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ABSTRACT. – We study the minima of the functional
∫
� f (∇u). The functionf is not convex,

the set� is a domain inR
2 and the minimum is sought over all convex functions on� with

values in a given bounded interval. We prove that a minimumu is almost everywhere ‘on the
boundary of convexity’, in the sense that there exists no open set on whichu is strictly convex.
In particular, wherever the Gaussian curvature is finite, it is zero.

An important application of this result is the problem of the body of least resistance as
formulated by Newton (wheref (p)= 1/(1+|p|2) and� is a ball), implying that the minimizer
is not radially symmetric. This generalizes a result in [1].

RÉSUMÉ. – On examine les minimums d’une fonctionnelle de la forme
∫
� f (∇u) oùf n’est

pas convexe et� est un domaine borné deR2, l’ensemble des fonctions admissiblesu étant
restreint aux fonctions convexes à valeurs dans un intervalle fixé. On démontre que ces minimums
sont presque partout à la limite de la convexité, en ce sens qu’il n’existe pas d’ouvert où ils
sont strictement convexes. En particulier, aux points où leurs graphes possèdent une courbure
gaussienne finie, celle-ci est nulle.

Ce résultat s’applique notamment au problème de la résistance minimale de Newton (où
f (p) = 1/(1+ |p|2) et � est une boule). Il implique que le minimum n’est pas à symétrie
radiale, généralisant ainsi le résultat de [1].

1. Introduction

1.1. Newton’s problem

The problem of the body of minimal resistance was introduced by Sir Isaac Newton
in Principia Mathematica[9,4] and his treatment has generally become known as one of
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the first examples of variational calculus. The problem can be stated mathematically in
the following way: let� be a given domain (an open connected set) inR

2, and minimize

∫
�

dx

1+ |∇u(x)|2 (1)

(where|p|2 = p2
1 + p2

2 is the Euclidean norm) over the setCM of convex functionsu
defined on� that are bounded above and below by constants 0 andM > 0. Here the
graph ofu is the shape of the body whose resistance is estimated by (1) under some
simple physical assumptions. We refer the reader to [2] for a more detailed presentation
of this problem, and some alternative ways to state it. It is also proved in [2] that the
minimum is attained.

Newton computed a minimizing functionurad when� is a circular disc, assuming
radial symmetry of the minimizer. Indeed, since the problem is invariant under rotation,
one might reasonably expect that a minimizer has the same invariance. However, it
was recently proved [1] that this function only minimizes (1) in the set of radially
symmetric functions. This is related to the non-convex nature of (1), due to the fact that
the Hessian matrix of the functionp ∈ R

2 �→ (1+ |p|2)−1 has a negative eigenvalue
at every point; there is a ‘non-radial’ direction aturad in which (1) has a negative
second variation. Therefore we can achieve a lower value of the functional with non-
radial functions. In particular it follows that the minimizers on a disc are not unique.
Incidentally, P. Guasoni [5] has exhibited a non-radial function which achieves a lower
value of the functional forM � 1.88.

Unfortunately, the argument given in [1] provides no information on the shape of
the minimizers other than the lack of radial symmetry. It has been conjectured by
H. Berestycki that the minimizers could be ‘affine by parts’. This conjecture arises from
the following result:

LEMMA 1 [1, Remark 3.4]. –Assume thatu is of classC2 in ω ⊂ � and satisfies
detd2u > 0 in ω. Thenu is not a minimizer of(1).

Proof. –The proof of this lemma is given in [1]; since it provides an insightful
introduction to the results of this paper, we briefly describe the argument.

The crucial observation is thatu is ‘interior’ to the setCM , in the sense that for any
function φ ∈ C2

c (ω), the two functionsu ± εφ both belong toCM if ε > 0 is small
enough. Therefore, if we assume thatu is a minimum, thenu satisfies the Euler equation

divdf (∇u)= 0 in ω, (2)

wheref (p) := (1+ |p|2)−1, as well as∫
ω

d2f (∇u)∇φ · ∇φ � 0, (3)

for all φ ∈ C2
c (ω). The idea is now to consider a functionφ whose gradient is mainly

oriented in the negative direction of the matrixd2f (∇u). Indeed, ifω is a sufficiently
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small set, we can assume that the matrices{d2f (∇u)(x)}x∈ω have a common negative
direction. Supposing this direction to be along the first coordinate axis, we choose
φ(x1, x2) := η(x)sin(nx1) whereη ∈ C2

c (ω) is a fixed function andn is a sufficiently
large number. It is now easy to verify that there is a contradiction with (3).✷

This lemma strongly suggests that in some sense a minimizeru should satisfy
detd2u ≡ 0. Unfortunately, theC2-requirement is very strong, and nothing indicates
that it is actually satisfied by a minimizer of Newton’s problem. Even the radial solution
is only smooth by parts (it has a flat circular zone where it is minimal, and the gradient is
not continuous on its boundary). Moreover, ‘most’ convex functions are of classC1 and
strictly convex, but ‘almost none’ of them areC2, in the sense of Baire category (see for
instance [13,14] and the references cited there). Since there is no regularizing effect in
this sort of problems (see [7]), there is little hope that the minimizer is of classC2.

Hence it is not clear what generalization of detd2u≡ 0 should hold for minimizers.
We should note that the condition detd2u≡ 0, even if it makes sense in some open subset
ω ⊂�, does not imply thatu is affine. It only indicates that the graphu has vanishing
Gauss curvature; henceu could also be (locally) cylindrical or conical.

In this paper we investigate this question and prove that minimizers cannot be strictly
convex in any open subset. (Throughout the paper, ‘u is strictly convex inω’ means
∀x, y ∈ ω,∀t ∈ (0,1), x �= y ⇒ u(tx + (1− t)y) < tu(x)+ (1− t)u(y).)

As we remarked above, this behaviour is very unusual for a convex function, since
‘most’ convex functions are of classC1 and strictly convex. Note that this result contains
the statement of Lemma 1.

1.2. The general problem

We consider the problem

inf
u∈C

∫
�

f (∇u)dx, (4)

where�⊂R
2 is an open bounded domain,f :R2→R+ is a given nonnegative smooth

function, and
C := {

u :�→[0,1]; u convex
}
. (5)

This corresponds to the problem of the body of least resistance as stated above by
changingu to u/M and settingf (p) = 1/(M2 + |p|2). Since the setC is compact in
theH 1

loc(�) topology [2] andf is bounded from below, the minimum is always attained.
If f is convex or concave, the problem has already been studied in [7] with a general

constraint of the form (7). It is proved there that ifu= u on ∂�, then the minimizer is
equal to eitheru or u, when these functions are convex. It was already explained in [7]
that this sort of problem cannot be studied through the usual methods of the calculus of
variations, due to the convexity constraint onu. In particular there is no ‘regularizing
effect’ even iff is convex.

