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ABSTRACT. – We consider positive solutions of

−div(|x|−2a∇u) = |x|−bpup−1, u � 0 in RN,

where forN � 2: a < (N − 2)/2, a < b < a + 1, andp = 2N/(N − 2(1+ a − b)). Ground state
solutions are the extremal functions of the Caffarelli–Kohn–Nirenberg inequalities [6]. In [10] the
authors have observed symmetry breaking phenomena for ground state solutions in a subregion
of the parameters. In this paper, we continue our study on the structure ofbound state solutions
and construct bound state solutions having prescribed symmetry.

Keywords:Positive solutions; Degenerate elliptic equations; Prescribed symmetry; Local
minimizations

RÉSUMÉ. – On considère les solutions positive à

−div(|x|−2a∇u) = |x|−bpup−1, u � 0 dansRN,

où, pourN � 2: a < (N − 2)/2, a < b < a + 1, etp = 2N/(N − 2(1+ a − b)). Les solutions
à état fondamental sont les fonctions extrémales pour les inégalités des Caffarelli–Kohn–
Nirenberg [6]. Dans [10] les auteurs ont observé une brisure de symétrie pour les solutions d’état
fondamental dans une région des paramètres. L’objet de cet article est l’étude de la structure
des solutions à état borné et de construire des solutions à état borné avec une symétrie prescrite.

1. Introduction

This paper is concerned with the following class of problems,

−div
(|x|−2a∇u

)= |x|−bpup−1, u � 0 in RN, (1)
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where

N � 2, a <
N − 2

2
, a < b < a + 1 and p= 2N

N − 2(1+ a − b)
. (2)

The motivations for our study are twofold. First, Eq. (1) is a prototype of more general
degenerate elliptic equations:

−div
(
α(x)∇u

)= f (x,u), x ∈ RN,

which are models for some physical phenomena related to equilibrium of anisotropic
continuous media which possibly are somewhere perfect insulators and somewhere
are perfect conductors (e.g., [13]). Though there is a quite extensive literature about
degenerate elliptic operators, only few recent results about nonlinear variational
problems associated to degenerate elliptic equations like (1) are known (e.g., [2,7] and
references therein). On the other hand, Eq. (1) is related to the following inequalities due
to Caffarelli, Kohn, and Nirenberg [6]. Witha, b, andp in the range above, there is a
positive constantCa,b such that for allu ∈D1,2

a (RN)

∫
RN

|x|−2a|∇u|2 dx � Ca,b

( ∫
RN

|x|−bp|u|p dx

)2/p

.

By D1,2
a (RN) we mean the completion ofC∞

0 (RN) with respect to the inner product

(u, v) =
∫

RN

|x|−2a∇u · ∇v dx.

Let

Ea,b(u) =
∫

RN |x|−2a|∇u|2 dx

(
∫

RN |x|−bp|u|p dx)2/p
,

and

S(a, b) = inf
u∈D1,2

a (RN)\{0}
Ea,b(u),

the best embedding constants for the Caffarelli–Kohn–Nirenberg inequalities. The
extremal functions which achieveS(a, b) areground state solutionsof (1). There have
been extensive studies on the ground state solutions of (1). The existence of extremal
functions forS(a, b) has been given fora � 0 (which occurs only forN � 3), and
a � b < a + 1, as follows. The casea = 0 andb = 0, was settled by Aubin [1], and
Talenti [26]. The segmenta = 0, 0< b < 1 was dealt with by Lieb in [20], and the
region 0< a < (N − 2)/2, a � b � a + 1 in [11,28,22]. Fora � 0, the conclusion is
that there are no bound state solutions other than the ground state solutions and that the
ground state solutions are unique up to a dilation

u(x) → τ
N−2−2a

2 u(τx), τ > 0, (3)
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and are radial (in the casea = b = 0, solutions are radial with respect to some point) and
explicitly given. For the casea < 0, little has been known until the recent work in [7,
10,16,30]. We have studied the ground state solutions in [10] and have established the
following.

(i) For a = b < 0, S(a, a) is not achieved, i.e. there is no ground state solution.
(ii) For a < 0 anda < b < a + 1, S(a, b) is always achieved.
(iii) There is a functionh(a) defined fora � 0 satisfyingh(0) = 0, a < h(a) < a + 1

for a < 0, anda + 1 − h(a) → 0 asa → −∞, such that in the regiona < 0,
a < b < h(a), the ground state solution isnonradial.

(iv) All bound state solutions of (1) satisfy a modified inversion symmetry.
Since radial solutions exist for alla � b < a + 1, our result shows that fora < 0 there

is a region where bound state solutions of (1) are not unique (even up to dilations). Thus
it is a fundamental issue to investigate the solutions structure for problem (1). The goal
of this paper is to give existence of bound state solutions having prescribed symmetryG,
whereG is a subgroup of the orthogonal groupO(N). Note that (1) is radially invariant,
in the sense that ifu is a solution, so isgu for all g ∈ O(N), where

gu(x) = u
(
g−1x

)
.

A consequence of our main result is the following

THEOREM 1.1. – For b − a ∈ (0,1) fixed, for anyk ∈ N there isak < 0 such that for
a � ak problem(1) hask essentially distinct solutions.

By essentially distinct solutions, we mean functions which can not be obtained from
one another by some transformation which leaves the problem invariant.

Our results also partially answer the question whether one can classify all solutions
of (1) according to their symmetry. Here, foru ∈ D1,2

a (RN), the symmetry group ofu is
defined to be

�u = {g ∈ O(N): gu = u a.e.}.
To state our main results, let us make the following

DEFINITION 1.2. – LetG ⊂ O(N) be a closed subgroup, and fix an action ofG on
SN−1. We say that the action ofG has a locally minimal orbit set� ⊂ SN−1, if there
existk ∈ N andδ > 0, such that

(a) � is G-invariant,
(b) #Gy = k for anyy ∈ �,
(c) #Gy > k for anyy ∈ SN−1 with 0 < dist(y,�) < δ.

HereGy is the orbit ofy under the action ofG, and #Gy is the cardinal number ofGy.

