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ABSTRACT. — We consider positive solutions of
—div(lx|~%Vu) = |x|"?Pu?~1, u>0inR",

where forN > 2:a < (N —2)/2, a<b<a+1,andp =2N /(N —2(1+a —b)). Ground state

solutions are the extremal functions of the Caffarelli-Kohn—Nirenberginequalities [6]. In [10] the

authors have observed symmetry breaking phenomena for ground state solutions in a subregi

of the parameters. In this paper, we continue our study on the structboein@l state solutions

and construct bound state solutions having prescribed symmetry.
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RESUME. — On considére les solutions positive a
—div(jx|~%Vu) = |x|"?Pu?~1, u>0dansR",
ou,pourN >2:a<(N—-2)/2, a<b<a+1,etp=2N/(N —2(1+a — b)). Les solutions
a état fondamental sont les fonctions extrémales pour les inégalités des Caffarelli-Kohn:
Nirenberg [6]. Dans [10] les auteurs ont observé une brisure de symétrie pour les solutions d’étz
fondamental dans une région des parametres. L'objet de cet article est I'étude de la structul

des solutions a état borné et de construire des solutions a état borné avec une symétrie prescr
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
This paper is concerned with the following class of problems,

—div(|x|7Vu) = |x|7?Pu?7t, u>0inR", (1)
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where

N -2 2N
, a<b<a+1 and p= )
2 N—-2(1+a-D>)

(@)

The motivations for our study are twofold. First, Eq. (1) is a prototype of more general
degenerate elliptic equations:

—div(a(x)Vu) = f(x,u), xeR",

which are models for some physical phenomena related to equilibrium of anisotropic
continuous media which possibly are somewhere perfect insulators and somewhel
are perfect conductors (e.g., [13]). Though there is a quite extensive literature aboL
degenerate elliptic operators, only few recent results about nonlinear variationa
problems associated to degenerate elliptic equations like (1) are known (e.g., [2,7] an
references therein). On the other hand, Eqg. (1) is related to the following inequalities du
to Caffarelli, Kohn, and Nirenberg [6]. With, b, and p in the range above, there is a
positive constanc, ;, such that for alu € D}2(RY)

. 2/p
[ 12 d > ca,b</ |x|—b"|u|"dx) .

RN RN

By D12(RY) we mean the completion @5 (RY) with respect to the inner product

(u,v) = / Ix|7%Vu - Vo dx.

RN
Let
X724 | Vu|? dx
Ea,b(”) = fRN —b 2 )
(Jr |x|72P|u|P dx)2/P
and
S(a,b) = inf E,p(u),

ueDy?(RM)\(0}

the best embedding constants for the Caffarelli-Kohn—Nirenberg inequalities. The
extremal functions which achie®(a, ) areground state solutionsf (1). There have
been extensive studies on the ground state solutions of (1). The existence of extrem
functions for S(a, b) has been given for > 0 (which occurs only forN > 3), and
a<b<a+1, as follows. The case = 0 andb = 0, was settled by Aubin [1], and
Talenti [26]. The segmeni =0, 0 < b < 1 was dealt with by Lieb in [20], and the
region O<a < (N —2)/2,a<b<a+1in[11,28,22]. For > 0, the conclusion is

that there are no bound state solutions other than the ground state solutions and that t
ground state solutions are unique up to a dilation

u(x) — r%u(rx), >0, 3
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and are radial (in the cage= b = 0, solutions are radial with respect to some point) and
explicitly given. For the case < 0, little has been known until the recent work in [7,
10,16,30]. We have studied the ground state solutions in [10] and have established th
following.
() Fora=b <0, S(a, a) is not achieved, i.e. there is ho ground state solution.
(i) Fora <0Oanda <b <a+1, S(a, b) is always achieved.
(iii) There is a functiom(a) defined fora < 0 satisfyingh(0) =0,a < h(a) <a+1
fora <0, anda + 1 — h(a) - 0 asa — —oo, such that in the region < 0,
a < b < h(a), the ground state solution monradial
(iv) All bound state solutions of (1) satisfy a modified inversion symmetry.
Since radial solutions exist for all < b < a + 1, our result shows that far < O there
is a region where bound state solutions of (1) are not unique (even up to dilations). Thu
it is a fundamental issue to investigate the solutions structure for problem (1). The goa
of this paper is to give existence of bound state solutions having prescribed synimetry
whereG is a subgroup of the orthogonal gro@gN). Note that (1) is radially invariant,
in the sense that if is a solution, so igu for all g € O(N), where

gu(x) =u(g 'x).

A consequence of our main result is the following

THEOREM 1.1. — For b —a € (0, 1) fixed, for anyk € N there isa;, < 0 such that for
a < a; problem(1) hask essentially distinct solutions.