In this paper we are interested in the case wheref is not convex but need not be
concave either: the Hessian matrixd2f has at least one negative eigenvalue. If this is true
for everyp in some subsetQ of R

2 then we callf nowhere convexin Q. As remarked
before, the functionp �→ 1/(1+ |p|2) considered by Newton is nowhere convex inR

2.
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For technical reasons we have to sharpen this assumption and assume thatf satisfies
Hypothesis (H) on a setQ⊂R

2:

HYPOTHESIS(H). – For all V ∈Q and allW ∈R
2,

d2f (V )W ·W = 0= d3f (V )W ·W ·W ⇒ W = 0.

It is easy to verify that this condition is satisfied onR2 in the particular case
f (p) = 1/(M2 + |p|2). Note that this hypothesis is used only in step 3 of the proof
of Lemma 5.

1.3. Statement of main results

Let us recall that a convex functionu is almost everywhere twice differentiable in its
domain; moreover, it is actually of classC1 on the set dom(∇u) where it is differentiable
(see for instance [11], Theorem 25.5). IfA⊂�, we will note by∇u(A) the image set of
A under the mapx �→ ∇u(x), for thosex ∈A where it is defined. We write convA for
the convex hull ofA.

Our main theorem is as follows:

THEOREM 1. –Let u be a minimizer of Problem(4), and let�1 be an open convex
subset of�. If f is nowhere convex and satisfies Hypothesis(H) on conv∇u(�1), then
u is not strictly convex on�1.

Note that this implies that the graph ofu contains at least one straight line segment
in �1; by repeated application of this theorem it follows that there is a dense collection
of line segments in the graph.

The proof of this statement will follow in Section 4. Let us first give some important
consequences of this theorem.

First of all let us apply this result to the ‘classical’ problem as studied by Newton:

COROLLARY 2. –Let M > 0 and f (p) = 1/(M2 + |p|2), and let�1 be an open
subset of�. If u solves Problem(4), thenu is not strictly convex in�1.

Observe that the radial minimizer calculated by Newton (which is strictly convex on
a subset of the ball) cannot be a minimizer of (4), and consequently the minimizer of (4)
is not radially symmetric. As mentioned before, this was already proved in [1] by a
different argument.

Secondly, here is an alternative statement of Theorem 1:

COROLLARY 3. –Under the conditions of the theorem, ifφ ∈C0(�) is strictly convex
in some open subset of�, thenu− φ is not convex.

(This follows from the theorem by observing that ifφ is strictly convex in an open
set�1, andu − φ is convex, thenu is strictly convex in�1.) Hence,u is an ‘almost
extremal’ point ofC, considered as a convex subset of the set of functionsC0(�).

It can be proved that ifu is a minimizer, then the sets

N0 := {
x ∈� ; u(x)= 0

}
(6)
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and{x ∈� ;u(x)= 1} are non-empty; the latter is included in the boundary of�, due to
convexity. In the following, we do not examine the behaviour ofu nearN0, nor the shape
of this set, sinceu is not strictly convex in its interior; this question is studied in [8].

As a consequence, one can easily generalize the constraint ‘u(x) ∈ [0,1]’ to

u(x)� u(x)� u(x), (7)

whereu, u are arbitrary functions (provided there exists at least one convex function
satisfying (7)). In that case,N0 is simply the set where equality is attained in one
side of (7), and the theorem still holds ifu, u are affine functions, or if for instance
�1∩N0= ∅.

More generally, the reader should note that in all the following the conditionu ∈ [0,1]
is not taken into account. This is permitted by the fact that we consider restrictions ofu

to smaller setsω compactly embedded in�1, and therefore we haveu ∈ [ε,1− ε] for
someε > 0. We do not recall this in each instance.

2. On convex functions

Let us recall some well-known properties of convex functions onR
2, and give some

definitions. Most of these can be found in classic texts such as [11,12].
We will denote by aff[p, s] the affine functionx �→ p ·x− s, wherep ∈R

2 ands ∈R

are given and· is the conventional inner product inR2.
A convex functionu on � is continuous on�, and twice differentiable on a dense

subset of�. We will denote dom(∇u) the set on whichu is once differentiable; in fact,
∇u is continuous on dom(∇u).

The subdifferential∂u generalizes the gradient∇u, and is defined for allx ∈� as the
set of all slopes of tangent planes atx, i.e.p ∈ ∂u(x0) if there existss ∈R such that

aff [p, s](x0)= u(x0) and aff[p, s](x)� u(x) ∀x.

For everyx ∈�, ∂u(x) is a closed convex subset ofR
2, and forx ∈ dom(∇u) we have

∂u(x)= {∇u(x)}. We will not insist on the difference between a singleton{∇u(x)} and
its value∇u(x), and ifA⊂�, then∂u(A) is understood to signify

⋃
x∈A ∂u(x). If A is

an open convex set, then we have the property∂u(A)= conv∇u(A) [11, Theorem 25.6].
The second derivative or Hessian matrixd2u and its determinant detd2u are defined

on� as Radon measures [3].
If p ∈ R

2 is given, there exists a unique numberu∗(p) such thatu � aff [p,u∗(p)],
with equality at least in one point. Indeed we have

u∗(p)= sup
x∈�

[
p · x − u(x)

]
, (8)

which is called theconjugateof u. We also have:

u(x)= max
p∈∂u(�)aff

[
p,u∗(p)

]
(x)= max

p∈∇u(�)aff
[
p,u∗(p)

]
(x) (9)



184 T. LACHAND-ROBERT ET AL. / Ann. Inst. H. Poincaré, Anal. non lin. 18 (2001) 179–198

since dom(∇u) is dense in�. It is convenient to introduce an additional notation: ifu is
differentiable atx0 ∈�, define

π [u, x0] = aff
[
p,u∗(p)

]
, with p=∇u(x0).

