suppose (I) does not hold far
We are going to show thatsatisfies one of the other three alternatives.

Since (l) is false foz, Lemma 2.1 implies thaf;(z) € G* for small positive values
of ¢, so thatr(z) andz(z) are well-defined. First we observe that

1(2) < 2p(2).

Indeed, if this is not true, we obtain a contradiction with the fact thatA,. In order to
write this rigorously we note that

ht3(-20) _ =S

{Iv(2)*}

Sincez” and I'x(z)* are two points ordG;, this implies that we have internal tangency
for G; to the right of or at position. + %(i — 2p). Consequently, in case> 2p,

1_
ho ki > ht S (7=2p) > b,

which is a contradiction.
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If 7(z) = 2p(2), then it is obvious that* = I'’(z) € 3G*, so
z € 3G} N 3G,;.

Since in this situation we have tangency to the right of or at positjeve deduce. = A,,
that is, we are in case (IV).

The last case to considerii&) < 2p(z). We claim that in this casgz) < p(z), that
is, I;(z) € D;. If 7(z) < p(2), this is obvious. If

p(z) <t(z) <2p(2),

then the pointl(z)* € dG; is to the left ofz and to the right off} ; we infer
t(z) < dist(z, I7(2)") < p(2).

It follows from Lemma 2.1 that if(z) < p(z), thenz(z) does not change in case we
replaceG; by G in (11). We infer from this fact that the open segmeéfit(z), z) belongs
to G}.

Finally, it is clear that we have either case (ll) or case (lll), depending on whether the
point at which we reach(z) is ondG} orondG,. O

2.2. Thecase 2 =RN

We first give the general plan of the proof of Theorem 2. We use a hyperplane
perpendicular te; and say it has reached a positianprovided w, > 0 in X, for
all u > A. The hyperplane “starts” at = +oco and “moves” as. decreases. In the
initializing step of our proof we show that this process can begin, that;is; 0 in X,
for sufficiently largei. Next we observe that if the moving plane has reached a position
A, then the solution: is strictly decreasing — in the;-direction — in the region to
the right of the planeT;,. By using this fact we show that the moving plane reaches
positiond, which permits us to prove that, in a neighbourhood 6f, the solutionu is
strictly decreasing in the direction of the outward norma  Then, having already all
the necessary information on the solution, we can show that the moving plane reache
the critical positioni,. A device due to Serrin permits us to prove thgt =0 in a
connected componet of X; . We conclude by showing that all points 87 \ 7;, are
of the symmetry type (V) (see Lemma 2.2), and by using a topological argument due tc
Fraenkel.

We divide the proof of Theorem 2 into ten steps.

STEP 1. - There exists. € R such thatw; > 0in X,, forall » > A.

Proof. —In order to simplify the presentation, we first suppose that we are in the
situation of Theorem 1, that is, hypotheses (q) and (f) are replaced by

(@) 0=A4,;
(f1) f(u, p) does not depend op, f € C1([0, o0)) and f’(0) < O.
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Sinceu tends to zero at infinity we can takes R such that. > d and

1 -
u(x) <= min a; for|x| > A,
(x) 5 ,min, @ |x]

so thatw, > % > 0 onaG?#, for alli and allx > A.
Now we can proceed in a standard way. Suppose the claim in Step 1 is false, that i
there exists a sequengg, }°>°_, such that

lim A, = oo, A, =A,

m—00

andw;,, takes negative values i, . Sincew, is zero on7; and tends to zero at infinity

for a fixed A, we see thaiv,, attains its negative minimum insids; ,, say at a point
™. Then

X .

Vw,, (x™)=0 and Aw;, (x™)>0.

On the other hand, it is clear that the functionx) = u(x*) satisfies inX, the same
equation a&. By substracting the two equations we see thiasatisfies a linear equation
of the type

AU_))L-i-b)t()(f)'l,l_))L =0 in EA (12)
for all A € R, whereb; (x) = f'(c(%, x)), with

e, x) € [minfu(x*), u(x)}, max{u(x*), u(x)}].