DEFINITION 1.3. – We say that the action ofG is maximal with respect to a locally
minimal orbit set� if for any closed subgroupH , with G � H � O(N), H �= G, we
have #Hy > kfor anyy ∈ �.

Our main theorem is
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THEOREM 1.4. – AssumeG ⊂ O(N) is a closed subgroup having a locally minimal
orbit set� ⊂ SN−1 (corresponding to an integerk). Letb − a ∈ (0,1) fixed, then for−a

sufficiently large,(1) has a solutionua satisfying
(i) ua is G-invariant,
(ii) ua satisfies the modified inversion symmetryua(x/|x|2) = |x|N−2−2aua(x),

(iii) Ea,b(ua) = ((N − 2− 2a)/2)2(b−a)(k(p−2)/pSp(RN) + o(1)), asa → −∞,
(iv) ua is a k-bump solution, concentrating near� asa → −∞,
(v) if in addition, G is maximal with respect to�, then�u = G.

In (iii), we take Sp(RN) to be the best constant in the embedding ofH 1(RN) into
Lp(RN), i.e.

Sp

(
RN
)= inf

u∈H1(RN)\{0}

∫
RN |∇u|2 + u2 dx

(
∫

RN |u|p dx)2/p
.

By k-bump solutions concentrating near� asa → −∞, we mean the following: there
is {y1, . . . , yk} ⊂ �, aG-orbit, such that for anyr > 0,

lim
a→−∞

∫
RN\⋃k

i=1
Br(yi)

|x|−2a|∇ua|2 dx = lim
a→−∞

∫
RN\⋃k

i=1
Br (yi)

|x|−bpup
a dx = 0.

Remark1.5. – In fact, we can give a more precise asymptotic behavior of solutions
ua. We look first at the equation

−"u + u = up−1, u > 0 in RN. (4)

Let (z1, . . . , zN) be coordinates inRN andu(z) the unique solution (centered at 0) of (4).
Then note that forb − a ∈ (0,1) fixed, asa → −∞, the function

va(z) :=
(

N − 2− 2a

2

)N−2(1+a−b)
2(1+a−b)

u

(
N − 2− 2a

2
z

)

concentrates at the origin. Now, for{y1, . . . , yk} ⊂ � aG-orbit, consider the projections

πi(x) = x − (x · yi)yi

|x| , i = 1, . . . , k.

For r > 0 small and |x− yi | < r , we define

ua,i(x) = |x|− N−2−2a
2 va(πi(x),− ln |x|).

Then we can show that the distance betweenua and
∑k

i=1 ua,i tends to 0 inD1,2
a (RN), as

a → −∞.

Remark1.6. – Since the problem is invariant under dilations (3), we can in fact obtain
solutions ofk-bump type with bumps concentrating nearr� ⊂ SN−1(r), for anyr > 0.
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Remark1.7. – Depending on the action ofG, we obtain two types of solutions:
solutions which are absolute minimizers in the space of symmetric functions (in
particular, ground state solutions whenk = 1), and solutions which are local minimizers
in the space of symmetric functions. We obtain both, by a rather general local
minimization method used in [8] and [27]. We should mention that global minimization
methods in symmetric subspaces have been used by Coffman in [12] forN = 2, and Li
in [19] for N � 4 to study a problem in expanding annular domains. We developed the
local minimization method in [8] to solve the caseN = 3 and to construct solutions with
prescribed symmetry.

Our method involves two ingredients: a transformation that converts Eq. (1) to another
one defined on a cylinderC = SN−1×R in RN+1 and its dilationsCλ, (this transformation
was used in our previous work [10] for studying ground state solutions); and a local
minimization scheme which enables us to obtain bound states as local minimizers, (this
approach has been used in our previous work [8,27], to construct positive solutions with
prescribed symmetry for other types of nonlinear elliptic problems). In Section 2 we
give the equivalent problem, setting up the stage for studying new Eq. (8). Section 3 is
devoted to some asymptotic analysis by using the concentration-compactness principle.
Then in Section 4 we give the proof of the results for Eq. (8) which in turn will give our
main results for Eq. (1). Some of the results in this paper as well as those in [10] have
been announced in [9].

2. Preliminaries

2.1. Equivalent problems

DenoteC = SN−1 × R the cylinder inRN+1. Throughout, whenever the situation
arises, we use the notations in Riemannian geometry,

"v = gij vij − gij 'k
ij vk the Laplace–Beltrami operator,

∇v = gij vj∂i the gradient,

div
(
Xi∂i

)= 1√
g

(√
gXi

)
,i = Xi,i +'i

ijX
j ,

and

dµ the volume element,

all corresponding to the metricgij induced fromRN+1.
In [10] we have shown that with suitable transformations, problem (1) is equivalent to

another differential equation onC. We take the same approach here and we shall mainly
work with the equivalent problem onC. Let us make this more precise. As it was shown
in [10], by the transformation

u(x) = |x|− N−2−2a
2 v

(
x

|x| ,− ln |x|
)

, (5)
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problem (1) is equivalent to

−"v +
(

N − 2− 2a

2

)2

v = vp−1, v > 0 onC. (6)

In fact, the mapping (5) is a Hilbert space isomorphism fromD1,2
a (RN) to H 1(C)

(Proposition 2.2, [10]). I.e., ifu defined onRN andv defined onC are related through (5),
thenu ∈D1,2

a (RN) if and only if v ∈ H 1(C), and in this case

Ea,b(u) = Fa,b(v) :=
∫
C |∇v|2 + (N−2−2a

2

)2
v2 dµ

(
∫
C |v|p dµ)2/p

.

To study (6), we shall further transform it to another equivalent problem. Let us denote

λ = N − 2− 2a

2
,

and consider the similarity transformationhλ : RN+1 → RN+1 given by

hλ(x) = λx.

DenoteCλ = hλ(C) and forv ∈ H 1(C), we definew ∈ H 1(Cλ) by

v(x) = λ2/(p−2)w(λx). (7)

Then

Fa,b(v) = λ2(b−a)

∫
Cλ

|∇w|2 + w2 dµ

(
∫
Cλ

|w|p dµ)2/p
,

and with the rescaling (7), problem (6) is equivalent to

−"w + w = wp−1, w > 0 in Cλ. (8)

In the following we shall find critical points of

Iλ(v) =
∫
Cλ

|∇v|2 + v2 dµ

for v ∈Mλ in H 1(Cλ), where

Mλ =
{

v ∈ H 1(Cλ)
∣∣∣ ∫
Cλ

|v|p dµ = 1
}

.

