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ABSTRACT. — We consider a large class of one-dimensional maps
arising from the contracting Lorenz attractors for three dimensional
flows: the eigenvalues; < A1 < 0 < A3 of the flow at the singularity
satisfyr; + A3 < 0 (instead ofA; + A3 > 0 as in the classical geometric
Lorenz models). Such flows were studied by A. Rovella who showed
that non-uniform expansiveness is a persistent form of behavior (positive
Lebesgue measure sets of parameters). Using mainly expansiveness, we
prove the existence of absolutely continuous measures invariant under
these maps, and from this fact we are able to construct Sinai—Ruelle—

Bowen measures for the original flows that generate them.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous considérons une classe importante de transformations
uni-dimensionelles provenant d’attracteurs de Lorenz contractants des
flots en dimension 3 : les valeurs propres< A1 < 0 < A3 du flot au
point singulier satisfonk; + A3 < 0 (au lieu dexr; + A3 > 0, comme
dans les modeles gedmétriques de Lorenz standards). Ces flots ont été
etudiés par A. Rovella qui a montré que I'expansion non-uniforme a un
comportament persistant (ensembles de paramétres de mesure positive).
En utilisant cette expansion non-uniform, nous démonstrons I'existence

1 E-mail: metzger@uni.edu.pe.
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de mesures invariantes par ces transformations qui sont absolutement
continues. De ce fait, nous déduisons I'existence de mesures SRB pour le

flots qui les induisent.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

Sinai—-Ruelle-Bowen measures, SRB or physical measures, are those
measures for what the Birkhoff averages converge to a constant for a
large Lebesgue set. More preciselyyfif M — M is a transformation on
a manifoldM, we call anf -invariant measurg an SRB measure if there
exists a positive Lebesgue measureBgt) of pointsx € M such that

lim Zw fi(x)) /godu, for everyp € Co(M, R).

n—o0o p

and the seB () is called (ergodic) basin of attraction pf
For a flow f* : M — M the definition is

T

1

?/ (f'(x)) dt=/<pdu for everyp € Co(M, R).
0

Lorenz flows are related to the system studied in [8], as a truncation of
a Navier—Stokes equation. Guckenheimer and Williams [3] introduced
a geometric model called expanding Lorenz attractor, in which they
suppose that the eingenvalues< 1, < 0 < A3 at the singularity of the
flow satisfy the expanding conditiory + A3 > 0. In [11], the expanding
conditions is replaced by the contracting one+ A3 < 0. The general
assumptions used to construct the geometric models, also permit the
reduction of the 3-dimensional problem, first to a 2-dimensional Poincare
section and then to a one-dimensional map. These maps are also called
Lorenz-like.

We will prove the existence of a unique and ergodic absolutely
continuous invariant measure (a.c.i.m.) for certain one-dimensional
Lorenz-like maps (Theorem A). After this, we will relate these results to
the case of flows and construct an SRB measure in this case too. Since the
a.c.i.m. found for the one-dimensional case is unique, the SRB measure
constructed for the flow is also unique.
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We will use four properties of the one-dimensional Lorenz-like maps
studied by [11]. More precisely. Lat C [—1, 1] be a compact interval
and f: I — I be a map such thaf(I) c I with a discontinuity at the
origin. Setci = lim,_ o+ f*(x) for k > 0. So, we will requiref to satisfy
conditions (A0)—(A3) below.

(AO) Outside the origerf is of classC® and with negative Schwarzian

derivative, and also satisfies

Kolx|" 1< f/(x) < Kqlx[t

for some constantk;, K> ands with s > 1.

(A1) (f"(ct) > A", for somer, > 1, and forn > 1.

(A2) |f"Y(ci)| > e " somea small enough, and all > 1.

(A3) For any interval/ C I there exists a numbenr(J) > 0 such that

1. C f*(J) (f is topologically mixing on/, = [c], c1 ).

Rovella in [11] showed the existence of a one parameter family of maps
which exhibit conditions (A0)—(A2) in a set of parameters of positive
Lebesgue measure. For a slightly smaller class of maps it is also true that
conditions (A1) and (A2) implies condition (A3). This fact is proved in
Lemma A. We work here with such a continuous family of maps, but the
arguments, and then the conclusions, remains valid for a larger class of
maps with negative Schwarzian derivative and with a finite number of
non degenerate critical points.

It is clear from our definitions that ift is an absolutely continuous
invariant measure fof and ergodic then it is an SRB measure. Now, we
can state our main theorem.

THEOREM 1.1 (Theorem A). Under conditions(A0)—(A3), f ad-
mits an absolutely continuous invariant probability measure. This mea-
sure is unique and ergodic.

The basic strategy is to reduce the non-uniform hyperbolicity of the
dynamics of our maps to that of piecewise uniformly expanding maps.
That is what conditions (Al1)—(A2) are for, which express a kind of
expansiveness. Condition (A3) is used principally for the uniqueness.
The techniques used here resemble that of Viana [14]. Frequently, we
will refer to this work for proofs that do not need major modifications.

The main difference in our aproach comes from the fact that our map
is not continuous and also has two critical orbits. We overcome the prob-
lem defining the tower to keep track of both orbits, resulting in a tower
extension with two blocks. It is also possible to work with maps that
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have more discontinuities or singularities if they have properties similar
to (A0)—(A3).

SRB measures were first proved to exist for Anosov systems [13] and
then for general uniformly hyperbolic diffeomorphisms [12] and flows
[1]. For these systems there are finitely many SRB meagures., uy,
and their basin of attractions cover Lebesgue almost all the phase space
M. Moreover, they are stochastically stable (see Kifer [5,6]). The same
is true for the expanding Lorenz attractor as proved in Chapter 4 of [6].
We shall show that the contracting Lorenz atrractor is also stochastically
stable in a forthcoming work. Here is to be pointed aut that J. Palis
conjectured that every dynamical system can be approximated by another
having only finitely many attractors, supporting physical measures that
describe the time average of Lebesgue almost all points, and that the
statistical properties of this measures are stable under small random
perturbations, see [9,15]. In that sense our present and next works can
be seen as a contribution to, or at least as an example of, Palis conjecture.

Theorem A is proved in Sections 2 through 5. In Section 6 we will
establish some results on decay of correlations. This is made to complete
the description of the dynamics of the one dimensional rhap the last
section, we will conclude relating this result to the contracting Lorenz
attractor.