Sincew,, (x™) < 0, we see that & c(A,,, x™) < u(x™) and therefore lim_ o, c(A,,,
xmy) = 0. It follows thatb,,, (x™) is strictly negative for large:. Hence

0< Awy, (x™) = =by, (x™)wy, (x™) <0,

which is a contradiction.

The way to extend this argument to the general case is well-known. We sketch it here
for the sake of completeness. After substracting the two equationsafodv; and doing
some standard computations, we obtain a linear strictly elliptic equation with boundec
coefficients, in the form

9 (@i (x)3;wy) + b; (x) 9wy + c(x)w; =0, (13)

wherec(x) < 0, provided the functions (x) andv, (x) are sufficiently small. Then we
can use the weak maximum principle, as in [7], to conclude that 0 in X, for A
sufficiently large. O

Step 1 shows that the number
ro=inf{ieR|w,>0inX, forall u> A}

is well defined. It is obvious thal is finite. Notice that, by continuityw;, > 0 in ;.
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STEP 2. — We have
ou

axl
in the set{x e RY | x; > max{1o, d}}.

Proof. —Fix © > maxX\q, d}. Notice that for allx > d the setX), is connected and
regular. It follows from the strong maximum principle and Hopf's lemma, applied to
(13), that for anyx € [Ag, 00) N (d, 00), eitherw, =0 in X or w, > 0 in X, with
33% < 0 on points ofd X, at whichw; takes value zero (here and in the sequdknotes
the outward normal t6 X,).

If w, >0in X, we obtain, using the fact that, =0 on 7,

_ dw, _28u

(14)

T, axl

Ty dx1

T, .
Supose for contradiction that, = 0 in X,,. We distinguish two cases. First,uf, > 0

in X, for all A > u then, using (14) withu replaced by, we see thale”1 <0in D,.
Then we fix a poink € X, such that!"(x) N G = ¢, and obtain the contradiction

u®@) <u(@0) =u((@)") =u(F1+2(n — 20), %) < u(®)

(see Fig. 3).

Second, ifw; =0 in X, for somex > 1, we take a pointy € G such that
I'(y) NG =9 and, by using consecutive reflexions with resped t@nd 7, obtain an
unbounded sequence of points at whickakes a fixed positive value — contradiction
with (BC). O

STEP 3. — A9 < d.

Proof. —Suppose for contradiction thap > d. As explained above, eithes, , = 0
in X, orw,, > 0in X,,. First assumew,, = 0 in X;,. We can always take two points

Fig. 3. The contradictions in Steps 2 and 3.
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y,z € 3G;° such thaty; < z; andy’ = z’. Then, by Step 2(y) > u(z). However, we get

u(y) =u(y") =a1=u(z") = u(z),

becausev,, = 0.

Next, supposewv;, > 0 in X, with < 0 on points ofd X, , wherew,, = 0. By
using the minimal choice ofp we can find a sequendg,, }°>_; such that lim,_, o 1,, =
X0, Am < Ao, andw;,, takes negative values i, . Letx™ € X, be such that

Bw;LO
v

w;, (x") = min w,, (x) <O0.
XEE}Lm

Using the assumptiohg > d, we fix mg such that
e 1, —
d|St(G)"”, T)LO) > §d|st(G)‘0, T)LO) > O, (15)

for m > mo.

We distinguish two cases.

Casel. x™ eintx;, , for allm > my.

In this case a contradiction is obtained in a standard way. As in Step 1 we see
that Aw;, (x™) > 0 and Vw,,, (x') = 0. If {x"} tends to infinity we obtain a
contradiction exactly as in Step 1. If a subsequende @f} converges to a point’, then
by passing to the limit we obtait® € ; , w;,(x°) < 0 and Vw;,(x®) = 0. This means
thatx® € 9 X, andw,,(x°) = 0, so Hopf’s lemma implie¥x (x°) # 0, a contradiction.

