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ABSTRACT. — In this paper we are interested in the study of a model of nonhomogeneous
diphasic incompressible flow. More precisely we consider a coupling of a Cahn—Hilliard and an
incompressible Navier—Stokes equations where the densities of the phases are different.

For this general model we can only show the local existence of a unique very regular solutior
and the existence of weaker solutions is still an open problem. But, if we look at the behavior of
the system when the densities tends to be equal (slightly nonhomogeneous case), we show t
existence of a global weak solution and of a unique local strong solution (which is in fact global
in 2D). Finally, an asymptotic stability result for the metastable states is shown in this slightly
nonhomogeneous case.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — Dans cet article, nous nous intéressons a I'étude d’un modéle d'écoulement
diphasique nonhomogeéne incompressible. Plus précisément, nous considérons un couplage er
une équation de Cahn—Hlilliard et une équation de Navier—Stokes incompressible dans lesquell
les densités des deux phases sont différentes.

Pour ce modele général, nous pouvons seulement prouver I'existence locale et I'unicité d’un:
solution tres réguliere, I'existence de solutions plus faibles restant un probléme ouvert. Er
revanche, si nous considérons le comportement du systeme quand les densités des deux phe
sont proches (cas faiblement nonhomogéne), nous montrons I'existence de solutions faible
globales et I'existence et I'unicité de solutions fortes locales (en fait globales en dimension 2)
Enfin, un résultat de stabilité asymptotique des états métastables est établi, toujours dans le c
faiblement nonhomogéne.
© 2001 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
We are interested in the study of incompressible diphasic honhomogeneous mixture
flows. We have proposed in [6] the derivation of a mathematical model for this kind

of problem based on the coupling of a Cahn—Hilliard equation and a nonhomogeneou
Navier—Stokes equation. The origine of this derivation lies on the works of numerous
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authors [9,11,14,23]. We obtain the following equations for the order parampgtee
potential and the velocity. If o9, p9 denote the densities of the two phases, the system

reads
a—‘0+v.vgo—div< 1 v( i )):o, (1.1)
ot Pe(®)  \ pe(p)
n=—ale+ F'(p), (1.2)

ad .
Pe (@) (a—l; + v.Vv) —2div(n(p)D(v)) + Vp

1— 2
—uVp+e—2 V( s ) + pe (@) g, (1.3)
4 Pe (@)
div(v) =0, (1.4)

the normalized density being theoretically given by

p—1
pe(9) =1+ e=—>—, (1.5)
with
_ 12— pd
max(p?, p3)’

representing the relative difference of the densities. Let us remark that we always hav
¢ < 1. We recall the usual notation for the deformation ter3ak) = (Vu + Vu')/2.

For this model, we are not able to prove in general (ever=f0) that the values of the
order parameter remain in the physical-meaningful intervdl, 1]. This implies that if
we definep, with (1.5) we are not sure that the density remains always positive. That's
the reason why, we introduce a slightly different definition for namely it must be a
function satisfying:

pg(l):]., ’P;’mgf‘?
and

0 < p1< pe(9) < p2,

independtly ofe. One may keep in mind that, is essentially given by (1.5) into the
interval[—1, 1].

In some particular cases, for example (see [5]k = 0 and if we introduce a
degenerate mobility (diffusion coefficient) in the model, then we can show that the values
of the order parameter stay in the physical-meaningful intdrval 1]. Hence, we know
a posteriorithat the density is really given by (1.5). Such a qualitative result on the values
of ¢ is also expected even in the case 0, if one consider a logarithmic Cahn—Hilliard
potential F' of the form

F(p)=0(1—¢%) + (1+¢)log(1+ ) + (1 - ¢)log(l — @),

which is a physical-relevant choice fér (see [14]).
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From now on, we suppose that the dimension of the spacé=s2 or d = 3.
Our following study takes place again [5] in the case of the channel under sheal
which corresponds to the physical experimental conditions, but our results are still
true if we consider a bounded regular domain with homogeneous boundary conditions
Consequently, the previous system is provided with periodicity condition in the
x, y-directions and on the other boundaries, with the conditions

do _on _,

= =0, 1.6
av av (1.6)
v=Ue, oOn{z=1}, v=—-Ue, on{z=-1}. .7
U
_—
z=1
Q
z=-1
%
-U

We shown in [6] that the numerical simulations for this model give physical-relevant
results. Moreover, the homogeneous case-Q, p.(¢) = 1) has been studied in [5],
where it is shown the existence of weak solutions, the existence and uniqueness of stror
solutions and an asymptotic stability result of the metastable states of the potential.

Ouir first objective is to study the existence of solutions to system (1.1)—(1.4), (1.6),
(1.7). For any range of admissible valuessgfwe can only show (Theorem 3.1) the
existence and uniqueness of local very strong solutions. In this case, the existence
weak solutions is still an open question.

Nevertheless, in the slightly nonhomogeneous regime, that is to say if we suppos
the smallness of the parametemwe can drasticaly improve the results in this direction.
More precisely, we show (Theorem 3.2) thatifs small enough, then there exists a
global weak solution uniformly bounded in time in the appropriate spaces. Furthermore
this solution converges, up to an extraction of a subsequence, towards a weak solutic
of the homogeneous problem.

Moreover we show (Theorem 3.3), always under the conditionstismall enough,
the existence and uniqueness of strong solutions (global in 2D and local in 3D) for
regular initial data.

Finally, we establish (Theorem 3.4) the same kind of asymptotic stability result than
the one shown in [5], always in the slightly nonhomogeneous case. We point out that the
asymptotic stability of the metastable stationnary states is shown even in 3D.
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2. Notations and fundamental results
Functional spaces

Throughout this paper we denote bjy, the usual norm on the spaée, and by|. ||
the usual norm ori*. We letL? = (L?)¢ andH* = (H*)? the norms on these spaces
being always denoted by, and].||;.

We have to introduce the natural homogeneous boundary conditions associated to tf
problem (1.1)—(1.4), (1.6), (1.7). Namely, we introduce, if it makes sense, the conditions

. o o . . 0 IA
@ is periodic in thex, y-directions and satlsfleg(ﬁ _ o9
V v

=0on{z=+1}. (2.1)

u is periodic in thex, y-directions and satisfieas= 0 on{z = +1}. (2.2)

Then we define classicaly (see [5]) the spaces

o, = {¢p € H’, satisfying(2.1)},

Vy = {u e ', div(u) = 0, satisfying(2.2)}.

As usual, the spac®, will be denoted byH , and the spac&; by V. In the definition of
H one must replace the boundary conditioa: 0 by u.v = 0. Moreover, we will denote
by P the orthogonal projector ih?($2) onto the spacéf.

Stokes operator

We recall (see [26]) that for any e V,, there exists a uniquedu, 7) € H x (H/R)
such that

Au=—Au+ Vm,

the operatoms — Au is a nonbounded operator i of domainV, named the Stokes
operator. Moreover, there exisfy, C,, C3 > 0 such that for any € V, we have

Cillullz < [Aul2 < Collull2,

17 g2r < Csllull2, (2.3)
17 12/m < Callulla.

Fundamental inequalities

We do not recall the classical Sobolev embeddings that we will use in this paper. We
also refer to [3,18] for the different interpolation results we need in our estimates.

Let us recall the Poincaré’s and Korn's inequalities: there exigt€'s > 0 such that
for anyu € V, we have

Cyllu|ly < |Vulz < Cs|Du)>. (2.4)
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Furthermore, for anyf € L* we denote byn(f) = l—élfg f its average. Then [25]
there existLg > 0 such that

{ lo —m(@)llL < CslVela, Vo € @4, 2.5)
lg —m@)lls+2 < CellAglls, Vs >0, Vo € dyio.
As a consequence we will systematically use inequalities like
Vol =[|V(e —m@)|, < llp —m@)ll2 < Ce|Agla.
Finally we will use the two following Agmon'’s inequalities in dimensidr= 3
1/2 1/2
{Ifloo< IFIY21£157%, forany f € H?, (2.6)
2 2 '
[flo <CIFIF%IFIS%, forany f e H,

Stationary solutions

One can remark that, if we suppose tpgas derived from a potentia, that is to say
g = VG, then we can construct a family of stationary solutions of (1.1)—(1.4)

o]

0* =w, vy =Uze,, 2.7)

wherew is a given constant. We will study the asymptotic stability of this solution in the
Section 3.3, but introducing these solutions is necessary in order to state precisely tr
results we present here.

