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ABSTRACT. — We consider the problem

Au+u? +u?=0, inRY
O<u(x) -0 as|x| — +oo,

where 1< p < (N +2)/(N —2) < q. We prove that ifg is fixed and
we let p approach(N + 2)/(N — 2) from below, then this problem has
a large number of radial solutions. A similar fact takes place if we fix
p > N/(N — 2) and then lety approach(N + 2)/(N — 2). If we fix ¢

and then letp be close enough t&//(N — 2) then no solutions exist.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — On considére le probléeme de trouver des solutions de
I'equation elliptique

Au+u? +u?=0, dansR"
avec

O<u(x) — 0 lorsquelx| — +oo,

oul<p<(N+2/(N—-2) <gq.Silonfixe g et p augmente et tend
vers(N + 2)/(N — 2) alors il'y a un grand nombre des solutions radials.
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On peut obtenir un résultat analogue si I'on fige> N/(N — 2) et g

s’'approche dgN + 2)/(N — 2). En plus, si I'on fixeq et I'on prend
p assez proche d& /(N — 2) alors il nexiste pas de solution.

© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

In this work we consider the problem of finding positive solutions of
the following semilinear elliptic equation iR" .

Au+u?” +u? =0, (1.2

u(x) — 0 as|x| — +oc. (1.2)

Here A denotes the Laplacian operator, N > 3. We also assume
that the powerg andg are respectively sub and supercritical, namely

N+2
l<p<
N -2

<gq. (1.3)

A solution of (1.1)—(1.2) is usually called ground stateof (1.1). It is
natural to search for radially symmetric ground statesu (|x|) of (1.1),
so thatu(r) satisfies the ordinary differential equation

N-1
u'+—u' +ufl +ul =0, r>0 (1.4)
r

uW'(0)=0, O<u(r)—0 asr— +oo. (1.5)

Here we have denoted, = maxXu, 0}. In the case of a nonlinearity
constituted by a pure power, namely= g in (1.1), the role of the critical
exponent in the problem of existence of positive ground states is well
understood. Ifp < (N + 2)/(N — 2), no positive solutions exist, see [5],
while if p = (N +2)/(N —2) all positive solutions are necessarily
radial around some point, see [6]. At this exponent, as well ap for

(N +2)/(N — 2), radial ground states are constituted by a one-parameter
family of functions. More precisely, for every > 0, the solution:(r) of

the initial value problem (1.4) with = ¢, ©/(0) =0, u(0) =a > 0is a
ground state.
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We also notice that in case (1.3), it follows from a result in [4] that
all solutions of (1.1)—(1.2) which decay at a sufficiently fast rate are
necessarily radial around some point; this is however not knowalfor
ground states.

A question raised by W.-M. Ni is the following: Are there radial ground
states of (1.1)—(1.2) under the restriction (1.3)? Given the completely
different pictures exhibited by purely subcritical and purely supercritical
nonlinearities, an answer is not obvious. An interesting example was
discovered by Lin and Niin [10]. Ip andg satisfy (1.3) and additionally
g = 2p — 1, then there is an explicit solution of the founw) = A(B +
r?)~1/(r=1 whereA and B are positive constants depending prand
N. The question of existence of ground states in the general range (1.3)
has remained however widely open.

In order to state our main results concerning this question, we need
some definitions. A positive solutiom(r) of (1.4) in (0, co) is said to
haveslow decayf

u(ry = Ar~2"=0 4 o(r~2"=Y) asr — +oo, (1.6)

for some positive constant. On the other hands(r) is said to havdast
decayif

u(r)y =0(r~"=?2) asr — +oo. 1.7)

Thusu(r) is said to be aadial ground stateof (1.1) if it is finite up

to r = 0 with «/(0) = 0. We callu(r) aradial singular ground statef
insteadu(r) — +o0o asr — O*. It can be shown that these are indeed
all possible behaviors of a positive solution of (1.4). We remark that in
this language, in the case of a pure powet ¢, ground states have slow
decay in the supercritical case, while they have fast decay at the critical
exponent. Also, Lin and Ni's example is a ground state of slow decay.

