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ABSTRACT. — We prove some asymptotic results concerning global (weak) solutions of
compressible isentropic Navier—Stokes equations. More precisely, we establish the convergen:
towards solutions of incompressible Euler equations, as the density becomes constant, the Ma
number goes to 0 and the Reynolds number goes to infinity.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous prouvons quelques résultats asymptotiques concernant des solutions (faible:
globales des équations de Navier—Stokes (isentropique) compressible. Plus précisément, nc
établissons la convergence vers une solution des équations d’Euler incompressible, lorsque
densité devient constante, le nombre de Mach tend vers 0 et le nombre de Reynolds tend ve
Pinfini.
© 2001 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

From a physical point of view, one can formally derive incompressible models from
compressible ones, when the Mach number goes to zero and the density becomes alm
constant. In Lions and the author [12], this problem is investigated starting form the
global solutions of the compressible Navier—Stokes equations constructed by Lions [11]
We have shown the convergence towards the incompressible Navier—Stokes equations
well as the convergence towards the incompressible Euler equations (if the viscosity
coefficients go to zero and if the initial data are “well prepared”). These results have
been precised and extended in different works (see [13,2,1,14]).

In this paper, we extend the result shown in [12] concerning the convergence to the
Euler system to the case of more general initial data. In fact if the viscosity goes to zerc
too, we loose spatial compactness properties. In order to circumvent this difficulty, we
use energy arguments. Hence, we have to describe (precisely) the oscillations that tal
place and include them in the energy estimates. Ideas of this type were introduced b
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Schochet [17], (see also [4]) and extended to the case of vanishing viscosity coefficient
in [16]. Let us now precise the scalings, we are going to use, which are the same as tho:
used in [12]. The unknown&g, v) are respectively the density and the velocity of the
fluid (gaz). We scalg andv (and thusp) in the following way

p=p(x,et), v=cu(x,et), Q)

and we assume that the viscosity coefficient§ (¢ — i, it are called the volumic and
dynamical viscosity coefficients) are also small and scale like

= &g, § =&, )

wheree € (0,1) is a “small parameter” and the normalized coefficignt &, satisfy
ue >0, & + u, > 0. Moreover, we assume that

ue — 0 ase goestoq. 3)

With the preceding scalings, the compressible Navier—Stokes system reads

0 .
% +div(pu) =0, p =0,
ot
(4)
apu . . a
ar + div(pu @ u) — pAu —§Vdivu + - Vp? =0.
€

One can always assume that 1/y by replacinge by ,/aye. All throughout this paper

the domaing2 will be the the whole spac&” or the torusT" (in this last case, all the
functions are defined oR" and assumed to be periodic with perioda in the ith
variable). We recall here that the inviscid limit, namely the convergence of the Navier—
Stokes equations to Euler equations in the case of a domain with boundary is an ope
problem even in the incompressible case, which seems to be easier (see [15] for a parti
result).

1.1. Statement of theresults

1.1.1. Thewhole space case

Let us begin with the case of the whole space. We consider a sequence of globe
weak solutiong o, u,) of the compressible Navier—Stokes equations (4) and we assume
thatp, — 1€ L>°(0, 00; LY) N C([0, 00), LY) forall 1< p < y, whereL) = {f e L%,
If11 51 € LP, |f1l <1 € L?}, ue. € L%0,T; HY) for all T € (0, 00) (with @ norm
which can explode when goes to 0),0.|u.|?> € L*(0, c0; L) and p.u, € C([0, o0);
L' _w)i.e.is continuous with respect ta> 0 with values in.””"" " endowed with
its weak topology. We require (4) to hold in the sense of distributions and we impose the
following conditions at infinity

0 — 1 as|x| » +oo, u, — 0 as|x| — +oo. (5)
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Finally, we prescribe initial conditions
0 0
Peli=0=pg,  pelteli=0=m,, (6)

wherep? >0, 00 — 1€ LY, m® € L2/7+) ;% =0 a.e. on{p? = 0} and p2|u?[* € L?,
denoting byu® = m%/p? on {p? > 0}, u® = 0 on {p? = 0}. The initial conditions also
satisfy the following uniform bounds

2 1 Y
[l + 5 [0 =1y (e -1) <C. (7

where, here and below; denotes various positive constants independent bkt us
notice that (7) implies in particular that, roughly speakip8,is of order 1+ O(e). In
the sequel, we will use the following notatign = 1 + s¢,. Notice that ify < 2, we
cannot deduce any bound feg in L>(0, T'; L?). This is why we prefer to work with
the following approximation

1 2a
¢8=_ y— 1( —-1- )/(Ps—l))

Furthermore, we assume thatp? u° converges strongly ii? to someu®. Then, we

denote by® = Pi°, whereP is the projection on divergence-free vector fields, we also
defineQ (the projection on gradient vector fields), heafe= Pii°+ Qii°. Moreover, we
assume thab? converges strongly if2 to somep®. This also implies thap? converges
topin L}.