By essentially distinct solutions, we mean functions which can not be obtained from
one another by some transformation which leaves the problem invariant.

Our results also partially answer the question whether one can classify all solution:
of (1) according to their symmetry. Here, forc D}2(R"), the symmetry group af is
defined to be

Y, ={g€O(N): gu=ua.e}.
To state our main results, let us make the following

DEFINITION 1.2.— LetG c O(N) be a closed subgroup, and fix an actionGobn
SM-1. We say that the action af has a locally minimal orbit se® c S¥—1, if there
existk € N andé > 0, such that

(a) Qis G-invariant,

(b) #Gy =k foranyy € Q,

(c) #Gy > k for any y € SV—1 with 0 < dist(y, ) < 6.

HereGy is the orbit ofy under the action of;, and #y is the cardinal number af'y.

DErFINITION 1.3.— We say that the action 6f is maximal with respect to a locally
minimal orbit setQ if for any closed subgroug?, with G < H < O(N), H # G, we
have #Hy > kfor anyy € Q.

Our main theorem is
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THEOREM 1.4. — AssumeG C O(N) is a closed subgroup having a locally minimal
orbit setQ ¢ S¥~* (corresponding to an integek). Letb —a < (0, 1) fixed, then for-a
sufficiently large(1) has a solution:, satisfying

(i) u, is G-invariant,

(i) u, satisfies the modified inversion symmetyyx/|x|?) = |x|V~2"%u, (x),

(iii) Eqp(uq) = (N —2—2a)/2*>=(kP=2/r5,(RY) + 0(1)), asa — —oo,

(iv) u, is ak-bump solution, concentrating ne& asa — —oo,

(v) if in addition, G is maximal with respect t€, thenX, = G.

In (iii), we take S,(R") to be the best constant in the embeddingtof(RY) into
LP(RM), i.e.

5 (RY) = Jan |Vul? + u?dx
P ueH RN} (fgu [u|P dx)Z/P

By k-bump solutions concentrating ne@rasa — —oo, we mean the following: there
is {y1, ..., yx} C R, aG-orbit, such that for any > 0,

lim / 1X|72|Vu,|?dx = lim / |x|7PPuP dx = 0.
a——0o0

a——0o0

R"’\Uf:l B (yi) R’V\Uf.‘:l B, (i)

Remark 1.5. — In fact, we can give a more precise asymptotic behavior of solutions
u,. We look first at the equation

—Au+u=u""t, u>0inR". 4)

Let(z1, ..., zy) be coordinates iRY andu(z) the unique solution (centered at 0) of (4).
Then note that fob — a € (0, 1) fixed, asa — —oo, the function
(1+a

N—-2(14a-b)
N—2—2q\ T (N-2-2
”“(Z)::< 2 > ”< 2 Z)

concentrates at the origin. Now, foy4, ..., v} C Q a G-orbit, consider the projections

() = LY (Tx'lyi)yi, i=1 .. . .k

Forr > 0 small and |x— y;| < r, we define

N—-2-2a

Uai(X) = [x]|” Va (i (x), = In[x]).

Then we can show that the distance bem@andzf:l u,,; tends to 0 irD12(RY), as
a — —OQ.

Remark1.6. — Since the problem is invariant under dilations (3), we can in fact obtain
solutions ofk-bump type with bumps concentrating ne& c S¥=%(r), for anyr > 0.



F. CATRINA, Z.-Q. WANG / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 157-1761

Remark1.7. — Depending on the action @f, we obtain two types of solutions:
solutions which are absolute minimizers in the space of symmetric functions (in
particular, ground state solutions whieg- 1), and solutions which are local minimizers
in the space of symmetric functions. We obtain both, by a rather general local
minimization method used in [8] and [27]. We should mention that global minimization
methods in symmetric subspaces have been used by Coffman in [1¥]$02, and Li
in [19] for N > 4 to study a problem in expanding annular domains. We developed the
local minimization method in [8] to solve the ca¥e= 3 and to construct solutions with
prescribed symmetry.

Our method involves two ingredients: a transformation that converts Eq. (1) to anothel
one defined on a cylindér= S¥~! x R in R¥+1 and its dilationg’,, (this transformation
was used in our previous work [10] for studying ground state solutions); and a local
minimization scheme which enables us to obtain bound states as local minimizers, (thi
approach has been used in our previous work [8,27], to construct positive solutions witt
prescribed symmetry for other types of nonlinear elliptic problems). In Section 2 we
give the equivalent problem, setting up the stage for studying new Eq. (8). Section 3 i
devoted to some asymptotic analysis by using the concentration-compactness principl
Then in Section 4 we give the proof of the results for Eq. (8) which in turn will give our
main results for Eq. (1). Some of the results in this paper as well as those in [10] have
been announced in [9].