An exposed pointof a convex bodyC is a pointX ∈ ∂C such that there exists a
supporting hyperplane throughX that only intersectsC in X (see [11, p. 162]). An
exposed point has the property that a small parallel displacement of the hyperplane leads
to a small intersection withC. In the context of convex functionsu :�→ R we shall
call x ∈� an exposed point ifX = (x, u(x)) is an exposed point of the graph ofu. Note
that for any convex open subsetω ⊂�,

everyx ∈ ω is exposed⇐⇒ u is strictly convex inω. (10)

Applying the conjugation operator twice to a convex functionv returns the original
function v: v∗∗ = v. If v is not convex, then the convex functionv∗∗ is called the
#-regularization ofv. It is the largest convex function less than or equal tov, or
equivalently the supremum of all affine functions less than or equal tov.

Most of the functions we deal with in this paper are not defined onR
2 but on bounded

sets. We implicitly extend such functions by assigning the value∞ outside of the domain
of definition. For such functions an alternative convex regularization will be useful,
defined by

v#= sup
{
π [v, y]: y ∈ dom(∇v)∩�}

.

On�, v# andv∗∗ coincide; onR
2 \ �, however, ifv ∈W 1,∞(�), thenv# takes finite

values, whilev∗∗ equals infinity.
In the proofs that follow we use the following perturbation scheme: for a convex

functionu and a perturbationh (not necessarily convex), we define

uε = u+ εh.

This function is generally not convex, and we therefore regularize it to giveũε = (uε)
#.

The following lemma states some important properties of this perturbation. Here and
throughout this paper a ‘measure’ will be the Lebesgue measure unless specified
otherwise; the Lebesgue measure of a setω is denoted|ω|. We also define‖v‖H1

0 (�)
:=

‖∇v‖L2(�).

LEMMA 2. –Let u :�′ → R be strictly convex, and leth ∈W 1,∞(�′) have compact
support in�′. Let �c be the union of all open sets in�′ on whichh is convex, and
suppose that|�′ \�c| = 0. Setuε = u+ εh, ũε = (uε)

#, and definehε by ũε = u+ εhε.
(1) The setωε = {x ∈ �′: uε(x) �= ũε(x)} is compactly included in�′ if ε is small

enough;
(2) limε→0 |ωε| = 0;
(3) ‖uε − ũε‖C0

0(�
′) = o(ε) asε→ 0;

(4) ‖uε − ũε‖2
H1

0 (�
′) = o(ε) asε→ 0.
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Remark. – In part 4 one would expect that the optimal convergence rate is O(ε2) (or
possibly o(ε2), in view of 3), but our attemps to prove this have been unsuccessful.
A result of this type, however, would simplify the proof of Theorem 1 considerably.

Proof. –To prove part 1, we consider any open set�1 such that supph � �1 � �′.
We define

ũ= sup
{
π [u;y]: y ∈ dom(∇u)∩�′ \�1

}
.

Sinceu is strictly convex, we haveu > ũ in �1, hence there exists a numberc > 0 such
that u > ũ + c in supph. If |ε| < c/‖h‖L∞ thenuε > ũ in supph; sinceũ is a convex
function satisfyingũ � uε � u in �′, we haveũ � (uε)

# � u in �′. These inequalities
reduce to equalities on�′ \�1, and it follows that�′

ε ⊂�1.
For part 2, pickx ∈ �c where bothu andh are differentiable. We will prove that

x /∈ ωε if ε is small enough. The assertion follows from this result by remarking that the
characteristic functionχωε tends to zero a.e., so that

|ωε| =
∫
�′
χωε → 0 asε→ 0.

By the strict convexity ofu, x is an exposed point; since�c is open there existsδ > 0
such that the set

Aδ = {
y ∈�′: u(y) < π [u;x](y)+ δ

}
is included in�c. Subsequently, ifε‖h‖L∞(�′) < δ/2, then the set

{
y ∈�′: uε(y) < π [u;x](y)+ δ/2

}
is included inAδ . Note that sinceuε is strictly convex inAδ , π [uε;x]> uε in Aδ \ {x}.

Since∇uε(x)→∇u(x) asε→ 0, we can chooseε so small that

∥∥π [uε;x] − π [u;x]∥∥
L∞(�′) <

δ

2
.

Now for all y ∈�′ \Aδ ,

uε(y)− π [uε;x](y) > uε(y)− π [u, x](y)− δ

2
� 0,

so thatπ [uε;x]> uε outsideAδ . Henceũε(x)= uε(x) and we havex /∈ ωε. This proves
part 2.

For part 3 we first show that because of the strict convexity ofu there exists a function
γ : [0,∞)→R, satisfyingγ (r) > 0 if r > 0, such that

u(x)� u(x0)+ p · (x − x0)+ γ
(|x − x0|), (11)

for all x, x0 ∈�′ and allp ∈ ∂u(x0). This follows from an argumentad absurdum: if this
were not the case, then we can find, using the compactness of�′, x, x0 ∈ �′, x �= x0,
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andp ∈ ∂u(x0), such that

u(x)= u(x0)+ p · (x − x0).

This implies a contradiction with the strict convexity ofu in �′. Note thatγ (r)� Mr

for small r , for someM > 0. For convenience we shall also assume thatγ is monotone
increasing and invertible near the origin. This can be achieved without loss of generality.

Suppose thathε(x)− h(x) is maximized atx = x0. If we write ũε as

ũε(x0)= sup
{
p · x0+ a: p · x + a � uε(x), ∀x ∈�′},

then we find

hε(x0)− h(x0)

= sup
{
p · x0+ a − 1

ε
u(x0)− h(x0): ∀x ∈�′, p · x + a − 1

ε
u(x)− h(x)� 0

}
.

By making the particular choiceεp ∈ ∂u(x0) and applying (11) we find

hε(x0)− h(x0)� sup
{
a − h(x0): ∀x ∈�′, a − 1

ε
γ
(|x − x0|)− h(x)� 0

}
.

If the inequality in the conditional part is saturated atx = x1, i.e. a − γ (|x1− x0|)/ε−
h(x1)= 0, then

γ
(|x1− x0|)= ε

(
h(x0)− h(x1)

)
,

so thatx1 − x0 � γ −1(ε‖h‖L∞); by re-inserting this in the equation above we find that
γ (|x1− x0|)� ε‖h‖W1,∞γ −1(ε‖h‖L∞) and thus

0� hε(x0)− h(x0)� 1

ε
γ
(|x1− x0|)+ h(x1)− h(x0)�Cγ −1(ε‖h‖L∞).