Mean conservation for the Cahn—-Hilliard equation

We state here a fundamental property of the Cahn-Hilliard equation and more
generally of Eq. (1.1) with the boundary conditions (1.6).

LEMMA 2.1. —Any solutiong of (1.1) satisfying(1.6), with a velocity field(¢) € H,
satisfies

9
_ =0,
8tm(<0)

which implies that
m(@(1)) =m(go), as long asp exists
The proof is straightforward by choosing the constant function 1 as a test function
for (1.1). We will use this property systematically in the following.
General assumptions

To conclude with, we make precise here the assumptions we make in the whole pape
First, we assume that the external forces teries inL? and is independent of the time.
In some sections, we will suppose in addition tas a gradient of a potential off*.
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Furthermore, we assume that the viscosiig a regular function (typically of*-class)
which satisfies

O<ni<nx)<m, foranyxeR.

As far as the Cahn-Hilliard potential is concerned, we make the following assump-
tions (see [5])

F is of C? class, andF > 0, (2.8)

3 F1, F> > 0such thatF'(x)| < Fu|x|? + F>, |F"(x)| < F1|x|p*1 + F,, Vx € R,

(2.9)
where 1< p < 3ifd=3and 1< p < o0 if d =2,
Vy eR, 3 F3(y) > 0, F4(y) > 0 such that
(2.10)
(x —Y)F'(x) = F3(y)F(x) — Fa(y), Vx € R,
3 F5 > 0 such thatF” (x) > —Fs, Vx e R. (2.11)

As a remark, we point out that the conditidn > 0 is not restrictive because a
physical-meaningful potential is always bounded from below and adding a constant tc
the potentialF does not change the equations.

Those assumptions allows the choice of a classical Cahn—Hilliard potential: polyno-
mial of second order with positive dominant coefficient (see [12,25]).

3. Slightly nonhomogeneous mixtures

In the case of general nonhomogeneous mixtures we can only show a result of loce
existence of strong solutions. In fact, the solutions we obtain are stronger than the on
obtained in the sequel (Theorem 3.3). This is not surprising because, when we do nc
suppose that is small, our system of Eqgs. (1.1)—(1.4) is very strongly non-linear in
particular in the Cahn—Hilliard equation (1.1). We give without proof the following result

THEOREM 3.1. —ForanyU > 0, v € v + V andgg € @4, there exists a tim& > 0
depending orUU, ||vg|l1 and ||¢oll4 such that for any < 1 there exists a unique strong
solution(¢;, v,) of the problem(1.1)—(1.4)on [0, T'[, satisfying

el oo 0.7:00) + 196 | 20.7:0) + [V = V|| oo vy F Ve = vl 120,757y < C

0V,

L2(0,T: dq) H ot

<C,

H e
AN
L2(0,T:H)

at
whereC > 0is independent of.

Remark3.1. — The proof consists essentially in using slightly differently the same
estimates than in the proofs of Theorems 3.2 and 3.3.
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In order to prove more significant results, we are interested, until the end of the pape!
in the study of the system (1.1)—(1.4) when the parametersmall. That is to say that
we suppose that the densities of the two phases are close enough. Under those conditic
we can show the existence of global weak solutions and the existence and uniqueness
strong solutions (global in 2D and local in 3D).

3.1. Weak solutions

In this subsection we are concerned with the proof of the following result.

THEOREM 3.2. —LetU > 0, v§ € v¥ + H, ¢§ € @3, such thatn(¢§) is independent
of ¢. We suppose that there existg independent of satisfying

ool + [v5], + & 2ll¢5 ], + ¥l eslls < Co.

There existgo depending only oy, U and F such that for any < gg there exists a
weak solution(g;, v.) of (1.1)—(1.4)on R* for the initial data(¢§, vf), satisfying

1/2 3/4 U
I0e Il oot 00 + &2 el ooty + €Y @l Lo @+ @) + ||V — UOQHLoo(RJr;H) <C,

(3.1)

1/2|| 99= 4 ey 29
8t Lz(to,to—l—‘L';Lz) at

U
+ ||/-’L8”L2(to,t0+f;<l)l) + Hvé‘ - UOOHLZ(to,t0+‘r;V) < C(t)a for anyto 2 Oa T> Oa (32)

||(08 ||L2(t0,t0+‘r;(l>3) +¢
L2(t0,10+7; HY)

005 Ve

Py <MD, 3.3)

L2(0,T:V} )

I

whereC, C(t), M(T) are independent of and .
Moreover, if

¢5— wo and vg— vy, Wwhene — 0,

then, up to an extraction of a subsequenae, ¢.) converges towards a solution of the
homogeneous limit syste@m= 0).

Remark 3.2. — The following proof is given in the cage= 3. The estimates in the
2D case are made in the same way but are in fact much easier to derive. As an exceptio
we point out the difference between the 2D and 3D case for inequalities (3.28) and (3.29]

Proof. —In the following, it is convenient to drop the superscrpr ¢f, vy and the
subscripte for ¢., v, and p., but one may keep in mind that any quantity which is
estimated may depend en

We will only give the formal derivation of the energy estimates (3.1)—(3.3). The
complete proof can be performed through an approximation process (a Galerkin methoc
for example, [5]) and we will make precise at the end of the proof, the way we obtain
the compactness necessary to take the limit in the approximated solutions.

From now on, we are mainly concerned with the proof of estimates (3.1), (3.2).
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Stepl. Following [20], forA > 0 we introduce a vector field, as in [5] depending
only in z and satisfying:

diV(U}L)=0,
U)L.VU)L:O,
|U)»|OO=1’
luala < CA,
1
Vo3 < Cog(1+27), (3.4)
and
vy =e, oOn{z=1}, vy, =—e, ON{z=-1}.

Now we letv = u + Uwv, so thatu satisfies homogeneous boundary conditions (2.2)
and the equations

1
a—go—i—u.V(p—div(—V(ﬁ)) =—-Uv,.Vo, (3.5)
ot p \p
n=—alg+ F'(p), (3.6)
d .
P (8_1: + u.Vu) —2div(n(¢)D(u)) + Vp
= —Upv;.Vu — Upu.Vv, + 2Udiv(n(¢) D(v;))
1— 2
tuvpt+e——2 v<ﬁ> + pg, 3.7)
4 P
div(u) = 0. (3.8)

Just as in the remaining of this paper, we have denotedthg densityp (¢).
Step2. We first try to get classical energy estimates for these equations. We take th
inner product of (3.5) in.2 with 1 and of (3.7) inl.? with u, and we get

d 1 1
E(%'V‘M%Jr ER/EM%—F/F@)) +2/77((P)|D(M)|2+/?|Vp,|2
Q
_[,P@y
_/Mp% ' 4/1 ¢°) (p)-”JrgZpg-u
/| | < +u. Vp> U/(Ux Vo)u

— U/ o(u.Vvuy)u — U/(v,\.Vu)u + ZU/ n(@)D(vy) : D(u). (3.9)
Q Q Q

Remark 3.3. — One can easily see that this last estimate is useless if we do not hav
an estimate fog/d¢. In fact, this point is the main difference in comparison with
the classical nonhomogeneous fluids model [19,24]: as our model takes into accour
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exchange phenomena at the interface, the density does not satisfy the local conservati
equation

ap
v vp=0,
or TUVP

so that we have

J<p<?a_bzt+”‘w>>'”:%%(9/’””'2) 2/| | < +Mvp>

where the last term does not vanish.
Nevertheless, we have global conservation of the order parameter (and of the densil
if it is defined by (1.5)) in the sense that (Lemma 2.1)