THEOREM 1.1. — (a)Letg > (N +2)/(N — 2) be fixed. Then, given
any integerk > 1, there exists a number, < (N + 2)/(N — 2) such that
if pp < p<(N+2)/(N-2),then(1.1) has at leastk radial ground
states with fast decay.

(b) Let N/(N —2) < p < (N + 2)/(N — 2) be fixed. Then, given any
integerk > 1, there exists a numbey, > (N + 2)/(N — 2) such that if
(N+2)/(N —2) <qg < qi, then(1.1) has at leask radial ground states
with fast decay.

A nonexistence counterpart of the above result is the following.
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THEOREM 1.2. —Letg > (N + 2)/(N — 2) be fixed. Then there is a
numberp > N/(N — 2) such that ifl < p < p then there are neither
radial ground states nor radial singular ground states(bfl).

We observe that this nonexistence result is optimal, in the sense
that for g = 2p — 1 there are ground states, agl +2)/(N — 2) =
2N/(N —2) —1.

As for existence of singular ground states or slow-decay ground states,
we have the following result.

THEOREM 1.3. —(a) Giveng > (N + 2)/(N — 2), there exists an in-
creasing sequence of numbers< p, < --- with p, 2 (N +2)/(N — 2)
such that ifp = p, then there is a radial singular ground state @f.1),
with either slow or fast decay.

(b) GivenN/(N —2) < p < (N + 2)/(N — 2), there exists a decreas-
ing sequence of numbegs > g2 > --- with g, | (N +2)/(N — 2) such
that if ¢ = ¢, then there is either a slow decay ground state or a slow
decay singular solution.

The proof of Theorem 1.1 is based on the following key fact.

ProOPOSITION 1.4. —Assume that Eq(1.4) has a solutionug(r)
defined and positive on an intervé, Rp) and a solutioru, (r) defined
and positive on an intervalR ., 00). Assume also thak,, Ro, ug #Z tso
and thatug — u. has at leastk + 1 zeroes in(R,,, Ro) for somek > 1.
Then there exist at leagt — 1 radial ground states with fast decay of
(1.2).

For instance the proof of part (a) of Theorem 1.1 is thus reduced to
showing that for each number the assumptions of this result indeed
hold if we fix ¢ supercritical and then lgi be close enough from below
to the critical exponent. Similarly for part (b).

The proof of this proposition, as well as those of the other results stated
above, is largely based on a rather delicate phase-space analysis of a
three dimensional autonomous first order system equivalent to Eq. (1.4),
obtained after the so-called Emden—Fowler transformations. Loosely
speaking, a ground state with fast decay will correspond to a heteroclinic
orbit connecting two equilibria of the system with respectively a two-
dimensional unstable manifold and a two-dimensional stable manifold.
The assumptions of Proposition 1.1 amount to the presence of two
trajectories lying respectively on each of these surfaces, which wind
around each other at leakttimes. After a topological analysis, we
show that this winding inherits at leakt— 1 distinct trajectories lying
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simultaneously on the two surfaces, so that 1 heteroclinic orbits are
present.

It should be remarked that the presence of slow-decay solutions, like
that of Lin and Ni's example, is harder to be detected (and expected to
be non-generic) due to the fact that they correspond to a heteroclinic
orbit lying simultaneously on the two-dimensional unstable manifold
above mentioned and the stable manifold of a third equilibrium point
which is only one-dimensional. In fact, if such a solution exists, it is
automatically unique. A similar fact holds for a singular ground state.
This “nongenericity” makes us suspect that typically no much more than
the assertion of Theorem 1.3 can be said concerning existence of singular
or slow decay ground states. In this sense, Lin and Ni's example of a
slow ground state may well represent just a big coincidence, though we
do not know if this is the case. Instead the presence of fast decay ground
states is topologically “robust”. It should be mentioned that the setting
of the heteroclinic orbits here detected, seems in principle suitable for
the application of Conley index theory, see [11], since the sum of the
dimensions of the stable and unstable manifolds of the equilibria is larger
than the dimension of the space. However the multiplicity assertion seems
hard to be obtained without the special topological analysis carried out
here, not to mention the presence of a trivial heteroclinic representing the
solutionu = 0.

