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ABSTRACT. — We study the minima of the functionfl}, /(Vu). The functionf is not convex,
the setQ2 is a domain inR? and the minimum is sought over all convex functions@mwith
values in a given bounded interval. We prove that a minimuis almost everywhere ‘on the
boundary of convexity’, in the sense that there exists no open set on wligcstrictly convex.
In particular, wherever the Gaussian curvature is finite, it is zero.

An important application of this result is the problem of the body of least resistance as
formulated by Newton (wherg(p) = 1/(1+ | p|?) andQ is a ball), implying that the minimizer
is not radially symmetric. This generalizes a result in [1].
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On examine les minimums d’une fonctionnelle de la forfgef (Vu) ou f n'est
pas convexe ef est un domaine borné de?, 'ensemble des fonctions admissiblegtant
restreint aux fonctions convexes a valeurs dans un intervalle fixé. On démontre que ces minimun
sont presque partout a la limite de la convexité, en ce sens qu'il n'existe pas d'ouvert ou ils
sont strictement convexes. En particulier, aux points ou leurs graphes possédent une courbt
gaussienne finie, celle-ci est nulle.

Ce résultat s'appligue notamment au probleme de la résistance minimale de Newton (o
f(p) =1/(1 + |p|?® et Q est une boule). Il implique que le minimum n’est pas a symétrie
radiale, généralisant ainsi le résultat de [1].

© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

1.1. Newton's problem

The problem of the body of minimal resistance was introduced by Sir Isaac Newton
in Principia Mathematicd9,4] and his treatment has generally become known as one of
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the first examples of variational calculus. The problem can be stated mathematically it
the following way: let2 be a given domain (an open connected seBinand minimize

dx
.Q/l+|Vu(x)|2 @)

(where|p|? = p? + p? is the Euclidean norm) over the s€, of convex functions:
defined onQ2 that are bounded above and below by constants OMine 0. Here the
graph ofu is the shape of the body whose resistance is estimated by (1) under som
simple physical assumptions. We refer the reader to [2] for a more detailed presentatio
of this problem, and some alternative ways to state it. It is also proved in [2] that the
minimum is attained.

Newton computed a minimizing functiom,q When 2 is a circular disc, assuming
radial symmetry of the minimizer. Indeed, since the problem is invariant under rotation,
one might reasonably expect that a minimizer has the same invariance. However, |
was recently proved [1] that this function only minimizes (1) in the set of radially
symmetric functions. This is related to the non-convex nature of (1), due to the fact tha
the Hessian matrix of the functiop € R? — (1 + |p|»~! has a negative eigenvalue
at every point; there is a ‘non-radial’ direction atq4 in which (1) has a negative
second variation. Therefore we can achieve a lower value of the functional with non-
radial functions. In particular it follows that the minimizers on a disc are not unique.
Incidentally, P. Guasoni [5] has exhibited a non-radial function which achieves a lower
value of the functional fols > 1.88.

Unfortunately, the argument given in [1] provides no information on the shape of
the minimizers other than the lack of radial symmetry. It has been conjectured by
H. Berestycki that the minimizers could be ‘affine by parts’. This conjecture arises from
the following result:

LEMMA 1 [1, Remark 3.4]. —Assume that is of classC? in  C Q and satisfies
detd?u > 0in w. Thenu is not a minimizer ofl).

Proof. —The proof of this lemma is given in [1]; since it provides an insightful
introduction to the results of this paper, we briefly describe the argument.

The crucial observation is thatis ‘interior’ to the setCy,, in the sense that for any
function ¢ € C?(w), the two functionsu & e¢ both belong toCy, if ¢ > 0 is small
enough. Therefore, if we assume thas a minimum, them satisfies the Euler equation

divdf(Vu) =0 inw, 2)

wheref(p) .= (1+ |p|®»~%, as well as

/' B2 (Vu)Vep - Vep > 0, 3)

for all ¢ € C2(w). The idea is now to consider a functignwhose gradient is mainly
oriented in the negative direction of the matiXf (Vu). Indeed, ifw is a sufficiently
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small set, we can assume that the matrig€s (Vu)(x)}.c, have a common negative
direction. Supposing this direction to be along the first coordinate axis, we choose
@ (x1, x2) := n(x) sin(nx;) wheren € C?(w) is a fixed function and: is a sufficiently
large number. It is now easy to verify that there is a contradiction with (8).

This lemma strongly suggests that in some sense a minimizehould satisfy
detd?u = 0. Unfortunately, theC?-requirement is very strong, and nothing indicates
that it is actually satisfied by a minimizer of Newton’s problem. Even the radial solution
is only smooth by parts (it has a flat circular zone where it is minimal, and the gradient is
not continuous on its boundary). Moreover, ‘most’ convex functions are of classd
strictly convex, but ‘almost none’ of them a€#, in the sense of Baire category (see for
instance [13,14] and the references cited there). Since there is no regularizing effect i
this sort of problems (see [7]), there is little hope that the minimizer is of ¢ldss

Hence it is not clear what generalization of dé&i = 0 should hold for minimizers.

We should note that the condition @& = 0, even if it makes sense in some open subset
o C 2, does not imply that is affine. It only indicates that the graphhas vanishing
Gauss curvature; heneaecould also be (locally) cylindrical or conical.

In this paper we investigate this question and prove that minimizers cannot be strictly
convex in any open subset. (Throughout the papeis ‘strictly convex inw’ means
Vx,yew,Vte€(0,1), x#y = u(tx+ (1 —1)y) <tulx) + (1 —1u(y).)

As we remarked above, this behaviour is very unusual for a convex function, since
‘most’ convex functions are of clags® and strictly convex. Note that this result contains
the statement of Lemma 1.