2([e)=o0

That's the reason why we have to multiply (3.5) &y/d¢ to get after integration

d¢ d¢
]5 /( pr)—-i'U/(Ux Vo)L

1 dg P’ (¢) dg 1 (F’(w)) dg
=—a [ =ApA—L — ApVo V— _ [ =y vV
O(Q/pz T a!;ﬁ(w) LR GAFT !p p(9) ot
__dfar1 A 2P @) 39
__dt<2! 21 8¢ >+“/|A‘p| 23(¢) 01
P’ (p) G17 1 (F/(w)) 17
- ApVo V— — [ Zv V. 3.10
ag/pg’((p) LRGN Q/p p (@) ot (3.10)

We see another time that this last estimate requires to have some information concernir
V‘;—‘f. In this direction, we multiply (3.5) bg(%) and integrate o to have

1d /1] /p\|? 3 /1 3 /1
sail [V G) )+ [uveg (5)+v [ovog (%)
Q Q Q
S ONESOE
tor\p/ ) (@) \p/| ot

Q
w/i@(ﬂ) _ a_@(p(@) - [ v(%) “og
B Joorar\ p Joocor\p@) ) ] p*e)| \p /| ot
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_o Loty /‘ )y |
J p ot ot 2(<p)

B /‘3_<p 2<F”(<p> _ Fl(p)p' (90)) _/ p'(¢) v(g) 2d¢
Jlor] \ p(e) P2() J p2(@)| \p/| ot

B 1|_dgl|? 0 (@) dp _ 3¢ p(w)
__“Q/E‘VE ~af p2g) t " o ’ 2p) "
2 4 !/ !/
B /‘a_w <F () F(soz)p (90)) _/ pz(sa) v(g) B_w. (3.11)
J ot p(®) (@) p(p) p/| ot

We use assumptions (2.8)—(2.11) on the functigrio deduce (see [5])

1 2 1 2 2 2
C F4(m(go)) + pzlvulz > 2p2|VMI2+CIV¢|2+C|A¢I2+CF3(m(<po)) F(p) |,
2 2

(3.12)
and

mol =| - [ g+ [ F/(¢>| <C(1+Ipl?) <C(1+1V9l).  (3.13)
Q

Q
because in any casés! c L”. Finally we have

G

2
< p|vm§+c<ezmw|§

—2|VM|2+C8 V|3 Agl3 4+ Ce?m(u)?|Vols
P2

< 4—pz|w§+ Ce2|\ V2 Apl3+ Ce2(1+ |Vol5")Vel3. (3.14)
2

Summing (3.9)ex (3.10),e¥2x (3.11), (3.12) and (3.14) we finally get the energy
estimate we need

d [« 1 all  |?
(vl + 2 2 /F —‘—A
dt(2| 90|2+2|«/5u|2+s2 (¢)+82p 4

2

)

+ £%/?

70

2
"
+C|Vgl3
2

2 1 2 1
+2/n(<0)|D(u)| + oVl + v (£
5 P2 P

3 |2 1|_d¢
g +e3/2a/—’vl)
tl2 2 P ot

+C|A¢|§+C(/F(¢)> +¢
Q

C Fa(m(g0)) + C?|Vul3|Agl5+ Ce?m(u)?| Vo3

€ 2 P (@)
+4Q/(1 °)V () —i—/ 3()MV(p.V,u+Q/,og.u
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p' (@) 17 1/ , 2 1/ , 200
— AoVo.V— + — vV — —
sa/ 099.9 2+ 2 [ (@ lultu ¢+29p(¢>|u| -

P3(p)

dp p(w) e 1_/F(p) e

_83/2/M Voo 0 (u) —53/2a/ ' () dp 09 Vo — %2
ot J p%(p) 0t Ot

_53/2/’8_90’2(F//(¢) B F’(fpz)p’(fﬁ)> —53/2/ ,0;(90) v(ﬂ
2 ot p(p) p(p) 2P (®)

235

—U [ (w.Vou—-U | pu.Vv)u—U [ (vy,.Vu)u +2U | n(e)D(vy):D(u)
[envom=v] / /

dp 3 d (1
U [0,.ve) 2 /Zu/ v _<_).
¢ J(vk 0o = Q(Ux o5 (4

Step3. We introduce the following functionals

o 1 all 2
ys(t)=—|V¢I§+—Iﬁu|§+/F(¢)+8—‘—A¢‘ + %2 —
2 2 J 2lp 1,

1 1 /\|?
) =n1|Vul?2+ —|Vul? —‘V(—)
ze(t) = m| u|2+4p§| ] +7 P

2 2
9" | 22|y 9%
ot |2 p2| 0t
Then we can prove the following result.

+ ¢ \Y%

LEMMA 3.1. —There existg, C > 0 such that for any) < ¢ < 1, we have

2V Apl3 < C(y: + Y,
e Apl3 < Cye +yF),
and
Ve < Cze.
Proof. —We have from Eq. (3.6)

and so
lu F"(p)

Vo,

from which we deduce

7

(3.15)

L CIVeE+ Clap + C</F(¢>)
2
Q

(3.16)
(3.17)

(3.18)
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2

IVApR<C v(%) +Ce? %w

2 .
+C|V<0|§+C/|<0|2”‘2|V<p|2
2 Q
<CV<E> +Cs
2p—2

v(%)
P/ 12 P
1\ [P w2
<CV<;> 4+ Cs V<;> |AplE + C|Vg 2+ CIVlZ | Agl2.
2 2

Finally we have

NN

2
2p—2
2|A¢|§+C|v¢|§+a¢|35_3|w|g

N

N

e¥2|VApIZ < C(ye +ey2+e¥?yp),

so that we get (3.16) witls = max(2, p) > 1. In order to show (3.17) we integrate by
parts and we use (3.16),

' 1 1
e Apl5 <e3/4/ Vel IVAQI < ¥ Vol|VAplo < SIVel; + 567V Al
Q
<C(ye +yP2) < C(ye +y7).
The third point is clear from the definitions ¢f andz,. O

Remark3.4. —

— The first point of the lemma give us a control on #é-norm of ¢ in terms ofy,
which is not a priori obvious.

— The second point will be very useful in the sequel. Indeed, if we look at the
definition of y, we have

%% Ag|5 < Cy,
whereas (3.17) let us estimgty|3 with a smaller power of (namelye*#) under
the condition that we allow the presence of powers.ofreater than 1.
— The third point of the lemma is the key-point of the end of the proof, when an

ordinary differential equation argument is used to conclude. Estimates (3.12)-
(3.14) are just derived in order for this controlnfby z, to be true.

Let us go back to the proof of Theorem 3.2. We obtain from (3.15) the differential
inequality

d
Vet < C Fa(m(go)) + Ceyeze + Ce?(L+ yP)ze + I+ -+ - + Iz, (3.19)

wherel, ..., Irg denote the twenty integrals of the right-hand side of (3.15). From now
on, we wish to estimate each of these terms in functios, of andz,.