2. SETTINGS

For our constructions and proofs we need several constants, let us fix
them here. First, suppose that the constarih (A2) has been taken
small enough so that€“~Y < AYs. In order to construct the tower
extension, we fixg € ((s + Da/s, sa/(s — 1)), andA > 1. Up to here
these constants are enough for the definitions, but we will need other
constants to establish the expanding behavior of our tower extension. Let
p > € such that 8*AYs > Ap, and also let k o < 0p and 0< § < 8o,
whereog € (1, ) anddg is much less thae. These constants are given
by Lemma 3.1 later on this section.

Our next step is the definition of the tower extension (cf. [14]). The
main feature of the tower is that it transforms our m@apwhich is not
uniformly expansive, to a magp that is uniformly expansive. For this,
set By = I and Bff = [¢if — e P, ¢ + e P¥] for eachk > 1. We let
Eif = Bf x {k} and setl = (U;>1 E5) U (Uss1 Ex) U Eo. Note that the
critical point 0 is not contained iB;~ for any k > 1, since (A2) implies
e | > e 9k > e Pk,
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We want to definef : I — I to be a tower extension in the sense of
[14]. But, since our initial map has a discontinuity, we should establish
that a point(x, 0) which is ready to ‘climb a level’ should go up to level
Ef if x>0, and to levelE] if x <O.

The precise expression fgi(x, ) is the following:

(f(x),0 if |x] >6andk =0,
(f(x),0) if f(x)isnotinB;,,for (x,k) € Ef

orif f(x)isnotinB,, for (x,k) € E,
J k) =9 (f(x),k+1) otherwise,
and with the additionally conditions that,
(f(x),k+1) € Ef,if (x,k) € Eff or
(f(x),k+1) e Eif (x,k) € E .

Typically, a point(x, 0) moves around in the ground levél for a
while until it hits (0, §) x {0} or (=8, 0) x {0} at some timen > 0. Then
it starts climbing the tower in the following way

fm(x,00= (f"(x),j), 0<j<n,

where (f"/(x), j) € Ef if f"(x) <0 and (f"*(x), j) € E; if
f™(x) > 0.

Unlessf™ (x) coincides with the critical point 0, the integelis finite
and in the next iterate the orbit falls back to the ground level, that is,
frmintlx 0) = (fm1(x), 0). Observe that we must have> H (8)
for some integerH (§) > 1 which can be made arbitrarily large by
choosings small enough.

Now we define the cocycley. First, we setwg(x, 0) = 1 for every
x € Bg. Given any point(x, k) € E,f k > 1, there are two possibilities:

(1) There existg with |z| < § such thatf*(z, 0) = (x, k), in which
case we define

wo(x, k) =25 ((f*) (@) .

It's easy to see that if exist then it is unique, and has the additional
property that < 0 if (x, k) € E;” andz > 0'if (x, k) € Ef .

(2) There is no such, in which case we simply sefy(x, k) = 0.

For eachk > 1 we shall denoteW{ = {x € B{: wo(x, k) > 0} and
Wo = {x € Bg: wo(x,0) >0} (i.e., Wo = Bo).
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Note that everyW;" is an interval whose closure contaitjs. We also
write

= <kgl W x {k}> U <kL>Jl W, x {k}> U Wo.

Now, we associate tag the Borel measureng = wom wherem is
the Lebesgue measure dn Moreover if we denotd - | the metric
in I induced by the standard metric in we can associate @y the
Riemannian metrig - || . = wo(x, k)| - |.

It results from the definition thab, andm are both supported on the
subsetiv. Reflecting the fact that points |l1\W are transient forf, and
play no role as far as asymptotic behavior is concerned. Let us note that
certain points in the ground level are also transient, specificAllfy)
does not intersedt( f (—38), c;) U (ci, £(8))} x {O}. In order to see this,
if there exist(x, k) € W such that

Fe, k) e {(f(=8),c1) U (ct, f(8)} x {0},

then f(x) € (f(=8),c1) U (cf, f(8)), and in that case we must have
x € (=8, 8) if § > 0 is small enough so tha < f(—8) <c; andc] <
f(8) < ¢ . In order to havef (x, k) € E; we must havek + 1 > H (5).
Assume that
0<6 < (2(16K) YD)

so that

length(B;) < 2eP* < (2(16](1)1/(‘*1))_1
then, sincex € Bk N (=4, 8), the interval B, must be contained in
(—(16Ky) V6= (16Ky)~Y¢~D)\{0}, and we have

1 s—1
’ <K s—1 <K ——— < 1 16’
7)< Kbyl < K T Kl)l/(s_l) /
so f'(y) < 1/16 for everyy € BE.
On the other hand, from the fact thdt e e/¢~D < AY/* < 2 we have

1 e’ 1
_ oE < = e—ﬁk < — e—ﬁ(k"rl) <= e—ﬂ(k-f'l)’
’f(.X) Ck-‘rl’ 16 16 8

which means thaf(x, k) e E,il contradicting the choice df, k).
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Now, for any point(y, /) such thatf (y, ) € W, we set

1 wO(ys l)
F'0) wo(f(, 1)

gy, D)=

Clearly, g(y, ) > 0 with this definition. Moreover, wheny, /) € W,
1/g(y, 1) is the Jacobian of at(y, 1), with respect to the metrif- || (or
equivalently, with respect to the measurg).

Now, given a measurable functign / — R we define

var(p) = _varg |g+) + Y _vare |;-) +vare |x),

k>1 k=1

Sup(p) = sup(sump |Eki)), and

/godmo_Z/goa)odm—i-z/goa)odm+/goa)odm

k>l k>l —

Now we define theB V-norm ofp as
lollav = var(g) + suplel) + / o] dimo,

and letBV = {¢:1 — R: ||¢|lzy < 0o}. With this definition, it is clear
that BV is a Banach space.