Case2.x™ € 9, , for somem > m.

We drop the super(sub-)script, for simplicity. Sincew; = 0 on T;, we see that
x € 3G}, for somei € {1,..., k}. We infer from (15) that/;(x) belongs toD;,, for
smalls > 0.

We apply Lemma 2.2, which sayshas one of the four properties described in the
statement of this lemma. Heke> d > A,, hencex cannot be of type (IV). It cannot be
of type (lll) either, sinceG c R" \ D,. We are going to obtain a contradiction in the
remaining two cases.

First, suppose is of type (l). If I;(x) belongs toX; for smalls > 0 we consider
the directional derivativg(f’_w—g(x). By the minimal choice ok this derivative has to be
non-negative. On the other%and, it is easy to see that

31,0)L
d(—e1)

ou ou

(") < 2—(x"),

_ du
(x) = a—xl(X) + ™
by Step 2.
We are going to show th%%’;—l(x*) is non-positive. The fact thdf; (x) € X, for small
t > 0 implies(n(x"), e1) > 0 (it is a standard fact that a direction which makes an acute
angle with the inward normal to the boundary of a smooth domain enters the domain). |
is clear thatt = const ondG; implies

u

— =0, j=1...,N-1,
9&; laG,
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for any orthonormal basis, ..., £&y_1 in the tangent plane t&G;. Hence, by (BC),

ou

ou
%M = A ’ sy <0,
e ()= (), ea) 5 ()
which leads to a contradiction.
Next, still in case (1), suppose that there exists a sequence of positive nugnber9,
such thate™ :=TI; (x) € 3G}. We have

wi (x) = wy (x),

by the minimal choice ofc. On the other hand, Step 2 together with> 0 implies
u(x™) > u(x). Hence

w, (x™) =a; —u(x™) < a; — u(x) = w; (x),

a contradiction. o
Finally, if x is of type (Il), we see thaf;(x) € 3G} N D;, (sinceG* C D,,), where
t =t(x) is the number defined in Section 2.1. Hence, by Step 2,

w; () =a; —u(I(x)) < a; —u(x) = wy(x),

which contradicts the minimal choice of O

Remark 3— We can now prove Theorem 5 f6r = {x°}, wherex® € RY is such that
u(x%) = max, gy u(x) > 0. By Step 3)o < x? andw,, > 0 in X,,. By taking a moving
plane coming from the left we geb,o = 0in Ex?. To be more precise, by “a plane
coming from the left” we mean the same process of moving a hyperfarnehich
starts at. = —oo and moves as increases. The regioh; would then be defined to the
left of T;.

STEP 4. — For anyz € dG and any unit vecton, for which(n, n(z)) >0, we can find
a sufficiently small balBs(z) such that

Z—Z(;) <0 forall ¢ e Bs(z) \ G.

This statement was already used by Reichel, who established it under condition (r)
Since we do not assume this stronger condition, we have to provide a different proof.

The proof of Step 4 is the only place in Section 2.2 where we have to be careful abou
the fact that there might be more than one dom@jnWe postpone this proof for the
time being.

STEP 5. — w; > 0in X}, forany A € [Ag, 00) N (A, 00).

Proof. —In view of Steps 2 and 3 we can restrict ourselves to the kase/. By the
strong maximum principle, all we have to excludeuis= 0 in a connected component
Z of X,. Suppose for contradiction we are in this situation.
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Fig. 4. The shaded regions are the connected compone#is of

First we observe that any connected componenf ¥, satisfies
distdY N D;, T;) =0 (16)

(see Fig. 4). Indeed; is connected, s&* is also connected and henkéis a connected
component of RV \ G) \ D;. SinceR" \ G is itself connected, we see that either
contains a left neighbourhood &% or

dist(oY*\ D,, T;) = 0. (17)

The first alternative is impossible because of the fact Thabuches at least one of the
domainsG; (recall thath < d). By reflection (17) implies (16).