Sincehε − h is supposed to be maximal atx = x0, we therefore have

‖uε − ũε‖C0
0(�

′) = ε‖hε − h‖C0
0(�

′) = o(ε) asε→ 0.

For part 4, we note that since+uε and+ũε are bounded in the space of Radon
measuresRM(�′), we therefore have

‖ũε − uε‖2
H1(�′)=−

∫
(ũε − uε)+(ũε − uε)

� ‖ũε − uε‖C0
0(�

′)
∥∥+(ũε − uε)

∥∥
RM(�′)

and this last term is of order o(ε). ✷
3. Regularity of the minimizers

We turn to the study of properties of the minimizers ofF . If u is convex, the set
of limits of ∂u(x) asx→ x0 (or, equivalently, of∇u(x) for thosex for which this is
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defined) is the boundary of the subdifferential∂u(x0) [11, Corollary 25.4.1]. We will
denote this boundary∂[∂u(x0)]. As mentioned above, the subdifferential is a singleton
if and only if u is differentiable atx0.

For givenx0 ∈ � we define polar coordinates with centerx0, that is r = |x − x0|,
φ = arg(x − x0), so thatu(x) = u(x0) + rg(φ) + o(r) for some continuous function
g :S1 → R. Denoting (er , eφ) the varying orthonormal basis atx �= x0 (such that
er = (x − x0)/r), we defineV (φ) as the limit of∇u(x0 + ter (φ)), as t > 0 goes to
zero (φ ∈ S1 fixed). Expressed differently,V (φ) is the gradient atx0 + ter (φ), for any
t > 0, of the convex function̂u(x) := u(x0) + rg(φ) whose graph is the tangent cone
of the graph ofu at x0 (note thatû � u by the convexity ofu). Therefore we have
V (φ)= g(φ)er(φ)+ g′(φ)eφ(φ). A little calculation indicates that the convexity ofû is
caracterized by the propertyg + g′′ � 0 in the sense of distributions onS1.

The mapφ ∈ S1 �→ V (φ) is a partial parametrization of∂[∂u(x0)] (the parametriza-
tion is incomplete whereverV is discontinuous, and non-injective wheneverV is con-
stant). The functionV is constant if and only ifu is differentiable atx0.

We first derive a simple consequence of the minimisation.

LEMMA 3. –Let u be a minimizer of(4), and suppose that∂u(x0) has non-empty
interior. We define the functiong as described above. LetHg ⊂ C0(S1) be the set of
functionsh satisfyingh� g andh+ h′′ � 0 in distributional sense. Then

∀h ∈Hg, 0�
∫
S1

f (her + h′eφ)− f (ger + g′eφ)
(g − h)2

. (12)

Moreover, ifV is discontinuous atφ0 ∈ S1, with left and right limitsV1 := V (φ0−),
V2 := V (φ0+), then

∀t ∈ [0,1], f
(
tV1+ (1− t)V2

)
� tf (V1)+ (1− t)f (V2). (13)

Proof. –We prove (12) only forh < g; the more general case follows from a density
argument, taking into account that, since∂u(x0) has non-empty interior, there exists a
dense subset of such functionsh in Hg.

Let us chooseh ∈Hg, h < g; we definev̂(x) := u(x0)+ rh(φ) in polar coordinates.
Sinceh+ h′′ � 0, v̂ is convex, and̂v(x) < û(x)� u(x) for all x �= x0.

Therefore, for anyε > 0 small enough, the functionv := max(u, v̂ + ε) is convex,
and coincides withu except in a small neighbourhood ofx, a set{r < σ(ε,φ)} in
polar coordinates; inside this set, we have∇v =∇v̂ = her + h′eφ . Note thatσ (ε,φ)=
ε/(g(φ)− h(φ))+ o(ε) asε→ 0. Also, sinceu(x0) ∈ (0,1) by assumption, we have
v(x) ∈ [0,1] for all x if ε > 0 is small enough. HenceF(v)� F(u), that is

0�
∫
S1

σ(ε,φ)∫
0

[
f (her + h′eφ)− f

(∇u(r,φ))] r dr dφ

� ε2
∫
S1

1
g(φ)−h(φ)∫

0

[
f (her + h′eφ)− f

(∇u(εs,φ))] s ds dφ + o
(
ε2)
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using the change of variabler := εs. Since this holds for anyε > 0 small enough, we
can divide byε2 and letε tend to 0; the term∇u(εs,φ) converges toV (φ)= ger + g′eφ
andf (her + h′eφ) does not change. We integrates ds to obtain (12).

We now turn to the proof of (13). We writeγ + := g′(φ0+) andγ − := g′(φ0−) for
the right and left derivative ofg at φ0, and consider any numbera ∈ (γ −, γ +); let
Va := g(φ0)er + aeφ(φ0), andga(φ) := g(φ0)cos(φ − φ0)+ a sin(φ − φ0). The convex
functionva(r, φ) := u(x0)+ rga(φ) is in fact an affine function (sincega + g′′a = 0) with
gradientVa; moreover, by the choice ofa, ga(φ) < g(φ) for anyφ �= φ0, or equivalently,
û(x) > va(x) for anyx /∈ x0+R+er(φ0).

We pickε > 0 and define

h :=max
(
(1− ε)ga,

g

2

)
.

There existαε,βε ∈ S1 such thath= (1− ε)ga in (αε, βε), andh= g/2 in (βε, αε). We
have limε→0αε �= φ0 �= limε→0βε.

Let us now apply (12) toh. The function

δ(φ) := f (her + h′eφ)− f (ger + g′eφ)
(g − h)2

becomes infinite nearφ0 asε→ 0; more precisely, forφ ∈ (φ0, βε) we have

δ(φ)= f ((1− ε)Va)− f (ger + g′eφ)
(g − ga + εga)2

.

To estimate this term for smallε we note that ifa, b, andc are continuous functions
andb is continuously differentiable, satisfyingb(0)= 0, b′(0) �= 0, andc(0) �= 0, then

1∫
0

a(x) dx

(b(x)+ εc(x))2
= a(0)

εb′(0)c(0)
+ o(1/ε) asε→ 0.

Hence, for smallε:
βε∫

φ0

δ = 1

ε

(f (Va)− f (V2))

g(φ0) (γ + − a)
+ o(1/ε).

Similarly,

φ0∫
αε

δ =−1

ε

(f (Va)− f (V1))

g(φ0) (γ
− − a)

+ o(1/ε).