Finally, we describe the transfer operatty associated tof. Given
¢ € BV and(x, k) € W, we set

Lop(x. k)= % = > gek.D).
Fo=tegy OO f.h=xk
Observe that fok = 0 there may be infinitely many terms. Then we
extend Lop to J\W by asking that it be constant on each connected
component of3;"\ W= for eachk > 1.
More precisely, letz; < b, be the endpoints of the intervali;", then
we define

limsup,_, .+ Lop(y, k), if y<a,
Lolp)(x. k) = { liminf, - Lop(y.K).  if y > b

This definition is made so that V@loe) and sugLop| are not affected
if we restrict ourselves taV. The variation ofZyp over Ei coincides
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with the variation of Lop over Wit and a similar fact is true for the
supremum ofCop. Of course the same holds f@rLop dmo becauseng

is supported onv. In particular, the duality relation

/Eo(fﬁ)l// dmo = /Sﬂllf o f dmo, 1)

whenever the integrals make sense, is not affected by this convention.

Clearly, Ly is a nonnegative operator, in the sense that it maps
nonnegative functions to nonnegative functions. So, relation (1) also
implies thatZ, is not increasing with respect to tiig-norm, that is

/'£o<w>dmo< /coaw)dmo: / [Wldmo foreveryy ¢ BV.

3. EXPANSION LEMMAS

In this section we state two key lemmas on the expanding behavior of
certain iterates of the map. They are formulate in the same form as
[14], because they are also true for the maps we are considering here.

LEMMA 3.1 (Vi5.2). — There are constantsy; > 1, b > 0and§y > 0
such that for anyd < § < 8 there isc(8) > 0 such that, given any € I
andn > 1

(@) ifx, fx), ..., f7Hx) ¢ (=8, 8) then(f™) (x) > c(8)ag;

(2) ifin addition, f"(x) € (=4, ) then(f")'(x) > boy.

Proof. —It was proved in other form by A. Rovella in [11], see Lemma
1, 1.1, 1.2 and their proofs, in the mentioned articlex

Now, we take the constamtin the definition of the tower, satisfying
0 < 8§ < &g, and fixo € (1, o], and we have

LEMMA 3.2 (Vi 5.3). — There is a constan€ > 0 such that for any
ze(=45,0)andk > 1
(i) if |f/(z) —cj| <e P foreveryl < j <kthen

1_UYUE .
C = UHe)

(i) if in addition, | f**(z) — cj 4] = e P**D, then

(f")'(f(z))>%x’; and (fk+1)/(z)>%pkkkM’
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whereM =e (s /(CK)“ /5. K.
And similar results hold it € (0,8) and| f/(z) — ¢/ | < e F/.
Proof. —Let us proof part (i). First of all note that
(fY'(f(2) H f'(f1(2) ﬁ < F (@)= f(cf )>
(f%)(c1) o S e f'(c;)

so we only have to get a uniform bound for

k

D

j=1

(1 @) = f(c)) ‘
f(c;)

Now, f has negative Schwarzian derivative By since 0¢ B; =
[c; — €%, ¢ + €], and as long ag”/(z) € B; we have that

P = FCeD| e | 1@ =€
<|f| —
f/(Cj)

fe;)
| fI@) —c;
§A s—2 J .
S e
Then from condition (AQ) we obtain:
k
F(f7(@) = f'c)) e bi
I RN

j=1

The right side is bounded provided thét> o (remember we have
chosen(s/(s — D))a > B > ((s + 1)/s)a, SOB > «). This proves part (i).

Now, to prove part (i), first observe that the first claim in (i) is a direct
consequence of part (i) and (Al). The second one can be obtained as

follows. Letz andk be as in the statement, then
(N @=(" @) f'@=Kalel () (f @)
> 2N @), @
We can estimate the value kf from the inequality
e D L @) = il = (1) ©1f @) = e |
lz* 3)

N

<KLC (1) (er)
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for some¢ € (f(z), ¢;) from the Mean Value Theorem. For th§sthere
existsy satisfying the conditions in part (i) and such thfaty) = &. The
last inequality is due to (A0). So the inequality above is a consequence of
the Mean Value Theorem and part (i).

Rewriting the equation, it stands that:

2l = = | (FY) (e |l P,

CK;

Combining this last inequality with (2) we obtain

K2 e,/gs (s—1)/s Lk . 1
(@ = —< ) (3g")" - e PRO=D,
C \CKy

Sincep < (s/(s — 1))a andAY* . e > 1p we have

—p (s—=1)/s
rosglem) e

C \CK,

K (s—=1)/s
2—26‘“( > ) Ak,

C CKq

leading to
1
('@ = E'Ok’\kM’
whereM = e (s /(CK1))“~ /5 . Ks.
This end the proof of Lemma 3.2.0
We denote byP™ the partition of/ into monotonicity intervals of”,
forn > 1, and characterized in the following way: For evéry 1, set

UL ={(x,k) € EE: f(x,k)=(f(x), k+D}.

Let DF*, Df* be the two connected componentsA)f\U, that is,
points inU;" are sent byf to an upper level of the tower, whereas points
in DF* U Df* are mapped down to the ground levgy. Fork = 0 we
set

U = (=$,0] x {0}, U&= (0,81 x {0},
D§=1[q,-81x {0},  Dg =I[8,—q] x {O}.
Then we set

PO = (UE. D, DI k > 1} U {U§. U§. D§. D).
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Now, for anyn > 1, we setP™ to be thenth iterate byf of P, that
is,

P (&) =P (&) if PY(fi(&) =PY(f (&)

foreach 0<i < n.

From now on, we will always assume that evegrg P has positive
length. Moreover, the intersection gfwith W is either empty or an
interval with positive length. Note that in order to have this it suffices
that the f -orbits of points

(05,0), (£8,0, (cf+e ) and (f—ef*) fork>1

be two-by-two disjoint injective sequences dnwhich can always be
obtained by slightly modifying and « if necessary (so as to avoid a
countable set of relations involving these two constants).

It follows from our definitions that if(x, k) € U,jt NwW,k>1, and

z € (=8, §)\{0} such thatf*(z, 0) = (x, k), then

1wl k) 1 AN @I
D wo(flx k) ) AL (fRLY (2)] 7L
1 (Y (@) _1
AU (fRR) A

The same is true ifx, 0) € (—6,8) = Uiu UE.

On the other hand, ifx, k) is in D, N W, k > 1, andz as before D,
here means some of thig;=" or D;¥) then

_ 1wk A @I

@ wo(fxk) 1

_ Ak M Ep*k
P @ (Y@ M

The last inequality is consequence of Lemma 3.2.