2. Preliminaries

2.1. Equivalent problems

DenoteC = S¥~! x R the cylinder inR¥+1. Throughout, whenever the situation
arises, we use the notations in Riemannian geometry,

Av=g"v;; — g'Tv.  the Laplace-Beltrami operator
Vv =g"v;3; the gradient

. 1 . . o
diV Xlai = — gXl ,l-=Xl,i+Ff.X-’,
and

du the volume element

all corresponding to the metrig; induced fromRV"1,

In [10] we have shown that with suitable transformations, problem (1) is equivalent to
another differential equation @h We take the same approach here and we shall mainly
work with the equivalent problem af Let us make this more precise. As it was shown
in [10], by the transformation

u(x):|x|”%2"v<i,_|n |x|), 5)
N
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problem (1) is equivalent to

N—-2—-2

2
> > v=2v""1 v>0o0nC. (6)

—Av+<

In fact, the mapping (5) is a Hilbert space isomorphism fréth?(RY) to H(C)
(Proposition 2.2, [10]). I.e., i defined orR" andv defined orC are related through (5),
thenu € DL2(RY) if and only if v € H(C), and in this case

2
Je IVvi2+ (=52) v2du
E = Fa = :

To study (6), we shall further transform it to another equivalent problem. Let us denote

L_N-2-2
-—

and consider the similarity transformatian: RVt — RN+ given by
hy(x) = Ax.
DenoteC, = h,(C) and forv € H*(C), we definew € H(C,) by
v(x) = AP 2w (). @)

Then

F, (U):)\,Z(b—a)fck |vw|2+w2d“
“ (o, lwlP d)?/r

and with the rescaling (7), problem (6) is equivalent to
—Aw4+w=w’t w>0inC. (8)

In the following we shall find critical points of

L(v) = / Vol + v?du
Ci

for v e M, in HXC,), where

M, = {v c Hl(C)\)‘/|v|” du = 1}.
Cx

By rescaling they are critical points &, , in H(C) and by (5) we obtain critical points
of Ea,b-
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2.2. Group actions

Let
V:G xSVt gVl

the action of a closed subgrodpof O(N). We consider
C:{(xo,...,xN) c RN+ x3+"'+x12v_1=1}.

If we consider the unit sphe®" ! = {x € C | xy = 0}, Definitions 1.2 and 1.3 translate
on C in a direct way. In the following, we shall impose the reflection symmex(§)
about the hyperplaney = 0, and we look for solutions invariant under the augmented
groupG = G x O(1) c O(N + 1). This does not restrict the problem in any way since
we showed in [10] that any positive solution of (6) has this reflection symmetry.

Next, we give examples of locally minimal orbit sets foGaaction onS¥ 1  C.

LetN =2.

Example2.1. — Fork > 2, considerG = Z, the group of rotations by multiples of
27 / k acting in the planéxo, x1). Then

Q = {(x0, x1, 0): xcz,—i—x%: 1},

is a locally minimal orbit set.

Example2.2. — Fork > 3, we considelG = Dy, the group that leaves invariant a
regular polygon withk vertices. When we tak&; to be the set of vertices, @@, to
correspond to the set of centers of the edges, katAnd 2, are locally minimal orbit
sets. In factQz; = Q7 U 5 is also a locally minimal orbit set. In this case, the action of
G is maximal with respect to each;.

Let N =3.

Example2.3. — ConsideG to be the group which leaves invariant one of the regular
polyhedra: a regular tetrahedron, octahedron, or icosahedron. Accordingly, we may tak
Qo to be the set of vertices2; to be the set of the centers of the edges, @ndhe
set of the centers of the faces. In each of the three cases for tetrahedron, octahedron,
icosahedrong; for i =0, 1, 2 are locally minimal orbit sets, an@d is maximal with
respect ta2y. For the case of tetrahedro@, is also maximal with respect Q..

Example2.4. — In this example, writ)R® = R? x R, andG = Z; x Z, or G =
D, x Z5. Then

Q= {(xo, x1, 0, 0): x§+xf: 1},

or Q is the set of vertices of a regular polygon in the pléng x1), respectively. In both
these cases is a locally minimal orbit set. In the case 6f= D, x Z,, G is maximal
with respect ta.

LetN > 4.
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Example2.5.— One case is to consider finite subgroupsQafv) which act
irreducible onR".

Example 2.6. — On the other hand, many more examples can be obtained as follows
For 1< < N — 1 we make the decompositid®¥ = R! x R¥~/, and we look at groups
G = G, x Gy_;, whereG, acts irreducible on thR' part, while the action o y_; has
no fixed points inRY~!, otherwise arbitrary. In particular, one can tdkdimensional
tetrahedron and cube groups f6y. Let k := min{#Gy: y e S71}, and; c St a
locally minimal orbit set corresponding to this Then Q2 := @, x {0}, is a locally
minimal orbit set for the action of7, with the same.