By rescaling they are critical points ofFa,b in H 1(C) and by (5) we obtain critical points
of Ea,b.
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2.2. Group actions

Let

ψ :G × SN−1 → SN−1,

the action of a closed subgroupG of O(N). We consider

C = {
(x0, . . . , xN) ∈ RN+1: x2

0 + · · · + x2
N−1 = 1

}
.

If we consider the unit sphereSN−1 = {x ∈ C | xN = 0}, Definitions 1.2 and 1.3 translate
on C in a direct way. In the following, we shall impose the reflection symmetryO(1)

about the hyperplanexN = 0, and we look for solutions invariant under the augmented
groupG̃ = G × O(1) ⊂ O(N + 1). This does not restrict the problem in any way since
we showed in [10] that any positive solution of (6) has this reflection symmetry.

Next, we give examples of locally minimal orbit sets for aG action onSN−1 ⊂ C.
Let N = 2.

Example2.1. – Fork � 2, considerG = Zk the group of rotations by multiples of
2π/k acting in the plane(x0, x1). Then

� = {
(x0, x1,0): x2

0 + x2
1 = 1

}
,

is a locally minimal orbit set.

Example2.2. – Fork � 3, we considerG = Dk, the group that leaves invariant a
regular polygon withk vertices. When we take�1 to be the set of vertices, or�2 to
correspond to the set of centers of the edges, both�1 and�2 are locally minimal orbit
sets. In fact,�3 = �1 ∪ �2 is also a locally minimal orbit set. In this case, the action of
G is maximal with respect to each�i .

Let N = 3.

Example2.3. – ConsiderG to be the group which leaves invariant one of the regular
polyhedra: a regular tetrahedron, octahedron, or icosahedron. Accordingly, we may take
�0 to be the set of vertices,�1 to be the set of the centers of the edges, and�2 the
set of the centers of the faces. In each of the three cases for tetrahedron, octahedron, or
icosahedron,�i for i = 0,1,2 are locally minimal orbit sets, andG is maximal with
respect to�0. For the case of tetrahedron,G is also maximal with respect to�2.

Example2.4. – In this example, writeR3 = R2 × R, and G = Zk × Z2 or G =
Dk × Z2. Then

� = {
(x0, x1,0,0): x2

0 + x2
1 = 1

}
,

or � is the set of vertices of a regular polygon in the plane(x0, x1), respectively. In both
these cases,� is a locally minimal orbit set. In the case ofG = Dk × Z2, G is maximal
with respect to�.

Let N � 4.
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Example2.5. – One case is to consider finite subgroups ofO(N) which act
irreducible onRN .

Example2.6. – On the other hand, many more examples can be obtained as follows.
For 1� l � N − 1 we make the decompositionRN = Rl × RN−l , and we look at groups
G = Gl × GN−l , whereGl acts irreducible on theRl part, while the action ofGN−l has
no fixed points inRN−l , otherwise arbitrary. In particular, one can takel-dimensional
tetrahedron and cube groups forGl . Let k := min{#Gy: y ∈ Sl−1}, and �l ⊂ Sl−1 a
locally minimal orbit set corresponding to thisk. Then � := �l × {0}, is a locally
minimal orbit set for the action ofG, with the samek.

2.3. Local identifications

We define a diffeomorphism between the ball of radiusr centered at the origin inRN

and a subset ofCλ as follows. We identifyRN with the tangent space toCλ at y and
consider the projection inRN+1 in the direction of the normal toCλ at y.

To be exact, let

Cλ = {
(x0, . . . , xN) ∈ RN+1: x2

0 + · · · + x2
N−1 = λ2}. (9)

Assumey = (λ,0, . . . ,0, yN ) ∈ Cλ and for 0< r < λ, define a map from

Bλ,r(y) := {x ∈ Cλ: x2
1 + · · · + x2

N−1 + (xN − yN)2 < r2},
ontoBr(0) ⊂ RN , by

φλ,r,y(x) = (x1, . . . , xN−1, xN − yN) ∈ RN.

For anyy ∈ Cλ let R a rotation inRN+1 that leaves thexN -axis fixed and such that

Ry = (λ,0, . . . ,0, yN) ∈ RN.

We then define

φλ,r,y(x) = φλ,r,Ry(Rx).

Therefore for ally ∈ Cλ, φλ,r,y is defined forx ∈ Bλ,r(y).
Conversely, lety = (λ,0, . . . ,0, yN) ∈ C and forx ∈ RN with |x| < r let

φ−1
λ,r,y(x) =

(√
λ2 − (x2

1 + · · · + x2
N−1

)
, x1, . . . , xN−1, xN + yN

)
∈ Bλ,r(y).

Again, for arbitraryy ∈ C let R be a rotation inRN+1 that leaves thexN -axis (inRN+1)
fixed such that

Ry = (λ,0, . . . ,0, yN).

Forx ∈ Br(0) ⊂ RN , define

φ−1
λ,r,y(x) = R−1φ−1

λ,r,Ry(x) ∈ Cλ.
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At least in the casey = (λ,0, . . . ,0, yN) it is clear thatφλ,r,y andφ−1
λ,r,y are inverse to

each other and are diffeomorphisms betweenBλ,r(y) andBr(0). If y is not contained in
the plane(y0, yN), there is an ambiguity due to nonuniqueness of the rotationR. As long
as the sameR is used in the construction ofφλ,r,y andφ−1

λ,r,y , the two functions remain
inverse to each other. We note here that the JacobiansJφλ,r,y

(x), andJφ−1
λ,r,y

(x), tend to 1

uniformly onBλ,r(y), respectivelyBr(0), asr/λ → 0.
For r < λ andy ∈ Cλ we construct the operators

Tλ,r,y :H 1(Bλ,r(y)
)→ H 1(Br(0)

)
and T̄λ,r,y :H 1(Br(0)

)→ H 1(Bλ,r(y)
)
,

as follows

Tλ,r,y(v)(x) = v
(
φ−1

λ,r,y(x)
)

and T̄λ,r,y(u)(x) = u
(
φλ,r,y(x)

)
.