Observe thatt > H(§), where H(8) is the minimum height from
which orbits in(—4, §) x {0} can fall down toE (see Section 5.3 in [14]).
We suppose that is small, soH (§) is large and impliesC/M)p~* <
1/Ax < 1. Thereforeg(x, k) < 1/1 < 1 in all the situations above, which
express the uniformly expanding characterfobecause Ag acts as the
Jacobian off respect ton.

g(x, k)

g(x, k)
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We shall also need the iterated versighnof g, which is defined by

1 wole)

(n) — F pn—1 = r
876 =e@)8(F€) (7" ©) =

for every& = (x, k) such thatf’ (&) e W for 1<i <n.
The following three lemmas will be stated without proofs because they
are similar to the corresponding lemmas in [14].

LEMMA 3.3 (Vi5.4). - A
(1) Lety c n e P™ be suchthatf (y) C Eo for every0 < j < n.Then

Co™,  if f"(y) C(=8,8) x {0},

(n)
su < :
¥ b { C(8)oc™™, ingeneral.

Moreoveryvar, g™ < 2 sup, g™,

(2) Lety C n C W for somen € P™ and let0 < I < mink,n — 1}
be such thatf (y) C Ej,,; for 0<i <land f(y) C Eqforl <i <n.
Then

Crlp~ka=ntHL i fr(y) C (=8,8) x {0},

(n)
su < .
Pg { C®L ! p~*a++1 in general.

14

Moreover,yvar, g™ < 2sup, g™.

(3) Lety c nN W for somen € P™ and let/ > 0 such thatfi(y) e
E;;for0<i<ntheng™ =A"ony.

LEMMA 3.4 (Vi 5.5). — There isC > 0 and, for eachn > 1, there is
C(n) > O such that for every € BV and every intervald C Ej,

var, (Lie) < var(XaLp)
< Co™"(varg + suplg|) + C(n) / || dmy.
LEMMA 3.5(Vi5.6). —Given any € (1, o) there isC > 0 such that
M varpLyp < C5~" (varg + suplgl) + C [ lgldio,
(2 suppLip < Co " (varg + suplg|) + C / lo| dmo,

for any functionp € BV and for alln > 1.
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4. THE MIXING PROPERTY

We establish (A3) in order to make clear that a mixing property
is needed to show uniqueness of the measure and stochastic stability.
However, in our present setting, this can be chosen to be a consequence
of (A1) and (A2) as explained below.

In [11] it is proved that a one-parameter family of mgp%}.cio.2),
satisfying condition (AO) among others, has a positive Lebesgue measure
subsetfE C [0, 2) such that for al: € E, f, satisfies (A1) and (A2) with
0 € E as a point of density. This subset can be chosen to satisfy (A3), i.e.,
the following is true.

LEMMA 4.1 (Lemma A).-n a small enough neighborhood of the
density point, if f satisfieA1) and (A2) then it satisfiegA3).

This makes our construction more relevant since it shows that that
conditions (A1l)-(A3) are satisfied for a large set of functions, say, for
maps in a positive Lebesgue measure set in a one parameter family of
maps.

Lemma A seems Lemma 2.1 in [16] so we need properties similar to
P1 and P2 of [16]. Property P1 is the same as Lemma 3.1 and Property
P2 is the contain of Lemma 4.2. To show P2 we need some previous
definition that will be use only for the proof of Lemma A.

Let 7, = (™1 &) for m >0, let I, = —1_, for m <0, and
It = m—1 U Iy U L1, 8= eﬁA, with A € N.

m

DEFINITION. —Let p(m) be the largest integep such that
1@ = D=1/ —cf[<e ™, itm =0,
and
1@ = e =] 1@ — e[ <e P, ifm <0,

forj=1,...,pandxel}.
The time intervall, ..., p(m) is called the bound period fak.

LEMMA 4.2. - For each|m| > Ap(m) has the following properties.
(a) There is a constanf'y(«, B) such that

()
1 _ (o _

_ i _ —|m|+1
Cl\(fj),(ci_)\cl if ye[-1 f(e )],
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(ii)
1 7y )
—< M <Cu ifye[f(—e ™), 1]
C1  (f7) (1)
for j =0,..., p(m).
(b)

s\m]| s+1
— K < pim) < ———ml,
B +log4 B+ log A,

whereK = (B + log(K1/s) +s)/(B +10g 4.
(©)

(7 @) > exp< (1 - ﬂ;%i) Iml),

wherep = p(m) and forx € 't

Proof. —Supposey < [c], f(e"*H] (for y € [f(e7"*1), 1] the
proof is similar).

The proofs of parts (a) and (c) are easy consequence of Lemma 3.1. So
we only have to prove (b).

Forx € I} we have, assuming > 0 to fix ideas,

e P00 —cf| = [/ @) = f7HED)
= ("N W) = ()]
for somey € [c], f(x)] C [-1, f(e""+1)] so,

|x[®

170 = f27HeD) | = (7Y O] f) = (D] = (771 K

=1y (-t
L U ED Ko 2

N

Cl N
(p—1)
e hr> A & g lmls @=2s
Cl N

So we have the following bound for,

K>
Iog(—) — |ml|s —2s +logi.p —logi. < —Bp
ClS
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that is,

K>

s|m| |ngc+23—|ogC—1Y

< +
PSlogi. + B logh, + B
If |m| is large enough we can write,

(s +1)|m|
P .
logi. + B

For the other inequality, from the definition pf there must exists a
z € I} such that

e PIEV L (f@) = 7D S (1) D] f @ = (e])]-
Supposing thay’ < 4, we obtain,

ZS K )
e Pt < arg = < 4p 2L g(=Iml+Ds
N N

o]
—B(p+1) < plog4+log(Ki/s) + —|m| +s
which implies that

s|m]| B log(K1/s) +s + B
p/ﬁ+log4 B +log4

Proof of Lemma A. 40 [16], it was used the fact that the fixed point of
the mapy in I has dense pre-images. We do not have this fixed point for
f but we have one forf? (i.e., we have two periodic points of period
two). Now, observe that our family of maps can be chose so that we
have this fixed point forf2 with dense preimages, as required in the
arguments of [16]. This is due to the fact that the family (and also the
positive Lebesgue measure set satisfying (A1) and (A2)) has as a point of
density a map which is conjugated to the transformaties 2x modZ.

So the conclusion remains valido

5. ABSOLUTELY CONTINUOUS INVARIANT MEASURES

Before going into the proofs of our main results, we need the following
lemma
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LEMMA 5.1 (Vi 5.7). — The measureng = wom is a finite measure
onl.