We recall that
∫
S1 δ � 0, hence in particular the dominant terms must have nonnegative

sum. This gives:

f (Va)− f (V2)

(γ + − a)
� f (Va)− f (V1)

(γ − − a)
,
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which is equivalent to (13) for an appropriate choice oft . By varyinga the result follows
for all t ∈ [0,1]. ✷

We continue by studying the character ofV in a particular case. The following
technical lemma uses techniques similar to the previous ones, but will be needed only in
Section 5. Note that the setN0 is defined in (6).

LEMMA 4. –Let u be a minimizer ofF , and suppose thatdivdf (∇u) = 0 (in a
distributional sense) on a subset�′ ⊂ � \ N0 whereu is stricly convex. Assume that
∂u(x0) has non-empty interior for somex0 ∈ �′, and that there exists a neighborhood
Q of ∂u(x0) such thatf has a strictly positive eigenvalue(and a strictly negative one,
sincef is nowhere convex) and⋂

p∈Q

{
ξ ∈R

2 ; d2f (p)ξ · ξ < 0
} �= ∅. (14)

Then the limit gradient fieldV has at least two discontinuities inS1. Moreover, at every
discontinuity we have not only(13), but also

[
df (V1)− df (V2)

] · (V1− V2)= 0. (15)

Note that the condition (14) is satisfied if the diameter of∂u(x0) is small enough.

Proof. –By the hypothesis, for allp ∈ Q, there exist linearly independent vectors
q1(p), q2(p) of unit length, depending smoothly onp, such thatd2f (p) ·qi(p) ·qi(p)=
0 for i = 1,2. By (14), there exist two closed convex conesKi ⊂ R

2 such thatqi(Q)⊂
Ki andK1∩K2=K1∩ (−K2)= {0}.

We fix a pointx0 as the origin of coordinates; subtracting an affine function fromu

(and translatingf ), we may assume thatu(0)= 0, and thatu attains a minimum at
x = 0 (this is a strict minimum sinceu is strictly convex). We will use polar coordinates
with respect to the center 0:r := |x|, φ := argx ∈ S1. As in the proof of Lemma 3,
(er(φ), eφ(φ)) is a local orthonormal basis, andV (φ) is the limit, asr→ 0 of ∇u(rer );
this limit is not constant with respect toφ (since otherwiseu would be differentiable at 0
[11, Theorem 25.2]). We haveV (φ)= g(φ)er + g′(φ)eφ .

By a blow-up argument very similar to that used in the proof of Lemma 3 it follows
that the functionû(x) := u(x0)+ rg(φ) again satisfies (27), i.e.

divdf (∇û)= 0

in a distributional (or measure-) sense inR
2. For anyφ ∈ S1 such thatV is continuous

atφ, this reduces to

d2f
(
V (φ)

) · V ′(φ) · eφ = 0 (16)

and ifV has a discontinuity atφ, then

[
df

(
V (φ+))− df

(
V (φ−))] · (V (φ+)− V (φ−))= 0. (17)

This last equation gives (15).
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First suppose thatV is a continuous function ofφ on some connected partJ ⊂ S1

having nonempty interior, implying by convexity thatV,g′ ∈W 1,1(J ). We claim thatV
is constant inJ . Indeed, usingV ′ = (g + g′′)eφ , we have

(
g(φ)+ g′′(φ)

)
d2f

(
V (φ)

) · eφ · eφ = 0 for a.e.φ ∈ J.
Therefore, for almost allφ ∈ J , eitherV ′(φ)= 0, oreφ ∈ {±q1(V (φ)),±q2(V (φ))}. We
can writeJ as a disjoint union

J =A+1 ∪A−1 ∪A+2 ∪A−2 ∪B,
such thateφ = ±qi(V (φ)) in J if and only if φ ∈ A±i . Note that by continuity the sets
A±i are closed inJ .

The setsA±i are connected parts ofJ (it is convenient to write them as intervals).
Indeed, ifφ1, φ2 ∈A+1 , then

either [φ1, φ2] ∩A−1 = [φ1, φ2] ∩A±2 =∅
or [φ2, φ1] ∩A−1 = [φ2, φ1] ∩A±2 =∅ (18)

(note that both[φ1, φ2] and [φ2, φ1] are intervals inS1). This follows from the
monotonicity of eφ and the disjoint nature of the conesKi . Now, without loss of
generality, suppose that the first of (18) is true. SinceA+1 is closed, ifB ∩ [φ1, φ2] �= ∅,
then there existφ3, φ4 ∈ A+1 , with [φ3, φ4] ⊂ (φ1, φ2), such that(φ3, φ4) ⊂ B. On
(φ3, φ4), eφ /∈ {±q1(V (φ)),±q2(V (φ))} and thereforeV ′ ≡ 0, so thatq1(V (φ3)) =
q1(V (φ4)). But sinceφ3 �= φ4, we haveeφ3 �= eφ4, which contradicts the assumption
thatφ3, φ4 ∈A+1 . ThereforeA+1 , and in a similar manner the otherA±i , are connected.

Let us also observe that some of these sets can have empty interior; if they all do, then
V ′ = 0 a.e. inJ , andV is constant, and our claim is proved. So, assume thatJ \ B has
non-empty interior; we will prove a contradiction.

We note thatg+ g′′ > 0 in the interior of every intervalA±i . Indeed, if we assume for
instance thatA+1 has non-empty interior, we have hereeφ =+q1(V (φ)) for all φ ∈A+1 ,
from its definition, and therefore,

1= eφ ∧ d

dφ
eφ = eφ ∧ d

dφ
q1
(
V (φ)

)
= eφ ∧∇q1

(
V (φ)

) · V ′(φ)= (g + g′′) eφ ∧∇q1
(
V (φ)

) · eφ,
implying thatg+ g′′ > const. > 0.

Let h :S1 → R be a function inHg, as defined in Lemma 3. In particular, we can
chooseh in the formh := (1− εσ )g, with ε > 0 small andσ ∈ C2(S1), σ � 0, having
a derivative with compact support in the interior ofJ \B; since the derivatives ofσ are
bounded, andg + g′′ > 0 in the interior ofJ \ B, we haveh+ h′′ � 0 in S1 for small
enoughε.