1.2. Thegeneral problem

We consider the problem
inf / F(Vu)dx, 4)
ueC
Q

whereQ c R? is an open bounded domaifi, R> — R, is a given nonnegative smooth
function, and

C:={u:Q—[0,1]; u convex. (5)

This corresponds to the problem of the body of least resistance as stated above |
changingu to u/M and settingf (p) = 1/(M? + |p|?). Since the se€ is compact in
the HL.(2) topology [2] andf is bounded from below, the minimum is always attained.

If f is convex or concave, the problem has already been studied in [7] with a genera
constraint of the form (7). It is proved there thaki=u on 92, then the minimizer is
equal to eithewu or @, when these functions are convex. It was already explained in [7]
that this sort of problem cannot be studied through the usual methods of the calculus ¢
variations, due to the convexity constraint @nin particular there is no ‘regularizing
effect’ even if f is convex.

In this paper we are interested in the case whgris not convex but need not be
concave either: the Hessian matkf has at least one negative eigenvalue. If this is true
for every p in some subsep of R? then we callf nowhere convein Q. As remarked
before, the functiorp — 1/(1+ |p|?) considered by Newton is nowhere convexiif
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For technical reasons we have to sharpen this assumption and assurfisatiafies
Hypothesis (H) on a se® c R?:

HypPoTHESIS(H). —Forall V € Q and all W € R?,
dPfVIW-W=0=d3fF(V)W-W-W = W=0.

It is easy to verify that this condition is satisfied ®? in the particular case
f(p) =1/(M? + |p|?. Note that this hypothesis is used only in step 3 of the proof
of Lemma 5.

1.3. Statement of main results

Let us recall that a convex functianis almost everywhere twice differentiable in its
domain; moreover, it is actually of clag8 on the set dorfVu) where it is differentiable
(see for instance [11], Theorem 25.5) Alfc €2, we will note byVu(A) the image set of
A under the map — Vu(x), for thosex € A where it is defined. We write conv for
the convex hull ofA.

Our main theorem is as follows:

THEOREM 1. —Letu be a minimizer of Probler4), and letQ2; be an open convex
subset of2. If f is nowhere convex and satisfies Hypoth€sison convVu(R2;), then
u is not strictly convex of2;.

Note that this implies that the graph efcontains at least one straight line segment
in Q1; by repeated application of this theorem it follows that there is a dense collection
of line segments in the graph.

The proof of this statement will follow in Section 4. Let us first give some important
consequences of this theorem.

First of all let us apply this result to the ‘classical’ problem as studied by Newton:

COROLLARY 2.—-Let M > 0 and f(p) = 1/(M? + |p|?), and letQ; be an open
subset of2. If u solves Problenf4), thenu is not strictly convex irf2.

Observe that the radial minimizer calculated by Newton (which is strictly convex on
a subset of the ball) cannot be a minimizer of (4), and consequently the minimizer of (4)
is not radially symmetric. As mentioned before, this was already proved in [1] by a
different argument.

Secondly, here is an alternative statement of Theorem 1:

COROLLARY 3. —Under the conditions of the theoremgite C°(Q) is strictly convex
in some open subset ©f, thenu — ¢ is not convex.

(This follows from the theorem by observing thatgifis strictly convex in an open
setQq, andu — ¢ is convex, then: is strictly convex inQ2,.) Hence,u is an ‘almost
extremal’ point ofC, considered as a convex subset of the set of functithis?).

It can be proved that if is a minimizer, then the sets

No:={x€Q;u(x)=0} (6)
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and{x € Q; u(x) = 1} are non-empty; the latter is included in the boundarg2otiue to

convexity. In the following, we do not examine the behaviour ofearN, nor the shape

of this set, sincex is not strictly convex in its interior; this question is studied in [8].
As a consequence, one can easily generalize the consiréinte [0, 1]’ to

u(x) <wu(x) <ux), (7)

whereu, u are arbitrary functions (provided there exists at least one convex function
satisfying (7)). In that casely is simply the set where equality is attained in one
side of (7), and the theorem still holdsuf z are affine functions, or if for instance
Q1N Ng=0.

More generally, the reader should note that in all the following the conditiefi0, 1]
is not taken into account. This is permitted by the fact that we consider restrictians of
to smaller setgo compactly embedded if2,, and therefore we haue e [¢, 1 — ¢] for
somee > 0. We do not recall this in each instance.

2. On convex functions

Let us recall some well-known properties of convex functiongkdpand give some
definitions. Most of these can be found in classic texts such as [11,12].

We will denote by aff p, s] the affine function: — p - x — s, wherep € R? ands € R
are given and is the conventional inner product &?.

A convex functionu on Q is continuous orf2, and twice differentiable on a dense
subset of2. We will denote domiVu) the set on which is once differentiable; in fact,
Vu is continuous on doiiVu).

The subdifferentiabu generalizes the gradieRt, and is defined for alt € @ as the
set of all slopes of tangent planesxat.e. p € du(xp) if there existss € R such that

aff[p, s1(xo) =u(xo) and affp,sl(x) <u(x) V.

For everyx € Q, du(x) is a closed convex subset &, and forx € dom(Vu) we have
du(x) = {Vu(x)}. We will not insist on the difference between a singlet®h (x)} and
its valueVu(x), and if A C 2, thendu(A) is understood to signify), ., du(x). If A'is
an open convex set, then we have the prop&#yd) = convVu(A) [11, Theorem 25.6].

The second derivative or Hessian mat/fu and its determinant détu are defined
on Q as Radon measures [3].