Now (16) permits us to take a sequene&”}>°_; C 3Z N D;, which converges to
apointz®e T, N9Z N dG. Sincexr > A,, we have(n(z“")k), e1) > 0 for sufficiently
largem, and the open segment betwegt?* andz™ belongs toBs(z°) \ G, wheres

is chosen as in Step 4. Then, by Stepu4jecreases strictly from™” to 7™, which
yields w, (™) > 0, a contradiction with the fact that, = 0 in Z. This last argument
was used by Reichel in [10].O

STEP 6. — We have

a . —
—u <0 in D)Lx \ G,
3)61

wherer* = max{ig, A,}.

Proof. —By proceeding as in Step 2, we see that this is a direct consequence of Step
and Hopf's lemma. O

STEP 7. — Ag < A,.
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Proof. —Supposéiq > 1,. By Step 5 we know thaw,, > 0 in X;,. Proceeding as in
Step 3, we find two sequencgs, >, {x™}>_,, such that

im A, =%Xo, Av<im<ro x™eX, \T,

m—0o0

andw;,,, attains its negative minimum i&;,, atx.

A number of different situations may arise. We are going to obtain a contradiction in
each of them.

Casel. There is a subsequence{af™}, such thate™ cint X, .

If lim o |x"™| = co we obtain a contradiction as in Step 1. If a subsequence of
{x™} converges to a point® which belongs to the regular part 6£;,, we obtain a
contradiction as in Case 1 of Step 3xf belongs to the singular part 6£, ,, we have
x% e T;, N 3G, so that the argument we used at the end of the proof of Step 5 implies
wy,, (x™) > 0, for m sufficiently large.

Case2. There is a subsequence{af™}, such thatt™ € 9%, .

Notice that in this cas¢x} is bounded, sincé X;,, \ T;,, is a bounded set. Fik
such that (along a subsequena#)’ € 3G;". We shall apply Lemma 2.2 to® and
reach a contradiction in all its four cases, with the help of Step 6. However, Step 6 give:s
information on the behaviour of the solution only to the righZ7pf, so we have first to
exclude the case whex™} C 9%, \ D,, (see Fig. 5). If such a subsequence exists,
thenx,, — Ao implies (along a subsequence)” — x° € T, N IG,. Then the argument
we used at the end of the proof of Step 5 leads to a contradiction.

Therefore we can assume thdt”? € G;” N D,,. We apply Lemma 2.2 ta®™. If,
for somem, the pointx™ is of type (I) we obtain a contradiction exactly as in Step 3.
Points of type (IV) are also excluded, sincg > A,.

It remains to reach a contradiction in cas®’ is of type (Il) or (lll) for all m.
Letz = t(m) be the quantity defined in Section 2.1 andA&P := I;(x"™). We treat
separately the cases whefi” belongs or not tdD;, (note that by Lemma 2.2 we only
know thatx™ € D;,, see Fig. 5).

Case2.1.x™ e D, for somem € N.

Al

e P

\

\
.

’
F---

’

.........................................

Fig. 5. The different situations in Case 2. For instance, the points on the arcs [A,B] and [C,D]
give rise to Case 2.2.
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First supposex™ is of type (ll), that is,x™ € dG;" N D,,. Then we obtain a
contradiction with the minimal choice af™, exactly as in Step 3.

Second supposeg™ is of type (lll), that isx™ € dG; N D;,. Then(n(x™), e;) > 0
(sinceiq > 1,). Thereforeu decreases strictly from™ to x (indeed, by Step 4 it
starts fromx ™ by decreasing and continues decreasing, by Step 6). HEnE®) <
u(x™) =q;, and

wy, (x™) =a; —u(x™) >0,

a contradiction (recall thab;,, is negative ak ™).