Our last requirement ofp,, 1) concerns the total energy: we assume that we have

t
Es(t)+/D8(s)ds <EY aedt,

dE, .
ey . <0 inD'(0,00), (8)
where
E.(t) = / pelue 20) + ( 0 () 1=y (e~ D)),
D.(1) = / se| Dutg 2(6) + £, (dliv un) 2(t)
2
and

1 a
E0= [ SoRlulf + 5 () = 1= 7 (o - 1)).
2

e2(y -1

We now wish to emphasize the fact that we assume the existence of a sequence
solutions with the above properties, and we shall also assume thav /2. We recall
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the results of Lions [11] which yield the existence of such solutions precisely when
y>N/2if N>4,y >29/5if N=3andy > 3/2if N =2. We also refer to [12] for
the proof of the uniform bounds.
Whene goes to zero ang, goes to 0, we expect that converges tw, the solution
of the Euler system

o;v+diviv ® v) + Vo =0,
dvv=0 v|_o=u®,

)
in C([0, T*); H*). We show the following theorem

THEOREM 1.1 (The whole space case)We assume that, —, 0 (such thatu, +
£ > Oforall ¢) and thatPi® € H* for somes > N/2+ 1, thenP(/pzu,) converges to
vin L®(0, T; L?) for all T < T*, wherev is the unique solution of the Euler system in
Lx ([0, T*); H*) and T* is the existence time ¢9). In addition ,/p.u. converges tw
in LP(0,T; L2, forall 1< p <+ooand allT < T*.

1.1.2. Theperiodic case

Now, we takes2 = TV and consider a sequence of solutigps, u,) of (4), satisfying
the same conditions as in the whole space case (the functions are now periodic in spa
and all the integration are performed ovEl). Of course, the conditions at infinity
are removed and the spack$ can be replaced by.?. Here, we have to impose more
conditions on the oscillating part (acoustic waves), namely we have to assungithat
is more regular tharL?. In fact, in the periodic case, we do not have a dispersion
phenomenon as in the case of the whole space and the acoustic waves will not go |
infinity, but they are going to interact with each other. This is way, we have to include
them in the energy estimates to show our convergence result.

For the next theorem, we assume th@ii®, ¢° € H°~! and that there exists a
nonnegative constamtsuch thatu, + & > 2v > 0 for all . For simplicity, we assume
thatu, + & converges to 2

THEOREM 1.2 (The periodic case). We assume that, —, 0 (such thatu, + & —
2v > 0) and thatPi® € H* for somes > N/2+1, and Qi°, ¢° € H*~1thenP(/p.u,)
converges taw in L>(0, T; L?) for all T < T*, wherev is the unique solution of the
Euler system irL;.(0, T*; H*) and T* is the existence time @9). In addition ,/p.u,
converges weakly toin L>(0, T; L?).

In the above theorem, one can remove the condition Bv tka that case, we still have
the result of Theorem 1.2 but only on an interval of til@eT**) which is the existence
interval for the equation governing the oscillating part, which will be given later on.

THEOREM 1.3 (The periodic casey = 0). — We assume that, —.0 (such that
ue + & — 0) and thati® € H* for somes > N/2+ 1, and ¢° € H* then P( /pyu.)
converges ta in L>(0, T; L?) for all T < inf(T*, T**), wherev is the unique solution
of the Euler system ilj5.(0, T*; H*), T* is the existence time aB) and 7** the
existence time of32), with v = 0. In addition ,/p,u, converges weakly t@ in
L>(0, T; L?).
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2. Thewhole space case

We recall that in the case of the whole space, we do not assume any extra conditio
on the viscosity,, neither do we assume any regularity (more thidhfor the gradient
part of the initial data. The proof relies on the dispersion property of the wave equation
[18,1] and the notion of non dissipative solutions for the Euler system [10,12].

First, using the energy bounds, we deduce that 1 convergesto 0 in €(0, T; LZ)
and that there exists somee L>(0,T; L? and a subsequencg’pqu, converging
weakly tou. Hence, we also deduce thatu, converges weakly ta in L7 we
next introduce the following groufC(z), = € R) defined by & whereL is the operator

defined orD’ x (D')V, by
L (‘”) —— (d“’”> . (10)
v Vo

It is easy to check that'é is an isometry on each* x (H*)" for all s € R and for all

7. This will allow
oL A (1)
v v(T)

solves

and thungT‘g — Ap =0.
Let (v, m, = Vg.) be the solution of the following system

oV, 1.
v =—=divm,, ¥.(t=0)=®?,
at £
(11)
omg 1 0
=—=Vi,, m(t=0=0Q Pgus-
ot €

We recall that for allv € H*, we defineQu = VA~tdivv and Pv = v — Qu. We
also introduce the following regularizations. s = V. * xs, Vqes = Vq. * xs, where

x € C(RY) such thatf x =1 and x(x) = (1/6")x(x/8). Since (11) is linear it is
easy to see thaty). s, Vq..s) is a solution of the same system with regularized initial
data. Using (as in [1]) Strichartz type inequality, we get

WS,(S ¢S
Vqe.s O/ pou? K

for all p,¢ > 2 ando > 0 such that
1 1) N+1

2
Z_(N=-D[Z=Z
q ( )<2 P

1
L cellr
LP(R; W54(RN)))

(12)

Hsto
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This yields that for all fixed and for alls € R, we have ag goes to 0
(Ve.s, Vges) — 0 inLP (R; W4 (RY)). (13)

Now, we turn to the energy estimates. Let us rewrite the energy inequality for almost
all

t
1 1
5 [odufo+ @20+ [ [ ibu+ s < 5 [ o2l + 220, 14)
2 0 £ 2

Then, the conservation of energy foreads

1 1
[0 = [ Sl (15)
2 2
and using the fact that is an isometry orl.?, we obtain for all
1 1 1 1
[ 5920+ 519as 0 = [ 5020 + 51Va.s20). (16)
2 2 2 2
2 2
Next, the weak formulation of the conservation of mass yields for almost all
1 t
/ws,(S(Ds(t) + g / / div(psus)wsﬁ + div(vq&é)@s = /Ws,é(ps 0, (17)
2 0 2 2

while the weak formulation of (4) implies that we have for almost alll

/ pette (1) + / / pette. (0.0 + V)