Developing (12) with respect toε yields∫
S1

d2f
(
V (φ)

)(
er + k(φ)eφ

) · (er + k(φ)eφ
)
dφ � 0 (19)
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with

k(φ) := (σg)′

σg
(φ)= σ ′

σ
(φ)+ g′

g
(φ)

(the first-order term vanishes by (16)). Recall thatd2f (V (φ))eφ · eφ = 0 in the interior
of J \B; hence (19) implies

2
∫
J \B

d2f
(
V (φ)

)
eφ · er σ

′

σ
dφ � Ig,

Ig := −
∫
S1

d2f
(
V (φ)

)(
er + g′

g
eφ

)
·
(
er + g′

g
eφ

)
dφ.

Note that the right-hand sideIg does not depend onσ . We chooseσ ′/σ close to the sum
of two Dirac measures, by considering aσ close to a step function (we cannot have only
one Dirac, by the periodicity ofσ ); it follows thatd2f (V (φ))eφ · er ≡ c = const in the
interior of J \ B. Takingd2f (V (φ))eφ · eφ = 0 into account, we getd2f (V )eφ = c er
in J \B (note that althoughJ \ B is not connected, the constantc is the same for each
connected part).

For any functionk ∈ C2(S1), a short computation gives[
df

(
V (φ)

) · (ker + k′eφ
)]′ = ck(g+ g′′)+ (k + k′′) df (V ) · eφ

in J \ B, and also inB whereg + g′′ = 0. Since the variation ofV is assumed to be
small, df (V ) · eφ must change sign inS1, and hence we can choose a functionk � 0
such that the sign ofk + k′′ coincides with the sign ofdf (V ) · eφ . This choice ofk
renders the right-hand side of the last equation nonnegative, contradicting the periodicity
of df (V (φ)) · (ker + k′eφ).

This ends the proof of our claim, that ifV is continuous on any connected partJ ⊂ S1,
then it is just constant onJ .

As a consequence, and since by assumptionV is not constant inS1, we conclude that
V is not continuous, and has at least two discontinuities inS1. ✷

4. Proof of Theorem 1

The proof of the main theorem of this paper, Theorem 1, is based on the following
instability result. It conveys the property that a minimizer can not be a stationary point
and strictly convex at the same time.

LEMMA 5. –Letu minimizeF and suppose thatu is strictly convex in a convex open
subset�1⊂�. Then there exists a convex polyhedral functionθ :�→R such that

ωθ = {
x ∈�: u(x) < θ(x)

}
(20)

is non-empty and included in�1, and such that∫
ωθ

df (∇u)∇(u− θ) < 0.
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A convex polyhedral function is the pointwise supremum of a finite number of affine
functions.

We defer the proof of this lemma to the next section, and continue first with the proof
of Theorem 1, assuming for the moment that this lemma is proved.

Suppose thatu is strictly convex in�1, and letθ be the polyhedral function given by
Lemma 5. We write simplyω for the corresponding setωθ . Setφ := u − θ in ω, and
extendφ outside ofω by zero. Define forε > 0 the functions

uε = u+ εφ and ũε = (uε)
#.

Note that ifε is small, then by Lemma 2 the set

ω̃ε = {
x ∈� ; ũε(x) < uε(x)

}
is compactly included in�1, and the Lebesgue measure ofω̃ε tends to zero asε→ 0.
Thereforeũε is admissible ifε is small enough.

We find on applying a Taylor series expansion toF atu,

F(ũε)− F(u)= dF(u)(ũε − u)+O
(‖∇(ũε − u)‖2

L2(�)

)
. (21)

The last term, O(‖∇(ũε − u)‖2
L2(�)

), is of order o(ε) by Lemma 2, part 4.
The first term on the right-hand side of (21) is split into two parts:

dF(u)(ũε − u)= dF(u)(ũε − uε)+ dF(u)(uε − u)

= dF(u)(ũε − uε)+ ε dF(u)φ. (22)

The second of these two is of orderε since by the choice ofθ we havedF(u)φ < 0.
To estimate the first term we note that

∣∣dF(u)(ũε − uε)
∣∣= ∣∣∣∣

∫
�

df (∇u)∇(ũε − uε)

∣∣∣∣
=

∣∣∣∣
∫
�

(ũε − uε)divdf (∇u)
∣∣∣∣

�M
∥∥d2u

∥∥
RM(�)

‖ũε − uε‖C0
0(�)

,

whereM is a bound on the second derivatived2f . Therefore we have

dF(u)(ũε − uε)= o(ε), (23)

using Lemma 2, part 3.
By combining estimates (21) and (23) with (22) we find

F(ũε)−F(u)�−cε

for somec > 0, which contradicts the minimality ofu. ✷
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5. The instability lemma

We continue with the proof of Lemma 5, which we repeat here for convenience:

LEMMA 5. –Letu minimizeF and suppose thatu is strictly convex in a convex open
subset�1⊂�. Then there exists a convex polyhedral functionθ :�→R such that

ωθ = {
x ∈�: u(x) < θ(x)

}
(24)

is non-empty and included in�1, and such that∫
ωθ

df (∇u)∇(u− θ) < 0.

The proof of this lemma relies strongly on a simple density property of the vector
space generated by the ‘caps’ of a given strictly convex function, which can be expressed
as follows:

LEMMA 6. –Let �1 ⊂ R
2 be a convex domain,u :�1 → R be strictly convex. Let

> be the set of all convex polyhedral functionsθ such that the setωθ defined by(24)
is non-empty and included in�1; for each θ ∈ >, we consider the ‘cap’ function
γθ := (θ − u)+ ∈ C0

0(�1) (the set of continuous functions vanishing on the boundary).
Then the vector field generated by these functions is dense inC0

0(�1) (in the usual
C0 topology).

Proof. –Note that> is not empty since�1 consists of exposed points ofu by (10).
Therefore, ifx0 ∈ �1 ∩ dom(∇u) is given, any affine functionπ [u;x0] + ε is in >, if
ε > 0 is small enough.

We denoteE := Vect{γθ}θ∈> the (algebraic) vector field generated by>, andE its
closure. We have to prove thatE = C0

0(�1); in order to do that, it suffices to prove
thatE is a lattice and separates points, in view of the Kakutani–Krein theorem (see for
instance [10, p. 104]). We recall that a lattice is a subset ofC0 that is stable under the
min and max operations.