Proof. —It is clear thatmq(Eq) = m(Eq) = m(I) is finite. Moreover,
foreachk > 1

)"k
mo(EF) = [ wox () = [ oy e,
e

+
Bk

wherez € (=6, §) is uniquely defined b)f"(z, 0) = (x, k). We change
variablesz = f*(x), and we get

mo(Ef) = / A dm(z) = AMm(YE),
ve
whereY," = {z € (=8,0): fX(z) e W'}, andY, ={z€(0,8): fX(z) ¢

W,
Next, we observe that

26 > m(BE) = m(WE) > = (Y (m(f ()

Al =

1 K> ,

> k122, v E s
cC° s m(¥e)

where the third inequality is a consequence of (A0) and (Al). Replacing

above, and recalling that we have chogefi > €*10 we obtain that

1/s 1/s
mo(E) < (2ce o+ 2} kg (o0 2a,) ebkspt

<Cp*, (4)

for every k > 1. Since we chose > 1 the claim follows immedi-
ately. O

THEOREM 5.1. — The mapsf and f have absolutely continuous
invariant measuregio and uq respectively.

Proof. —The proof of this theorem is contained in [14]0

__The arguments in [14] assure thég has a unique fixed poingo in
BV. This function is the density ofip with respect tomg. We only
make a remark on the fact that we are using the arguments that prove
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the existence of the measures. We are left to prove ihas unique in
the space of -invariant probability measures absolutely continuous with
respect to Lebesgue. To prove this, we first observe that the meagure
has positive Lyapunov exponents for acén /.

THEOREM 5.2. — The measureuq is ergodic and it is the unique
f invariant probability measure absolutely continuous with respect to
Lebesgue.

Proof. —Since g has positive Lyapunov exponents a.e. and satisfies
(A3), we can use a theorem due to Ledrappier [7] in the form of part (3)
of Proposition 3.3 in [16] to assert thag is measure theoretically mixing
and so it is ergodic.

We claim that o is equivalent to the Lebesgue measute on
I, = [c,c{]. This can be seen as follows; singg has Bounded
Variation, and | ¢odmo = 1, there is some intervat C W, such that
inf, (¢o) > 0 so the density ofipo with respect to the usual length is
bounded away from zero op, as a consequence, jof, duo/dm > 0.

On the other hand, (A3) ensures th&t (7 (y)) = I, for someN > 1.
Therefore

inf % > inf %;, >
L dm = =) dm sup(fN)
which implies our claim.

Now, letv be any f-invariant probability measure which is absolutely
continuous with respect to Lebesgue measure. It is easy to see that the
support ofv must be contained itf,, and sov < g (o iS equivalent to
m on L,). It follows thatv = o because ergodic measures are minimal
for the absolute continuity relation. That proves uniqueness.

Now, joining Theorem 5.1 and 5.2, Theorem A is provet:

’

Finishing this section we prove a property of the support of the function
@o. Set

Ws = W\((f(=8),cf) U (e, £(8)) x {0}
= W\[£(5), f(=8)] x {0}

LEMMA 5.2 (Vi 5.9). — The densityy, satisfies

(1) inf(golirs), F—snxiop) > 0;
2) inf((pQ|Wki) > 0, for everyk > 1.

Proof. —Let y; C W be an interval such that ibol,,) > 0. By
the topological mixing assumption (A3), there exists> 0 such that
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7(f () = f2 () = L = [e. cf1. In particular, 7 (f"(y1))
contains the fixed points off2, namely p; and p, with p; > p,.
Moreover, up to slightly modifying if necessary, we may suppose that
no endpoint of levelsE, for k > 1 projects down tgy, nor p,. Then
there exists an open intervay C f"1(y1) such thatr(y,) containsp;.
Clearly 7 (£2'(y,)) must containp, for everyn > 0. Now, suppose that
pi # ci for everyk > 1 and fori = 1, 2. If this is not true, we simply
replace{p;: i = 1, 2} by another periodic orbit not intersectirig s, §),
and the argument proceeds along the same lines. Now we have that,
there exists some finite tim& > 0 such thath”Z(g) = (p1, 0), where

& € y, satisfiest (§) = p1. Up to another arbitrarily small modification
of B, we may suppose that the orbit 6f does not pass trough any
of the boundary points of the monotonicity intervals". Therefore
f2%2(5(y,)) contains some open neighborhopslof (py, 0) in Eo. Let

n3 > 0 be the minimum time such thg.‘iz"3(n(y3)) intersects(—$6, §).
Hence

F23(y3) = f23(n(y3)) x {0} containgls, p1] x {O}.

Setoy = £([8, p1l x {0}) =[£(8), p2] x {0}, s001 C f"*1(1) where
n=ny+ 2ny + 2ns.

Now, with similar arguments we can sei = f( p2, —68] x {0}) =
[p1, f(—=8)] x {0}, with the property thatr, C f™+1(y) Wlth m =
ni+ 2my 4+ 2ms, for somem, andms. Set alsaoz = (py, p1) and note
that f (o1 U 0) containsos.

Now, sincegy is a fixed point for the transfer operator associated
to f, we have that irtpol,) > O implies that infgo| ;) > 0, thus
inf(¢ols,) > 0 fori =1, 2,3, and part (1) follows immediately.

Moreover, given(y,k) € W5, k > 1, andz € (=8,8) such that
@) =

vo(z, 0)

po(y, k) = Le(po) (v, k) = ok /\

'”f(<ﬁ0| LF—8). fox0))s  (5)

which proves part (2).
This last relation also yields another useful conclusion, namely

1 1
po(y, k) < —SUFX<P0|[,‘( -8), f®1x(0}) < 77 SUR@o)

A
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and so

o]

< 1
> sup(wol ) < Z 77 SUP(o),
k=1

leading to

sup(po) = Zsup(soo|5+) - ZSUFWOlE ) + sup(@ol £,)
k=1

<20 supgo.
k=0

Note that Lemma 5.2 implies tha®s; C suppypo and from this
supppg = Ws, sincego = L"¢o implies thatgg is identically zero on
I\ f"(I) for everyn > 1 and discussion on p. 6 implies that iy c
Ws. 0O