Using (3.8) and the boundary conditions wrthe first term reads after integration by
parts

£ ¢ _E e,
|| < E‘Z T@MW-M’ = ZL//)(@ (w—m(w)Ve.u

< Ce(lple + Im(@o)l) [Volaln — m () lsluls
<Ce(IVuls+IVuld)(1Vels+ Vela) < Ce(ye + 32z (3.20)
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We notice that|p’(¢)| < ¢ to obtain, with the Sobolev embedding'/? c L® (in
dimensiond < 3),

|I] < py: (|M m(w)le + Im()1)|VelslVilo < Ce|Vul2(1+ Vil + [Vel5) [ Vels
1

<C¥NVulo (14 Vil + 1Vel) (IVel %) (64 Agl3 %)
< Ce¥y27 4 Cez,. (3.21)
The third term is obviously estimated as follows using (3.18) and Young’s inequality
1/2 1
|I3] < p2lglalulz < <C+ g% (3.22)

Using the previous lemma and particularly (3.16) we obtain

|14] < Ce?

dg
V—‘ VolalAgls < Cs?
ot |

e
V—‘ ALV Agls
ot |2

0
<CsV? (63/4 va—‘f] |A<P|2) (94V Agly) < Ce¥22Y2(y, +yF)z..  (3.23)
2
Using another time thdp'(¢)| < ¢ we get

&
15| < §/|u|3|w| < CelullgsVols

< Cellul3 51 Vol < Celul2| Vul3| Al
<

\C«/E|VM|2(|M|2+€|A(,0|2) < C/eyeze. (3.24)
The sixth and seventh terms are estimated as follows

1A <Ce/|u|2
Q
dg

< Celul2|Vul, "

0
—(p’ < Celul3
ot

1/2 1/2 1/2

dg
ot |2

9 2
< 83/8|u|2(|vu|§ Ty a—‘f

de
ar |,

a 1/2
v < C83/8|u|2(|VM|281/4 3—‘? 38 v ¥

)

) < Ce¥ByY2g, (3.25)

2 2

g 2
ot

+ %2V

2 2

dg
I7| <e¢elula|V —
|17] lulal Vo2 o

dg
< Ce|Vul2|Ve[2|V—

9 2
< Cel/4|vgo|2(|vu|§ 432 Va_f‘z) < CelAylz; (3.26)

Using (3.16), we get
oe? g 1/2 1/2
Ig| < = |Ap|3 s
| Ig] prl ¢l3 o1

e
—‘ < Ce2 AglalV Al
ot |3

dg
ap !

ot |,

/2 aq) 172

< Ce53(e3V Agl) (81/4 o0 )(83/8 o9 )IAsﬂlz
ot | at |

< Ce%3(yY/2 4 yB12) 7, (3.27)

\%
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In order to estimate the next term, we must derive estimategMat(¢)|, and
|V F'(p)|2. More precisely, thanks to the assumption (2.9)owe have
e If d=2,0rd =3 andp < 2, thanks to the embedding* c L3”

IVF(@)2= / IF'(@)2IVe2 < CVol2+ C/\sﬂ — m(go)| Vo2
Q Q

< CIVgl3+CIVel5 | Apl3. (3.28)
e If d =3 and 2< p < 3, thanks to the embedding®/?-/» c L%
IVF(p)|2<Vel3+ CIVels 2 Apl. (3.29)

In the same way, in both dimensiods= 2 and d= 3, we have thanks to the embedding
H'C L¥%3

\W(w)\i:/\F”«o)ﬁvmz < CIVoli+ c/ o — m(go) 22|V g?
Q

C|V¢|2+C|w|2" “|Agl. (3.30)
We deduce from these estimates that
o] <& V<F/(¢)> v vl 4 e ’
p(@) /12l 9t |2 ot |2
< Ce(IVola+ 9015 1801) V32| + Ce2(1pla+ 1V0lfla0l) V32|
SCeVH 14y V)2 4 Ce¥H (L4 0%z < CeVA(14 0%z (3.31)

We can now write

/u.V(p(FN((p) F'(p)p' (w)) 8t‘+a€3/2
Q

| I10] < %2
p (@) p?(9)

d A(p)‘
NVo— [ —|.
Q/M (pat(p(w)

We estimate separately the two termsand B of this last inequality, using (3.17)
and (3.28)—(3.30). The following computations are made in the gdase3 and 2<
p < 3, but one clearly have the same kind of estimates in the other case

|Al < &2

dg 5/2
| t¢
2| ot ’6

, 8

ot |
2 2 2
<C|u|1/ (e 3/4(|V<o|1/ + Vol Agly?)

- ap
1/2 2+1 1)/2 1/2 1/2
+ e (IVely? + IVeld 7 Al Y ))<‘93/4V§ |W|/|A¢|/>

&

< Ce¥BYVA (YA 4y +1p)/2)
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A

1 "(¢) 9
|B| < ¥ / uNVNo——- ‘—1—83/20( /u.VgoA(p '02(('0) o9
P ot p=(p) ot
Q Q
1 3 (@) 9
<e¥ /V(—u.V@) @‘ + &% /u.VgoA(p ,02((0) d
P d p=(p) ot
Q Q
3 3
<32 /(uV ) 2(‘”)v¢v ‘”‘+g3/2 / V(u.Vg).V o ‘”
p=(®) d
9
+ %2y /u.VgoA(p pz(‘”) @
p=(p) ot
Q
9 3
< Ce%2 V|3 ulg V—¢’ +Ce V—(p‘
ot |
5/2 d¢
+ Ce”“lule|Volel Apl2| V—
ot |2
3 3
gCe3/4(g|A<p|§)<|w|ze3/4 V—‘”‘ ) +Ce® V—‘”‘ .
ot |2 ot |

Moreover, with Agmon’s inequalities (2.6) and the Sobolev embed@iig c L* in
both dimensions 2 and 3, we have

IVW.Vo)|, <1Vula| Vol + [u.D%0|, < |Vula| Agly
1/2 1/2 1/4 3/4
< |Vulal A3 21V Agl3? + |uly | Vuly
so that finally, we get

1/2 1/2
21V Agl3? + |ula| D%,

1/4 34
1Al VAl

V(P
0

2)
t

2>
<Ce / VeZe + € / E(ys -|-yf/2)zs

As a consequence, we get the following estimate for the tenth term

|B] < Ce¥/4y,z + Ce¥0(e%28 Ag |5/ %%V Ag5 %) <|W|253/4

a
v2¢

1/4 3/4 3/4 1/4
+ %8l 19 g ) (19l 1 agl3 e v 5

|IlO| < C€3/16( 1/2 + y(p+l+,3)/2) ) (332)

The estimates for the two next terms are straightforward

dp ago 1o » 3¢ 2

1l < Ce%2|70| [V [Vpls < Ce¥*(1V0l % | Avly )(83/2 v >
2

e (333)
and
o9 i de ap
|2l < Ce>* —] |Apls < Ce'8(e¥| Aglos® |V Agl,) (81/2 P eyv? )
ot s ot 2 ot 2

< CeY3(y, +yP)z.. (3.34)
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Using assumption (2.9) o' and the Sobolev embeddings, we derive the following
estimate

dg % g%
|113|<Ce3/2/‘§‘ !F/(w>!+Ce5/2/]5‘ |F'(p)]
Q Q

2 2 2
< cs32%% +C83/2/‘3_‘/" |¢|P—1+085/2/‘8—¢
at | ot 2 0

B(p 2

g
3/2 3/2 5/2
§C8 E 2+C8 ’ | |3p 3+C8 a[ | |2p
3 99| |2 dp Y3 _agp|¥?
< Ce¥? _‘P + 32 o9 o9 Vo | Ce5? o9 V_@ |Vg0|§
at | at | al‘ at | at |
<CeY?z, + C61/4zsyép71)/2 + ng/gzgyg’/z. (3.35)

From the Cahn—Hilliard equation (3.5) we deduce

A<E)=p<a +uVo+Uv,.Vo + 2(‘p)v@.v(ﬁ>),
0 ot (®) p

so that,

w\ [? g |*
(%)), =l
o/ 12 ot |

2
9 (%) |wek)
P/ 13
and then with the embedding/? c L2 we get
dg

NI (o)

Finally, we obtain that the next term is estimated as follows

+ ul3|Vel3, + U?|Vpl5 +e

+ [ul2.|[VApl2 + UlVel2 + ¢

1/2 1/2
|Il4|<C85/2 ( ) 8_(,0 <C55/2 (VE) A<E) a_w 8_('0
ot |3 p/lal \p/laldtly | 9ty
3
<CSS/ZV(%> ( +lulzlVAplz+UIVelz
2
1/2 1/2
+szv<ﬁ> o) 2] w2
2
P/ 12 ot |2 at |

de

3/2

) (53/4 ) (83/8 v

2 ot |2

v(ﬁ) (81/4 de
P/ 12

ot
ap
<81/4 —
2

1/2
e
ot |

9 1/2>
at |

1/2
)t
2

9 1/2

)