3. Concentration-compactness

We need a concentration-compactness lemma which is a more detailed version of that
in [21]. By a proof similar to Lemma 4.1 and Lemma 4.2 in [27] we have

LEMMA 3.1. – Let λn → ∞ as n → ∞. Let vn ∈ H 1(Cλn
) be such thatIλn

(vn) are
uniformly bounded and

∫
Cλn

|vn|p dµ = 1. Then there is a subsequence(still denoted by
(vn)), a nonnegative nonincreasing sequence(αi) satisfyinglims→∞

∑s
i=1 αi = 1, and

sequences(yn,i) ⊂ Cλn
associated with eachαi > 0 satisfying

lim inf
n→∞ |yn,i − yn,j | = ∞, for anyi �= j, (10)

such that the following property holds: If αs > 0 for somes � 1, then forε > 0 there
existR > 0, for all r � R and all r ′ � R

lim sup
n→∞

s∑
i=1

∣∣∣∣αi −
∫

Bλn,r (yn,i )

|vn|p dµ

∣∣∣∣+
∣∣∣∣
(

1−
s∑

i=1

αi

)
−

∫
Cλn \⋃s

i=1
Bλn,r′ (yn,i )

|vn|p dµ

∣∣∣∣< ε.

(11)

PROPOSITION 3.2. – For a subsequence as in Lemma3.1, we have that fors � 1,

lim inf
n→∞ Iλn

(vn) � Sp

(
RN
)( s∑

i=1

α
2/p
i +

(
1−

s∑
i=1

αi

)2/p)
.

Consequently,

lim inf
n→∞ Iλn

(vn) � Sp

(
RN
) ∞∑

i=1

α
2/p
i .

Proof. –Denote

Sp(Cλ) = inf
v∈H1(Cλ)\{0}

Iλ(v).
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It is not difficult to check (see the proof of Theorem 1.2 in [10]) that

lim
λ→∞ Sp(Cλ) = Sp

(
RN
)
. (12)

Fix s, and assume
s∑

i=1

αi < 1.

We choose

0 < ε <
1

2
min

{
αs,1−

s∑
i=1

αi

}
,

and the correspondingR as given in Lemma 3.1. Letr � R and for n large we can
assume thatBλn,3r(yn,i) are disjoint fori = 1, . . . , s, and

∫
Bλn,r (yn,i )

|vn|p dµ � αi − 2ε, (13)

∫
Cλn\⋃s

i=1
Bλn,3r (yn,i )

|vn|p dµ �
(

1−
s∑

i=1

αi

)
− 2ε. (14)

For i = 1, . . . , s, let 0� ρn,i � 1 cut-off functions with|∇ρn,i |(x) � 2/r , which are
identically 1 insideBλn,r(yn,i) and 0 outsideBλn,2r(yn,i). We also define 0� ρn � 1 a
cut-off function onCλn

such thatρn is identically 1 onCλn
\⋃s

i=1 Bλn,3r(yn,i) and 0 on⋃s
i=1 Bλn,2r(yn,i), with |∇ρn|(x) � 2/r . Let

wn,i(x) = ρn,i(x)vn(x) for x ∈ Cλn
.

Also, definewn = ρnvn. Then

∫
Cλn

|wn,i |p dµ �
∫

Bλn,r (yn,i )

|vn|p dµ, (15)

and ∫
Cλn

|wn|p dµ �
∫

Cλn\⋃s

i=1
Bλn,3r (yn,i )

|vn|p dµ. (16)

From (13), (15), and (14), (16), we obtain

∫
Cλn

|∇wn,i|2 + w2
n,i dµ � Sp(Cλn

)(αi − 2ε)2/p,
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and

∫
Cλn

|∇wn|2 + w2
n dµ � Sp(Cλn

)

(
1−

s∑
i=1

αi − 2ε

)2/p

.

Using the fact that the JacobiansJφλ,r,yn,i
(x) and Jφ−1

λ,r,yn,i

(x) tend to 1 uniformly on

Bλ,r(yn,i), respectivelyBr(0), asλ → ∞, we also have

∫
Bλn,2r (yn,i )

|∇vn|2 + v2
n dµ �

∫
Cλn

|∇wn,i|2 + w2
n,i dµ − C

r2
,

and ∫
Cλn\⋃s

i=1
Bλn,2r (yn,i )

|∇vn|2 + v2
n dµ �

∫
Cλn

|∇wn|2 + w2
n dµ − C

r2
,

with C independent ofr andn. Therefore,

Iλn
(vn) � Sp(Cλn

)


 s∑

i=1

(αi − 2ε)2/p +
((

1−
s∑

i=1

αi

)
− 2ε

)2/p

− (s + 1)C

r2
.

Let n → ∞, thenr → ∞, and finallyε → 0. The case
∑s

i=1 αi = 1 is done the same
way, without consideringwn anymore. ✷

4. Main results for Eq. (8)

In this section we shall state and prove our results for Eq. (8) onCλ. These results,
which are of their own interest, will in turn give our main results for Eq. (1) by using the
transformation (5).

It is known (e.g., [14,18,29]) thatSp(RN) is achieved by a positive functionU ∈
H 1(RN) such that|U |Lp = 1 and

∫
RN

|∇U |2 + U2 dx = Sp

(
RN
)
.