If θ1, θ2 are given in>, then θ3 := max(θ1, θ2) is a convex polyhedral function;
moreover,ωθ3 = ωθ1 ∪ ωθ2 is non-empty and included in�1, so thatθ3 ∈>. In addition
θ3 � θ1, so thatωθ3 containsωθ1 and therefore is not empty; this implies thatθ3 ∈>. We
now have

γθ3 =max(0, θ3− u)=max
(
0,max(θ1− u, θ2− u)

)=max(γθ1, γθ2).

HenceE is stable under the max operation, and thereforeE is also stable. On the other
hand, if f,g ∈ E are given, then min(f, g) = f + g − max(f, g) belongs toE. This
proves thatE is a lattice.

It is easy to see thatE separates points; indeed, even the smaller subset

{γθ ; θ ∈> affine}
separates points sinceu is strictly convex. ✷
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Proof of Lemma 5. –The proof proceeds in five steps.
Step1. For everyθ ∈>,

∫
ωθ
df (∇u)∇(u− θ)� 0.

Indeed, suppose that
∫
ωθ
df (∇u)∇(u− θ) > 0 for someθ . Defineφ = u− θ onωθ ,

and extendφ by zero outside ofωθ . The function

uε = u− εφ

is admissible if 0� ε� 1. Using the Taylor expansion

f (p)= f (p0)+ df (p0)(p− p0)+ g(p0,p)(p− p0) · (p− p0), (25)

whereg :R2×R
2→R

2×2 is bounded on compact subsets, we find

F(uε)−F(u)=−ε
∫
ωθ

df (∇u)∇φ + ε2
∫
ωθ

g(∇u,∇uε)∇φ · ∇φ.

Clearly this contradicts the minimality ofu whenε is small.
Step2. If ∫

ωθ

df (∇u)∇(u− θ)= 0, ∀θ ∈>, (26)

then

divdf (∇u)≡ 0 in�1, in the sense of measures. (27)

Indeed, if we use the notations of Lemma 6, then Eq. (26) can be written
∫
�1
df (∇u)×

∇γθ = 0, ∀θ ∈>. Therefore, the continuous linear mapϕ �→ ∫
�1
df (∇u)∇ϕ vanishes

identically onE, and therefore onE = C0
0(�1). This implies (27).

Step3. We prove now that there exists an open subset�2 ⊂ �1, such that for any
x ∈�2, ∂u(x) has empty interior.

We argue by contradiction and assume that there exists a dense setS ⊂ �1 of
pointsx where∂u(x) has non-empty interior. In particular, if we consider some point
y ∈ dom(∇u)∩�1, there exists a sequence(xn)⊂ S with limit y. Since we assume thatu
is differentiable aty, the diameter of∂u(xn) tends to 0 asn→∞ [11, Corollary 24.5.1];
more precisely,

lim
n→∞ sup

p∈∂u(xn)

∣∣∇u(y)− p
∣∣= 0. (28)

We have mainly to consider the case wherey is such thatd2f (∇u(y)) has two non-
zero eigenvalues, with different signs. For if not, since we assume thatf is nowhere
convex, both eigenvalues ofd2f (∇u(y)) are non-positive at every point, that is,f is
concave on∇u(�1); in that case, it is clear thatu cannot be stricly convex.

As a consequence, there exists an open neigborhoodQ ⊂ R
2 of ∇u(y), such that

for eachp ∈ Q, the matrixd2f (p) has one strictly positive and one strictly negative
eigenvalue. Hence, for allp ∈Q, there exist linearly independent vectorsq1(p), q2(p)

of unit length, depending smoothly onp, such thatd2f (p) ·qi(p) ·qi(p)= 0 for i = 1,2.
From (28), we can assume that for everyn, ∂u(xn)⊂Q.
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For everyn, we are now in the conditions of Lemmas 3 and 4 atxn. Hence there exist
V n

1 , V n
2 in ∂u(xn) such that[

df
(
V n

1

)− df
(
V n

2

)] · (V n
1 − V n

2

)= 0.

∀t ∈ [0,1], f
(
tV n

1 + (1− t)V n
2

)
� tf

(
V n

1

)+ (1− t)f
(
V n

2

)
.

We write ηn := |V n
1 − V n

2 | (lim ηn = 0) andWn := 1
ηn
(V n

1 − V n
2 ); since this is a unit

vector, we can assume thatWn converges to some limitW asn→∞.
Hence the functionj (t) := f (V n

1 + tηnWn) satisfiesj ′(0)= j ′(1). As a consequence,
there existtn ∈ (0,1) wherej ′′(tn)= 0, by Rolle’s Theorem. Sincej (t)� tj (0)+ (1−
t)j (1) for all t ∈ [0,1], we must havej ′′(0)� 0, j ′′(1)� 0, andj ′′(t) must change sign
twice in [0,1]; therefore, there existτn ∈ (0,1) such thatj ′′′(τn)= 0.

Returning tof , we have for alln:

d2f
(
V n

1 + tηnW
n
)
Wn ·Wn= 0,

d3f
(
V n

1 + τnηnW
n
)
Wn ·Wn ·Wn= 0.

In the limit, asn→∞, recall thatV n
1 → V := ∇u(y), ηn→ 0, so that

d2f (V )W ·W = 0= d3f (V )W ·W ·W
with |W | = 1. This contradicts Hypothesis (H) onf .

Step4. By the previous step there is an open subset�2 such that∂u(x0) has empty
interior for allx0 ∈�2, i.e. all subdifferentials are points or line segments. Therefore,∫

B(x0,ε)

detd2udx =
∫

∂u(B(x0,ε))

dp= ∣∣∂u(B(x0, ε)
)∣∣→ 0

asε→ 0 (see, e.g., [11, Corollary 24.5.1] for such convergence results). Consequently,
the singular part of the Radon measured2u is zero in�2; sinceu is strictly convex, the
regular part is not identically zero in�2 (in fact the support of the regular part is�2).

Therefore we can choose a point in�2 such thatd2u is defined in the classical sense
and non-zero, and we fix this point as the origin of coordinates. By subtracting an affine
function and translatingf we may assume thatu(0)= 0 and∇u(0)= 0.

We claim that there exist two one-dimensional strictly convex functionsφ1, φ2,
defined in a neighbourhood of 0, such thatφi(0)= φ′i (0)= 0 andu(x1, x2)− φ1(x1)−
φ2(x2) is a convex function.