< Ce5/8 (83/4

*(5)

+ Ce®Bul,(e¥4|VApl)

e
ot

1/2
)

+ C815/8|V¢|2’V<%> v
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") (o) e ()L ()

1 Celys (83/4
9 1/2)

X <53/8 \%
ot

<C€5/8 1/228+C85/8(y +y(’3+1)/2)z +C815/8 1/2
+ Ce'B(y32 4y, (3.37)

de
ot

The next five integrals can be easily estimated as follows

el = ]/va.ww—mw)]

SUlalVela| i — m(p) |, < UVl Viela < Uz, (3-38)

+‘U/,0(u.V)uvx

el < ]U [ P @ wVorun
Q

Q
<eU|Vela|Vul3lviloo + Ulvilal Vul3 < eyt?z. + AUz, (3.39)
|l17] S U vy |alVuls < AUz, (3.40)
1
sl S CUID@) 2 D)2 < Zze + CU?D(vy)l3, (3.41)
d
|l1g] < 81/4U|Ux|4|v¢|2<83/4 va—f ) <eY4Unrz,. (3.42)
2

Finally, using (3.28)—(3.30) and Agmon’s inequalities (2.6), we can conclude our
estimates with the last term in the following way if we suppose that2 ord =3
andp <2

F\' d 1 0
| oo §83/2U’/UA.V¢(—) (w)—")’ +83/2U’/—V(UA.V¢).V—(p‘
J o ot J P ot

! a
" 83/2U‘/v,\.V<p’0 (p) _@A(p’
Q

p2(p) ot
, @ dp
< Ce¥|v; || VF (0), +Ce”? » —]
2 ot |2
0
+ c83/2|VvA|z|w|oo‘va—ﬂ
3/2 dg 5/2 2| 09
+ Ce¥ vy lo| A@|2|V—| + Ce V—
at | ot

_ 3
Ce(1+|Vols™) (lA(p| el/2| 2 ”

) + Ce?(1+|Veld) <|A¢|251/2

0
Vil
ot |2

il
ot |2

+ Ce¥?

d
va—ﬂ Ag |$/2|VA¢|1/2+c83/4(|A¢|ze3/4
2
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0
+ C85/4(81/2|A(p|2> <|A¢|283/4 a_ﬁ:’ )
2
<Ce(L+y P Y2z, + Ce?(1+ yP/?) 7, + Ce¥B(1 4+ yPV/2)g,
+ Ce¥z + Ce¥y %, (3.43)

In the casal = 3 and 2< p < 3, we use (3.29) instead of (3.28) and we easily get the
same kind of estimate.
Step4. With (3.20)—(3.43), our energy estimate (3.19) reads

d 1
oYe + 72 S C+ CeVoz + CAUZ, + CeY(1+y!)z, (3.44)

whereq > 0 depends only op andg.
From now on, we impose < g, = 1/(16C)? and we choos& such thaC AU < 1/16,
so that we have

d 1
oY+ g <C+Ce™¥(14y0)z,. (3.45)

Let M, > 0O be the solution of
Ce3(14+ M7) = —.

eP(14 M) = T

One can easily see that
M, — +o00, whene — 0.

Moreover, thanks to the assumption on the initial data we have for a corstarQ,

y:(0) < K(Co+U)
so that there existsy < ¢1 such that ife < ¢g we have

1
Ye 0) < EMS

Hence, if we choose now < ¢q, there exists a maximal timg* € ]0, +oco] such that
ve(t) < M, foranyr € [0, T*[. Thanks to this property and the definitionMdf we infer
from (3.45) that for any € [0, T*[ we have

d 1.
FTRGIET- A

and so using (3.18) we deduce that[OnT*[ we have

d ,
d_tys+cys<C-

We easily get from this inequality the estimate

C C
Ye(t) < ys(0>ec’+5 <K(Co+U)+ 5
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and finally if ¢ is small enough so tha%M > K(Co+U) + & & we have for any
t € [0, T*[ the inequality
< 5M:
e (1) 5

If T* is finite, this is in contradiction with the maximality &f*. This implies that
necesarily we have

T = +o00,
that is to say that we have global and uniform in time estimates

c
supy:(t) < K(Co+U) + ok

teR+

t+.r

C
Sup/ zg(s)ds<16<K(C0+U)+E+Cr>,

teR+
t

which implies estimates (3.1) and (3.2).

Step5. As it is classical (see [5]), we only give now the sketch of the proof of (3.3)
from (3.1)—(3.2) in the cas& = 0 (for simplicity).

Denoting byQ; the sefl0, T x 2, we take a test functiom € L?(0, T; Vo) for the
nonhomogeneous Navier—-Stokes equation to get

/73<8(%v).w_ a'.l —/ —vw—/,ov.Vv.w—/.Zn(go)D(v)ZD(w)
Qr Qr
—i—/,quow—e/(p ( )w—i—/pgw (3.46)

Using the fact thap and 1/pare uniformly bounded independtly of and the estimate

0

‘ —pvw‘<e/‘—
0

Q

T

e

v &
wllwl <&\ =-

vl oo, 7; iy lwll L2(0,7:1L3(2))
L2(0,T;L8(2))

< M(T) lw ”LZ(O,T;Vd/z)’

we see that finally
apv
[P )| < M lzar
Qr

Indeed, the other terms in (3.46) are estimated classicaly (see [5]), the choice o
the spaceV,,, being issued from the nonlinear term. Then, by a duality argument,
estimate (3.3) is established.

Step6. Passing to the limit in the equations satisfied by the approximated solutions
(o0, pu, v,) IS classical (see [5]) at the condition that we have some compactness on th
velocity field (v,). This is obtained here just like in [19].
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More precisely, the compactness ¢@p and p, is a straightforward consequence
of (3.1) and (3.2), whereas we get from (3.2) and (3.3) that

P(pavy) is bounded inL?(0, T; V),

0 . . ,

E(P(’O"U")) is bounded inL?(0, 75 V; ).

so that a classical compactness lemma [24] implies that
P(p,v,) is compact inL?(0, T; H).

Furthermore, we have from (3.2) the weak convergenag/@f,v,) in L?(Q7) and

/wmm - /pn|vn|z=/7>(pnvn).vn
Qr

Qr Qr

—>/P(pv)‘v=/p|v|2=/lﬁv|2a
@r

Qr Qr

so that finally, we have proved the strong convergence/pfv, towards ./pv in
L?(Q27). This strong convergence allows us to pass to the limit in the nonlinear terms of
the Navier—Stokes equation.

Hence, the proof of the existence of the solutions is complete.

Step7. As far as the limit — 0 is concerned, the key-point is that, we have enough
compactness on the velocity, thanks to estimate (3.1), (3.2) and (3.3) which are
uniform ine.

Moreover, thanks to (3.1) and (3.2), and the fact flpgt,, < ¢ we see that

s — 1 in L®(R*; HY) strong

9p:

En

which allow us to perform the limit in the term

— 0, in L?(Qy) strong for anyl’ > 0,

0V,

IOSW

in the Navier—Stokes equationO
3.2. Strong solutions

In this section, we have to suppose thaf|. < ¢. This assumption is clearly
reasonable because we recall thatis essentially linear (see (1.5)) in the physical-
meaningful interva[—1, 1].

THEOREM 3.3.-Let U > 0, vg € v + V, ¢o € @3 satisfying the boundary
conditions. There existg > 0 depending or/, ||vg|l1, ll¢ollz @and F, such that ifs < g
there exists a unique strong solutiop,, v.) of the problem for the initial dat#éyg, vo).

— If d = 2, this solution is global and satisfies
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@ ll Lo+ 05) + va - vgoHLOO(RhV) <C,

06l 120, 10+7:0a) T ||V — v<(>JO||L2(to,to+r;V2)
e dv,
Ot 11 L2(10,10+7: 1) | ot
whereC and C(t) are independent of.

— If d = 3, the solution is local and satisfies locally the same regularity results than
for the 2D case.