If p e R?is given, there exists a unique numbei p) such that: > aff[p, u*(p)],
with equality at least in one point. Indeed we have

u*(p)=supp-x —u(x)], (8)

xeQ

which is called theconjugateof u. We also have:

u(x) = max aff[p, u*(p)](x) = max aff[p, u*(p)] (x) 9)
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since doniVu) is dense irf2. It is convenient to introduce an additional notation: is
differentiable atcy € 2, define

nlu, xol = aff[p, u*(p)], with p=Vu(xo).

An exposed poinbf a convex bodyC is a pointX € aC such that there exists a
supporting hyperplane througki that only intersect€C in X (see [11, p. 162]). An
exposed point has the property that a small parallel displacement of the hyperplane leac
to a small intersection witlt". In the context of convex functions: 2 — R we shall
call x € Q2 an exposed point ik = (x, u(x)) is an exposed point of the graphafNote
that for any convex open subsetcC Q,

everyx € w is exposed<——> u is strictly convex inw. (20)

Applying the conjugation operator twice to a convex functioreturns the original
function v: v** = v. If v is not convex, then the convex functiarf* is called the
I'-regularization ofv. It is the largest convex function less than or equalvtoor
equivalently the supremum of all affine functions less than or equal to

Most of the functions we deal with in this paper are not define®®but on bounded
sets. We implicitly extend such functions by assigning the vatueutside of the domain
of definition. For such functions an alternative convex regularization will be useful,
defined by

v* =sup{x[v, y]: y edom(Vv) N Q}.

On , v* andv*™* coincide; onR? \ 2, however, ifv € WH*(Q), thenv” takes finite
values, whilev** equals infinity.

In the proofs that follow we use the following perturbation scheme: for a convex
functionu and a perturbatiof (not necessarily convex), we define

U, =u-+e¢h.

This function is generally not convex, and we therefore regularize it toimgive (u,)”.
The following lemma states some important properties of this perturbation. Here anc
throughout this paper a ‘measure’ will be the Lebesgue measure unless specifie
otherwise; the Lebesgue measure of asét denotedw|. We also define|v||H3<Q) =

Vv ||L2<sz)-

LEMMA 2.—Letu:Q’ — R be strictly convex, and lét € W1>°(Q’) have compact
support inQ'. Let . be the union of all open sets @’ on which# is convex, and
suppose that’ \ Q.| =0. Setu, = u + ¢h, u, = (u,)*, and definer, by u, = u + ¢h,.

(1) The setw, = {x € Q": u.(x) # u.(x)} is compactly included i’ if ¢ is small

enough;

(2) lim,_o |we| = 0;

Q) lue — ﬁa”cg(g/) =0(¢) ase — 0,

4) lu: — ﬁgugg(g,) =0(¢) ase — 0.
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Remark— In part 4 one would expect that the optimal convergence ratés$) Qor
possibly @g?), in view of 3), but our attemps to prove this have been unsuccessful.
A result of this type, however, would simplify the proof of Theorem 1 considerably.

Proof. —To prove part 1, we consider any open satsuch that supp € Q1 € '.
We define

u=sup{mfu; yl: y e domVu) N Q" \ Q1}.

Sinceu is strictly convex, we have > u in 1, hence there exists a numhes 0 such
thatu > u + ¢ in supph. If |g] < ¢/||h||L~ thenu, > u in supph; sinceu is a convex
function satisfyingu < u, < u in ', we haveu < (u,)* <u in Q. These inequalities
reduce to equalities of?” \ 1, and it follows that2, C ;.

For part 2, pickx € Q2. where bothu and & are differentiable. We will prove that
x ¢ w, if ¢ is small enough. The assertion follows from this result by remarking that the
characteristic functiory,, tends to zero a.e., so that

|a)5|=/xw€—>0 ase — 0.
Q/

By the strict convexity oft, x is an exposed point; singe. is open there existé> 0
such that the set

As={ye Q" u(y) <mlu;x](y) + 8}
is included in2.. Subsequently, |2~ ) < §/2, then the set

{yeQ:u.(y) <mlu; x1(y) +8/2}

is included inA;. Note that sincey, is strictly convex inAgs, m[u,; x] > u, in As \ {x}.
SinceVu,(x) — Vu(x) ase — 0, we can choose so small that

Hﬂ'[l/lg, x] - 7T[M, x]HLOO(Q/) <

5.
Now for all y € Q' \ As,

1)
ug(y) — wlue; x1(y) > up(y) — mlu, x1(y) — 52 0,
so thatr[u,; x] > u, outsideAs. Henceu, (x) = u.(x) and we have: ¢ w,. This proves
part 2.
For part 3 we first show that because of the strict convexity thiere exists a function
y [0, o0) — R, satisfyingy (r) > 0 if r > 0, such that

u(x) = u(xg) + p - (x —xo) +y (Ix — xol), (11)

forall x, xg € Q" and allp € du(xg). This follows from an argumeratd absurdumif this
were not the case, then we can find, using the compactne®s of, xo € Q/, x # xo,
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andp € du(xp), such that
u(x) =u(xo) + p - (x — xo).