Indeed, leta > 0 be small enough in order to ensure that the square[−a, a]2 is
included in�1. For each givenx2 ∈ [−a, a], u(·, x2) is a convex function defined
on [−a, a]; its second-order derivative is a positive measure∂11u(·, x2). We define a
measureµ on [−a, a] by

∀(α,β)⊂ [−a, a], µ(α,β)= inf
x2∈[−a,a]

∂11u
(
(α,β), x2

)
= inf

x2∈[−a,a]
(
∂1u(β, x2)− ∂1(α, x2)

)
.

The latter infimum is necessarily positive, since a zero value would contradict the strict
convexity ofu; henceµ is a strictly positive measure. LetA > 0 be a large number to
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be chosen in a while, and defineφ1 : [−a, a] →R as the unique strictly convex function
with second derivativeµ/A, and satisfyingφ1(0)= φ′1(0+)= 0. Sinceu is differentiable
atx = 0, φ1 is differentiable at 0, andφ′1(0)= 0.

Sinceφ′′1 �A∂11u(·, x2) for all x2 ∈ [−a, a], we see thatu(x1, x2)−Aφ1(x1) is convex
with respect tox1, for x2 fixed. Obviously, that does not mean thatu−Aφ1 is convex; but
we can reduce to a smaller neighbourhood[−b, b]2 ⊂ [−a, a]2 whereu− φ1 is strictly
convex. Indeed, let us note

γ (x, y)= γ (x1, x2, y1, y2) := u(x)+ u(y)− 2u
(
(x + y)/2

)
.

Sinceu is stricly convex,γ (x, y) > 0 if x �= y. We assume now thatA satisfies

A>
∂11u(0) ∂22u(0)

detd2u(0)
(29)

(note that it is possible to find such a number, by the assumption that detd2u(0) is non-
zero), and we claim that there existsb ∈ (0, a) such that

∀x, y ∈ [−b, b]2, with x �= y γ (x1, x2, y1, x2) < Aγ (x, y). (30)

Indeed, if not, we can find sequences(xn), (yn), xn �= yn for all n, both converging to
0, such thatγ (xn1, x

n
2, y

n
1, x

n
2) � Aγ (xn, yn). A simple Taylor expansion near 0 gives

∂11u(0)(xn1 − yn1)
2 �Ad2u(0) · (xn − yn) · (xn − yn)+ o(|xn| + |yn|), or

(
1− 1

A

)
∂11u(0)X

2
1 + 2∂12u(0)X1X2+ ∂22u(0)X

2
2 � 0

withXi = limn→∞(xni −yni )/|xn−yn|. Therefore, the discriminant of this quadratic form
must be non-positive, i.e.∂12u(0)2 � (1− 1

A
)∂11u(0)∂22u(0). But this contradicts (29),

as a little computation shows. This ends the proof of (30).
Sinceu−Aφ1 is convex with respect tox1, we know that for eachx, y (x �= y),

φ(x1)+ φ(y1)− 2φ
(
x1+ y1

2

)
� 1

A

[
u(x1, x2)+ u(y1, x2)− 2u

(
x1+ y1

2
, x2

)]

� 1

A
γ (x1, y1, x2, x2)

< γ (x, y)= u(x)+ u(y)− 2u
(
(x + y)/2

)
.

Henceu− φ1 is strictly convex.
To obtainφ2, we merely repeat the same process, starting from the strictly convex

functionu− φ1 and using the second coordinate.
Step5. We now obtain a contradiction with the minimality ofu. Indeed, let us choose

three positive real numbersα1, α2, β. If β is small enough, the set

ωβ := {
x = (x1, x2);α1φ1(x1)+ α2φ2(x2) < β

}
is a neighbourhood of 0 included in the domain whereu− φ1(x1)− φ2(x2) is convex.
Note that forε > 0 small enough, the functionu−ε(α1φ1(x1)+α2φ2(x2)) is also convex.
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Hence, the function

vε :=max
(
u,u− ε

(
α1φ1(x1)+ α2φ2(x2)− β

))
is convex, defined on�, and differs fromu only in ωβ . We must therefore have
F(vε)� F(u), which is ∫

ωβ

f (∇vε)− f (∇u)� 0.

By choosingε small enough, we get from a Taylor expansion∫
ωβ

d2f (∇u)∇(vε − u) · ∇(vε − u)� 0

(the first order term vanishes by (27)). This can also be written∫
ωβ

d2f (∇u)∇ψ · ∇ψ � 0, (31)

whereψ(x) := α1φ1(x1) + α2φ2(x2). Recall that this inequality holds for all numbers
αi > 0 (i = 1,2), if β is small enough, and for any coordinate system(x1, x2). Hence,
we can assume thatd2f (0) is just a diagonal matrix

(
λ1 0
0 λ2

)
, with for instanceλ1 < 0

(recall thatf is nowhere convex). Since the mapx �→ d2f (∇u(x)) is continuous and
|ωβ| → 0 asβ→ 0, we have limβ→0 c(β)= 0, if we writec(β)= supωβ |d2f (∇u(x))−
d2f (0)|. Hence, we get from (31):

λ1k1(α,β)+ λ2k2(α,β)�−c(β)(k1+ k2)(α,β), (32)

whereα = (α1, α2) andki(α,β) := α2
i

∫
ωβ
φ′i (xi)2dx1 dx2.

Recall thatφi is a strictly convex function minimal at 0. Hence, the functions ∈
R �→ φi(s)signs is increasing and has a reciprocal function that we denoteηi ; note that
ηi(0)= 0, but the derivativeη′i(s)= signs/φ′i ◦ηi(s) is infinite ats = 0. Hence, ifm> 0
is any number, we have (dropping indicesi for short)

α2
∫

αφ(x)<m

φ′(x)2 dx = α

m∫
−m

φ′ ◦ η
(
t

α

)
signt dt [sett = αφ(x)signx]

=
m∫

−m

|t|
| t
α
η′( t

α
)| dt

>

m∫
−m

|t|
|η( t

α
)| dt→+∞ asα→∞.

(The last inequality is a consequence oftη′(t) < η(t), equivalent toxφ′(x) > φ(x),
which follows from the convexity ofφ.)
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Hence,k1(α,β) tends to∞ asα1 tends to infinity. As a consequence, it is possible to
find sequences(αn)⊂ (0,∞)2, (βn)⊂ (0,∞) such thatβn and(k2/k1)(αn, βn) converge
to 0. Replacing these numbers in (32), and lettingn going to infinity, we getλ1 � 0, a
contradiction.

This concludes the proof of Lemma 5.✷
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