6. DECAY OF CORRELATIONS

In this section we prove that the measufesand .o, that we have
just constructed, are exact, and so, also mixing, for the corresponding
dynamical systemf and f, respectively, in the same lines as stated in
Proposition 5.13 of [14]. As a consequence, the transfer opefatis
quasi-compact and both syster, jio) and (f, 1o) have exponential
decay of correlations in corresponding spaces of functions with bounded
variation. This proposition also provides another proof of the ergodicity
of uo (besides implying thafiy is also ergodic). We are not going to
prove the equivalent of Proposition 5.13 of [14], because it follows the
same arguments, provided that we prove some previous lemmas. Before
proving these lemmas, let us make some conventions that will be used
throughout this section. Set

Ey ifk=0,
E,={ Ef ifk>1,

and also denote by, the set of boundary points of the elements of the
partition PV, More precisely

dbo=1{q,—6,0,8, —q} =9D{UAU§ UIUF UIDE,
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and for eachk > 1
F =0DFFUAUFUIDF

Therefored, can be expressed as follows

9 fk=0,
=2 0 ifk>1,
o if k< —1.

Observe that eachy, |k| > 1, contains at most eight points.
Now, forn > 1, N > 1 and ne P"*V let (k(i)); be the sequence
given by

f'(n) C Exyy for eachi > 0.

Let > 0 be fixed and defin@(n, N) to be the subset of intervals
n € PtV such that:

O k@OISKN+@m—irfor0<i <n.

(iiy fi(an) is disjoint fromaj;, for every 0< i < n.

LEMMA 6.1 (Vi5.10). —Givene > Othere existsV > 0, such that for
eachn > 1the setQ(n, N) satisfies the following properties
(1) for everyn € Q(n, N), we havef"(n) € PN c Uy <y Ex;
(2) the f1p-measure of the union of the intervals¢ Q(n, N) is at
moste.

Proof. —The statement of this lemma is not exactly the same as Lemma
5.10 of [14], but it is equivalent. The proof comes along the same
arguments. O

LEMMA 6.2 (Vi 5.11). — Givenn > 1 and g, > 0 there existe, > 0
foranyn > 1, any intervaly € Q(n, N), and any borel subsétc n,

m(e)

. <er=m(f"(©)) < e

Proof. —Most of the proof is based on the same ideas as Lemmas 3.1
and 3.2. The main new ingredient is to use conditionk{))| < n +
(n — i)T in the definition of Q(n, N), taking = small enough, e.g.,
7 <logip/log8.
Suppose thal C Eo and f"(7) C Eo. In this case we prove that”
has uniformly bounded distortion ap (depending onV, but not onn
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or n). Let us consider the sequence of iterates ) < v1 + p1 < vp <
.- < v, <V, + p, <n defined by

(@) fi(n) C Eofor 0< j < vy, for v; + p; < j < viyp and 1<i <
r—1,andforv, + p, < j < n. R

) Fi) C Ejy, it () € (=6,0) and fi(n) C E_yy if
£7(m) € (0,8), forv; < j <vi+ p;,and 1<i <,

Lety =n(n)clandx,yel.

We first consider (< j < v;. Supposex < y, since f has negative
Schwarzian derivative ir and from condition (A0), we have

v1—1
> log £'(f7(x)) —log £/ ( £/ ()
j=0
v—1 i i
. 7)) = 17 ()
= | 1 -
;, 09( METETe) )
vi—1 i i v1—1
— | f(f'(x)) — f’(f-’(y))l — Ixj
< : <
j§, ) ZO K2|y/|

wherex; = f/(x), andy; = f/(y).
Buty; ¢ (—4,6) gives 1]y, < 1/6 and

|fv1—j (f/ (x)) — f"l_j (f/ (y))| = (fvl_j)/(Z)|Xj - yj|

for somez € f/(y), which implies | f"(y)| > boy* /| f(y)| using
Lemma 3.1, and leads to

v1—1 v1—1

> log £/ (7 (x)) —log £/ (f/ () < Z consto/ | f"1(y)|
j=0

< le ().
Similar arguments show

v1—1
> log f'(f7 () —log f'(f7(x)) < C| ().
j=0

Thus
v1—1
> llog f/(f7 () =log f'(f )] < C| ). (6)

Jj=0
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And for the same reasons we have

viy1—1

> log £/(f/(x)) = log £ (f/ ()| < C| £ (y)|

Jj=vi+pi+1
forevery 1<i <r —1, and also

n—1

> flog f/(f ) —log f'(ff )| < Clf )] (@)

Jj=vr+pr+l

Now, let j = v; and denote\; = d(f" (y), 0). Thus,

Sfri(y)
A

log £/ (f/(x)) —log f'(f7 () <

Next, we considew; < j < v; + p;. We are assuming that"i (y) C
(=8, 0), therefore, in this case we have

vi+pi Vi+pi j
|f7 ) = /)
| —1 .
,zv,;l og f'(f/(x)) —log f'(f!(»)) < Kz ,, Zv,-;rl i)

Let us see that the terms in the the sum are boundefttiy)/A;. In
fact, we have

1) = F 0| = (7 (£ @) ) = fU )]

for somez € y, more precisely € [x, y], as a consequence of the Mean
Value Theorem. Now, the Chain Rule and condition (AO) imply

£ = DY (F@)) - @) 0
<SC( N @) - K| @ )
On the other hand, for thiswe have
T =i, |= | £ () — e

= (G| 3)) = ef|

1 . , Vi s
> _(fjflfv,-) (Cir)K2|f S(Z)| .

Q

Thus we can write

Kllf (2) — ¢y,

J _ Ffi <s
) = Fo)| ol

@Y o).
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Now, sincey; < j <v; + p;,andz € [x,y] Cy

Ky Pu-v

J _ i < C?
P = P st

)

Therefore

|f7x) = f/ I o R L7 ()l
| 7 ()] ST (eelmv) —eBU-v)y A

since f/(y) € Ej_,,.
That is

@ =0 0L

. < 8
j=vi+1 L f7 ()] A; ( )

sinceg > «.
Interchanging the roles of andy in the above arguments, we have

' £ ()
> |log f'(f7(x)) —log f'(f/(y))| < const Ay :

j=vi+1 !