//,osu Ug. Vv—i—ug//Vus Vv_/,ogug u®, (18)
t 1 t
/psus~VQe,6(t)+///Osus~<gvll’s,8> _//peué‘us'vm&&
2 0 £ 0 2

t
+ //Mavus-vms,S + &, div(u,) div(ms,S)

t
1 -1 .
I (C e P R
0 2 $2

Summing up (14), (15), (16) and subtracting (17), (18), (19), we deduce from
straightforward computations the following inequality
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t
1 2 2 2 . 2
E ’\/Eug_v_msﬁ’ @) + (P — V) (t)+ e Vg +$8’d|v(u8)’
Q2
/ (P — 9 Vrest) + / (@ = 9)¥e5(0)

+ / 1) /rtte- (v + mes) (1)

t
— (/02 = 1)/ 2u®. (v + m0,) - //usWuglzJré,fg!divwg)y2
0 £
t
+//Mavus-v(v+m8,8)+gs div(u,) div(ms,(S)

+ / / Pette (V.Y + V) — potts(us.Vv) (%)

t
-1 .
_//peue(us~vme,6) - <VT¢82)dIV(vqe,6)
0 2
1
+3 / /P22 = 0® = m [+ (@, = .50, (20)
2

Only the term marked by(x) in the second hand side of (20) needs some special
treatment, we are going to compute it below. In the sequel, we denote,py=
/Psus —v —mg 5. Then, we have easily

t
/ / pette (0.V0+ V) — poity (1. V0)

//w88vvw56+// ,Os Ms(vvv)+psusvp

— (/Peute — v).V% — //mg,,g.vae,(g + (pstte —v).Vomg 5. (21)

0 2

Finally, we can see that (20) may be rewritten as

[we.s@)]|52 + || e — Pes ][

t
< s @2+ 9 = 5O [+ 242 +.2 [ 509 [ V00 0. 22)
0

where
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- / (@2 — P s (1) + / (@, — ) ¥e5(0)
2

4 / 1) o/t (v +me ) (1) — (/00 = 1)/ p2ul. (v0 + m2)

+ / [ 19V @ ) + 6 v divon, )

t
-1
_//Iosus(us-vms,s)_ (VTCDf)le(VQSS)

2
v
+ // ps ue.(v.Vv) + peu,. Vp — (\/Eus - U)VE
— //mg,,g.vae,(g + (Pstte — v).Vv.mg 5. (23)
02

For all fixeds, it is easy to see that? (1) converges to 0 for almost al) uniformly in
t whene goes to 0. Then, by Gronwall’s inequality, we deduce that we have for almost
allr e (0, T)

[wes |22 + || e — Yes ][

< [wes @2 + | @e — Yes(O)|P2 + sup Ad(s)]e o 1Tl (24)

0<s <t
Then, lettings go to 0, we obtain
lu —vl| <im (Jlwe 117 + 1D — Yesll? )
L®(0,T;L%(2)) 8,811 (0,T;L2(£2)) 3 &8l (0,T;L2(£2))
0
<C0(H” —u®— Qi° *X5HL2<Q)+ H90 -y *X5HL2(9)>’
where
T v 2
Co=eCJo WOl 4o

Then, lettingé go to 0, we deduce that = v and we obtain also the uniform
convergence im of P( /p.u,) tov in L?, since

@Hp( Pelte) — v||L°°(0,T;L2)
< Co“fgn [[]2° = u® — Qi® X6l 2y + l¢° — ¢° Xsll2(2)) =0

Moreover, we see thayp.u, —m, converges uniformly im, strongly inL? to v. In fact

H\/Eua —mg — UHLZ < H\/Eus — Mg — UHLZ + llme —mesllpz + | Pe — Yesllp2s
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and since(®?, m? = 0,/p%% converges strongly tay° m° and sincel is an
isometry inL?, we deduce that we have

lme —mesllr2 + 11Pe — Yesll2— 0 whens — 0

uniformly in s ande.

Finally, we can also deduce the local strong convergence/pfu. to v in
L?(0, T; L?(B)). Indeed let us denote b§ a bounded domain dk". Then, we have
for all ¢

|/ Petts — UHLZ(B) < || pette —my s — UHLZ(B) + lmesll2(g)
<

|/ Pette —me 5 — UHLZ(B) + llmesllLacs)

for anyq > 2. Then, using the fact that for &l| ||m. 5| .r©0.7:L4(8)) CONverges to 0 as
goes to 0, we conclude easily by taking the limitiand then ir$ as above.

3. Theperiodic case

As in the case of the whole space, we can deduce, using the energy bounds, th
p: — 1 converges strongly to 0 in>(0, T'; L”). Then, using the bound oy/p,u, in
L>°(0, T; L?), we may extract a subsequence which converges weakly to soifie
pass to the limit in the equation, we need to describe the oscillations in time and shov
that they will not affect the limit equation.

We next introduce, as in the whole space case, the following g(dup), T € R)
defined by & where L is the operator defined o, x (D')V, where D, = {¢

D/’ f§0=0}, by
e\  [(divv
L<v>__<w>' )

In the sequel, we will use the following notations

Uf = (wm Q(psus)) and V°¢= 'C(_t/g) ((08s Q(psus)),

and for some technical reasons related to ffeintegrability, we will also use the
following approximations

Uf = (@8, o( psus)) and V¢= L(—t/e) (CDS, o( Peus))s

which satisfy
||U€ - UgHLOO(LZV/(VJrl)) — 0 Wheng — O
Let us project Eqg. (4) on “gradient vector-fields”
) . .
aQ(psus) +0 [d|V(,OsMs o2 us)] — (ue + gs)levus
(26)
a 1
+ 5Vl —vee+(r =)+ 5 V(o —1) =0.
) &
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Combining (26) with the conservation of mass, we obtain

e . 0
agj +div Q(p.u.) =0, SEQ(PSMS) + Vo, =¢F, (27)

&

where
. . 1
Fo=(ue +&)Vdivu, — Q [dlv(psus X Ms)] —aV 8_2(:0;/ — VP + (¥ — 1)) .