This implies a contradiction with the strict convexity ofin '. Note thaty (r) < Mr

for smallr, for someM > 0. For convenience we shall also assume tha monotone

increasing and invertible near the origin. This can be achieved without loss of generality
Suppose thak, (x) — h(x) is maximized atc = xq. If we write u, as

Us(xo) =sup{p-xo+a: p-x+a<u.(x), Vx e Q'},
then we find
he(x0) — h(xo)
1 , 1
:SUp{p -xg+a— —u(xg) —h(xg): Vx e, p-x+a——ulx)—h(x) <O}.
€ €
By making the particular choicep € du(xg) and applying (11) we find
1
he(xg) — h(xg) = Sup{a —h(x0): Vx € 2, a— =y (Ix —xo0l) — h(x) < 0}.
€

If the inequality in the conditional part is saturatedvat xq, i.e.a — y (Jxy — xo|) /e —
h(x1) =0, then

¥ (Ix1 — xol) = & (h(xo) — h(x1)),

so thatx; — xo < ¥ ~X(e||h||L~); by re-inserting this in the equation above we find that
v (Ix1 — xol) < gllhllywrey ~*(ellh] L) and thus

1
0> he(x0) = h(xo) > Z (11 = Xol) + h(x1) = h(xo) < Cy ™ (ellhll 1)
Sinceh, — h is supposed to be maximal at= xo, we therefore have
llue — IZSHCS(Q’) =¢|lh, — h”CS(Q’) =o0(¢) ase— 0.

For part 4, we note that sincAu, and Au, are bounded in the space of Radon
measureR M ('), we therefore have

”1’78 - us”i]l(g) = /(1/78 —u) AU, —u,)

A(ue

<lue — Ms”cg(gz') - us)HRM(Q')

and this last term is of orden®). O

3. Regularity of the minimizers

We turn to the study of properties of the minimizers iof If « is convex, the set
of limits of du(x) asx — xg (or, equivalently, ofVu(x) for thosex for which this is
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defined) is the boundary of the subdifferentiad(xo) [11, Corollary 25.4.1]. We will
denote this boundar§[dou(xg)]. As mentioned above, the subdifferential is a singleton
if and only if u is differentiable atv,.

For givenxg €  we define polar coordinates with centey, that isr = |x — x|,
¢ = arg(x — xg), SO thatu(x) = u(xg) + rg(¢) + o(r) for some continuous function
g:St — R. Denoting (e,, e4) the varying orthonormal basis at # xo (such that
e, = (x — xg)/r), we defineV (¢) as the limit of Vu(xg + te,(¢)), ast > 0 goes to
zero @ € S* fixed). Expressed differentlyy (¢) is the gradient atq + re, (¢), for any
t > 0, of the convex functiorii (x) := u(xg) + rg(¢) whose graph is the tangent cone
of the graph ofu at xo (note thati < u by the convexity ofu). Therefore we have
V(p) =g(@)e (¢) + &' (d)eys(¢). Alittle calculation indicates that the convexity fis
caracterized by the property+ ¢g” > 0 in the sense of distributions d.

The mapg € S* — V(¢) is a partial parametrization @fdu(xo)] (the parametriza-
tion is incomplete wherevey is discontinuous, and non-injective wheneweis con-
stant). The functiorV is constant if and only ifi is differentiable atx,.

We first derive a simple consequence of the minimisation.

LEMMA 3.—Letu be a minimizer of4), and suppose thalu(xg) has non-empty
interior. We define the functiog as described above. Léf, C C°(S') be the set of
functionsh satisfyingh < g andz + A" > 0 in distributional sense. Then

. h . h/ _ - /
heH, Og/f( e+ ey) = flger +8'ey) 12)
s1

(g —h)?

Moreover, if V is discontinuous atpg € S, with left and right limitsV; := V (¢o—),
Va2 :=V(¢o+), then

Vie[0,1], f(tVi+@A—0)Va) =tf(V)+ 1 —1)f(Va). (13)

Proof. —We prove (12) only for: < g; the more general case follows from a density
argument, taking into account that, siné&(xg) has non-empty interior, there exists a
dense subset of such functiohsn H,.

Let us choosé: € H,, h < g; we defined(x) := u(xo) + rh(¢) in polar coordinates.
Sinceh +h” > 0, 0 is convex, and (x) < i (x) < u(x) for all x #£ xo.

Therefore, for any > 0 small enough, the function := max(u, v + &) is convex,
and coincides withy except in a small neighbourhood of a set{r < o (¢, ¢)} in
polar coordinates; inside this set, we haWe = Vi = he, + h'e;. Note thato (¢, ¢) =
e/(g(¢) — h(p)) + o(e) ase — 0. Also, sinceu(xg) € (0, 1) by assumption, we have
v(x) € [0, 1] for all x if ¢ > 0 is small enough. HencB(v) > F(u), that is

o)
0< / / [f(he, +h'ey) — f(Vu(r,$))| rdrde¢

st 0

<6’ / / [/ (he, +1ey) — f(Vu(es, §))] s ds de +0(e?)
g1 0
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using the change of variable:= ¢s. Since this holds for any > 0 small enough, we
can divide bys2 and lets tend to O; the termnVu(es, ¢) converges td/ (¢) = ge, + g'e,
and f (he, + h'ey) does not change. We integratés to obtain (12).

We now turn to the proof of (13). We write™ := g'(¢o+) andy ~ := g'(¢o—) for
the right and left derivative of at ¢, and consider any numbere (y—, y™); let

Vo := g(go)e, + aey (o), andg,(¢) := g(¢o) COSp — o) + a Sin(¢ — ¢o). The convex
functionw, (r, ¢) := u(xo) +rg.(¢) is in fact an affine function (sincg, + g/ = 0) with
gradientV,; moreover, by the choice af, g, (¢) < g(¢) for any¢ # ¢o, or equivalently,
ﬁ(x) > Vg (x) for anyx ¢ X0+ R+er (¢0)

We picke > 0 and define

h:= max((l —€)8a» %)

There existy,, B, € S* such that: = (1 —¢)g, in (o, B,), andh = g/2 in (B, o). We

have lim_.oo, # ¢o # liMm._.0 B:.
Let us now apply (12) té. The function

f(he, +h'ey) — f(ge, + g'ey)
(g —h)?

becomes infinite neagy ase — 0; more precisely, fop € (¢o, B:) we have

f((l_ S)Va) - f(ger +g/€¢)
(g — 8a + gga)z .