< C(1), foranyr,t >0,
L2(tg,to+7; H)

Proof. —In the following we concentrate our efforts on the existence part of the
theorem. Indeed, the proof of the uniqueness is straightforward (see [5]) using the energ
estimates that we obtain for these strong solutions.

Stepl. From Theorem 3.2, we obtain the following estimates for the weak solutions
with initial data(¢o, vg) independent of:

1/2 3/4
l@ell Lo+ 0p) + € / le | Loo®+. 0, + € / |9e Il Loo R+ @3)

U
+ Hvé‘ - UOO”LOO(R+;H) g C, (347)
% 1)
1/2 3 3/4 o
||(ps||L2(to,[O+f;q>3) +e1/2)| = 4 &%
Ot {|L2(10,1047:L2) 0t |l L2¢g,to4+: HY

- Mite Nz oreson + [0 = V2 120 ey < C(2), fOr anyio, == 0. (3.48)

Step2. Using the fact that|¢g|lz and ||vg|ly are independent of, we can derive
additional energy estimates. We recall that we havevsetu + Uv,, and that in fact
we study (3.5)—(3.8) and not (1.1)—(1.4).

We first multiply (3.5) withA2¢ to obtain after integration by parts

(p|2_/dlv( ( ))Az(p /u VoA2p — U/v)\ VoAZg, (3.49)

and one have

(25 (2) S (2) e 2o(2)

o' () (M) 1 (U (7)) SRl () I
— VoV(E)+ ZApu+2 \% — \%
p?(p) v +p2 aal pHp) Vel u p3(so)| ol
_2p(<0)V v _p(w)MAw,

p3) LT pRe)
with

Au = —alA%p+ AF'(¢).

Finally, using the fact thdp’|,, < ¢ and|p” |« < &, We obtain from the previous estimate

10 o
A w|§+—2!A2¢\§\— |le’ ( )’!A%H /\AF(SD)HAZSD\
201 P2 riy 1
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262 ¢ 2 2
+ (5 +5 /IVsﬂl 11| A%
p P1 5

1

€ 2 € 2
+ 2—3/|w||w|\A ol + —3/|A¢IIMI\A ¢l
,0152 ’019

+ ’/u.VgoAz(p
Q

Then, if we denote by, ..., J7 the seven terms of the right-hand side of this inequality,

we have
Ik 2
— A
(,0)‘2’ (0‘2

—i—U‘/vk.V(pAzga‘. (3.50)
Q

Jl<Ce|Vgo|oo‘ (p) %], < Ce[VAgl|V

2

o 2 "
——|A? 2 v(-) 3.51
100%’ (p’2 P/ 12 ( )
The second term is estimated as in [5], to obtaingfor O
4/3
Jo < < 107 2| A2)2+ CIVe R (1 + [Vold). (3.52)
For the third term we get with (3.13)
J3< Ce|Volg| — m(w)|g|A%p|, + Celm(w)| Vo3| A%l
o 2 2
< Fp%]A2¢|2+C82|A¢|‘2‘(1+ IVuls+Vel3'). (3.53)
The next two terms are controlled as follows
J4 < Ce[VoloolVinlo| A2, < ——| %[5 + Ce2 [V ApBIV I3, (3.54)

10 10,2
and
J5 < Ce| Apla|i — m(u)|o| A%, + Celm(w)]| Aplo| A%,
< %@’Azﬁ”’i + CeVuEIV A+ Ce2(1+ [VolY) A3, (3.55)

If we use the Agmon-like inequality

2 3 2
Vol < CIVely % A%
we have
2 3/2
Js < 1ul2lVelol Aglo < Clulal VoI5| A%}
2
10pf!A ol + CIVol3lul3, (3.56)
and
F1 < o | A%|3 4 CIV gl (3.57)
1002 2
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Finally, the energy estimate reads

10 o 2 " 2 4/3
Z A0+ ——|A%p|5 < Ce3VA 2<V 2 ‘V(—) ) CIVo|Y3(1+ |Vl
28tl ¢|2+lOp§’ 9|, <CeIVAg5( IVuls+ ), +CIVel)*(1+|Veld)

+ Ce?(1+ |Vol3") |l + CVpl3lul3,
which can be also written using (3.47), (3.48)

o

= IA20P< £, 3.58
10 8% 2 < £ (358)

1o i
2091 0%

where £, (1) is bounded in.(z, o + ) uniformly in ¢ andzy > 0, for anyr > 0. But we
also know by (3.48) thah\¢ is bounded inL2(tg, to + 7, L?) independently iy ands.
We can conclude by the uniform Gronwall lemma that

lollLo®t: o, < C, ol L2 0+7: 00 < C(T), (3.59)

whereC, C(t) are independent of.
Step3. We have now to obtain more regularity on the velocity. We multiply Navier—
Stokes equation (3.7) byu /a9t so that after integration we obtain

2

8 2
2+5</n(<p)lD(u)| )

Q
ou ,, 0 2
< ‘Q/p(u.V)ME‘-i-"Q/U((P)¥|D(M)|

ou

,015

ou du . ou
—i—U’/,o(v)\.V)uE‘—I—U’/p(u.V)vkE’+2U’/dlv(n((p)D(vx))§
Q Q Q

1—¢?_/n\ ou ou
V(i—).— —.
2 <,0> az+’/pgaz

Q Q

A parametery given being given (which will be fixed in the sequel), each term of this
inequality can be easily estimated to give

d 2 P1
5<Q/n(go>|D<u>| ) +2

a
X |y

20| ot

+‘/ v 3”‘+
— £
QM (Pat

au |?

ot

2

2
n

1 2 2 2
+ yl + C|Vu2+ C|Av; 2| Vul?
2

u

2
2
+CIVAQRIDw)E + CU|Av 2+ C(1+ [l9]2) V<;>| +Clgl (3.60)
2

where the ternt is defined by

Clul?|Vul3, ifd=2,
1_{ |ul3|Vulj, i (3.61)

| C1vuls, if d=3.
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Estimate (3.60) must be supplied with a control onlfifenorm ofu, that's the reason
why we have to multiply the Navier—Stokes equation by the value of the Stokes operato
Au = —Au + Vi to get

- / n(¢) A Au=2 / 7' (@) (D ).V o) Au + 2U / 7 (@)(D(v,).V). Au
Q Q Q

0
+ U/n(go)Av,\.Au—/,oa—I;.Au
Q Q

— /p(u.V)u.Au — U/,o(v,\.V)u.Au — U/,o(u.V)vk.Au
Q Q Q

1-¢? (1
+ /quo.Au +8/ 2 V| — .Au—i—/,og.Au,
Q Q p Q

and so

mlAu < ] [n@Vrau + ¢ [1D@IIveliaul
Q Q
ou
-+ CU/|D(UA)||V¢||AM|+CU/|Avk||Au|+C/’¥‘|Au|
Q Q Q
+ C/|u||Vu||Au|+CU/|U;L||VM||AM|+CU/|u||va||Au|
Q Q Q
v(%)
0

The first term of the right-hand side member of this inequality reads after integration patr
parts (remember that div(Awz 0 and Au.v= 0 on the boundary) and using (2.3)

1—(p2
4

+/m—m(u>y|w|mu|+e/] |Au|+C/|g||Au|.
Q Q Q

‘/U(@)Vﬂ.Au =‘/n’(<p)nV<p.Au
Q Q

ni
< C|7 12 Velool Aulz < 1—0|Au|§ + C|VA|3IVul3,

the other terms being easily estimated, one gets
2

n u
TLIAUE < €IV ApEIVul + CUAD@)BIVAGE+C| 50| +1
2
+ C|Vul3+ ClAv, 3IVul3 + C|Vu3| Apl3
2
n
+ce(t+lo)|v(£)] +cisk (3.62)

the term/ being always defined by (3.61).
If now we choose the value of the paramegtefindependently ot) so thaty C < 43,
we get by summing (3.60) ang« (3.62) and using (3.59)
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9 pr|dul®  mi . o
D o LEYD
8t</n(¢)| i) + 255 4y gslau
2
S LI (E+y)I+C|Vu|§+C|Avx|§|Vu|§
20| Ot | y

2 W 2
v(5)

P/ 2

+Cy VA3 Vul3+ CyU? D) 151V Apl} + Clgl3.

o Vago 2

= 200, at |

Unfortunately, this estimate is not sufficient to conclude. Indeed, because of the firs

term in the right-hand side member of this inequality, we must now derive estimates or

d¢/dt in H' independently of.
Step4. The Cahn—Hilliard equation (3.5) gives us

/1
< uldIVol + U2Vgl3 + ]dw(;V(%))

+CIVAQRIDW,) 2+ CU | Av 2+ C(1+ [l¢]2)

2

1
+ <;+V)I+C+C|Vu|§+c‘v<%) (3.63)
2

2 2

5
ot |2

’

2

and with the same computations than for the estimates (3.51)—(3.57), we deduce that

I5
ot
independtly ofty ande. This result is clearly stronger than (3.48).