Case2.2.x™ e D,, \ D;, forall m € N.

Since x™ € 9G; U 9G}", we see that{x™} is bounded. So we can extract a
subsequence™ — x° € 4G, N Ty, = dG,° N Ty,. Then form sufficiently large the
segment between™ and its orthogonal projection ofi,, belongs toBs(x°). Step 4
implies thatx decreases on that segment. By using Step 6 to the right ove see that
u decreases on the whole segmexit”, x). Then we obtain a contradiction exactly

as in Case 2.1, for both types of points
STEP 8. — w,, = 0in at least one connected componentof.

Proof. —By Step 7,w;, > 0 in X,,. The following argument was carried out in [11].
We outline the proof for completeness.

If there existsz® € 3G N T;, such that(n(z°), e1) = 0, one can show that all first
and second order derivatives of,, vanish atz° (see [11], pp. 389-391 for detailed
computations). Then Serrin’s corner lemma (see [13]) immediately impliesthat O
in the connected component &f, whose boundary contain$.

If no suchz® exists, by the definition o, we can findz; € 3G N D;, such that
zﬁ* € G and (3(G N D,,))™ is internally tangent t&G at z7*. By (BC), w;,(z1) =0

and 313"3* (z1) = 0, so the claim of Step 8 follows from Hopf's lemmanc

STEP 9. — Let Z be a connected component®f, such thatw,, =0in Z. Then

9Z\ T, C 3G.

Proof. —We shall once more make use of Lemma 2.2. Another way of stating Step 9 is
to say that all points 0AZ \ T;, are of the symmetry type (IV). Suppose for contradiction
that there exists a pointe 9Z \ T;, (sayz € aG?*), which is not of type (IV). We are
going to obtain a contradiction in all of the remaining three cases.

The point z is not of type (I), since if it werew,,K = 0 in Z would lead to a
contradiction, exactly as in Step 3. #fis of type (II) or (lll), we set, as before,
z=I,;)(z) € D;,. Then Step 6 implies that decreases strictly on the segméntz).

In case (1) we get

ai=u(z") 2 u@ >u@ =u(z")=qa,
sincew;, > 0in X, andw;, (z) = 0. Analogously, in case (Ill) we have

a;i =u(z) > u(z) =u(™) = a.
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Step 9 follows. O
STEP 10. — Conclusion.

Proof. —Once we have proved Step 9, the conclusion is obtained via a topological
argument, due to Fraenkel and used in this setting by Reichel. Note that under conditio
(r) the previous Step 9 is obvious and is independent of all other steps.

We sketch the argument for completeness.®@et RY \ G and

X=2ZUZ*"U(@ZNG)U (02" NG°).
The setX is symmetric with respect @, , since Step 9 implies
1ZNG°CT,NG".
One may check thak is open inG¢ and hencédX C 9G. ThenG*\ X = G\ X,
which implies thatX = G¢, sinceG* is connected. O

Finally we go back to Step 4.

Proof of Step 4. We use induction with respect to First assumé = 1. If «; < 0,
Step 4 is obvious, by continuity. Hence we can assume 0, or equivalentiyVu =0

ondG. This implies|D?u| = |%| onagG.
Fix a pointz® € T, N 3G, so that

u u
dx1 @ an @)
Steps 2 and 3, together with the assumpbigrs d, imply

ou

a—xl(ﬂ(Zo)) <0,
for negativer. We conclude that
0%u 9%u
@) =-5E% <0 (18)
an? ax?

On the other hand, it is easy to compute that const andvu = 0 on G imply

div(g(IVu)Vu) lsc = g(IVu) Aulse + (V[g(IVul)], Vu)lsc = §(0) Aulyg

and
Al 92u
u = — .
G 3112 G
Hence
92 ,0
Pu_ J@0 _ st oG

an? g0
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By (18), f(a1,0) > 0. If f(as,0) > 0, Step 4 follows easily, since

9%u ( )2 9%u onaG

—=n,n)"— .

on? 7 on?