8(¢) :=

5(p) =

To estimate this term for smadl we note that ifa, b, andc are continuous functions
andb is continuously differentiable, satisfyirig0) = 0, 5'(0) # 0, andc(0) # 0, then

a(x)dx . a(0)
) (b(x) + ec(x))2 &b’ (0)c(0)

+0(1/e) ase— 0.

Hence, for smalk:

Be
/5 _LUOD S0

e glgo) (yt—a)

Similarly,

795 _ 1)~ f(V)

ST e g0 —a)

We recall that/; 6 > 0, hence in particular the dominant terms must have nonnegative
sum. This gives:

+0(1/¢).

fVa) = f(V2) S fVa) — f(Vy)
yt—a) = (v -a
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which is equivalent to (13) for an appropriate choice.d@y varyinga the result follows
forallr€[0,1]. O

We continue by studying the character &f in a particular case. The following
technical lemma uses techniques similar to the previous ones, but will be needed only i
Section 5. Note that the saf; is defined in (6).

LEMMA 4.—Let u be a minimizer ofF, and suppose thadivdf(Vu) =0 (in a
distributional senspon a subsef2’ C Q2 \ No whereu is stricly convex. Assume that
du(xp) has non-empty interior for someg € ', and that there exists a neighborhood
0 of du(xg) such thatf has a strictly positive eigenvalu@nd a strictly negative one,
since f is nowhere convéxand

N {5 €R?; d2f(p)s -§ <O} #0. (14)

peQ

Then the limit gradient field” has at least two discontinuities i§t. Moreover, at every
discontinuity we have not on{it3), but also

[df (VD) —df (Va)] - (Vi— Vo) =0. (15)

Note that the condition (14) is satisfied if the diametebfxy) is small enough.

Proof. —By the hypothesis, for alp € Q, there exist linearly independent vectors
q1(p), g2(p) of unit length, depending smoothly gn such thati? f (p) - ¢; (p) - qi (p) =
0 fori =1, 2. By (14), there exist two closed convex corésc R? such thaiy; (Q) C
K;andKiNK,=K1N (—K5) ={0}.

We fix a pointxg as the origin of coordinates; subtracting an affine function from
(and translatingf), we may assume that(0) =0, and thaty attains a minimum at
x = 0 (this is a strict minimum since is strictly convex). We will use polar coordinates
with respect to the center @::= |x|, ¢ := argx € S*. As in the proof of Lemma 3,
(e, (@), e4(¢)) is alocal orthonormal basis, atl(¢) is the limit, asr — 0 of Vu(re,);
this limit is not constant with respect go(since otherwise would be differentiable at 0
[11, Theorem 25.2]). We havB(¢) = g(d)e, + &' (¢)ey.

By a blow-up argument very similar to that used in the proof of Lemma 3 it follows
that the functioni(x) := u(xo) + rg(¢) again satisfies (27), i.e.

divdf (Vi) =0

in a distributional (or measure-) senseRA. For any¢ € S* such thatV is continuous
at ¢, this reduces to

d’f(V(¢))-V'(¢)-ep=0 (16)
and if V has a discontinuity ap, then

[df (Vi) —df (V($—))] - (V(g+) — V($—)) =0. 17)

This last equation gives (15).
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First suppose thaV is a continuous function op on some connected partc S*
having nonempty interior, implying by convexity thét g’ € W11(J). We claim thatV
is constant in/. Indeed, using/’ = (g + g")ey, We have

(g(@)+¢" (@) d’F(V(9))-e5-e,=0 foraegel.

Therefore, for almost ah € J, eitherV'(¢) =0, orey € {+4q1(V($)), =q2(V (¢))}. We
can writeJ as a disjoint union

J=ATUA] UAJ UA; UB,

such thate, = £¢; (V(¢)) in J if and only if ¢ € A¥. Note that by continuity the sets
AF are closed inv.

The setsAi are connected parts of (it is convenient to write them as intervals).
Indeed, ifg1, ¢o € AT, then

either [¢1, g2l N AL =[d1,¢2l N AT =0
or [¢2, p11N AL =2, 11N A7 =0 (18)

(note that both[¢1, ¢o] and [¢., ¢1] are intervals inS?). This follows from the
monotonicity of e, and the disjoint nature of the conds. Now, without loss of
generality, suppose that the first of (18) is true. SiAgeis closed, ifB N [¢1, 2] # ¥,
then there exists, ¢4 € A7, With [¢s, da]l C (¢1, ¢2), such that(gs, ¢4) C B. On
(¢3, Pa), ey & {£q1(V(9)), £q2(V ()} and thereforeV’ = 0, so thatg(V(¢3)) =
q1(V(¢a)). But sincegps # ¢a, We haveey, # eg4,, Which contradicts the assumption
thatgs, ¢4 € A‘f. ThereforeA‘f, and in a similar manner the othﬂyfk, are connected.

Let us also observe that some of these sets can have empty interior; if they all do, the
V' =0a.e. inJ, andV is constant, and our claim is proved. So, assumehaB has
non-empty interior; we will prove a contradiction.

We note thag + g” > 0 in the interior of every intervah?. Indeed, if we assume for
instance thati] has non-empty interior, we have hetg= +¢1(V (¢)) for all ¢ € A7,
from its definition, and therefore,

d d

1= €4 AN %6(1) =€y VAN £CI1(V(¢))

=es AVqL(V(9) - V'($) = (g +8") e AVqi(V(9)) - ey,

implying thatg 4+ ¢” > const > 0.