Moreover,U is unique up to translations and it is radially symmetric with respect to
some point (which we assume to be the origin inRN ). We placeCλ in RN+1 as in (9).Cλ

is invariant under the canonical action ofO(N)×O(1) ⊂ O(N +1) with O(N) acting on
RN = {x ∈ RN+1 | xN = 0} andO(1) acting onR = {x ∈ RN+1 | x0 = · · · = xN−1 = 0}.
Eq. (8) is also invariant under this group. For a functionv ∈ H 1(Cλ) we define the
isotropy subgroup ofv as

�v = {g ∈ O(N) × O(1) | gv = v}.
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Heregv(x) = v(g−1x). In the following we denote bỹG a subgroup inO(N) × O(1),
given by

G̃ = G × O(1)

with G a subgroup ofO(N). We shall prove

THEOREM 4.1. – Let � ⊂ SN−1 × {0} ⊂ C be a locally minimal orbit set ofG with
the corresponding integerk ∈ N. Then forλ sufficiently large, problem(8) has a solution
wλ satisfying

(i) wλ is G̃-invariant,
(ii) wλ has exactlyk maximum points which form ãG orbit G̃yλ for someyλ ∈ �λ :=

λ�,
(iii) wλ is of k-bump type in the sense that if{yλ,1, . . . , yλ,k} are the maxima ofwλ,

then

lim
λ→∞

∥∥∥∥∥wλ −
k∑

i=1

T̄λ,
√

λ,yλ,i

(
Sp

(
RN
)1/(p−2)

U
)∥∥∥∥∥

H1(Cλ)

= 0,

(iv) lim λ→∞ Iλ(wλ) = k(p−2)/pSp(RN),
(v) if in addition, G is maximal with respect to�, then�wλ

= G̃.

The idea of proving this result stems out of our work in [8] and [27] where we have
given a rather general local minimization scheme to construct positive solutions with
prescribed symmetry for some radially invariant elliptic problems. The procedure used
below is somewhat different from that in [8] and [27] and seems to be more transparent.
We set up our minimization scheme around�. Since� is a locally minimal orbit set,
there isδ > 0 such that

#Gy > k for all y ∈ SN−1 × {0} with 0 < dist(y,�) < 3δ.

Denote

: = {y ∈ C: dist(y,�) < δ} and ; = {y ∈ C: dist(y,�) < 2δ}.

Note that becauseG is a group of isometries, the sets: and; are invariant under the
action ofG.

Since we work on cylinders of different radii, we make the following notations
�λ := λ�, :λ := λ:, and;λ := λ;, all subsets ofCλ.

In the space of̃G-symmetric functions

HG,λ = {
v ∈ H 1(Cλ): gv = v, for all g ∈ G̃

}
,

we define a constraint manifold and an open subset of it

MG,λ =
{

v ∈HG,λ:
∫
Cλ

|v|p = 1
}

,
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Kσ
G,λ =

{
u ∈MG,λ: γλ(v) > 1− σ

2

}
,

where

γλ(v) =
∫
:λ

|v|p dµ and σ = 1

k + 1
.

Note thatγλ is a continuous functional onH 1(Cλ) andKσ
G,λ is an open subset ofMG,λ.

We are looking for critical points of the functional

Iλ(v) =
∫
Cλ

|∇v|2 + v2 dµ, with v ∈Kσ
G,λ. (17)

Providedλ is large, we show that

mλ,σ := inf
u∈Kσ

G,λ

Iλ(u) (18)

is achieved by a function in the interior ofKσ
G,λ (which can be assumed to be

nonnegative). By [25], a critical point inMG,λ of Iλ, after a rescaling will be a solution
of (8).

First, we have the following local compactness result.

THEOREM 4.2. – Letλ > 0 fixed. If there is a minimizing sequence(vm) ⊂ Kσ
G,λ (i.e.

Iλ(vm) → mλ,σ ) such that form large

γλ(vm) � m
p/(p−2)
λ,σ

Sp(Cλ)
p/(p−2) + m

p/(p−2)
λ,σ

,

then there is a subsequence(still denoted(vm)) which converges strongly tov ∈ Kσ

G,λ

(the closure inHG,λ), andIλ(v) = mλ,σ .

Proof. –Since(vm) is a minimizing sequence, it is bounded inH 1(Cλ). Therefore we
can assume

(i) vm ⇀ v in H 1(Cλ)

(ii) vm → v in L
p
loc(Cλ)

(iii) vm → v a.e. inCλ.

Since:̄ is compact, it follows from (ii) that∫
:

|v|p dµ � 1− σ

2
,

thereforev �≡ 0. If ∫
Cλ

|v|p dµ = 1,
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thenv ∈Kσ

G,λ, and sinceIλ is lower semi-continuous, it follows that

Iλ(v) � mλ,σ ,

henceIλ(v) = mλ,σ .
Therefore, assume that

∫
Cλ

|v|p dµ < 1. This implies

v

|v|2Lp(Cλ)

∈ Kσ
G,λ, hence

∫
Cλ

|∇v|2 + v2 dµ � mλ,σ

(∫
Cλ

|v|p dµ

)2/p

. (19)

We have

mλ,σ = lim
m→∞

∫
Cλ

|∇vm|2 + v2
m dµ

=
∫
Cλ

|∇v|2 + v2 dµ + lim
m→∞

∫
Cλ

|∇(vm − v)|2 + (vm − v)2 dµ

�
∫
Cλ

|∇v|2 + v2 dµ + Sp(Cλ) lim
m→∞

(∫
Cλ

|vm − v|p dµ

)2/p

.

Therefore,

∫
Cλ

|∇v|2 + v2 dµ � mλ,σ − Sp(Cλ) lim
m→∞

(∫
Cλ

|vm − v|p dµ

)2/p

. (20)

On the other hand, from the Brezis–Lieb lemma (see [3]),

1= lim
m→∞

∫
Cλ

|vm|p dµ =
∫
Cλ

|v|p dµ + lim
m→∞

∫
Cλ

|vm − v|p dµ.

Hence

lim
m→∞

∫
Cλ

|vm − v|p dµ = 1−
∫
Cλ

|v|p dµ. (21)

From (20) and (21), we obtain

∫
Cλ

|∇v|2 + v2 dµ � mλ,σ − Sp(Cλ)

(
1−

∫
Cλ

|v|p dµ

)2/p

. (22)

Again from (ii) and the hypothesis we have

1 > x :=
∫
Cλ

vp dµ � m
p/(p−2)
λ,σ

Sp(Cλ)p/(p−2) + m
p/(p−2)
λ,σ

.
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From (19) and (22), we obtain

0� mλ,σ

(
1− x2/p

)− Sp(Cλ)(1− x)2/p. (23)

A direct check shows that (23) is not possible.✷
Next, we need some asymptotic estimates forλ large. For notations convenience, we

let for λn → ∞
λn� = �n ⊂ :n ⊂ ;n ⊂ Cλn

.