If f(ay,0) =0, we see that all first and second order derivativaswdnish ondG. This
implies that the function

ﬁ(x)_{u(x) forx e RV \ G,
R for x € G,

belongs toC?(RY) and solves the equation

Qu+ f(u,|Vul)=0 inRV,
{ﬁ}O,ﬁgéO inRRY, (19)
u(x)—>0 a&asx — 00.
However, the shape af contradicts the result for equations @V that we have
already proved (see Remark 3), which says a solution of (19) has a non-zero gradiel
everywhere, except at one point.
Suppose next that Step 4 is proved for 1 domainsG;, and consider a problem with
k domains. By Steps 5-10, Theorem 2 holds for problems kvithl domainsG;. Set

82
I:{i|ai<00r—u<00n8Gi}
on?

andJ ={1,...,k}\ I. Note that the statement of Step 4 is truefgrwith i € I.
We claim that/ is empty. Suppose this is not the case, and set

d =maxd;.
i€l

Itis clear that Step 5 can be proved for valueg afuch that. > Ag andi > max{i,, d}.
Hence, as in Step 6,

ou 0 inD \G
— < .
3)61 max{A.,d}

It follows that, if A, > d, Steps 7—10 hold with the same proofs, yielding a contradiction.
If 1. < d the moving plane reaches at least one dondajn with jo € J. As in the case
k =1, this impliesf (a;,, 0) > 0 and f(g,, 0) = 0, by the definition of/. Then, defining
the functionzz with a; replaced by:;, andG replaced byG ;,, we obtain a contradiction
with Theorem 2, in the case when there are 1 domains.

This concludes the proof of Theorem 2 far=R". 0O

Proof of Theorem 5. We now suppose that is a ball and (8) holds. Observe that
the hypotheses of Theorem 5 are sufficient to carry out the first three steps in the abov
proof. It is easy to see that Step 3 impligs< a in RV \ G. Indeed, if there exists
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x € RV \ G such thatu(x) > a, we take moving planes,,,, for y = x, and see that
has to increase strictly on the ray froto the boundand G, which is a contradiction,
sinceu =a onagG.

The rest of the proof is elementary. We know that> 0 in X for A > max{ig, A.}.
To proveig < A,, we have only to consider Case 1 in Step 7. It remains the same, since
u <ain RN\ G implies Step 4 (see for example [11]). Finally,, = 0 is obtained with
the help of a moving plane coming from the lefto

2.3. Bounded domains £2

We begin with a simple but basic observation, which permits us to treat this case ir
essentially the same way as the cése- RV.

LEMMA 2.3. - If w; =0in a connected componeftof X, then
ZNaRNaG*=0.

Proof. —At any pointz € 32 N dG,” we have
wy(z) =a; —0> 0.

COROLLARY 2.1.— If w, =0 in a connected componerit of X, then either
dist(Z, 9£2) > 0 or Z contains a neighbourhood @2 N3A(Z) in 2, where A(Z)
denotes the connected componenfafl D, containingZ.

The next three lemmas ensure the symmetr2pprovided the moving plane reaches
the critical position. .

LEMMA 2.4.— Either 8 > 0 or 8 =0 and % > 0 on 9£2. Hence the statement
of Step4 in Section2.2 is true for 2 and we can findeg > 0 such thatu > 0 in
{x € 2 | dist(x, 082) < 2s¢}.

Proof. —Sinceu > 0 in £2, we immediately see that eithgr> 0, org =0 andgi‘; >0
ondsf2. If Lemma 2.4 were false, following the proof of Step 4 of Section 2.2 we obtain
|Vu| =0 and|D?%u| = 327‘; =0 onas2. This implies that the function

—._Jux) forxef2\G,
”(’C)—{o forx e RV \ £2

belongs taC2(RY \ G) and solves (4) iR \ G. On the other hand, the result we already
proved in Section 2.2 sayshas to be strictly positive.