Let h:S* — R be a function inH,, as defined in Lemma 3. In particular, we can
chooseh in the form#h := (1 — go)g, with ¢ > 0 small ando € C%(S1), o > 0, having
a derivative with compact support in the interior.of, B; since the derivatives af are
bounded, ang + g” > 0 in the interior of/ \ B, we havei + 4" > 0 in S* for small
enoughe.

Developing (12) with respect toyields

/dzf(vw)))(er +k(@)ey) - (e + k(@)ey) d >0 (19)
Sl
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with

k@) =78 )= T+ L9
og o 4

(the first-order term vanishes by (16)). Recall tHaf (V (¢))e, - e, = 0 in the interior
of J\ B; hence (19) implies

2 [[@r(v@)es-eZdp =1,

J\B
Lo=- [ @£ (V@) (er + %%) : (er + gged)) dg.
Sl

Note that the right-hand sidg does not depend an. We choose’ /o close to the sum
of two Dirac measures, by considering &lose to a step function (we cannot have only
one Dirac, by the periodicity of); it follows thatd?f (V (¢))e, - e, = ¢ = const in the
interior of J \ B. Takingd?f(V (¢))e, - e = 0 into account, we geaf?f(V)e, = ce,
in J \ B (note that althoughy \ B is not connected, the constants the same for each
connected part).

For any functionk € C%($?), a short computation gives

[df (V()) - (ke, +Key)] =ck(g+g") + (k+k)df (V) - e,

in J \ B, and also inB whereg + g” = 0. Since the variation o¥ is assumed to be
small, df (V) - e, must change sign ift, and hence we can choose a functiop 0
such that the sign of + k" coincides with the sign oflf (V) - e,. This choice ofk
renders the right-hand side of the last equation nonnegative, contradicting the periodicit
of df (V(¢)) - (ke, +K'ey).

This ends the proof of our claim, thatlif is continuous on any connected part S?,
then it is just constant oi.

As a consequence, and since by assumpitias not constant ir§*, we conclude that
V is not continuous, and has at least two discontinuitie$tin 0

4. Proof of Theorem 1

The proof of the main theorem of this paper, Theorem 1, is based on the following
instability result. It conveys the property that a minimizer can not be a stationary point
and strictly convex at the same time.

LEMMA 5. —Letu minimizeF and suppose that is strictly convex in a convex open
subset; C Q. Then there exists a convex polyhedral functiol2 — R such that

wyg={x €Q: ux) <6(x)} (20)

is non-empty and included 4, and such that

/df(Vu)V(u —0)<0.
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A convex polyhedral function is the pointwise supremum of a finite number of affine
functions.

We defer the proof of this lemma to the next section, and continue first with the proof
of Theorem 1, assuming for the moment that this lemma is proved.

Suppose that is strictly convex inQ2;, and letd be the polyhedral function given by
Lemma 5. We write simply» for the corresponding se,. Set¢ :=u — 6 in @, and
extendg outside ofw by zero. Define foe > 0 the functions

u.=u+e¢p and u, = (u,)".
Note that ife is small, then by Lemma 2 the set
o, ={x €Q;u.(x) <uc(x)}

is compactly included irf21, and the Lebesgue measureagftends to zero as — 0.
Thereforeu, is admissible ifs is small enough.
We find on applying a Taylor series expansionfi@t u,

F(iis) — F(u) = dF () (i; — u) + O([|V (ils — u) |32 (21)
The last term, Q|V (i, — u)||%2(9)), is of order @¢) by Lemma 2, part 4.
The first term on the right-hand side of (21) is split into two parts:

dF (u)(ue —u) =dF(u)(u; —ue) +dFu)(ue —u)
=dF(u)(u, —u,) +edF(u)o. (22)

The second of these two is of ordesince by the choice df we haved F (u)¢ < 0.
To estimate the first term we note that

(dF )i, — )] = ‘ [ar v, -
Q

_ ‘ /(178 —u) divdf (Vu)
Q
< MHdZL‘HRM(sz)”’;S - ”SHCS(Q)’
whereM is a bound on the second derivati&f . Therefore we have
dF (u) (i — u;) = 0(e), (23)

using Lemma 2, part 3.
By combining estimates (21) and (23) with (22) we find

F(ue) — F(u) < —ce

for somec > 0, which contradicts the minimality of. O
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5. Theinstability lemma

We continue with the proof of Lemma 5, which we repeat here for convenience:

LEMMA 5. —Letu minimizeF and suppose that is strictly convex in a convex open
subset2; C Q. Then there exists a convex polyhedral functiol2 — R such that

wy ={x €Q: ux) <6(x)} (24)

is non-empty and included 4, and such that

/df(Vu)V(u —0)<0.

The proof of this lemma relies strongly on a simple density property of the vector
space generated by the ‘caps’ of a given strictly convex function, which can be expresse
as follows:

LEMMA 6.—Let Q; C R? be a convex domain;:Q; — R be strictly convex. Let
©® be the set of all convex polyhedral functioghsuch that the seb, defined by(24)
is non-empty and included ifq; for each6 € ®, we consider the ‘cap’ function
Yo := (0 —u), € C3(Q1) (the set of continuous functions vanishing on the boundary
Then the vector field generated by these functions is deng® ;) (in the usual
C° topology.

Proof. —Note that® is not empty since2; consists of exposed points afby (10).
Therefore, ifxg € 21 N dom(Vu) is given, any affine functiom [u; xg] + ¢ is in ©, if
¢ > 0 is small enough.