PROPOSITION 4.3. – We have

lim sup
λ→∞

mλ,σ � k(p−2)/pSp

(
RN
)
.

Proof. –We prove the proposition by constructing test functions. LetU ∈ H 1(RN)

such that|U |Lp = 1 and ∫
RN

|∇U |2 + U2 dx = Sp

(
RN
)
.

For anε > 0, let r > 0 sufficiently large so that there is a radial cut-off functionρ(x)

identically 1 inBr(0) and 0 outsideB2r(0), such that the functionu(x) = ρ(x)U(x) has
the property ∫

RN |∇u|2 + u2 dx

|u|2
Lp(RN)

� Sp

(
RN
)+ ε.

For a pointy1 ∈ �λ let us denote{y1, . . . , yk} = G̃y1. Considerλ sufficiently large so
thatBλ,2r(yi) are disjoint and contained in:λ. Let

vi = T̄λ,2r,yi
u,

and considerv ∈ H 1(Cλ) given by

v =
k∑

i=1

vi

k1/p|vi |Lp

.

Clearly,v ∈ Kσ
G,λ for λ large. We obtain

mλ,σ � Iλ(v) = k(p−2)/pIλ(v1).

Therefore,

lim sup
λ→∞

mλ,σ � k(p−2)/p

∫
RN |∇u|2 + u2 dx

|u|2Lp

� k(p−2)/pSp

(
RN
)+ ε.

Let ε → 0. ✷
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PROPOSITION 4.4. – For any sequencesλn → ∞ andvn ∈Kσ
G,λn

such that

lim
n→∞ Iλn

(vn) → d � k(p−2)/pSp

(
RN
)
,

we have ∫
:n

vp
n dµ → 1 and d = k(p−2)/pSp

(
RN
)
.

To prove this proposition, we need a lemma.

LEMMA 4.5. – Applying Lemma3.1 to a sequencevn ∈ Kσ
G,λn

we get the sequences
(αi), (yn,i) such that(10) and (11) hold. Then we have eitherdist(yn,i ,:n) → ∞ as
n → ∞, or there exists anni so that forn � ni we haveyn,i ∈ ;n.

Proof. –According to Observation 2.6 and Proposition 2.8 in [8], we can assume that
for any 1� i � s fixed, there is an orthonormal frame(ξ i

1, . . . , ξ i
ti
) in RN+1, independent

of n, such that

yn,i = bi
n,1ξ

i
1 + · · · + bi

n,ti
ξ i

ti
,

where

bi
n,j → ∞ asn → ∞, for j = 1, . . . , ti,

and

bi
n,j+1

bi
n,j

→ 0 asn → ∞, for j = 1, . . . , ti − 1.

If the direction ofξ i
1 intersectsC at a pointη in the closure:̄, then

|η|yn,i

λn

→ η, asn → ∞.

Therefore, ifn is sufficiently large,yn ∈ ;n.
If dist(η,:) = d > 0, then

dist(yn,i ,:n) = dλn + O
(
bi

n,2

)
,

which tends to infinity. ✷
Proof of Proposition 4.4. – Applying Lemma 3.1 to the sequence(vn) we get the

sequences (αi), (yn,i ) such that (10) and (11) hold. Lets be such thatαs > αs+1 and

s∑
i=1

αi > 1− σ

2
. (24)

Choose

0 < ε < min
{

αi − αi+1

2
: αi �= αi+1, i = 1, . . . , s

}
.
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From Lemma 4.5, by relabelingα1, . . . , αs we can assume that directionsξ1
1 , . . . , ξ

s1
1

intersectC in :̄. Hence, forn bigger than max{ni: i = 1, . . . , s1} (see Lemma 4.5),
yn,i ∈ ;n for i = 1, . . . , s1. Also, dist(yn,i ,:n) → ∞ for i = s1 +1, . . . , s. We show that

s1∑
i=1

αi � 1− σ. (25)

Indeed, from Lemma 3.1, forn large we have

s1∑
i=1

αi �
s1∑

i=1

∫
Bλn,r (yn,i )

|vn|p dµ − 2ε

and from (24) we get

∫
:n\⋃s1

i=1
Bλn,r (yn,i )

|vn|p dµ − σ

2
− ε < 0.

Therefore,
s1∑

i=1

αi �
∫
:n

|vn|p dµ − σ

2
− 3ε.

Since ∫
:n

|vn|p dµ > 1− σ

2
,

let n → ∞ and thenε → 0; (25) follows. Without loss of generality, we can assume that
for all n, yn,i appear in orbits. I.e. ifyn,i corresponds toαi andg ∈ G̃, thengyn,i is an
yn,j corresponding to someαj = αi (because of symmetry). We denote

{αi: i = 1, . . . , s}/G̃ = {ᾱι: ι = 1, . . . , s̄},

whereαi is in the same class withαj if yn,i andyn,j are in the same orbit. We also denote
kι the number of elements in the classᾱι for ι = 1, . . . , s̄, i.e.kι = #G̃yn,i with αi in the
classᾱι. From Proposition 3.2, we now have

Iλn
(vn) �

s̄1∑
ι=1

kιᾱ
2/p
ι Sp

(
RN
)+

(
1−

s1∑
i=1

αi

)2/p

Sp

(
RN
)− o(1),

with o(1) → 0 asn → ∞. Let n → ∞ and we get

k(p−2)/pSp

(
RN
)
� d � Sp

(
RN
)( s̄1∑

ι=1

kιᾱ
2/p
ι +

(
1−

s̄1∑
ι=1

kιᾱι

)2/p)
. (26)
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Sincekι � k, we have

s̄1∑
ι=1

kιᾱ
2/p
ι +

(
1−

s̄1∑
ι=1

kιᾱι

)2/p

� k(p−2)/2x2/p + (1− x)2/p,

where

x =
s̄1∑

ι=1

kιᾱι.