Eq. (27) yields that,U® = 1LU® + (0, F,), which can be rewritten a8, V¢ =
L(—1/¢)(0, F,). It is easy to check thaF, is bounded inL?(H ) (for somes € R),
henceV* is compact in time (the oscillations have been cancelled). If we had enough
compactness in space we could pass to the limit in this equation and recover th
following limit system for the oscillating part

OV + Q1(u, V) + Qx(V, V) —vAV =0, (28)

where Q; and Q, are respectively a linear and a bilinear formsVin(which will be
defined and computed later on) and the termA V explained below. In fact, as in [17]
(see also [16]), we considet(—z/¢)(0, F,) as an almost periodic function in=1¢/¢
and compute its mean value, which yields (28).

DEFINITION 3.1. —For all divergence-free vector field € L2(2)Y and all V =
(¥, Vq) € L?(£2)N*1, we define the following linear and bilinear symmetric forms in
\%

0

1
Qu, V)= fim = 0/ £(=5) (div(u ® La(5)V + Lo(5)V ® u)) & @9

and

0

div (L2(s)V @ La(s)V) + yTlV(»Cl(S)V)2> ds. (30)

0,(V. V) = lim 3/5(-@(
T—>00 T /

The convergences stated above takes plac#it! and can be shown by using
almost-periodic functions (see [16] and the references therein). Indeed the function:
inside the integral in (29) and (30) are almost periodi#/in>! andQ; (u, V), Q>(V, V)
are their mean value. We will come back to this issue in the next section. We also remar
that in Eq. (28) the viscosity term was divided by 2 and that it applies for both component
of the vectorV. This is due to the following proposition, which can be proved easily
using almost periodic functions (see also [5] and [3]).

PropPoOsITION 3.2. —Under the same hypothesis & we have

1 0
—VAV = TILmOO - J —L(—s) <2vA£2(s)V> ds. (32)
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Nevertheless, the fact that the viscosity applies now for both componemtssofiot
sufficient to yield compactness in space §6t. To recover compactness in space, we
will use the regularity of the limit system and extend the method used in [12] to the case
of general initial data as was done in [16]. &t be the solution of the following system

{ 3 VO+ Ql(v VO + 9,(VO, VO —vAVO =0, (32)
\t 0= ((0 Quo)

wherev is, as in the case of the whole space, the solution of the incompressible Eulel
equations with initial data®. The existence of global strong solutions for the system (32)
(and local solutions if the viscosity term is removed) as well as the exact computations o

the two forms@,; and 9, will be detailed in the next section. We only need the following

two propositions.

PropPoOsSITION 3.3. — For all u, V, V; and V, (regular enough to define all the
productg, we have

/Ql(u, V)V =0 and /Qz(V, V)V =0, (33)
/ O1(, Vi) Va + 1, Va) Vi =0, (34)
/ Qo(V1, V1) Vo + 2Q5(Vy, Vo)V = 0. (35)

The proof of (33) will be given in the next section, (34) can be shown by applying the
first part of (33) toVy + V, and toV; — V,. Finally (35) can be shown by applying the
second part of (33) td; + X V, and identifying the term of degree 1.

The next proposition is a very simple consequence of the theory of almost-periodic
functions (see for instance Lemma 2.3 of [16]).

PROPOSITION 3.4. — For all u € L?(0, T; L?) and V € L4(0, T; L?), we have the
following weak convergencég andg are such that the product are well defined

t 0
w- I|m£< )(dw(u@Ez( Y 4 Lo(L)V )> =Q1(u,V) (36)

and

t
w- I|m E( ><dIV(£2( )V®£2( ) )+VT_1V(,C1(é)V)2>

Using the symmetry 06,, we deduce easily the following proposition.

0
=Q(V, V). (37)

PropPosITION 3.5. — Eq. (37) of Proposition3.4 can be extended to the case where
we takeV; and V, using the symmetry @,, namely
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w- I|m£< t)(dlv(ﬁz( HV1® Lot )Vzo—l-ﬁz( L)Va® La(£)V ))

+£(—£)< " g’ml( oy )> = Oy(V1, Vo). (38)

Moreover, the above identity holds o5 € L9(0, T; H*) and V, € L?(0, T; H*) with
seRandl/p+1/qg =1. Itis also possible to extend it to the case where we replace
V, in the left hand side by a sequen® such thatV; converges strongly td5 in
LP,T; H™®).