2.3. Local identifications

We define a diffeomorphism between the ball of radiuentered at the origin iR
and a subset of, as follows. We identifyR" with the tangent space 1, aty and
consider the projection iRY*! in the direction of the normal t6, at y.

To be exact, let

C,\:{(xo,...,xN)eRNHZ x§+---+x,%,71:)\2}, (9)
Assumey = (1,0, ...,0, yy) € Cy and for O< r < A, define a map from
Bi,(y)i={x €Cpi xf + - a3y + (v — yw)? <%},
onto B,(0) C RY, by
G y(X) = (x1, ..., xy_1, Xy — yn) € RV,
For anyy e C, let R a rotation inR"** that leaves the y-axis fixed and such that
Ry:(A,O,...,O,yN)ERN.

We then define

(p)»,r,y (X) = ¢k,r, Ry(Rx)-

Therefore for ally € C,, ¢, is defined forx € B, ,(y).
Conversely, lety = (1,0, ..., 0, yy) € C and forx e RY with |x| < r let

¢;,i,y(x) = (\/)»2 — (Xf + - +X;2v,l) » X1y ooy XN—1, XN T+ )’N) € By, (y).

Again, for arbitraryy € C let R be a rotation irRV*! that leaves they-axis (inRV*1)
fixed such that

Ry=(,0,...,0, yy).
Forx € B,(0) c RY, define

$rn () =R L, (x) €C.
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At least in the case = (1,0,...,0, yy) it is clear thatg, , , and¢;},y are inverse to
each other and are diffeomorphisms betw@gn(y) and B, (0). If y is not contained in
the plan€(yg, yy), there is an ambiguity due to nonuniqueness of the rotaRiohs long
as the same® is used in the construction @, ,, andg; » ,, the two functions remain
inverse to each other. We note here that the Jacob?lgg}s@), and J¢;}‘, (x),tend to 1

uniformly on B; ,(y), respectivelyB, (0), asr/x» — 0.
Forr < A andy € C, we construct the operators

Tory HY (B, (») — HY(B,(0)) and T,,,:H'(B,(0) — H' (B, (),
as follows

T)»,r,y(v)(-x) = U(ff’):iy(x)) and 7_ﬂ)»,r,y(l't)(-x) = u(¢k,r,y(x)>~

3. Concentration-compactness

We need a concentration-compactness lemma which is a more detailed version of th:
in [21]. By a proof similar to Lemma 4.1 and Lemma 4.2 in [27] we have

LEMMA 3.1.- Leti, — oo asn — oo. Letv, € HY(C,,) be such that;, (v,) are
uniformly bounded angfc_h |v,|” du = 1. Then there is a subsequentill denoted by

(v,)), @ nonnegative nonincreasing sequerieg) satisfyinglim,_...> ;_;o; =1, and
sequencesy, ;) C C;, associated with eacly; > 0 satisfying

liminf |y, ; — ya, ;| =00, foranyi # j, (10)
n—o0

such that the following property hold# «, > 0 for somes > 1, then fore > 0 there
existR >0, forallr > Rand allr’ > R

lim supi

n—oo
i=1

o — / |v,,|”d,u‘+‘<1_ ; ai)— / |vn|”du‘<8.
B,

- i=1 y
By.r Vi) CA”\U::l o i)

(11)

PROPOSITION 3.2. — For a subsequence as in Lem®34, we have that far > 1,

N N 2/]7
liminf 1,, (v,) > S, (R") (Za,?/” - (1 — Za,) > :
n—oo
i=1 i=1
Consequently,
liminf 7, (v,) > S, (RY) > "

i=1
Proof. —Denote

Sp(c)») = inf LI, (v).
veHLC)\(0)
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It is not difficult to check (see the proof of Theorem 1.2 in [10]) that
lim $,(C) =5, (R"). (12)

Fix s, and assume

N
Z o; < 1.
i=1

We choose

1 ) s
O<e< Emln{as,l—Zai},

i=1
and the correspondin@ as given in Lemma 3.1. Let > R and forn large we can
assume thaB;, 3,(y,;) are disjoint fori =1, ..., s, and

/ oal? A > @ — 26, (13)

Bkn,)'(Yn,i)

[v,|? die > (1—205,») — 2¢. (14)
G\ Baar i) =1

Fori=1,...,s, let 0< p,; <1 cut-off functions with|Vp, ;|(x) < 2/r, which are
identically 1 insideB;, ,(y,.;) and O outsideB; » (y,;). We also define & p, <1 a
cut-off function onC,, such thatp, is identically 1 onC;, \ U;_; Bs,.3-(y..;) and 0 on
Uf:l an,Zr(yn,i)v Wlth |Vpn|(x) < 2/7' Let

wn,i(x) = pn,i(x)vn (.X) forx e C)»n-

Also, definew,, = p,v,. Then

/|wn,i|f’du> / a7 e, (15)
Cn By .r (Vn,i)
and
/|wn|f’du> / a1 . (16)
c}»n CA,, \Uj=1 B)Ln,3r()’n,i)