Thus, joining all the parts, we obtain

n—1
> " Jlog /(£ () —log £ (£ ()]

Jj=0

| ()l
A

r
< const)
i=1 t

of coursef”(y) < const, thus

+ constf" (y) 9)

| /Y (y)| < const(rp)" ™| f"(y)| < const(rp)” "

for each 1<i <r — 1, and from Lemmas 3.1 and 3.2.2.
Now, sincef? (f" (y)) C D5~ we have

’fpi+l(Ai) _ c;ri’ > e*ﬁ(pﬁl)’

which implies (assuming that’ < 4)

K ’
4P A;Tl > (fpi) (Z)‘f(Al) _ CH > e—ﬂ(m-&-l).
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This last relation leads to

A > — K1 opoev 4o > conste?Prigri,
! s
Now, condition (i) in the definition oR(n, N) implies p; = |k(i)| <
N+ ®m—v —p)rt <N+ (n—;) and since we have chosan=
logip/log8 and é < AL < 2, we obtain

Z'fl(”)' <Z(x )i (2e8)P Z4N ApA~"
i=1 l

<4V Z 20i—mT < const4'.
i=1
Replacing in (9) we conclude thgt' has bounded distortion on

n—1
Z\Iogf’(ff(x))—Iogf’(ff(y))]gconstdfv. (10)

Jj=0

In equivalent termsf™ has bounded distortion onas we had claimed.
In particular, in this case we may take= (go/m (1)) exp(— K1), where
K1 > 0 denotes the right hand term in (10).

Now, the remaining cases can be treated easily. iff not contained
in Eg then we define(pp + 1) > 1 to be the first iterate for which
froti(n) C Eo. Then, we modify the first condition in (a) t0/ () C Eqo
for po+ 1< j < vq. Therefore, the sum

vlfl

Y llogf/(f7 ) =log f'(f ()|

Jj=prot+1

can be estimated in just the same way as (6).

For the sum over & j < pg it is used a simpler version of (8), since
Fim) C Exoys s if k(0) > 0, andEyq,_;, if k(0) < 0, and fork(0) =
we have to choose betweef} or E_; depending upory’(n) is to the
left or to the right side of the critical point. From this,

Po
> log £ (f7(x)) —log f'(f/ ()

j=0

Po
<A A Z |f7(x) = [T () —constz o (B=c) +KO))
K> =% | fI DI T Ko 20
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< f: g (B—0(+kOD < const
j=0

Thus, this last sum just adds a constant term to (9), and so does not
affect the conclusion (10)f" has bounded distortion om also in this
case.

Finally, suppose thaf"(n) is not contained inEy. Then lety = v,
be the last iterate for Whictf”(n) C Eo, and we do not defing,. The
previous cases show us thét has bounded distortion o see (10)

v—1
> " [log £/ (f7(x)) —log f'(f(»))] < K1
j=0

From this point on, we can follow the arguments in [14] to conclude
the proof of the lemma. O

Let B the Borelo-algebra of/ and B the Borelo-algebra ofi. By
definition, the invariant measuye, is exact for f if

B €Bs=(]fT"(B)= 1o(B) =0 oruo(I\B)=0.
n=0

Analogously, we say thal, is exact forf if

BeBu=()f"B) = o(B)=0 orfio(I\B)=0.

D)

0

n

LEMMA 6.3 (Lemma5.12). —

(1) If A C I belongs ta3 thenz—1(A) c I belongs 0B

(2) Forany A C [ in B, there areA; C A, C I so thatr—1(A;) C
A c 771(A,) and A,\ A4 is a countable set.

Proof. —The first part is easy. In fact ih = f~"(A,) for some Borel
subsetA, c I thenx € 771(A,) if and only if 7(x) € A if and only
if 7(f"(x)) = f"(7(x)) € A, if and only if f"(x) € 7~1(A,) which is
equivalent tax € £ (7 1(A,)).

Thatisz—2(A) = f(x~1(A,)).

To proof part (2), letd, = 7 (A) and

A=A\ r{0.cf.c;: j =0}
n=0
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It is clear thatA c 7 ~1(A,), so let us prove that ~1(A;) C A.

Given anyz € A; there is somé e A such thatr (§) = z. Thus we
only have to show that any othere / such thatr () = z also belongs
in A. Now, the elements df., are characterized by the property

[¢1€ Aand f"(¢1) = f"(&2) for somen > 1] = ¢, € A.

Therefore, we are left to show that for afyandn as above, there is
n > 1 such thatf" (&) = f"(n). To this end, sincer (f"(€)) = 7 (f"(n))
for everyn > 1, it suffices to show that there exists> 1 such tha1f ")
and /" (n) are both inE.

To proof the above assertion we introduce the following notion: Given
x € (=46, 9), we define the falling time (x) of x to be the smallest integer
j > 1 such thatf/*1(x, 0) € Eo. The same kind of argument as in (3)
gives, recall A1,

1 /
g Fre > ‘fp(x)(x) — c;@)’ > E(f”o‘)*l) (cljt)’CiE - f| A1)
<

1
—— WP Ky (12)
CA s
Sety =1 —¢e~# > 0. Up to takings small, we may suppose that
p(x) > H(8) is large enough so that the previous relation implies

Ml <yt (13)

in particularx # 0 implies p(x) < oo.

Now, write & = (z,k) and n = (z,1). The definition of A; ensures
that the f-orbit of z € A; is disjoint from the critical orbit, and so
p(f"(z)) is finite for everyn > 1. Suppose that there is mo> 1 such
that both /" (&) and £ (n) are in Eo. Then each of their orbits must start
climbing the tower (in its corresponding block), before the other falls
down to Eq. That is, there must be an infinite sequence (in order not to
have f"(&) and f"(n) both in Eg) of times O< v; < v, < - -- such that
fY(z) € (=46, d) (one of the orbits moves fromy to £, or to E_;) and
viz1 < v; + p(fYi(z)) (while the other is still climbing up) for all > 1.

To check that this leads to a contradiction, we wiite= p(f" (z))
and note that ifv; 11 — vi < pi then|f*#1(z) — ¢, | < e Alit1—vi),

So we have

’fWH(Z)’ > e—a(w+1—w) _ e—ﬁ(w+1—w)
> e—Ol(ViJrl—Ui) (1 _ e—(ﬁ—d)(ViJrl—Vi))
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> e*a(ViJrl*Vi)y >y e opi

and in the last implication we use (A2).
Combining this with (13) and‘&/ ¢~ < A ‘we get

v > A£i+1’fUi+1(Z)’~V > ys)"?wrl(e—sa)l’i > )/X)\fi“)"c_(s_l)pi/s'

The last term is greater than or equabw+1—7:¢—1/s which implies
pir1 < pi(s — 1)/s for everyi > 1. Sincep; are positive integers, the
sequencd p;); can not be infinite. This gives the contradiction we are
looking for. O

Now, Propositions 5.13 (exactness), 5.14 (quasi-compacity), 5.15
(decay of correlations) of [14] and also the Central Limit Theorem are
deduced with the same arguments.