Proposition 1.1 is a somewhat surprising type of “topological shoot-
ing”, which seems applicable to a much broader class of nonlinearities,
but we will not ellaborate about this point here.

To be noticed is the fact that fast-decay ground states have finite energy,
so that one may expect them to be in principle workable via variational
methods. On the other hand, this seems hard, at least through usual min-
max characterizations. A point to be made is that a geometric approach
like that devised in this paper may reveal in fairly natural ways a lot of
the underlying structure of the problem. In this line we may also mention
for instance the works [8,9] and [1], where dynamical systems tools have
been used in the study of related equations.

The rest of this paper is organized as follows: In Section 2 we introduce
the Emden—Fowler transformations and the equivalent first order system.
We analyze its equilibria and describe locally the phase space near these
points. In Section 3 we prove Proposition 1.1 via topological arguments,
while in Section 4 we establish as a corollary the validity of Theorem 1.1.
In Section 5 we prove the nonexistence result Theorem 1.2, and finally
we prove Theorem 1.3 in Section 7.
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2. THE FIRST ORDER SYSTEM

We consider the classical Emden—Fowler transformation
x(t) =r? T Du(r)], e (2.1)

which transforms Eq. (1.4) into the equivalent problem

X +ax' +xl+exl —Bx =0, —oo<t<+o0, (2.2)
where
4 2 2 _
«=N—-2- " ﬂ:—(N-2-—>, y=217P
qg—1 qg—1 qg—1 qg-—1

Standard calculations show that finding a positive radial ground state
of (1.1), namely a solution of (1.4)—(1.5) is equivalent to finding a positive
solutionx(¢) in R of (2.2) such that

x(t) >0 ast — =+oo.

Introducing the variablesy = x’ and z = €', Eq. (2.2) becomes
equivalent to the autonomous first order system

X'=y, Y =—ay+px—x{—zx{,
Z/=)/Z’ (23)
z=>0

Our task is therefore equivalent to finding a solutidin) = (x(¢), y(2),
z(t)) of this system, witly(¢) > 0, such thak(r) — 0 ast — —oo, while
(x(1), y(t)) — (0,0) ast — +o0.

We observe that the plane= 0 is invariant under the flow associated
to system (2.3). This plane contains the two singularities of the flow
0o = (0,0,0) and Py = (841, 0, 0). For the flow restricted to this
plane, Oq is a hyperbolic saddleP, is a hyperbolic attractor. They are
connected by a heteroclinic orbit, precisely a branch of the unstable
manifold of Oq restricted taz = 0. This orbit is transversal to = 0, see
Fig. 1. This phase plane analysis (corresponding to the case of a single
power) is actually well known. See for instance the appendix in [9] and
its references.
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Let us now consider the behavior of the entire flow on the half-space
z > 0 near these singularities. Linearizing the flow aro@ybne obtains
one stable eigenvalue 2/¢g1) — (N — 2) < 0 with associated eigenvec-
tor (1,2/(¢g — 1) — (N — 2),0) and two unstable eigenvalue$(2 — 1)
andy = 2(q — p)/(g — 1) with associated eigenvectois, 2/(g — 1), 0)
and (0, 0, 1). Thus, from standard invariant manifold theory, see for in-
stance [7],0¢ has a two dimensional unstable maniféitt (Oo), consti-
tuted by all trajectories approaching, ast — —oo, whose tangent plane
is spanned by the two unstable eigenvectors. Moreover, it coincides with
this plane forx < 0. W*(0Oq) contains the entire-axis as well as the het-
eroclinic orbit onz = 0 connectingDq and Py. It is also transversal to the
planesz = 0 andx = 0. Now, linearizing around the singularit§y we
obtain the unstable eigenvalgewith associated eigenvector

1, Ba—Dtar+y?
Y Bgr/a=1
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Fig. 2.