From (13), (15), and (14), (16), we obtain

/ Va2 + w2, A > (o) (e — 26)27,
Cn
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and
s 2/p
/ |Vw, |2+ w2du > S,(C,,) (1 = i — zg> .
C)Ln i=1

Using the fact that the Jacobiar.i@x‘,‘yn_i (x) and Jy1 o (x) tend to 1 uniformly on

Vi

B;. ,(ya.i), respectivelyB, (0), asr — oo, we also have

C
[ vulddnz [ 1G4l de- .
’ r

Bkn,Zr(}’n.i) C}W
and
2 2 2 2 C
Voul? + i du > [ [V 2+ wide — .
Cri\U_q B2 Oni) Cin

with C independent of andn. Therefore,

s s 2/p (S n 1)C
Ikn(vn) = Sp(CAn) (Z(Oli — 28)2/p + ((1— ;ai> — 28) ) _ T

i=1

Letn — oo, thenr — oo, and finallye — 0. The casé_;_, «; = 1 is done the same
way, without consideringv, anymore. 0O

4. Main resultsfor Eq. (8)

In this section we shall state and prove our results for Eq. (8),0These results,
which are of their own interest, will in turn give our main results for Eg. (1) by using the
transformation (5).

It is known (e.g., [14,18,29]) thas,(R") is achieved by a positive functioti €
HYR") such thaiU|;» =1 and

/|VU|2+ U?dx =S, (RY).
RN

Moreover, U is unique up to translations and it is radially symmetric with respect to
some point (which we assume to be the origiRilh). We placeC, in R¥*! as in (9).C;,

is invariant under the canonical action@{N) x O(1) ¢ O(N + 1) with O(N) acting on

RY = {x e RV | xy =0} andO(1) acting onR = {x e R¥*! | xg=--- = xy_1 =0}.

Eqg. (8) is also invariant under this group. For a functioe H(C,) we define the
isotropy subgroup of as

2, ={g € OWN) xOD) | gv=v}.
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Here gu(x) = v(g~x). In the following we denote by a subgroup irO(N) x O(1),
given by

G =G x 0O(1)
with G a subgroup oD(N). We shall prove

THEOREM 4.1. — Let 2 ¢ SV~ x {0} C C be a locally minimal orbit set of; with
the corresponding integdr € N. Then fori sufficiently large, problen(8) has a solution
w;, satisfying

() wy is G-invariant,
(i) w; has exactlyx maximum points which form@ orbit Gy, for somey; € Q, :=

AR,
(iii) w, is of k-bump type in the sense that{if, i, ..., y.«} are the maxima ofv;,
then
£ 1/(p—2)
. - e
All—>moo Wi = Z T)\»\/X»YA,i (Sf’ (RN) U) =0,

i=1 HY(Cy)

(iv) lim; oo Li(w;) =kP72/7S,(RY),

(v) ifin addition, G is maximal with respect t&, thenX,,, = G.

The idea of proving this result stems out of our work in [8] and [27] where we have
given a rather general local minimization scheme to construct positive solutions with
prescribed symmetry for some radially invariant elliptic problems. The procedure usec
below is somewhat different from that in [8] and [27] and seems to be more transparent

We set up our minimization scheme aroufd Since2 is a locally minimal orbit set,
there iss > 0 such that

#Gy >k forall y e S¥=1 x {0} with 0 < dist(y, ) < 35.
Denote
A={yeC(C: dist(y,Q) <é} and II={yeC: dist(y, Q) < 2§}.

Note that becausé is a group of isometries, the setsandI1 are invariant under the
action ofG.

Since we work on cylinders of different radii, we make the following notations
Q== 2Q, Ay := LA, andIl, := ATl all subsets of;.

In the space of;-symmetric functions

Heu={ve HYC): gv=v, forallg e G},

we define a constraint manifold and an open subset of it

MG,F{veHG,A: /|v|f’=1},
Cy
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o
K(cj;,x = {u e Mg va(v) >1— E}’

where
1

J/x(v)=/|v|pdu and a=—k+1.
AV

Note thaty, is a continuous functional oH*(C,) andKg , is an open subset 0¥ ;.
We are looking for critical points of the functional

h@):/ﬁvmﬁ+&du,\mmvekgj. (17)
Cy

Providedx is large, we show that

my .o = inf I)L(l/t) (18)
uEICg’)L
is achieved by a function in the interior df7, , (which can be assumed to be
nonnegative). By [25], a critical point M ; of I;, after a rescaling will be a solution
of (8).
First, we have the following local compactness result.