Step5. We come back to the inequality (3.11) which gives us

s [3F ) 5l
s /‘ v t‘|V¢|+C8/|A¢|‘%_f2+CQ/|FU(¢)|‘%_§:‘2
vee o e[S

+ o w>—(—)\+\y fosmi(®)] .

<C(), (3.64)

L2(tg,to+7; L)

g °
at |,

We estimate the seven terifs, ..., K7 of this inequality in the following way
g de o g |° 0|
Ki<Ce|l—| |V—| |V < V —, 3.66
1< cel | v 9ol < 1o . (@6
2
890

dg
K> < CelApl3 i

< Ce|VAgl a—‘”

3 2l 0t
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0
‘XV(D (0

3.67
= 100, 8 ( )
K3 < CIF"(g)| ‘8‘” 2< C(L+ Iz 8‘”]2 cat oyl @es)
3% 7o ot 2\ ¢ ot ¢ ot 2’ '
, dg|? g |*
K4 < Ce|F'(9)loo|—| < Ce(1+¢ll}) (3.69)
ot 2 ot |
2 1/2 12
9 o
P 3 at |3 al 2
o [Jdef . |dg) n m 2
<2 c|Z®l se2a(B) Iv(H)] . 3.70
10p| 0t |2 + ot |2 * (,0) 2 (,0> 2 ( )

The sixth term is estimated just like the tefgg (see (3.32)), in the proof of Theorem 3.2

o 8(,0
Keé—‘v + Clul2(IVel2+ VoI5| ApIZ) [Vul

10| Ot |2
+ ClA@l3IVul3 + (IVA@la| Aglz + |Aply 2V Al ?) [Vul2,  (3.71)

and in the same way

, e
K7 < CUIVol(IF" @)l +8|F/<¢)|oo)‘5‘ + CU AV, 2
2

+ CU?|Ap|5+ CU?|Vv, |3V Agla. (3.72)
Thanks to (3.47) and (3.59), inequality (3.65) leads to

1 1 2 2
s (N sl
20t J Jo Jo 100, | 0t |
2

+ CIVAQ[5+ CIVulj + CIV Al Vulj
2

()

2

9
< C+c‘—‘”
ot

0

Step6. We have now collected all the inequalities we need to conclude. Indeed, if we
sum (3.63) and (3.73) we get

L2/ o) ]
ZBIQ,O P QU(P . 200, | Ot |5

1
< a1(0) + 2 (VU + Vi) + (; + y)l, (3.74)

2

+Ce (3.73)

2

du |?
at

P1
20

N
+ v 50l Aul3

where g, (1) and g»(¢) are two functions bounded ib(to, to + 7) independently of
andz, for anyt > 0. More precisely, this last fact comes from (3.36) and (3.64).
The conclusion is now straightforward with (3.48).
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e If the dimension isd = 2, the term/ (see (3.61)) is of the formngs(r)|Vu|3 with
g3(t) bounded inL(ty, to + 7) independtly offy and . We obtain the desired
regularity and globality from the uniform Gronwall lemma.

o If the dimension isd = 3, as for the simple Navier—-Stokes equation, the term
I = C|Vul$ limits the estimates to be local using the Gronwall lemma.

In each case, the estimates obtained are independentnd in particular, in the

3D case, the existence time of the solution is independesit of

3.3. Asymptotic behavior

We are interested here in proving a result of asymptotic stability for the metastable
states, as in [5], but in the case of honhomogeneous fluids. In this subsection we hav
to suppose that the external force tegns derived from a potentiel. That is to say we
suppose that there exisfise L? such that

g=Vag. (3.75)

One can think of as a gravity forces term.

THEOREM 3.4.-Let w € R, and suppose thaF”(w) > 0 (we say thatw is a
metastable state of the potenti&l). Then there existg, > 0, satisfying

F//(a))
&0 < T PL
|F'(w)]
and asp > 0 such that for any < §o and any datal/ > 0, vg € v, + V, ¢ € P3, With
m(gg) = w, satisfying

U+ llvolly + llgpo — wll3 < 6,

there exists for any < g, a unique global strong solutiofy,, v.) of problem(1.1)—
(2.4) (even in 3D with the initial data(gg, vo). Moreover, ifé > 0 is small enough, this
solution satisifies

U

00

Y (1) > w, v.(t) > v whent — 4.

Proof. — Stepl. First of all, we have to change the Cahn—Hilliard potential we work
with. More precisely, we introduce a functidt (x) such thatR,(w) = 0 andR, = p,.
Then we construct, near the point= w a functionF,, given,& > 0 small enough being
fixed, by

F'(w)
pe(w)

One can easily show that we have

F,(x)=F(x) — R.(x) — F(w), Vxelow—§& w+E].

F,(w)=0, F (w)=0, F)(w)>0,
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this last condition being ensured becaud&w) > 0 ande is chosen so that

£ < F(w)
F/(w) "

This function F,, is strictly convex neat, so that it is easy to exten#, to be defined
and convex ofR, and to satisfy assumptions (2.8)—(2.11).

A very important point, is that in the assumption (2.10), we can tBike) = 0
(becauser,, is convex, andF,, (w) = 0).

Step2. We perform the same estimates than in the proof of Theorem 3.2 with this new
potential F,,, excepted for the ternfs which can be written thanks to (3.75)

|13| = ‘ /,ng.u
Q

=L/mﬂwvw—mw»u
Q

<elGl2lApl2| Vulz2 < Ceze. (3.76)

Using this new estimate, inequality (3.44) becomes

d 1
Yt 7 < CU?|D(vy)|5+ CeY%z. + CAUz, + CeV/B(1+ y)z,. (3.77)
Indeed, we havé,(w) = 0in (3.12) and (3.15), and the constant which appears in (3.22)
is no more present in the new estimate9{3.76).

We recall that we can take

A =min VU,
<16CU f)

so that with (3.4) we have
f1(U)=CU?|D(v)3— 0, whenU — 0.