We also have the two stable eigenvalues

—a+a?—4B(q—1)
2

with eigenfunctions contained in the plane- 0. The unstable manifold
of Py for z > 0, W*(Py), is thus one-dimensional, and constituted by a
single orbit, see Fig. 2.

In order to analyze the behavior of trajectories neat +oo it is
convenient to introduce also the additional transformation,

7= xZY0D,
S _ YX O\ 1p-1

y—<y+p_l>z ) (2.4)
B 1

Z

T @D/
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which makes the system equivalent to

=y,
v =ay + gx — xf —zx, (2.5)
Y= 53
with
4 ~ 2 2
a=———(N-2), ﬂ:—(N—Z——),
p—1 -1 p—1
~ q—7D
=2—.
14 p—1

This transformation corresponds to using the exponeinistead ofy
in the Emden—Fowler transformation (2.1), which is expected to reflect
better the behavior of a ground state at infinity. In fact, the effect of this
transformation is to “blow-up” the “singularity(0, 0, co) into the plane
7z = 0. These new coordinates extend upzte= 0, which is invariant
under the flow associated to system (2.5). The singularities of this new
flow are the point®., = (0, 0, 0) and P, = (8Y*—1, 0, 0). For the flow
restricted to this plan&).. is a hyperbolic saddle an#,, is a hyperbolic
repulsor. They are connected by a heteroclinic orbit which corresponds
to a branch of the stable manifold ©f,, restricted toz = 0, see Fig. 1.
As for the entire flow org > 0 near these singularities, we obtain that
O has associated two stable eigenvalugg2-1) — (N — 2) <0 and
—y =—=2(q — p)/(p — 1) with corresponding eigenvectors.

1,2/(p—1) — (N — 2),0) and (0,0, 1), as well as one unstable
eigenvalue 2/(p- 1) with eigenvector(1, 2/(p — 1), 0). Thus, O, has
a two-dimensional stable manifold* (0..) with tangent plane spanned
by the two stable eigenvectors and it coincides with this plané ferO.
W‘(Ooo) contains the entirg-axis as well as the heteroclinic orbit
connectingO,, and P... It is transversal to both planés= 0 andx = 0.
Similarly, P, has the stable eigenvaluey with associated eigenvector

<_1, , B _,lg)p/t&f +)72).
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P, has also the two unstable eigenvalues

a+/a2—4B(p—1)

2

with eigenfunctions contained in the plage= 0. The stable manifold

of P, W*(Py), is thus one dimensional, and constituted (fot 0)

by a single orbit. The following result describes the asymptotic behavior
of a trajectory of system (2.3) whosecoordinate remains positive as

t — —oo, and that of a trajectory of (2.5) whosecoordinate remains
positive ag — +o00.

LEMMA 2.1.—-Let x(r) = (x(¢), y(¢),€"") be a solution of system
(2.3). X(1) = (X(¢), ¥(¢), € 7") a solution of(2.5).

(a) Assume thak(r) > 0 for all —oo <t < 9. Then the orbit ok is
either contained iV*(Og) or it coincides withW* (Pp).