LEMMA 2.5. - If A € [Ag,do) andw, = 0in a connected componeftof X, which
contains a neighbourhood 6f2 N 9A(Z) in §2, theni = A, and £2 is symmetric with
respect tar;.

Proof. —Note that fori € [Ap, dp) the setS := 02 N 9A(Z) is connected and its
reflexion with respect td; is contained in2. We shall prove thas* C 352, which is
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the desired symmetry property. Set
H={zeS|z ean}.

We are going to show thadf = S. First, H is clearly not empty, since it contains the set
T, N S. Second, the sé¥ is open inS. To prove this, fix° € H ande € (0, g), such that
B.(z% N A(Z) C Z; heregg is the number from the previous lemma. By Lemma 2.4, if
z € (B:(z%9 NS\ H, thenw, (z) > 0, which implies; ¢ Z — a contradiction (see Fig. 6).
We infer thatB.(z) NS C H, that is,H is open. Finally, it is clear thaf \ H is open in

S, and we conclude thai = S.

LEMMA 2.6. — If 1o < g, thenw,, =0 in some connected componéntof X ,,
which contains a neighbourhood &2 NdA(Z) in £2.

Proof. —To constructZ such thatw,, = 0 in Z we repeat the proof of Step 8,
Section 2.2. Then it is obvious from the construction tli&d N 92 £ ¥, and
Corollary 2.1 yields Lemma 2.6.0

Proof of Theorem 2 (bounded domains)/e shall only sketch this proof, as all its
ingredients have already appeared above. We adapt the proof in Section 2.2 to the ca
of a bounded domaif®. Step 1 is again the initialising step, in which we now prove that
wy = 0in X, for A smaller, but sufficiently close tdg, (this is easy, by using the fact
that the maximum principle holds for any linear strictly elliptic operator with bounded
coefficients, provided the measure of the domain is sufficiently small). Step 2 is the
same, since Corollary 2.1 and Lemma 2.5 prevent 0 in a connected component of
X, and, in particular, in a right neighbourhood Bf, for A > max{d, Ag, A.}. By using
this fact, we can prove (as in Step 3) that< maxXd, L}, replacing the convergence
to infinity of {x"} by convergence td£2. It is important to note that the poins™
can neither lie or§$2 (sincew; > 0 there), nor tend to a point a2 N aG} (since
w, = a; > 0 at such points). The only difference with Step 3 is that ljef®} may tend
to a point ond$2 N T;. In this case we obtain a contradiction by using Lemma 2.4 and
the argument at the end of Step 5.

Theorem 6 is already proved, since we can always suppose that we have? = d
(if necessary, take a moving plane coming from the left). This means that the moving
plane reaches the critical positicty,, so Lemmas 2.5 and 2.6 permit us to obtain
Theorem 6.

Fig. 6. The contradiction in Lemma 2.5.



B. SIRAKOV / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 135-156 155

There are no other modifications in Steps 4—7, from which we infer tgat
maxiq, Al If Ao > A,, then it follows from Lemmas 2.5 and 2.6 th@tis symmetric
with respect to7;,. By applying the argument in Steps 9-10 to the Zegiven by
Lemma 2.6, we see thak is also symmetric (note that the symmetry @f implies
G*2 C ). If A, > Lg, as in Steps 8-9 we obtain,, = 0 in a connected compone#t
of X;,,suchthab Z\ T;,, C dG. Sinces2 \ G is connected, we can repeat the topological
argument in Step 10 to conclude that\ G is symmetric. O

Proof of Theorem 5. H# G is a ball, as in Section 2.2 we obtain< a in 2 \ G. If
£2 is a ball andr, > Lo, we obtain a contradiction as in the last proofijf< Ao, we
consider a moving plane coming from the lefto
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