7. THE SRB MEASURE FOR THE CONTRACTING LORENZ
ATTRACTOR

Nowadays there exists many literature about the strange attractor first
discovered by Lorenz [8], as a truncation of a Navier—Stokes equation.
One of them is the geometric model introduced by Guckenheimer
and Williams in [3], called the Expanding Lorenz Attractor. More
explicitly, they found a family ofC”(R®) vector fields such that it is
linear in a neighborhood of the origin containing the cyke y, z) €
R3: |x], |yl |z] < 1} and with eigenvalues.q, A,, A3 satisfying A, <
A1 <0< Az andi; + Az > 0, and with both trajectories of the unstable
manifold intersecting the top of the cube, as in Fig. 1. So if welathe
union of the cube with a neighborhood of the unstable manifold, there
exists an attractort =, X,(U) where X; is the flow of the vector
field.

The Contracting Lorenz Attractor arises in a similar way if we replace
the expanding condition; + A3 > 0 by the contracting condition; +
A3 < 0, see [11]. By construction, the top of the cube is a cross se¢ion
for the flow. More explicitly, there exist a cun (that we can assume to
be the intersectiom® with the plane{x = 0}). So there exist a first return
map (a Poincare map) of the form

P:O\XY — Q,
(x, )= Px,y) = (f(x), g(x, ),



274 R.J. METZGER / Ann. Inst. Henri Poincaré 17 (2000) 247-276

<

CTant

£

Fig. 1.

-

This Poincare map reduces in a wide sense the study of the dynamics
of the Lorenz attractor to the study of the m&p But also the form of
this map, that says that the leaves with- cre are mapped to leaves with
x = f(cte), allows another simplification if we project along the stable
leaves, see [11]. So, we can study the one-dimensional map defined by
f.
By an SRB measure for the flow we mean a measurevariant by
the flow, define orR® such that its support is contained in the attractor
and satisfying

T
.17

Jim = [o(x@)di= [gab,
0

for almost allx contained in the basin of attractidii, and for every
continuous functiorp : R® — R.

To construct an SRB measure for this kind of flows we will assume
that they define one-dimensional maps satisfying conditions (A0)—(A3).
A. Rovella showed that this kind of flows have a kind of persistence, see
[11]. So we are dealing with a wide class of flows.

So let f be the projection along stable leaves of the first return map of
the contracting Lorenz attractor. By Theorem Ahas a SRB measure
. We can consider this measure as defined orvtladgebra generated
by sets containing whole stables leaves. If we consider the push forward
of this measure by the Poincare mApi.e., P, (B) = w(B) we can take
the weak limit of the sequence of measur@§ . as a measurgp on the
intersection of the attractor with the cross sect@ywhich is SRB.
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Now, we can saturate this measure along the flow in the following way.
Let 7(z) be the return time of the poiate Q\ X so thatP(z) = X.(;)(2).
With this definition we take our measuveén U as

JUS® x5(X(2)) dr) dpp (2)
[ (@) dup(z) '

The denominator is the term of normalization of the measure. This
procedure gives a well define measure sipcis absolutely continuous
with respect to the natural Lebesgue measure of the unstable manifold
and of bounded density. The term of normalization is finite since
1(2) ~log(d(z, X)). This is a standard procedure, see for example [14]
Chapter 6.

With this construction it is not difficult to verify that is a SRB
measure for the Contracting Lorenz Attractor. On the other hand, this
measure is unique. In fact, if is another SRB measure we can define

w = %w( U X,(F))

0<s <t

v(B) = (14)

=0

for every borelian” ¢ Q and we will obtain an SRB measure on the
sectionQ. Since this measure is unique we hay/e= u and recovering
the measure by means of the definition in (14) we also vawev.

ACKNOWLEDGEMENTS

The author is grateful to Professor Jacob Palis and Professor Marcelo
Viana for their support and many discussions.

REFERENCES

[1] Bowen R., Ruelle D., The ergodic theory of Axiom A flows, Inv. Math. 29 (1975)
181-202.

[2] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal
maps, Ann. Scient. E.N.S. 29 (4) (1996) 483-517.

[3] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Publ.
Math. IHES 50 (1979) 307-320.

[4] Katok A., Kifer Y., Random perturbations of transformations of an interval, J. de
Analyse Math. 47 (1986) 193-237.

[5] Kifer Y., Ergodic Theory of Random Perturbations, Birkhduser, Boston, 1986.

[6] Kifer Y., Random Perturbations of Dynamical Systems, Birkhauser, Boston, 1988.



276 R.J. METZGER/ Ann. Inst. Henri Poincaré 17 (2000) 247276

[7] Ledrappier F., Some properties of absolutely continuos invariant measures on
interval, Ergodic Theory Dynamical Systems 1 (1981) 77-93.
[8] Lorenz E.N., Deterministic non periodic flow, J. Atmosph. Sci. 20 (1963) 130-141.
[9] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of
attractors, Asterisque (1998).
[10] Robinson C., Transitivity and invariant measures for the geometric model of the
Lorenz attractor, Ergodic Theory Dynamical Systems 4 (1984) 605—611.
[11] Rovella A., The dynamics of perturbations of the contracting Lorenz attractor, Bull.
Brazil. Math. Soc. 24 (1993) 233-259.
[12] Ruelle D., A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976)
619-654.
[13] Sinai Ya., Gibbs measure in ergodic theory, Russian Math. Surveys 27 (1972) 21—
79.
[14] Viana M., Stochastic Dynamics of Deterministic System$, @bléquio Brasileiro
de Matematica, IMPA, 1997.
[15] Viana M., Dynamics: a probabilistic and geometric perspective, Doc. Math. J. (Extra
Volume ICM) (1998).
[16] Young L.-S., Decay of correlations for certain quadratic maps, Comm. Math.
Phys. 146 (1992) 123-138.