THEOREM 4.2. — Let > Ofixed. If there is a minimizing sequen@s,) C K, , (i.e.
I, (v,) = m;, ) such that forn large

p/(p=2)
mk,a

S, (Cy)P/P=2) 4 m)]j’/;pfz) )

y)»(vm) =

then there is a subsequentstill denoted(v,,)) which converges strongly to € Kg’k
(the closure inHg ;), and I, (v) = m; 4.

Proof. —Since(v,,) is a minimizing sequence, it is boundedAt(C,). Therefore we
can assume

() vu—v inHYC)
(i) ve—v inLE(C)
(i) v, —>v a.e.inC,.
SinceA is compact, it follows from (ii) that
(o2

Pl >1—
/|v| u .
A

thereforev = 0. If

/Ivl”du=1,
Cy
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thenv € K, ,, and sincd; is lower semi-continuous, it follows that
L,(v) <mj 6,

hencel, (v) =m; ;.
Therefore, assume thgﬁg_A [v]? du < 1. This implies

v

2/p
——— € KG hence/|Vv|2+v2dp,>mk,0(/|v|"d,u> ) (29)
|U|Lp(cl) A e

We have

Myo= lim [ |Vu,[>+v2 du

m—00

G,

:/|Vv|2+v2du+ Ii_r)noo/W(vm — )+ (v, — v)?du
CA CA

2/p
2/|Vv|2+v2dM+Sp(Cx)rJian</|vm—v|pd,u> .
CA CA

Therefore,

2/p
J 1962+ 2 < = 8,0 fm ([l =oirde) L @0)
C)L CA

On the other hand, from the Brezis—Lieb lemma (see [3]),
1= lim /|vm|1’du=/|v|pdu+ lim /lvm—vlpdu.
m— o0 m—0oQ
C;. Cy Ci
Hence

lim |vm—v|pd,u:1—/|v|pdu. 21)
C)L CA
From (20) and (21), we obtain

2/p
[ 190 + v < = 5,0 (1 [ o) (22)
CA C)L

Again from (ii) and the hypothesis we have

p/(p=2)
mA,U

S, P02 4 7D

1>x:=/v"d,u>
G,
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From (19) and (22), we obtain
0<my o (1—x%7) = S,(C)(L—x)¥7. (23)

A direct check shows that (23) is not possiblex

Next, we need some asymptotic estimatesiftarge. For notations convenience, we
let for A, — oo

ML=, CA,CIl, CC,,.
PrRopPOSITION 4.3. — We have

limsupm; , < k=275, (RV).

A—00

Proof. ~We prove the proposition by constructing test functions. Uet H(R")
such thafU|;.» =1 and

/lVU|2—|— U?dx = S,(RY).

For ane > 0, letr > 0 sufficiently large so that there is a radial cut-off functiotx)
identically 1 inB,(0) and 0 outsideB,, (0), such that the function(x) = p(x)U (x) has
the property

Vul? +u?dx
fRNl Ml +u gSp(RN)-i-g

|M|LP(RN)

For a pointy; € , let us denotgys, ..., ys} = Gy1. Considera sufficiently large so
that B; »-(y;) are disjoint and contained if; . Let

Vi = T)\.,Zr,y,-ua

and considerv € H(C,) given by

k
Zkl/phhlu’

Clearly,v € K7, , for A large. We obtain
Mo < L) =KL (vy).
Therefore,

2 2
limsupm;_, < k(P=2/p Jrv [Vul® + u®dx
Aol ui2,

< k(P*Z)/PSp(RN> +¢

Lete - 0. O
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PROPOSITION 4.4. — For any sequences, — oo andv, € K ; such that
lim 1, (v,) — d <kP=2/7s,(RY),
n—oo

we have
-2
/v,’l’d,u —1 and d=k""2/rs,(R").
Ay
To prove this proposition, we need a lemma.

LEMMA 4.5. - Applying Lemm&.1to a sequence, € K7, Wwe get the sequences
(@), (y».;) such that(10) and (11) hold. Then we have eithetist(y, ;, A,) — oo as
n — 0o, or there exists am; so that forn > n; we havey, ; € I,.

Proof. —According to Observation 2.6 and Proposition 2.8 in [8], we can assume that
for any 1<i < s fixed, there is an orthonormal frantg, . . ., g;;_) in R¥*1, independent
of n, such that

Yni =bj &1+ + b, &

where
bﬁw.—>oo asn — oo, forj=1,...,4,
and
b .
%ﬂeo asn — oo, for j=1,...,1 — 1.
n.j

If the direction of£} intersect<’ at a pointy in the closureA, then

Yn,i
An

[n] —1n, asm — 0.

