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ABSTRACT. — We derive an a priorC%® estimate in dimension three for the equation
F(D?%u) = arctam., + arctank, + arctamz = ¢, whereir, A2, A3 are the eigenvalues of the
HessianD?u. For —n/2 < ¢ < /2, the c-level set ofF (D?u) fails the convexity condition.
Note that for any solution of the above equatior(x, Vu(x)) is a minimizing graph irRS.
For ¢ = 0, +7, the equation is equivalent thu = detD?u.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — On déduit une estimation a prioi>* en dimension trois pour I'équation
F(D?%u) = arctaniy +arctam., 4+ arctams = ¢, olA1, A2, A3 sont les valuers propres du hessien
D?u. Pour—m/2 < ¢ < /2, 'ensemble de niveau ¢ dfi(D?«) ne satisfait pas la condition de
convexité. Remarquez que pour n'importe qu’elle solutiode I'équation,(x, Vu(x)) est un
graphe qui minimise I'aire dar8®. Pourc = 0, £, I'équation est équivalent Au = detD?u.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

In this note we derive aa priori C2¢ estimate in dimension three for solutions to the
fully nonlinear elliptic equation

F(D?u) = arctam.; + arctan., + arctamg = c, (1.2)

whereiq, A, Az are the eigenvalues of the HessiBidu. Notice (1.1) just says that the
argument of the complex numbék + ix1) (1 + i),) (14 iA3) IS constant.

For|c| > /2, the c-level set oF (D%u), =, = {M symmetric| F (M) = ¢} iS convex.
(This can be seen by computing the second fundamental foim,aff. [4] Lemma C.)
The C?“ estimate also follows from the well known result of Evans [8] and Krylov [12].
For |c| < /2, the c-level sek,. fails the convexity condition (cf. [4] Lemma C), it
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even does not satisfy the assumption in [5], where we prové€ fifeestimate under the
assumption thak. N {M | TraceM = ¢t} is convex for allr.

Eg. (1.1) comes from special Lagrangian geometry [10]. The (Lagrangian) graph
(x, Vu(x)) e R? is called special when the eigenvalues. . ., A,, of D?u satisfy

arctamq + - -- + arctam,,, = c, (1.2)

and it is special if and only ifx, Vu(x)) € R? is a minimal surface [10, Theorem 2.3,
Proposition 2.17]. In the three dimensional casefer0, 7, Eq. (1.1) is equivalent
to Au = detD?u.

A continuous functionu(x) is said to be a viscosity solution of (1.1) if it is
both a viscosity subsolution and supersolution. Anis a subsolution (respectively,
supersolution), if forp € C?, ¢ — u has a local minimal at,, then F(D%p(xg)) > ¢
(respectively, ifp — u has a local maximum aty, then F(D?p(xg)) < ¢). Note that
if u e CY1, thenu is a viscosity solution of (1.1) if and only if is a strong solution
of (1.1), that isF (D?u) = ¢ almost everywhere (cf. [3, p. 367]). Ongés aW?" strong
solution of (1.2), then(x, Vu(x)) is an absolutely volume-minimizing submanifold in
R?" [10, Theorem 4.2].

THEOREM 1.1.— Let u be a C*?' viscosity solution ofF (D%u) = arctamq +
arctank, + arctanis = ¢ in the unit ball By C R3, whereiq, 1., A3 are the eigenvalues
of the HessiarD?u. Then fora € (0, 1) we have the interior estimates

D%l gy, < C o

(By2) 3

DZMHLOO(Bl))'

The proof of Theorem 1.1 has two steps. In step one (Section 2), by a geometric
argument we show thab?x is in VMO (vanishing mean oscillation). This means that
D?u concentrates. In step two (Section 3), we show thahen is very close to a
guadratic polynomial (Proposition 3.2), and this “closedenss” improves increasingly as
we rescale (Proposition 3.3), thanks to the smoothnesg(#f) that makes it look,
after rescaling, more and more like a linear operator araung D?P, (P, is thekth
approximating polynomial).

Once the VMO modulus ob?u is available, as in [11] one can get thé* estimate
by the L? estimate in [7]. Here we give a different approach, following [1] as in [5].
Since the proof is relatively short, we present it here for completeness.

We close this introduction by the following remark. The reason that we restrict
ourselves to the dimension three case is because all 3-d graph like special Lagrangic
cones are linear spaces (Lemma 2.1). In higher dimensional case, this assertion remai
unclear to us.