(b) Assume thak(r) > O for all 7o < ¢ < co. Then the orbit oK is
either contained ifV* (0O4,) or it coincides W|thW$(Poo)

Proof. —x(r) satisfies the differential equation,
X 4ax’ +xl+€'x) —Bx=0, —oo<t<+oo,
so thatu(r) = r~%@Vx(logr) satisfies
— (N () =PV P )+ ut ().
Assumeu(r) is unbounded as — 0. Then there exists a decreasing

sequencd, — 0 with /(8,) < 0. From the above equation we get then
thatu’(r) < 0 for all» > 0. Also, integrating frond, to » we get

PN () = 8N (5,) + / N (5) + u(5)) ds

so that
N ) < = (rY = 8Y)Cut (r)

for all smallr > 0. Hence

u(r) < Cr=2/a-,
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Assume first that there is a numb&r- 0 with x(¢) > § ast — —oo.
Stand now at any sequenge— —oo thenx, () = x (¢ + t,) is uniformly
bounded above, and below away from zero and satisfies

x! 4 ax! +xl, eyl — By, =0.

A standard compactness argument yields thathas a subsequence,
uniformly convergent over compacts to a solution positive and bounded
above and below away from zero of

X"+ax'+x1—Bx =0, —oo<t<o0. (2.6)

But, phase plane analysis shows that the only solution of this equation
with that property is the constadt= g“~b. Since the sequenag
was arbitrary, it follows thak(r) — Py ast — —oo, in other words
this trajectory lies inW,(Py). Assume now that there is a sequence
t, — —oo such thatx(z,) — 0 but thatx(r) /A 0 ast — —oo. Then
we may find a second sequenge— —oo such that O< § < x(r)) <
Y=Y /2 andx'(t) < 0. Then, analogously to the previous case, we
have that a subsequence xf + 7,) which converges uniformly over
compacts to a bounded, positive solutiomf (2.6) such thak’(0) < 0,
%(0) < gY@~V /2. However, phase plane analysis again yields that no
such solution exists. Henogr) — 0 asr — —oco which in turn yields
alsox’(r) — 0 using the second order equation, so th@ — Oq as
t — —oo. We conclude that this trajectory then liesWt (Og), and the
proof of the first assertion of the lemma is complete.

The proof of the second assertion is very similar. We claim that there is
a numbem > 0 with u’(r) < 0 for all » > a. Indeed, assume the oppoite,
namely that there is a sequenge— +oo with «’(r,) > 0. Then

n

PN ) = PV () = — /(u” +u?)sN " ds.

n

r

Hence
i
/(u” +u?)sN s < VN (r)

which inplies that, on the one hand,is nondecreasing, on the other
that the left integral is finite. But this implies that= 0, a contradiction.
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Assume then that far > a u is nonincreasing. Then
i) > s [urs)s* 1
u(r)z N1 u”(s)s S

It follows that

() > U’ (7).

From here it easily follows that(r) < Cr=%®~1 which implies that

X remains bounded as— +o00. After this, the proof of the second
assertion of the lemma follows in exact analogy as that of the first, now
using the fact that satisfies the equation

P 4ad +3+e73l —Bx =0, —oo<t<+o00.

This finishes the proof. O

The following intuitively clear fact will be important for further
analysis.

LEMMA 2.2.-The unstable manifold ofy, W*(Pp) is contained
in the closure of the unstable manifold 6, W"(Po). Similarly, the
stable manifold of?,,, W*(P) is contained in the closure of the stable
manifold of O, W*(Py).

For the proof of this result, we refer to the remark after the proof of
Lemmab5.1

Let us define the manifold®#* (O.,) and W*(P,.) as the intersection
of W (0u) and W*(P.,) with 7 > 0, expressed in terms of the original
coordinatest, y, z, namely

W*(0u) = {(x,y,2) | (&, 7, %) given by (2.4) € W* (0O, z > 0},

WS (Py) = {(x,y,2) | (£, 7,2) given by (2.4) € W*(Py,), z > 0}.

Let us observe then that a (nontrivial) traject@ryz), y(¢), z(r)) which
lies in W*(0g) and simultaneously iV, (0,) corresponds to a radial
ground state of (1.1), in the sense that

u(r) = r_z/(q_l)x(log r)
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solves (1.4)—(1.5). In fact this is fast decayground state. If this
trajectory lies inW"(0q) N W"(Ps,), then this is a slow-decay ground
state, in the sense of (1.6). These decay rates are easy to confirm via
linearization around), and P,,. In fact, the reciprocal is also true. Any
ground state needs to be of one of the types just described in terms of the
x transformation.