We denoteE := Vect{y;}sco the (algebraic) vector field generated ®y and E its
closure. We have to prove th@ = CJ(Q;); in order to do that, it suffices to prove
that £ is a lattice and separates points, in view of the Kakutani—Krein theorem (see for
instance [10, p. 104]). We recall that a lattice is a subset%fhat is stable under the
min and max operations.

If 61,0, are given in®, then #; := max(64, 6,) is a convex polyhedral function;
moreoverwy, = wy, U wy, IS Non-empty and included if2;, so thatd; € ®. In addition
03 > 61, so thatw,, containsw,, and therefore is not empty; this implies tidgte ©. We
now have

V63 = max(o’ 63 - M) = max(oa max(el —Uu, 92 - l/l)) = max()/el’ VGZ)-
HencekE is stable under the max operation, and thereforis also stable. On | the other
hand, if f, g € E are given, then mi(Y, g) = f + ¢ — max(f, g) belongs toE. This
proves thaiE is a lattice.
It is easy to see thdf separates points; indeed, even the smaller subset

{vs ; 0 € O affing}

separates points sineeis strictly convex. 0O
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Proof of Lemma 5. Fhe proof proceeds in five steps.

Stepl. For every € @, [, df (Vu)V(u —6) <0.

Indeed, suppose thdt, df (Vu)V(u —6) > 0 for somed. Define¢ = u — 6 on wy,
and extendp by zero outside ofys. The function

U =U—EQ

is admissible if 0< ¢ < 1. Using the Taylor expansion

f(p) = f(po) +df (po)(p — po) + &(po, P)(P — Po) - (P — Po), (25)
whereg : R? x R? — R?*? is bounded on compact subsets, we find

F(u,) — F(u) = —e/df(Vu)V¢ +82/g(Vu, Vu Ve - V.

Clearly this contradicts the minimality afwhene is small.
Step2. If

/ df (V)V(u —6) =0, ¥oe®, (26)

then
divdf(Vu) =0 in g, inthe sense of measures 27)

Indeed, if we use the notations of Lemma 6, then Eq. (26) can be wifitery (Vu) x
Vys =0, VO € B. Therefore, the continuous linear map—~> le df (Vu)Ve vanishes
identically onE, and therefore ot = C3(2;). This implies (27).

Step3. We prove now that there exists an open sulssetc 4, such that for any
x € Qp, du(x) has empty interior.

We argue by contradiction and assume that there exists a dense seR; of
points x wheredu(x) has non-empty interior. In particular, if we consider some point
y € dom(Vu) NQ4, there exists a sequence’) C S with limit y. Since we assume that
is differentiable a, the diameter ofu(x") tends to 0 a8 — oo [11, Corollary 24.5.1];
more precisely,

lim  sup |Vu(y) — p|=0. (28)
n—00 pedu(x™)

We have mainly to consider the case wherns such thai? f(Vu(y)) has two non-
zero eigenvalues, with different signs. For if not, since we assumeytligtnowhere
convex, both eigenvalues @f f(Vu(y)) are non-positive at every point, that ig, is
concave orVu(£2,); in that case, it is clear thatcannot be stricly convex.

As a consequence, there exists an open neigbor@adR? of Vu(y), such that
for eachp € Q, the matrixd?f(p) has one strictly positive and one strictly negative
eigenvalue. Hence, for ali € Q, there exist linearly independent vectass p), g2(p)
of unit length, depending smoothly gn such that’? £ (p) - q; (p) -q; (p) =0 fori =1, 2.
From (28), we can assume that for evernpu(x") C Q.
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For everyn, we are now in the conditions of Lemmas 3 and 4’atHence there exist
Vi, V3 in du(x") such that

[df (Vi) —df (V3)] - (Vi = V3) =0.
viel0,1], f(tVi+QA—0)Vy)=tf(VI)+ Q-0 f(V3).

We write ,, := |V]' — V}| (limn, =0) andW" := n—ln(Vl" — VJ); since this is a unit
vector, we can assume thit" converges to some limiv asn — oo.

Hence the function (¢) := f (V' +tn, W") satisfies;j’(0) = j'(1). As a consequence,
there exist, € (0, 1) wherej”(t,) = 0, by Rolle’s Theorem. Sincg(z) > ¢ (0) + (1 —
t)j (1) for all ¢ € [0, 1], we must havg”(0) > 0, j”(1) > 0, and;" () must change sign
twice in [0, 1]; therefore, there exist, € (0, 1) such thatj”'(z,) = 0.

Returning tof, we have for alk:

d2f (Vi 4+, WW" - W" =0,
EBf(V+ T, W)W" - W" . W" =0.
In the limit, asn — oo, recall thatV]' — V := Vu(y), n, — 0, so that

dPf(VHW-W=0=d3f(VW-W-W

with |W| = 1. This contradicts Hypothesis (H) gh
Step4. By the previous step there is an open sul§gesuch thatou(xg) has empty
interior for all xg € 25, i.e. all subdifferentials are points or line segments. Therefore,

/ detd?udx = / dp = |du(B(xo,€))| — 0

B(xo.¢) du(B(xo.£))

ase — 0 (see, e.g., [11, Corollary 24.5.1] for such convergence results). Consequently
the singular part of the Radon measura is zero inS2,; sinceu is strictly convex, the
regular part is not identically zero @, (in fact the support of the regular part®s).

Therefore we can choose a pointsy such that/?x is defined in the classical sense
and non-zero, and we fix this point as the origin of coordinates. By subtracting an affine
function and translating’ we may assume that0) = 0 andVu(0) = 0.

We claim that there exist two one-dimensional strictly convex functignses,
defined in a neighbourhood of 0, such tigat0) = ¢;(0) = 0 andu(x1, x2) — ¢$1(x1) —
¢»(x») is a convex function.