Therefore, ifn is sufficiently largey, € I1,,.
If dist(n, A) =d > 0, then

dist(y,.i» An) = d, + O(B ),

which tends to infinity. O

Proof of Proposition 4.4— Applying Lemma 3.1 to the sequence,) we get the
sequencesy), (v,.;) such that (10) and (11) hold. Letoe such tha#, > «,,1 and

s o
>1-2 24
§a> . (24)

Choose

o

. — U4 .
0<8<m|n{Tl+: o # g, 1=1,...,s}.
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From Lemma 4.5, by relabeling, ..., a, we can assume that directioBs, ..., &
intersectC in A. Hence, forn bigger than max{;: i = 1,...,s1} (see Lemma 4.5),
yni €I, fori=1,...,s1. Also, dist(y, ;, A,) > ocofori =s1+1,...,s. We show that

51
Zai >1-o. (25)
i=1

Indeed, from Lemma 3.1, for large we have

$uns [ s
i=1

=lp, on)

and from (24) we get

|vn|”du—%—6<0.

AU, Br i)

Therefore,

o >/|vn|pdu—%—38.

i=1 A

Since

: o
npd 1__’
/|v| po>1-2
Al’l

letn — oo and there — 0; (25) follows. Without loss of generality, we can assume that
for all n, y,,; appear in orbits. l.e. if,; corresponds te; andg € G, thengy, ; is an
yn,j CcOrresponding to some; = «; (because of symmetry). We denote

o i=1,...,s}/)G={a: 1=1,...,5},

wherey; is in the same class with; if y, ; andy, ; are in the same orbit. We also denote
k, the number of elements in the clagsfor t =1, ...,5, i.e.k, = #Gy,; with «; in the
class@,. From Proposition 3.2, we now have

2/p
L, (v,) > Zkaz/”S (RY) + (1 Zal> S,(RY) —o(D),

=1

with o(1) - 0 asn — oo. Letn — oo and we get

2/p
k(p 2)/pS (RN) >d>S RN (Zkaz/p+ (1 Zkal> ) (26)

=1
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Sincek, > k, we have

where

Becauser = 1/(k + 1) and (25), we have > k/(k + 1), and this implies
k(P=2/2,2/p +(1— x)Z/P > k(!’*z)/z’
with equality if and only ifx = 1. From (26) we see that we need equality, and the only
way this can happen is i =k, y, 1 € 2,, and>f_ja; =1. O
Now we are ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1 We argue that there Is, > 0 such that > A, andv € K7, ,
with I, (v) < m; , + £, implies

p/(p=2)
o m
7, (v) > max{l -, '\’Z D) }
4 Sp(C)P/P=2 4 mf' ]

Indeed, if the statement above is false, there)gre> oo, andv, € K7 ; , such that
L,(v,) <my, .+ ﬁ and

p/(p=2)
o mk o
Vi (Un) < maX{l— —, = — } (27)
47 5,(Cy,)P/ =D _|_mi’n/f(f )

By Propositions 4.3 and 4.4 we have

lim m;, , — kP27, (RY),

An—> 00

and again by Proposition 4.4 we obtain,

/|vn|"du» 1,

A,

n

contradicting (27).
Now, by Theorem 4.2, fok > A, m; , is achieved by € K7, , (becausey; (v) >
1-92).
4
Forv, € K, , critical point of [, with I, (v) = m, ., we define

1/(p-2
w,\:mx{ép 'v;. (28)
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Thenw,, is a solution of (8). Note that

/|Vw)\|2+wfdp,=/wfd,u:mf\’,/;pfz). (29)
CA CA

Part (i) of Theorem 4.1 follows from the constructionwof.

To prove (ii), assume by contradiction that there is a sequ&nee oo such that the
corresponding solutions), of (8) have more thaik local maximum points. We shall
derive a contradiction with (29).

Eventually by performing a rotation ifxg, x1, ..., xy_1), and a translation iny
for eachn, we can assume without loss of generality that= (1,,,0,...,0) is a local
maximum ofw,. Letr, — oo such that,, /1, — 0 asn — co. We denote

U, = TA,,,r,,,y,, (wn) € Hl(Br,, (0))
Sincew,, are solutions of (8), we get that, satisfies

Ni:l i () il
— a’(x
U 9x;0

i,j=1

N-1
n aun 1 .
+ b! +u,=u’"", in B, (0),
Xj ; $ 0x; N “n O

where

n .Xl'Xj n X
aij(x)=5ij—Ts and bi (.X)Z(N—l))\’—l%
Sincer, /A, — 0, it is easy to check that;f,. (x) — &; and b (x) — 0, uniformly in

B,,(0) C R". Elliptic theory (see [15]) gives
u, —u inCE(RY), (30)

whereu is a solution of
—Au+u=u""t inRV. (31D

Sincey, is a local maximum fow, andw, (y,) > 1 for all n, it follows 0 e R" is a local
maximum foru,, hence foru. Therefore,u is a nonzero solution of (31). By Fatou’s
lemma and since, € H(B,,(0)) andu, > 0 for alln, we havex € H*(R") andu > 0.
The only nonnegative, nonzero solution with its maximum at 0 of (35 WRY), is

u(x) = S,(RMHY" 20 (x).