In order to show the convergence in Theorem 1.2, we will try to estimate

2
elo—a()v
L2 &

We also introduce the following notations, = ,/p;u, — v — Lo(t/e)V? and B, =

&, — L4(t/e)VO. In the sequel, we also notey,, m,) = L(t/¢)V°. The proof follows

the same lines as the proof in the whole space case apart from the fact that the equati
satisfied by the gradient part is not trivial and that we have to use the precise equatio
satisfied by the oscillating terms. We recall the energy inequality

2

H@% —v—£2<5> Vo
£

L2

22

t
1 o o . 1 o
5/p8|u8|2(t)+a>§(t)+//u8|Dug|2+ss(dNu8)2<§/p2!u2|2+¢§(0) (39)
2 0 2

as well as the conservation of energy for

/—|v| (t)—/—|uo| (40)

Using that
/Ql(u, vOvo=o, /QZ(VO, vOvo=o,

we deduce from (32) the following energy identity

/%yv°|2(t)+v//|vv°|2(s)ds=/%yv°(r=0)yz. (41)
2

2 0 2

Next, using the weak formulation of the conservation of mass, we obtain for almost
all ¢

177 . .
/ Vet + / / Adiv(pette) e + V(Y 0) e
2 0 2



N. MASMOUDI / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 199-224 211

[ [ e(L)avie= [ #oo. @)
0 2 2

while the weak formulation of (4), yields as before the following inequality for almost
all t

/ pette (1) + / / pette(0.Vv + V p)

//,osu U,. Vv—i—,us//Vus Vv_/pgug u®, (43)

/ pets Vo (1) + / / psu8< m) - / [ puaeem,
0 R
//ﬁz( >B,Vopgu8+o/(ZM5Vug.Vms—i—Ssdiv(us)div(ms)
- O/ Q/ (Zo.+ L5502 )av(va = Q/ o000 (44)

Next adding up (39), (40), (41) and subtracting (42), (43), (44), we obtain
1 2 2 t 2 ; 2
§/|w5| )+ (B) (z)+//us|Dwg| + & (divw,)

/(q> — V() + /@ — 409"

+/ 1) /Pete-(v 4+ me) (1) — (\/7 1)\/;2 0 -0

/‘\//Tgu — i+ (2. = 9O + A, + B,, (45)

whereA, and B, are given by
t
2 .
A= [ [=vI9VOF 4 el D, 2 4 ivm)? + e D

+//—MSVMS.V(U—I—mg)—§g(diVu8)(diVm5)—UAVOVS

(46)
and
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B. = / / pette (V.0 + V) — pattetts.V (v +my)

+// cD div(m,) + Q1 (v, VOV + Qo(VO, VO Ve,
(47)

Here, we have used that

// ( >a VOUS—/Q/atVOV% (48)

It is easy to see that to apply a Gronwall’'s lemma, one has to estimatand B,,
since one can show (as in the case of the whole space) that the other terms in the rig
hand side of (45) converge to 0 uniformly in t. In the following two subsections, we will
show that

Bo(t) < (||we @[3 + | B-22) |V (0 + mo)| o + 7

and thatA,, r, converge to 0 uniformly in t. Therefore, we conclude as in the case of the
whole space, using tha&t(v + m,) is bounded inL1(0, T; L>°) uniformly in e.

3.1. Boundson B,

We recall here that we assume (extracting subsequences if necessagypiinatind
u, converges weakly to someand thatV® = £(—1/¢)U*® as well asV® = L(—t/e)U*®
converge (strongly in time) te0, «) + V. In the sequely, will denote any sequence of
functions converging uniformly in t to 0. Rewriting (47), we get

_ / '_ r=15
Bs_// wewe. V(v +my) 2 Bz div(m,)
0 2
+//\/Eu8.(v.Vv)—\/Eug.(v+m8).V(v+m8)

+// \/Eus_v_me?) V(v—l—ms)
— M. (\//O_sus — U= mg).V(v + ms)

+//—¢f dlv(mg)—Z—l//gq§ div(m,)

+//Q1(v, VO VE 1+ Qp(VO, VO VE 4 1. (49)
0 2
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Let us compute the limit when goes to 0 of the terms appearing in the right hand side.
On the one hand, we have

/I/mg.mg.V(v +me) + VT_llﬁgzdiV(ms)
—_/t/{dlv(mg@)mg)-i-TlV(W )} (m. +v)
0

_‘/ Q/ £ < ><dlv(mg®mg)0+y 1V(¢rs>2> <V0+ @)

/QZ(VO, VO.(VO+(0,v) +r.=re.
0 2

—-

On the other hand, using Proposition 3.5, we have

_//(ms b2 \/Eus + \/Io_sus b2 ma) V(@ +mg) + (v — DD div(m,)
0

- / / [div(m, ® /pette + /pette ® me) + (v — DV (e @0)].(me + v)
0 2

N / Z ﬁ( ) (duv(ms ® /Det; + muf@ me) + (y — 1>V<wsq>g>> (VO+ @)

_//292 7).(VO 4 (0, v)) + Q1 (u, VO).(VO + (0, v)) + 1,

2

ZO/Q/QZ(VO, V).Votr,.

Moreover, it is easy to see that
// [div(v @ /pette + /Pelt: R V)]. //Ql(v,‘_/).Vo—i—rg,
2
and that

//dlv(v®m5+ms®v) Mmg = /le Vo V0+”s—’”e

0 2 0 2

\
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Finally, we also have

//Ql(v, VO VE 4+ Qy(VP, VO)ng//Ql(v,VO)\_/—i—Qz(VO, VOV +r..
0 2 0

3.2. Boundson A,

We recall that, goes to 0 and thdt, goes to 2vFrom the energy bounds d¢f and
onv, we get

'
//M8|Dms|2 +M8|DU|2 — ueVue V(v +mg) -0

uniformly in ¢. Besides, integrating by parts and using that= V4., we get

0/[9/55(diVm5)2=—0/[Q/§5Am5.m8=—jﬂ/ﬁ(—é) (ESAO’%).VO
—O/Q/UAVOVO—I—rg.