Becauseσ = 1/(k + 1) and (25), we havex � k/(k + 1), and this implies

k(p−2)/2x2/p + (1− x)2/p � k(p−2)/2,

with equality if and only ifx = 1. From (26) we see that we need equality, and the only
way this can happen is ifs1 = k, yn,1 ∈ �n, and

∑k
i=1 αi = 1. ✷

Now we are ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. – We argue that there isλk > 0 such thatλ � λk , andv ∈Kσ
G,λ

with Iλ(v) < mλ,σ + 1
λ
, implies

γλ(v) > max

{
1− σ

4
,

m
p/(p−2)
λ,σ

Sp(Cλ)
p/(p−2) + m

p/(p−2)
λ,σ

}
.

Indeed, if the statement above is false, there areλn → ∞, andvn ∈ Kσ
G,λn

, such that
Iλn

(vn) < mλn,σ + 1
λn

and

γλn
(vn) � max

{
1− σ

4
,

m
p/(p−2)
λn,σ

Sp(Cλn
)p/(p−2) + m

p/(p−2)
λn,σ

}
. (27)

By Propositions 4.3 and 4.4 we have

lim
λn→∞ mλn,σ → k(p−2)/pSp

(
RN
)
,

and again by Proposition 4.4 we obtain,∫
:λn

|vn|p dµ → 1,

contradicting (27).
Now, by Theorem 4.2, forλ � λk , mλ,σ is achieved byv ∈ Kσ

G,λ (becauseγλ(v) >

1− σ
4 ).

For vλ ∈Kσ
G,λ critical point ofIλ with Iλ(v) = mλ,σ , we define

wλ = m
1/(p−2)
λ,σ vλ. (28)
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Thenwλ is a solution of (8). Note that

∫
Cλ

|∇wλ|2 + w2
λ dµ =

∫
Cλ

w
p
λ dµ = m

p/(p−2)
λ,σ . (29)

Part (i) of Theorem 4.1 follows from the construction ofwλ.
To prove (ii), assume by contradiction that there is a sequenceλn → ∞ such that the

corresponding solutionswn of (8) have more thank local maximum points. We shall
derive a contradiction with (29).

Eventually by performing a rotation in(x0, x1, . . . , xN−1), and a translation inxN

for eachn, we can assume without loss of generality thatyn = (λn,0, . . . ,0) is a local
maximum ofwn. Let rn → ∞ such thatrn/λn → 0 asn → ∞. We denote

un = Tλn,rn,yn
(wn) ∈ H 1(Brn

(0)
)
.

Sincewn are solutions of (8), we get thatun satisfies

−
N−1∑
i,j=1

an
ij (x)

∂2un

∂xi∂xj

+
N−1∑
i=1

bn
i (x)

∂un

∂xi

+ un = up−1
n , in Brn

(0),

where

an
ij (x) = δij − xixj

λ2
n

and bn
i (x) = (N − 1)

xi

λ2
n

.

Sincern/λn → 0, it is easy to check thatan
ij (x) → δij and bn

i (x) → 0, uniformly in
Brn

(0) ⊂ RN . Elliptic theory (see [15]) gives

un → u in C2
loc

(
RN
)
, (30)

whereu is a solution of

−"u + u = up−1 in RN. (31)

Sinceyn is a local maximum forwn andwn(yn) � 1 for all n, it follows 0∈ RN is a local
maximum forun, hence foru. Therefore,u is a nonzero solution of (31). By Fatou’s
lemma and sinceun ∈ H 1(Brn

(0)) andun � 0 for all n, we haveu ∈ H 1(RN) andu � 0.
The only nonnegative, nonzero solution with its maximum at 0 of (31) inH 1(RN), is

u(x) = Sp

(
RN
)1/(p−2)

U(x).

SinceU has only one maximum point which is a nondegenerate critical point ofU at 0,
we get that for anyρ > 0, whenn is sufficiently largeun has only one maximum in
Bρ(0) and thereforewn has only one maximum inBλn,ρ(yn). This is by now a standard
argument following [24]. Therefore there is a sequenceρn � rn satisfyingρn → ∞ as
n → ∞ such thatyn is the only local maximum ofwn in Bλn,ρn

(yn). Up to a subsequence,
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we get by a direct calculation and by (30)

Sp

(
RN
)p/(p−2) = lim

n→∞

∫
RN

|∇u|2 + u2 � lim
n→∞

∫
Bρn (0)

|∇un|2 + u2
n

= lim
n→∞

∫
Bλn,ρn (yn)

|∇wn|2 + w2
n dµ = lim

n→∞

∫
Bλn,ρn (yn)

wp
n dµ.

(32)

By assumption, let{yn,1, yn,2, . . . , yn,k+1} maximum points ofwn. Performing the
argument above at each of these points, we may assume for the sameρn

Bλn,ρn
(yn,i) ∩ Bλn,ρn

(yn,j ) = ∅, for i �= j. (33)

From (29), (32), Propositions 4.3 and 4.4 we get

kSp

(
RN
)p/(p−2) = lim

n→∞

∫
Cλn

|∇wn|2 + w2
n dµ � (k + 1)Sp

(
RN
)p/(p−2)

.

This provides the desired contradiction.
Now, we argue that the number of local maxima is exactlyk, and they form aG-orbit

in �. Indeed, from (32), (28) and (33), we obtain

lim
n→∞

∫
Bλn,ρn (yn)

vp
n dµ � 1

k
.

Since ∫
:n

vp
n dµ → 1,

it follows that for n sufficiently large,yn ∈ ;n. This implies there are at leastk local
maxima. By (32), this in turn also impliesyn ∈ �n, for otherwise we would have

lim inf
n→∞

∫
:n

vp
n dµ > 1.

The fact that local maxima form an orbit is a consequence of the fact thatwλ has exactly
k local maximum points, and at least one of them is in�λ.

Part (iii) follows by the arguments in (ii), and the fact thatvλ is a minimizer inKσ
G,λ,

which implies forr = r(λ) → ∞ with r(λ)/λ → 0 asλ → ∞
∫

Cλ\⋃k

i=1
Bλ,r(λ)(yλ,i )

|∇vλ|2 + v2
λ dµ → 0, asλ → ∞.