From now on,f; will always denote a real positive continous function satisfyin@) =
0. We follow the proof as the one of Theorem 3.2 to get, if we suppesd/(16C),

d 1
et g s fU) + CeYB(14y1)z,,

and finally introducing the sam¥, we have that, it is small enough so tha§ <
then we have for any timethe estimate

1
M.

d

1
. Je _s< Ua
s +16Z f1(U)

and so with (3.18)

d ,
L +C'y. < f1(U).
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Finally, using the assumption on the data, we deduce from the Gronwall lemma

i)
Cl
where we used the fact that < §. We deduce easily that

Ve(t) < K+

= f2(8),

12 3/4
¢ — @l L@+ 0p) + 6210 — @l L@ty + 7@ — @l L@+ 05)
+ va - vgoHLoo(RJr;H) < fZ(a)a (378)

oo, oo,
ot ot

1/2 T

loe — @l L2, t94+7: 05) T €
L2(tg,t0+1;L2)

L2(to,to+7; HY)
+ ||M8||L2(to,to+r;¢1) + Hvs - ngHLz(to,to+r;V)
< (1+1)f2(8), foranyt,t > 0. (3.79)
Step3. We perform the same estimate than (3.50) to obtain

1d
~—|Apl3+

2
57 IA%)2 < f20),

10 1042
where f? is estimated independently efin the following way using (3.78), (3.79):

HfESHLl(to,toJrz) < A+ 1) f309).
We can deduce of this estimate, using the uniform Gronwall lemma that

o — ollLo@+; 0 < fa(8), le — @l L2p10tm:00 < (14 7) f2(8).  (3.80)
As H? is embedded ir.> (in both dimensions! = 2, d = 3), we deduce from (3.80)
that
g — ollLe®+xa) < fa(d),
so that if we choosé, small enough and < §, we have

fa(8) <&,

and so for almost everyr, x), ¢(z, x) lies in the intervallw — &, w + €] where the
potential is defined by

F'(w)
Fo(x) =F(x) — ——R:(x) — F().
Ps (@)
That is to say thap is solution of

% +v.Vp — div< 1 V(—aA(p + Fé((p))) =0,
ot Pe (@) P (@)

8—¢+U-V¢—div< (—aAcerF’(so)—Mps(cp)))) =0,
ot Pe()

( 1
\Y,
Pe(@)  \ pe()

8—(p+v.Vg0—div< 1 v<_“A‘”+F/(“’)>):o.
ot Pe (@) P (@)
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One recognize here the initial equations (1.1), (1.2) with the potefitiahd so finally,
the solution we construct here is a solution of our problem (1.1)—(1.4).

Step4. As the existence of a global strong solution in 2D is given by the Theorem 3.3,
we only have to show that the solution obtained is a strong solution in velocity, defined
globally in the 3D case. We are going to use the fact that the initial data is chosen near

stationnary state.
1o\ 2
mo=[|(4)] + [awipwr
P P
Q Q

If we let
estimate (3.74) reads in the 3D case

1
E%hggﬂﬂ+gﬂnmn+mmaf, (3.81)

whereg; andg, are bounded independtly gf ande in the following way

fo+1
/ gi(t)di < fs(8), fori=1,2,

fo
and thanks to (3.79) we also have

to—l.—l
/ h(t)di < f5(3).

to

Moreover, thanks to the assumption on the data, there eXistach that
h(0) < C'82,
Now let us introduce
f6(8) = (max(C's?, f5(8)) + fs(8))e" 5.
It is straightforward to show that
f6(8) — 0, whens — 0.

Let us now choosed, small enough so thaf f5(§)> < 1 for any § < &. In those
conditions, one have

Ch(0)? < 1.

If we denote byl' the maximal time such that

Ch(n)><1, Virel0,TI,
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we get from (3.81), for any € [0, T[,

Th<a®+ (1+ g2(0))h(1),

so that, using the uniform Gronwall lemma, we have for asy0, 7'

h(t) < fe(d).

But, by the choice o8y, we haveCfs(8)? < 1, which implies that the existence time
T of the solution is+co. Moreover, we deduce the following estimates on the solution

(¢, v)
||(P - m(go)”Loo(R*;Qg) + HU - vgo||Loo(R+;V) < f7(8)’

H ap av

ot ot
We have shown the global and uniform in time existence of strong solutions for the
problem (1.1)—(1.4).

Step5. In the previous step, we have obtained the stability of the stationary solution
we are studying. In order to show the asymptotic stability of this solution, we have to
study the convergence of the solution wheends to+oo.

First we study the convergence of the order parametone takes the scalar product
of (1.1) withg — w in L2, one obtains using (1.4) and the boundary conditions,on

o w|2+/ v(£)ve-o

which can be written, using the fact that= —aA¢ + F, (p) (or F'(¢), it is strictly
equivalent),

d 1_/Agp 1_(F,(9)
Lo —wp— /—v(—).w=_/_v<—).w.
dt 2P o 2P o

(3.82)
+ vl 240 072 vy < S7(8) (1 + 7).

L2(to,10+1;®1) ’ L2(to,to+7; H)

We get

—|<0 w|2+/—IA<p|
o' (p) 2 " (@0 (@)
= Ao|Vopl|? — F Vol?+ | =222 77 Vg)?,
aQ 20) ¢Vl Z o (@) Vol? / 230) IVol?

and so, using the fact that, is convex (by construction), angdis bounded inL*°, we
deduce

d 1
Elw—wlg-i-pl ¢l < CelAgl3 + Ce|Vols < CeCfa®)|A¢l + CLa(®) Vol
2
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because we have

\FL(@)|=|F.(9) — F. ()| <( sup [F.|)l¢—wl,
[w—&,0+&]

that is to say with (3.80)

|F(@)] o < Cfa(d).
If § is small enough such that 2¢(§) < 1/(203), we deduce that we have

d
Ew—w@+CM¢@<Q

which implies by (2.5) that
d 2 2
EW? —wl;+ Clp —w|5 <0,

and finally

2 20-C
lp —wl3 < lpo — wle™™"

which gives the desired convergencedip. The convergence ik, for anys < 2 comes
directly from the previous convergence and the fact that ) is bounded uniformly
in time in ®,.

Step6. It remains to show the convergence of the velovity field. Let us write down
the equation satisfied hy— v¥ in the following way (remember thatv? = 0 and that
g§=Vg)

p(w)(mva;tvg")—l—(v—vU)V(v—v ))—Zdlv(n((p)D(v—v ))+Vp
= 2div((n(p) — n(@))D(vL)) — p(w) (VL. V(v —vL) + (v —vY). VoY)

dv
— (@)= p@) (5 +0:50) + (1 = m) Ty

1—¢?2 1—a?
+e( v _ ”)v(%)+«pw)—pmwg

4 4
from which we deduce in a straightforward way
d
P (o= vl )+ malV (v )3

<2 [ |nt@) = n@||DEL)| D oY)
Q

+0@) [ W]y =4[V (0= %) + (@) [ |o =4[ Vo
Q Q
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v =gl

0
+ [lo@) = @l |57 + v
Q

2 _ 2
+/|u—m(u)!|V<p|!v—vgo|+€/‘(p n
Q Q

ol

|v_voo

7(5)

+] [ 0@ = p@sv L)
Q

This last inequality leads to
p(w) 0

2 ot

< 207 ool = @loc DY) |V (0 = ) |, + oY |V (0 = 025

2 2
(’U - Ugo‘z) +771W(U - v:fo)’Z

ov
+C|VuL| v — vool3 + Celg —a)|m<’a

+CITITplalo = v+ Celp? =2l [ (£)] o= sty

2
+Celp — wloolgla/v — vY |,

Using (2.3), (3.80), (3.82) and the fact that

Wl = Vol = U <,

we obtain, fors small enough, the estimate

a
ot

whereg,(t) — 0 whenr goes to infinity, ang, is given by

= o+ v — vl |2 < g1(t) + C'e Y go(0),

2 2
b AVR+ [VuiZ+ M%) ,
2

2

(t)_‘av
goll) = o1

so that we have thanks to (3.79) and (3.82)

t

/gz(s) ds <C(1+1).
0

We can suppose that; < 1, then we show that any function(z) satisfying
Y'(0) 4 y(1) < g1(1) + Ce&~ Y gy(0),

necesarily tends to zero whemoes to infinity. Indeed, we have

t

t
V(1) <& y(0) + e / € g1(s)ds + Ce™ / e1-C05 g, (5) dis.
0 0

257

+ |Vv|2|Av|2)|v—vgo|2
2

(3.83)
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In this inequality it is clear that the first term converges towards zero, but also the secont
term using the Cesaro theorem and the fact th&t) — 0. As far as the third term is
concerned, we have

t t
e’ / el D3 g (5) ds = e et ! / go(s)ds < Ce Y (1 +1).
0 0

The conclusion is straightforward: the velocity field converges towards the stationnary
velocity field in H# and so inV; for anys < 1 because we have shown thiat— vY) is
bounded uniformly in time in the spadé O
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