2. Preliminary estimates (VM O)
The following lemma follows from a well known result in geometry. Here we give yet
another proof.

LEMMA 2.1.— Let u € C®(R3\{0}) be a viscosity solution of1.1) in R3, and
homogeneous degree two, thatigtx) = r%u(x). Thenu is a quadratic polynomial.
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Proof. —All we need to do is show thatis C? at the origin. Note tha¥/ = (x, Vu(x))
is a three dimensional minimal conel®¥, andM N S° is homeomorphic to a two sphere
52. By aresult of Calabi [6, Theorem 5.5 c R® c R®. So there exitga, b) € R3 x R3
such that

ax +bvVu(x) =0.
Without loss of generality, we assurhe= (0, 0, —1), then

ou

—— = aix1 + axxo + asxs.

8)63
Henceu = aixi1x3 + asxoxsz + %a3x3x3 + v(x1, x2), and v € C®(R?\{0}) satisfies
F(D?v) = c in the viscosity sense, whefé= F|, and

mijxy miz2 aa m m
A=< |my mxm a ‘M = [mll mlz] is symmetric 2x 2 matrix p .
4  as 21 M2

Since|D?v| is also bounded, we are in the two dimensional case,C? at the origin.
(cf. [9, Theorem 17.2]).
Thusu is C? at the origin, and: is a quadratic polynomial. O

LEMMA 2.2. —Letu be aC*? viscosity solution of1.1)in R2, and|D?u| < K. Then
u is a quadratic polynomial.

Proof. —Without loss of generality, we assumé)) = 0, vu(0) = 0. We “blow down”
u atoo.
Set

u(kx)
k2’

up(x) = k=123, ....

We see that

lurllcripy < C(K, R),
then there exists a subsequence, still denotefd:gyand a function:z € C*1(By) such
thatu, — ug in C1%(Bg) ask — oo, and|D?%ug| < K. By the fact that the family of
viscosity solution is closed und€ uniform limit, we know thatuy is also a viscosity
solution of F (D?u) = c in Bg. By the W?? estimate (cf. [2, Proposition 7.4]), we have

| D%ux — D?ug||, s < C(K, R)|ux — ugll L~y — 0 ask — oco.

(Brj2)
Note that| D?u;|, |D?ur| < K, then forp > 0, we have
2 2
|D%ux — D uRHL,,(BR/Z) — 0 ask — oo.

By the diagonalizing process, there exists another subsequence, again denfted by
and v € CL1(R3) such thatu, — v in W2/ (R3) ask — oo, |D?| < K, and v is
viscosity solution ofF (D?v) = ¢ in R3.
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Sinceu is viscosity solution ofF (D?v) = ¢ in R®, (x, Vu(x)) is a minimal surface in
RE. Also note D%, — D%v in WZ2(R?), by the monotonicity formula (cf. [13, p. 84])
and Theorem 19.3 in [13], we conclude thift, = (x, Vv(x)) is a cone. Since the
tangent cone oM, at each point away from the vertex is a 2-dimensional cone cross
R?! (cf. [13, Lemma 35.5]), the 2-dimensional cone must be a linear space by the sam
arguments as in the end of the proof Lemma 2.1. Then we apply Allard’s regularity result
(cf. [13, Theorem 24.2]) to conclude thaf, is smooth away from the vertex. That is
v e C®(R3\{0}) andv(tx) = t?v(x). By Lemma 2.1p is a quadratic polynomial, say,
v(x) = %x’Mx. Again by Allard’s regularity result (cf. [13, Theorem 24.2)= v is
a quadratic polynomial. O

Recall that a locally integrable functianis in VMO () with modulusw, (R, 2) if
w, (R, 2) = sup ][ lu(x) —uy,,| =0, askR— 0,

XQER
0<r<R By (xg)N2

wheref ,u denotes the average ofover A andu,,, the average of over B, (xo) N 2.

PROPOSITION 2.3. —Let u be a C*?! viscosity solution of1.1) in B; ¢ R® and
|D?u| < K. ThenD?u € VMO(By/2) and the VMO modulus ab?u, wpz,(r) < w(r),
wherew only depends oK andw(r) — 0asr — O*.