SinceU has only one maximum point which is a nondegenerate critical poitit aff O,
we get that for any > 0, whenn is sufficiently largeu,, has only one maximum in
B,(0) and thereforew, has only one maximum i®;, ,(y,). This is by now a standard
argument following [24]. Therefore there is a sequepges r,, satisfyingp, — oo as
n — oo such thaty, is the only local maximum ob,, in B, ,, (y,). Up to a subsequence,
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we get by a direct calculation and by (30)

S,(RM”P™? = lim [ |Vul?+u? < lim / Vit,|? + u?
n—>oo

n—oo
RN By, (0) (32)
= lim / |Vw,,|2+w5duz lim / wr du.
n—o00 n—oo
BAn .on (yn) Bkn,pn (yn)

By assumption, let{y, 1, y1.2, ..., Ynr+1} Maximum points ofw,. Performing the
argument above at each of these points, we may assume for thepsame

B;, 0, ni) N By, (yn,j) =9, fori#j. (33)

From (29), (32), Propositions 4.3 and 4.4 we get

kS, (RY)"" 7 = jim / Vw2 + wldp > (k+ 1S, (RY)” 772
n—>oo
Cr
This provides the desired contradiction.

Now, we argue that the number of local maxima is exaktlgnd they form a-orbit
in Q. Indeed, from (32), (28) and (33), we obtain

1

i P >

nlinoo / vPdu > k'
Bkn,pn (}’n)

Since

/ vPdu — 1,
An

it follows that forn sufficiently large,y, € I1,,. This implies there are at leaktlocal
maxima. By (32), this in turn also implies € €2,,, for otherwise we would have

liminf /v;’ du > 1.
n—oo
An

The fact that local maxima form an orbit is a consequence of the facijhlaas exactly
k local maximum points, and at least one of them ijn
Part (iii) follows by the arguments in (i), and the fact thatis a minimizer ink¢; ; ,
which implies forr = r(1) - oo with (1) /A — 0 asih — o
/ |Vv,\|2+vfd,u—>0, asi — oo.

CK\Uf;l B r() W2.i)

Takingr (1) = +/A, we get the result.
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Part (iv) is direct consequence of Proposition 4.4.
Finally, (v) follows from (ii) since ¥,, > G implies w has more thank local
maxima. 0O

Proof of Theorem 1.4- Part (ii) was proved in [10]. The modified inversion symmetry
in RY, corresponds to the even symmetryxin on C. The rest of the properties in
Theorem 1.4 follow from Theorem 4.1 and transformations (5) and (7).

Proof of Theorem 1.1 ForN > 2, we writeRY = R? x R¥=2 and fork > 3 consider
Gy =2, xO(N —2) orD; x O(N — 2). For these two group actions, the minimal orbit
set has thig as the number of points in each orbito

5. Closing remarks

Remark5.1. — We mention that although fo¥ =2 and N > 4 one can obtain the
multiplicity result in Theorem 1.1 just by finding the minimum &f in the space
He,.», ourlocal minimization procedure in the space of symmetric functions is essential
in order to obtain Theorems 1.1 and 1.4 in the case- 3. For N = 3, a global
minimization will only yield solutions with 1-bump (ground state), 2-bump (given by
Z, x O(2) symmetry), 4-, 6-, 12-bump (Example 2.3), and one radial solution. This
phenomenon is similar to that for an elliptic problem on expanding annular domains
studied in [4,8,12,19,23]. For the examples of higher dimensional tetrahedron or cub
groups given in Example 2.6 witN > 4, alocal minimization method is also needed if
=N — 1. In these cases, the global minimization only produces 2-bump solutions.

Remark5.2. — For the exact symmetry of solutions, we need the maximality condition
(Definition 1.3), which seems necessary in some cases. For instance, theZgigiuen
in Example 2.1 is not maximal with respect to the locally minimal orbit set there, and
we believe in this case the solution one gets from Theorem 1.4 has exact syrirpetry
instead ofZ,. One may compare with another problem of similar spirit studied in [17].

Remark5.3. —In a forthcoming paper we shall present a multiplicity result of
a somewhat different nature, where the imposed group of symmetry is continuous
subgroup ofO(N). These symmetries also make easier regaining of compactness an
allow a larger parameter range.
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