The same argument yields

_/I/gg(di\/mg)(di\/us):// < )(S;‘gAus) //vAVVO-l—rs
0 2 0 2

Finally, we have

t t
//—vAV()ng//—UAVOV—i—rS.
0 2 0 2

Adding up the different contributions and integrating by parts, we deducedthatr,
converges to 0 uniformly in.
4. Study of the oscillating part

This section is devoted to the study of the equation satisfied by the gradient part of the
momentum. We expect that the following computations will be used in a forthcoming
investigation of a new numerical approach to slightly compressible flows.

4.1. Computation of 9,

We recall that2 = TV and thatT" is a periodic domain with period@ray, ...,
2ray), where for alli, a; > 0. Then, we can decompog&(£2) x {Vq, g € H*(2)} into



N. MASMOUDI / Ann. Inst. Henri Poincaré, Anal. non linéaire 18 (2001) 199-224 215

the following orthogonal basis. (In the sequél(2) denotes the space éf functions
with zero average)

Lo 1 K| iK.X
e = kg (—sg(k)k ¢

and

Vet = L ( I >ék.x
‘ V2TV k| \sg(ok )~

wherek is the vector whose components are definelby k' /q; forall 1 <i < N with
ki € Z* and where the notatiofk| is defined bylk|?> = 3", k? and|T"| = 27)V []; a;.
Moreover, sg(k) is a generalization of the function sign, defined BN — {0} by
sg(k) = +1 if and only if there exists, 1 <i < N, such that for allj < i, we have
k; =0andk; > 0. Otherwiserg (k) = —1. We think that the introduction of this notation
yields much simpler formulae. We only point out that we have

LVE(X) =isg(KIVS(X) and LV, (X) = —isg(K) K|V (X).
Decomposing/ on this basis, we have

V=Y aiV{+a V. (50)

Kk’ eZN*

We want to remark here thaf" = V—fk and thata ™, = E, sinceV is a real function.
The same holds with- replaced by—. Then, applying the groug, we obtain

LV =Y af etk gy gstokls, (51)

k! eZN*

Next, we can compute easily the term inside the integral in the right hand side of (30)

_ a B 0
L(—s) ; aga; i ((k +).[aBsg(k) sg(hk @ 1]+ VT—l(k + DIk ]
o=+ p=+
g (k+) X
2Tk

Projection onV}; and on divergence-free vector fields, the function written above can be
rewritten as follows {* = PF 4 QF)

QF) = > afal xil vy expli(asg(K) K| + Bsg DIl — ysg(myms), (53)
k+l=m
o,B,y==%

o @sg(OIKI+Bsg DI (52)

PF(s) = Y afaf Ugh expli(asg(K)IK| + Bsg(DII)s), (54)

k+l=m
o,f==%
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where xf7 is a constant and/? = (0,u,) is a vector such tham.ujf = 0.
Moreover, it is easy to see that is almost-periodic ins with periods of the form
asg(K)|Kk|+ BsgH|l| — ysgk + D]k + 1] andasg(k)|k| + Bsg()]l|. Hence, to obtain

the limit term in (30), we have to compute the mean value of (52). This is the same a:
looking at the resonant terms, namely terms which do not depenrd Time resonance
condition betweeri(k, «), (I, ), (m, y)), namely(V¢, V|’3, V) is

{k+|=m,

asg(K)IK| + BsgI] = ysg(m)m]. (®5)

Hence, 2kl = 2asg(k)Bsg (D |K| [l|, which means thak is parallel tol. Rewriting this
product again and using thhtis parallel tol, we deduce thak.l = sg(k) sg() k| |l].
This yields that we have = 8 and then we can see easily that (55) is equivalent to
{k+|=m, sg(K)IK| +sg(Dl] = sg(m)m], (56)
a=8=y.

More precisely, we can only get resonances between the trplgt V,*, V.1) and

Vi, Vi™, V;) separately. This was the reason why we have introduced the notation
sg (k). On the other hand, the possible contribution on the divergence-free part require:
the following resonance conditiamsg (k) |k| + Bsg(D)|l| = 0 and hencek| = |I|. Next,

using the symmetry betwednandl, we get

uﬁlﬂm =+ uﬁ& =Pla(Bsgk)sg(D((k + ).l k+ (k+1).k |)ei(k+l)x

_ 1 .
+VT<k+I>|k| Ijgk+hx | =, (57)

The above relationship has already been used by Lions and the author in [12] tc
show the weak convergence of the compressible Navier—Stokes equations towards tt
incompressible Navier—Stokes equations. It means in some sense that the acoustic wa\
do not perturb the incompressible flow.

Finally, we deduce that

(V. V) = > agaf Xgim Vs (58)
K+l=m,a=+
sg(K) [k|+sg(D]l|=sg(m)|m|
where x is symmetric ink andl. It only remains to computg . By projecting (30) on
Ve, we get

oz ki)
. (isg(k) sgymkl + K[ [ljm 59
2 P\ 2 9
. (v +Dsg(m)|m|
W v (60)

Inorder to understand more the structure@f, we introduce the seP of prime
vectorsp, wherep € Z" is such that thev components op are prime in their set.
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This is equivalent to saying that there does not exist any couplg) € N x Z" such
thatp =nq andn > 2. Then, we define

WeX)= > afPvEPx). (61)
keZ, k=kp

We can associate to the above vector value function the following real value function

1
U)p(Z) _ _L Z vg(P)ezk (62)

AV2ATY] i ok

We notice that bottW,, andwy, are real. Indeed, this is a consequence of the factithat
is real. Moreover, we remark thag (p)sg(k)|k| = |plk and that for alls € R, we have

y+1
2 W, s == w s
4\/W” pllas vy = [PF lwpll g (r)-

The following proposition is very easy.