Proof. —Suppose the conclusion of the proposition is not true. Then there exists
g0 >0, r, — 0, x; € Byjp, and a family ofC*! viscosity solutions ofF (D%u) = c,
{ur}, |D?uy| < K, such that

][ |D%u — (D?uy), . | > €o.
B,

We “blow up” {u,}, set

up (X +riy) — Vg (xg) - rey — ug(xg) 1
vk(y): I”2 f0r|y|<g,
i

we see thatF(D?v;) = ¢ in the viscosity sense anghgllcrip,) < C(K, R). Then
there exists a subsequence, still denoted{lpy and a functionvg € C*(Bg) such
that vy — vg in C1%(Bg) ask — oo, and|D?vg| < K. By the fact that the family of
viscosity solution is closed und€r uniform limit, we know thatvy is also a viscosity
solution of F(D?vg) = c in Bg. By the W24 estimate (cf. [2, Proposition 7.4]), we have

| D?vy — DZUR|‘L5<BR/2) < C(K, R)|ve — vglli=sg — 0 ask — oo.
Note that| D?v|, | D?vg| < K, then forp > 0, we have
||D2Uk - DZURHLP(BR/Z) — 0 ask — oo.

By the diagonalizing process, there exists another subsequence, again denftgd by
and v € CY1(R3) such thaty, — v in W2/ (R3) ask — oo, |D?v| < K, and v is
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viscosity solution of F(D?v) = ¢ in R3. By Lemma 2.2, we know is a quadratic
polynomial. Hence

B1 B
= lim ][ D%, — (D)., | > eo.
By,

This is a contradiction. O

3. C%* estimates

Once the VMO modulus of Hessidd?x is available, we can get the Holder estimate
of the Hessian of the solutions to general uniformly elliptic equafigi?«) = 0 with
V F being continuous. In the following Lemma 3.1 and Propositions 3.2, 3.3, we confine
ourselves to the special Lagrangian equation in any dimension

F(D?u) = arctam, + - - - 4 arctam,, = c, (3.1

whereiq, ..., A, are the eigenvalues of the HessiBAx. In the end of section, relying
on Proposition 2.3 which is true in three dimensional case, we give the proof of
Theorem 1.1.

First we need the following modifying lemma in the proof of Proposition 3.2.

LEMMA 3.1.— Letu be aC'? viscosity solution o{3.1). Then for all quadratic
polynomial P satisfying| D?P| < || D?ul|~ = K, we can modify it t®? = P + Zsx? S0
that

F(D?P)=c,
Is] S C, K)lltt = Pl ooy,
llu = Pllzoecsy < Cny Kl — Pl ooy, -

Proof. —Note that F(D?P) — F(D?u) = F(D?P) — ¢, applying the Alexandrov—
Bakelman—Pucci maximum principle, we have

|F(D?P) —c| < Cn, K)|u—P|

L®(By)®

SinceF (M) is elliptic for |M| < K with ellipticity A(K), there exists with

Is| < C(n, K)llu— P

L (B1)
so that
F(D?P +sI) =c.
Now letP = P + %sxz, we arrive at the conclusion of the above lemma

The next proposition shows ond2’u concentrates on a point, thengets close to a
polynomial.
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PROPOSITION 3.2. — Assume that is a C1! viscosity solution of3.1)in B; C R",
|D?u| < K in By, and D%u € VMO(Bj3,4) with VMO moduluso (). Then for any > 0,
there existy = n(n, K, w, ¢) and a quadratic polynomiaP so that

— P(x)| <& forx e By,

F(D?P) =
Proof. —Takep, r > 0 to be chosen later. Set

1
w,(x) = —u(rx)

_Tr][DZw,_Tr][D2

then|s,| <nkK.
Solve

Av(x) =s, in By,
v(x)=w, O0NnaJB;.

By the Alexandrov—Bakelman—Pucci maximum principle and the assumiiém| <
K, we have

lw, —vllrepy) < C) || Aw, — Av|pn(py

<C(n) {/ ]Dzu(rx) — (Dzu)o’r]n} .

By

1/n
< C(n, K)[/|D2M(rx) - (Dzu)o,r|]
By

=C(n, K) [7[ |D?u(x) — (Dzu)o’r|] .
B,

<C(n, K)oV (r).
Also

| D? < C(n) sup

UHLOO(BM) = x€dB1
< C(n, K).
If we take the quadratic paR of v at the origin, then

W, (¥) = w, (0) — (Vuw, (0), x) — %wﬁ]

lw, (x) — P(x)| < C(n, K)o (r) + C(n, K)|x|*.