Indeed, leta > 0 be small enough in order to ensure that the squiat a]? is
included in ;. For each giverx, € [—a,a], u(-, xp) is a convex function defined
on [—a, a]; its second-order derivative is a positive measiig: (-, xp). We define a
measureu on[—a, a] by

V. p)Cl-a.al, p@p)=_inf (@ B) %)

= inf ](Blu(ﬁ,xz)—al(a,xz)).

xo€[—a,a

The latter infimum is necessarily positive, since a zero value would contradict the strict
convexity ofu; hencepu is a strictly positive measure. Let > 0 be a large number to
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be chosen in a while, and defige: [—a, a] — R as the unique strictly convex function
with second derivativg/ A, and satisfyingp, (0) = ¢1(0+) = 0. Sinceu is differentiable
atx =0, ¢, is differentiable at 0, ang; (0) = 0.

Sinceg] < Adu(-, xp) for all xz € [—a, a], we see that (x1, x2) — Ap1(x1) iS convex
with respect tocq, for x; fixed. Obviously, that does not mean that A¢; is convex; but
we can reduce to a smaller neighbourhded, b]2 C [—a, a]?> whereu — ¢ is strictly
convex. Indeed, let us note

y(x, y) =y (x1, X2, y1, y2) :=u(x) +u(y) — 2u((x +)/2).
Sinceu is stricly convex,y (x, y) > 0 if x # y. We assume now that satisfies

011(0) d20u(0)
A>—— =~ 29
~ " detd?u(0) (29)
(note that it is possible to find such a number, by the assumption thét:d@ is non-
zero), and we claim that there exigtg (0, a) such that

Vx,y € [=b,bl?, withx #y  y(x1, X2, y1, X2) < Ay (x, y). (30)

Indeed, if not, we can find sequencgs), (y"), x" # y" for all n, both converging to
0, such thaty (x7, x5, yi,x3) > Ay (x", y"). A simple Taylor expansion near O gives
a1 (0)(xf — y1)? > Ad®u(0) - (x" — y") - (x" — y") + O(|x" | + [y"]), or

1
(1 - ;) 91114(0) X2 + 2010 (0) X1 X5 + d51(0) X2 < O

with X; =lim,,_, o (x — y")/|x" — y"|. Therefore, the discriminant of this quadratic form
must be non-positive, i.61.u(0)% > (1 — %)anu(O)azzu(O). But this contradicts (29),
as a little computation shows. This ends the proof of (30).

Sinceu — A¢; is convex with respect to;, we know that for each, y (x # y),

x1+y1)
2

1 X _|_
<—[M(X1,Xz)+u(y1,Xz)—2u< ! yl,Xz)]

6 (x0) + () — 2¢( : :

1
< Z)’(xls Y1, X2, X2)

<y, ) =u@) +uly) —2u((x+y)/2).
Henceu — ¢, is strictly convex.
To obtaing,, we merely repeat the same process, starting from the strictly convex
functionu — ¢, and using the second coordinate.
Step5. We now obtain a contradiction with the minimality @ofIndeed, let us choose
three positive real numbets, a», 8. If 8 is small enough, the set

wp = {x = (x1, x2); 1¢1(x1) + 22 (x2) < B}

is a neighbourhood of 0 included in the domain where ¢;(x1) — ¢(x7) iS convex.
Note that fore > 0 small enough, the functian— e (a1¢1(x1) +a2¢2(x2)) is also convex.
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Hence, the function

Ve :=maxX(u, u — & (1¢1(x1) + @2¢2(x2) — f))

is convex, defined orf2, and differs fromu only in wz. We must therefore have
F(v,) > F(u), which is

[ £7v) = £vw >0
wp
By choosings small enough, we get from a Taylor expansion

/dzf(Vu)V(vg —u)-V(v,—u) >0

@B

(the first order term vanishes by (27)). This can also be written

/ d2f (Vu)Vy - V>0, (31)

where v (x) := a1¢1(x1) + ax¢do(x2). Recall that this inequality holds for all numbers
a; >0 (i =1,2), if g is small enough, and for any coordinate system x,). Hence,
we can assume thaf £ (0) is just a diagonal matri><xol g) with for instancer; <0
(recall that f is nowhere convex). Since the map— d?f(Vu(x)) is continuous and
lwg| — 0 asp — 0, we have lim_oc(B) =0, if we writec(p) = sup,, |d? f(Vu(x)) —
d?f(0)|. Hence, we get from (31):

rika(a, B) + Azka(ar, B) = —c(B) (k1 + k2) (o, B), (32)
wherea = (a1, ap) andk; (a, B) —azf ¢! (x;)?dxydx;.

Recall thatg, is a strictly convex finction minimal at 0. Hence, the functior
R ¢;(s) signs is increasing and has a reciprocal function that we dengteote that
1n:(0) = 0, but the derivativey;(s) = signs/¢; o n; (s) is infinite ats = 0. Hence, ifm > 0
is any humber, we have (dropping indigefor short)

/ @' (x) dx—a/qs on< >signtdt [setr = a¢ (x) Signx]

ap(x)<m
B / ]
lon' (5 )I

>/ —dt — +00  asa — 0.
()l

(The last inequality is a consequencegf() < n(z), equivalent tox¢’(x) > ¢ (x),
which follows from the convexity o.)
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Hence k,(«, B) tends toco asw; tends to infinity. As a consequence, it is possible to
find sequence&y,) C (0, 00)?, (8,) C (0, co) such thaf, and(k,/k1)(a,, B,) converge
to 0. Replacing these numbers in (32), and letiingoing to infinity, we get., > 0, a
contradiction.

This concludes the proof of Lemma 50
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