(63)

ProPOsITION 4.1. —For all p,g € P, p # g, we haveQ,(W,, Wy) = 0 and the
following differential equations are equivalent

9,V +Qx(V,V)—vAV =0, (64)

VpeP, dwp+|plo.w) —vip?0Zw, = 0. (65)

This shows that we have to solve an infinite collection of viscous Burgers equations.
However, our initial equation is even more complicated and we will see that this
collection of viscous Burgers equations is coupled by a coupling coming from the term

Q1.
4.2. Computation of Q1

We recall that ifu is divergence-free it may be written as

u=> U"X, (66)
k

wherek.Uy = 0, for all k. Then, using the fact thatis real, we deduce thdf, = U_y,
for all k. Hence, the term inside the integral in the right hand side of (29) is given by

0 . .
L g (k+).X gasg(K)[Kls
= Z VZITN |k| (Olsg(k)(k+|)-[k®U|+U|®k]>

(67)
Now, we have to look at the resonant terms as we did in the preceding section.for
The resonance condition betwegR, «), I, (m, y)), namely(V¢, U, V}) is

k+1=m,
{Olsg(k)lk|=5Sg(m)|m|. (68)
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We just notice that if(V,¢, Uj, V) is a resonant triplet than it is also true for
(V2. Ui, V). We will see that this yields the conservation of energy. Of course, we
also get other resonances for instance(ot,, U_, me) ... Next, we get

Q. V)= > aiok UV, (69)
k+l=m
asg(k)=8sg(m)
[K|=|m|
where
-5
ok, Uy = Zossmm). (iasg(K) [Mm.K U + K.U; K]) (70)
2k |[|m|
m.k
— i U k. 71
K|jm| " ()

Moreover, using the fact thatl/, = 0, we get that (—m, U)) = —o (K, U)). It must be
noticed that whileQ,(V, V) is formed by resonances between modes oscillating in the
same direction@Q;(u, V) is formed by resonances between modes oscillating with the
same frequency. This induces some coupling in the limit equation (32) which can be
seen as a an infinite collection of coupled viscous Burgers equations. However, we wil
see that for suitable choices of the periods of the domain this coupling is low. Next, we
introduce the following set, that we call the set of trivial resonances

.Ap ={qgeP, Vi, g, ==xp;} (72)

PROPOSITION 4.2. —For almost all choices ofay, . .., ay) e R*Y, Q1(u, V) reduces
to trivial resonances, namely

Q1(u, V)= > ayo® (K, Un—i) Vo (73)
keAm, asg(k)=8sg(m)

More precisely iy, ..., 5 are Q independent then the above conclusion holds.
al aN

The proof of this proposition is very easy. In fact,3f, ..., & areQ independent,
al aN
then the equation

’

N

N oy m
N d o

N ’2

=1

has only trivial solutions, namely;? = m;2, which means thét € A,,. Moreover in this
case the resonance also holds for the prime represetit, @) and (m, §), namelyq
andp such thatsg(q) = «, k = kq andsg(p) = §, m = mp, sincek = m in this case.
However, in the general case, the resonances couple all the different modes.
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To be able to use the notatioM, to analyze the limit system, we defidg (u, Wy)
which is the contribution oy on W,

Colu, W)= > ok, UVE®. (75)
k+l=m
k=kq, m=mp
mipl=k|ala*

Indeed, using that = kq, m = mp, the second equation in (68) yields

sg(@)sg(K)|k| =sg(p)sg(m)imy, (76)

from which we deduce the condition|p| = k|q|. We also introduce the corresponding
notation forwy

cp(u, wy) = Z aﬁg(q)ﬁ(k, Upe-. (77)
k+l=m, k=kq, m=mp, m|p|=k|q|

With these notations, we can see that

PROPOSITION 4.3. —=Solving the systent32) for V = 3", .p W, is equivalent to
solving the systerdCVB) of infinite coupled viscous Burgers equations

(ICVB) VpeP, dwp+ [plo.w;—vIpl?0Zwp + > cpu, wg) =0. (78)
qeP

We also notice that, when = 0, the system reduces to an infinite coupled Burgers
equations

(ICB) VpeP. dwp+[plo.w;+ Y cplu, wg) =0. (79)
qeP

The proof of the existence of solutions will rely on the energy estimates. Therefore, we
begin by proving Proposition 3.3, which is the essence of the conservation of the energ)

4.3. Proof of Proposition 3.3

Let us start by proving the first part of Eq. (33). It is easy to see tha{df U;, V?) is
resonant then it is also true fov° ., U;, V¢,). Moreover using thav is real, we deduce

thata*, =a; and hence the following computations are obvious

/Ql(u, V)V = Z ayo (k, Upag,
k+l=m, asg(k)=38sg(m)
[k|=Im|
1 m.k
=5 > —in i (Unkagaly — Unmagay)
k+l=m, asg(k)=3sg(m) | Hml
[k|=Im|

=0.
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For the second part of Eqg. (33), we just remark thatVf, V|*, V<) is a resonant
triplet, it is also true for V&, V<., V) and(V%,, V\*, V). Hence

—-m>?

/ LV, VIV=" 3 alal Afma®
k+l=m, a=+
1 (y+1
== —ia———(sg(m)|m|agafa®
3 k+|:mz,a::t 4,/2|TV| m
+sg(=Dllafa® na® + sg(—k)K|afa® nag)
=0.