Now letx = py, P(y) = % P(py). For|y| <1, we have

1 W (r)
5w (oy) - P(y)] Can, K){ +p}
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Sincep—lzw,(py) satisfiesF (D?u) = ¢, by the modifying Lemma 3.1, we pertu%(y)
to another quadratic polynomi#l(y) so that

F(D?P)=c

with

1 WY (r)
] -, (py) - P(y)] Can, K){ p}
p2 p2

Finally we choosep, thenr depending om, K, w, £ so that

- P(y)‘ <eg,

wheren=nn, K, w,e)=pr. O

Finally, Proposition 3.3 indicates the inductive process by which, ariselose to a
polynomial, it becomeg2.

PROPOSITION 3.3. — There existu € (0,1), m depending om, K = || D?u/| s,
and « so that, if |u — P|r~s,) < p?r**t™, F(D?P) = ¢, and F(D?u) = ¢ almost
everywhere inB; C R”, whereF is as in(3.1). Then we have a family of polynomials
Py =da* + (b*,x) + 2x'Ckx, k=1,2, ..., satisfying

() llu— Pk||L<>°(B oS < pkErartm,
(”) |Cl _ak+l| m |bk bk+1|, MZklck _ Ck+l| < C(n, K) Mk(2+a)+m,
(i) F(CH =c.

Proof. —Let P, = P, we prove this proposition by induction. Set

(u — P)(ux)

(F@ratm forx € By,

w(x) =

then|w(x)| < 1 and forF*(M) = Mkaﬂm F(uketmp 4 CF)

c
F (DZ ) Mkoz-‘rm (Dzu(ukx)) = Mkoz-‘rm

almost everywhere iB;. Let v be the solution of

Zl j=1 l/(O)Dl]U =0 in 83/4,
vV=w on 333/4,

whereF;; =dF(M)/dm;;, M = (m;;). We see

FY(D%) = FYO) + Y. FL(O)Dyjv+O(||V2F ||| D% k)
i,j=1

2 o-rm
=+ OV2F | D%t
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Using the interior Holder estimate om with g8 = B(n, K), for example, Proposi-
tion 4.10 in [2],

||w||cﬂ(§3/4) <C(n,K).
By the global Holder estimate an
Wl ez, < CO1 K)lwllcepaym < C, K.
Applying the interior estimate on, we have for§ > 0 to be chosen later
”v||C3(Bl/2) ~N C(n K)
2 -2
| D UHLoo(33/4,5) <C(n,K)s~.
By the Alexandrov—Bakelman—Pucci maximum principle, we have

lw = vl 1By s < SUP [w —v| + C(n, K)||F*(D*w) — F*(D?)
B34

<C(n, K)[(67 +672) + || V2F || 6™
< C(n, K)[(8F + 8P/2) 4 protms=].

H L°(B3/4-5)

Now take P to be the quadratic part afat the origin, we have
llw — P”LO"(BM) C(n,K) [,u + (5/3 + 5;‘3/2) Mka+m874]‘

Since F¥(D?*w) = c/uk‘””‘ by the modifying Lemma 3.1 properly scaled, we perturb
P to another quadrati® so thatF*(D2P) = ¢/uk*+" which is F(D?P) = ¢, and

H P||L°°(B y S C(n, K)[M + (‘Sﬁ +‘Sﬁ/2) +Mka+m‘s_4]-

We finally chooseu, thens andm, depending om, K = || D?u|| = (s,), anda so that

Hw - FHL@Q(BM) <ute

Rescalir [0] back, we get
k(24+a)+m —k k+1)(2+a)+m
Hu—Pk—p,( ) F(M X)HIOO(B 1)<,u( )( ) .

Let Piq = Py + pk@ro+mp,~kx) we see (i), (ii), and (iii) hold. O

Proof of Theorem 1.1 We apply Propositions 2.3, 3.2 toand Proposition 3.3 to
u(nx)/n?. From (i) (i) in Proposition 3.3, we see that the family of polynomig#s}
converges uniformly to a quadratic polynomi@{x) satisfying

1
Fu(nx) — 0(x)| < C(K)|x|*™.
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Lety = nx, for |y| < n we get

y 1 «
un =70 (2 )| < canr iy

n n
Similarly, one proves the above inequality at every p@y By,», that s, for|y — xo| <
n

1 24+a
lu(y) — O, < C(K)n—aly — xo|T.

Therefore
H Dzu HC“(Bl/z) g C (a’

DZMHLOO(Bl))'

The proof of Theorem 1.1 is completen
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