Takingr(λ) = √
λ, we get the result.
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Part (iv) is direct consequence of Proposition 4.4.
Finally, (v) follows from (ii) since �w > G̃ implies w has more thank local

maxima. ✷
Proof of Theorem 1.4. – Part (ii) was proved in [10]. The modified inversion symmetry

in RN , corresponds to the even symmetry inxN on C. The rest of the properties in
Theorem 1.4 follow from Theorem 4.1 and transformations (5) and (7).✷

Proof of Theorem 1.1. – ForN � 2, we writeRN = R2 ×RN−2 and fork � 3 consider
Gk = Zk × O(N − 2) or Dk × O(N − 2). For these two group actions, the minimal orbit
set has thisk as the number of points in each orbit.✷

5. Closing remarks

Remark5.1. – We mention that although forN = 2 andN � 4 one can obtain the
multiplicity result in Theorem 1.1 just by finding the minimum ofIλ in the space
HGk,λ, our local minimization procedure in the space of symmetric functions is essential
in order to obtain Theorems 1.1 and 1.4 in the caseN = 3. For N = 3, a global
minimization will only yield solutions with 1-bump (ground state), 2-bump (given by
Z2 × O(2) symmetry), 4-, 6-, 12-bump (Example 2.3), and one radial solution. This
phenomenon is similar to that for an elliptic problem on expanding annular domains
studied in [4,8,12,19,23]. For the examples of higher dimensional tetrahedron or cube
groups given in Example 2.6 withN � 4, alocal minimization method is also needed if
l = N − 1. In these cases, the global minimization only produces 2-bump solutions.

Remark5.2. – For the exact symmetry of solutions, we need the maximality condition
(Definition 1.3), which seems necessary in some cases. For instance, the groupZk given
in Example 2.1 is not maximal with respect to the locally minimal orbit set there, and
we believe in this case the solution one gets from Theorem 1.4 has exact symmetryDk

instead ofZk . One may compare with another problem of similar spirit studied in [17].

Remark5.3. – In a forthcoming paper we shall present a multiplicity result of
a somewhat different nature, where the imposed group of symmetry is continuous
subgroup ofO(N). These symmetries also make easier regaining of compactness and
allow a larger parameter range.

REFERENCES

[1] Aubin T., Problèmes isopérimétriques de Sobolev, J. Differential Geom. 11 (1976) 573–598.
[2] Berestycki H., Esteban M., Existence and bifurcation of solutions for an elliptic degenerate

problem, J. Differential Equations 134 (1997) 1–25.
[3] Brezis H., Lieb E.H., A relation between pointwise convergence of functions and conver-

gence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486–490.
[4] Byeon J., Existence of many nonequivalent nonradial positive solutions of semilinear elliptic

equations on three-dimensional annuli, J. Differential Equations 136 (1997) 136–165.
[5] Caffarelli L.A., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear

elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271–
297.



178 F. CATRINA, Z.-Q. WANG / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 157–178

[6] Caffarelli L.A., Kohn R., Nirenberg L., First order interpolation inequalities with weights,
Compositio Mathematica 53 (1984) 259–275.

[7] Caldiroli P., Musina R., On the existence of extremal functions for a weighted Sobolev
embedding with critical exponent, Cal. Var. and PDEs 8 (1999) 365–387.

[8] Catrina F., Wang Z.-Q., Nonlinear elliptic equations on expanding symmetric domains,
J. Differential Equations 156 (1999) 153–181.

[9] Catrina F., Wang Z.-Q., On the Caffarelli–Kohn–Nirenberg inequalities, C. R. Acad. Sci.
Paris Sér. I Math. 300 (2000) 437–442.

[10] Catrina F., Wang Z.-Q., On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants,
existence (and nonexistence) and symmetry of extremal functions, Comm. Pure Appl.
Math., in press.

[11] Chou K.S., Chu C.W., On the best constant for a weighted Sobolev–Hardy inequality,
J. London Math. Soc. 2 (1993) 137–151.

[12] Coffman C.V., A nonlinear boundary value problem with many positive solutions, J. Differ-
ential Equations 54 (1984) 429–437.

[13] Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and
Technology, Vol. 1, Springer-Verlag, Berlin, 1985.

[14] Gidas B., Ni W.-M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic
equations inRn, Adv. Math., Suppl. Studies 7A (1981) 369–402.

[15] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order,
Springer, New York, 1998.

[16] Horiuchi T., Best constant in weighted Sobolev inequality with weights being powers of
distance from the origin, J. Inequal. Appl. 1 (1997) 275–292.

[17] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math.,
Vol. 1150, Springer, 1985.

[18] Kwong M.K., Uniqueness of positive solutions of"u−u+up = 0 in Rn, Arch. Rat. Mech.
Anal. 105 (1989) 243–266.

[19] Li Y.Y., Existence of many positive solutions of semilinear elliptic equations on annulus,
J. Differential Equations 83 (1990) 348–367.

[20] Lieb E.H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann.
Math. 118 (1983) 349–374.

[21] Lions P.-L., Concentration compactness principle in the calculus of variations. The locally
compact case. Part 1, Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984) 109–145.

[22] Lions P.-L., Concentration compactness principle in the calculus of variations. The limit
case. Part 1, Rev. Mat. Ibero. 1.1 (1985) 145–201.

[23] Mizoguchi N., Suzuki T., Semilinear elliptic equations on annuli in three and higher
dimensions, Houston J. Math. 1 (1996) 199–215.

[24] Ni W.-M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann
problem, Comm. Pure Appl. Math. 45 (1991) 819–851.

[25] Palais R., The principle of symmetric criticality, Comm. Math. Phys. 69 (1979) 19–30.
[26] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pure Appl. 110 (1976) 353–372.
[27] Wang Z.-Q., Existence and symmetry of multi-bump solutions for nonlinear Schrödinger

equations, J. Differential Equations 159 (1999) 102–137.
[28] Wang Z.-Q., Willem M., Singular minimization problems, J. Differential Equations 161

(2000) 307–320.
[29] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996.
[30] Willem M., A decomposition lemma and critical minimization problems, preprint.