4.4. Existence of global solutionsfor the coupled system (1CVB)

In this subsection, we give a sketch of proof of existence and uniqueness of solution:
to (ICVB) and hence for (32). Let € L>*(H*), with s > N/2+ 1 be a given function
(the regularity ofu can be weakened bute L*°(H*) is the regularity we get from the
fact thatu is a solution of the Euler system) am@= 3", W,? e H*~!, we also defineug
as above. Then, the following theorem holds

THEOREM 4.4. —There exists a unique global strong solution {62VB), with
VpeP, wpel®(HNT))NL3(H(T)). (80)

And hence, we obtain a unique strong solution f@2), with V =37 W, €
L®(H*YTV)) N L2(H*(TV)).

We are just going to give the a priori bounds we can derive for this system. The
existence result is then easily deduced by solving some approximated systems. F
instance, we can solveCVB,,) for all M € N, defined byPy, ={p € P, |p| < M}
and

(ICVBy) VpePu. dwp+ Iplow;—vIpl?02wp+ > cp(u,wg) =0.  (81)
qePum

Of course all the a priori estimates we are going to show(fGB\VB) can be easily
extended to(ICVB,). Then, we have just to take the limi¥ — oo and use a
compactness method to pass to the limit. To s@l@VB,,) for fixed M, we can use
any classical type of regularization. For instance, one can use a Galerkin approximatio
method.

Now, we turn to the proof of the a priori bounds. If Proposition 3.3 is sufficient to get
L? energy estimates, we need the following Proposition to get higher order estimates.

PrRoPOSITION 4.5. —For all p,q, e P and all j € N, we have

/ag'cp(u,wq)|p|2/agwp+/agcq(u, wp)|q1% 8/ wq = 0. (82)
T T
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Proof. —It relies upon the following observations. Since for all resonant triplet
Ve, U, V3 (with sg(q) = @, k = kq and sg(p) = §, m = mp), we know that
(V2 Ui, V) is also resonant and(—m, U)) = —o (k, U)), we obtain

a’ o (—=m, U)[K|¥ ag + ago (k, Uplm|*a’ , = 0. (83)

Here, we have also used that|?’ = [m|%|p|% = |k|? = |k|?/|q|%. Then, we conclude
easily. O

Using Proposition 3.3, we get the followirlgf energy estimate for afl

t

1 1
5 > llwpllZ2(t) + v / > 1Pl wpliZ. < > > llwpll22(00 = ClIVollZ2.  (84)
peP o0 PeP peP

Next, for all j € N and allp € P, we have

1 , . . .
5037 wpl T+ vIpZa7 w52 + ol [ 07 w)a v,
T

+/Zafcp(u, wq)d/wp =0. (85)
T 9

To estimate/; a”l(wg)a/’wp, we need the following

PROPOSITION 4.6. — Using interpolation inequality, we get

/aj+l(w5)ajwp < C||wP||L°°||8jprL2||8j+1wp||L2‘ (86)
T
Proof. —Indeed, by Holder inequality, we find

' ) J+1\,.., s '
/3‘/+l(w§)3"wp< Z ( r )HB wpl|a/[0"wp[ 4[| wp [ 2

T s+r=j+1
jzr, 521

+ 2flwpll 2137wy [ 12]]87 wp]|, »- (87)

Then, using Gagliardo—Nirenberg’s inequality, we deduce

7 wpll o < CllwpllF= 87w (88)
where: —s =60(3 — (j +1)). And, sincer +s = j + 1, we also have

[9*wp| o < Cllwpl [0 w2 (89)

and the proposition is proved.O

Then, multiplying (85) byip|> and summing up ip, we get
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1 . ; ,
SOV s+ VIV e < lwplPI 8 wpl |2 |87 w2
p

< 9; e DL s L
where we have used Cauchy—Schwarz inequality. This yields for all
BIVIZ, +vIVIZ, . < %(sgpnwpn%m)nvni,j < %(Z ||wp||%m) IVIZ,. (90)
Then, by Gagliardo—Nirenberg’s inequality, we have fonaI;I

1/2
S ol < 3 luplialiunlie < (ananZ) (Znazwpniz)
p p

Integrating in time and using again Cauchy—Schwarz’ inequality, we obtain

1/2

/Z|wp|§wgc—://§. (91)
O p

Finally, by Gréonwall inequality, we find for aH

Ct ) (92)

t
IVIE 0+ v [ 1V < IVl e><|o<ﬁ
0

We want to remark, that it is possible to get an estimate independentgfnoticing
that sincew, has a zero average théiw,| .~ < [|0,wpl|, 2. This yields the following
estimate

13
C
IV 1550 + v / IV1I551 < ClIVollZ; exp(;). (93)
0

The argument, we presented here uses the factjthdl. However, it can be easily
adapted to the case where R, hence we get that

Cﬁ), (04)

IV 115 () +v/||V||§,s+1 < ClVoll%s exp<m
0
and we conclude.

4.5, Existence of local solutionsfor the coupled system (ICB)

In this case the proof is the same, apart from the fact that we can no longer use th
effect of the viscosity. Hence, inequality (86) should be replaced by

/ D7+ (w2) 8 wp < 19.wpll o 197wyl 2. (95)
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Indeed, computing/*!(w}), we have

T (wh) = 2wpd Thwp + 2(j + Dowpd wp+ > T wpd wp.  (96)

r4+s=j+1
j=1>r, 522

The first term in the left hand side can be treated as follows

/wpaf“wpapr:/wpa apr = /awp apr . (97)
T T

For the others, we conclude as in the proof of Proposition 4.6.
Besides, inequality (90) must be replaced by

VL <CIVIE,. (98)

In fact, sincej > 3/2, we deduce thatd, wp ||~ < [13/wp| 2. Finally, it is easy to see
that (98) yields the local existence fACB).
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