We should remark that a ground state needs to remain positive if not
identically zero. A trajectory which intersects the= 0 plane from the
x > 0 side, never crosses it back (observe that an0 the system is just
linear.)

Finally, we observe that a singular ground state corresponds precisely
to a trajectory lying inW"(Pg) N W*(0Oy,) Or W (Pg) N W*(Ps,). We
observe that there iat most one of such trajectories, sinc&*(Pp) is
one-dimensional, and the system is not invariarg-translations.

3. THE PROOF OF PROPOSITION 1.1

We shall kepp here the notation introduced in the previous section.
What we have to show is that if the assumption of Proposition 1.1 is
accomplished by certain numbierthen there exist at leakt— 1 distinct
trajectories inW* (Py) N W*(Ox).

Let uo(r) andu..(r) be solutions of (1.4) as in the statement of the
proposition. We defing; (t) = =29 VYu; (r)|,—e, i =0, oo and likewise
yi(t) =x[(t), z(t) = €', according to the transformation (2.4). Let us set

X (1) = (x: (1), yi (1), 2(1)).

We will also denote; = In R, , = In Rg. Since, by assumptiong(z) >

0 for all —oo <t < 1, it follows from Lemma 2.1 that the orbit ofy
lies in W*(Og) or it coincides with a branch oW"(Py) (the latter is
the case ofug a singular solution). Similarlyx., is a trajectory lying
either inW*(04) or in W*(P,,). The assumption of the proposition is
that xo — x has at least 2+ 1 simple zeros in the intervaly, ),
which amounts to the fact that the trajectoriegs) and X () wind
around each other at leasttimes. We will establish this below, with a
precise definition. Since, as we saw in the previous seclof(,P) lies
in the closure ofW*(0q), and W*(P,,) lies in the closure oW*(0.),

it follows that without loss of generality we may assume tkaties in
W"(O0p), andxy lies in W*(0y).
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Moreover, if we assume that only a finite number of trajectories
lie simultaneously inW*(0g) and in W*(0O,,) (otherwise an infinite
number of ground states with fast decay automatically exist), then slightly
perturbingx; (r) to neighboring trajectories ifv*(0g), respectively in
W*(0), We may also assume without loss of generality that these
trajectories do not lie simultaneusly in the two manifolds.

We observe that the-axis separates the manifoléf“(0Og) into two
components invariant under the flow, one of them a half-plane contained
in x < 0, the other a surfac® (Oo), which we define so that it contains
the z-axis. Observe thaW! (Op) is not necessarily contained in> 0.

Let us observe that the trajectaxy splits W (Oo) into two components.
Let us callHy the closure of the component which contains zkexis.

Let us denotd/ (zg) = HoN{z = zo}. ThenU (zo) is aC* curve without
self-intersections, whose endpoints @0, zg) and the point of the
trajectoryxg in the planeg{z = zq}.

Similarly, we see that the-axis separates the manifol@*(0,)
into two components invariant under the flow, one of them a half-plane
contained inx < 0, the other a surfac®3 (O,), which we define so
that it contains the-axis. Now, the trajectorx,, splits Wi (0O) into
two components. Let us calll,, the closure of the component which
contains the-axis. We denoteS(z9) = Ho N {z = z0}.

Our goal is to prove that for certaify the curvesU (zo) and S(zo)
intersect at least at — 1 points. Observe that these intersections will
correspond t@& — 1 distinct trajectories lying simultaneously W* (O,)
andW"(0p), hence td — 1 radial ground states with fast decay of (1.1).

In order to do this, we need some preliminaries. We can lift a planar
curveo (s), s € [0, 1], in R?\ {(xo, yo0)}, to a curves (s) = (6(s), p(s)) in
the polar coordinates plane via the relation

o (s) = (x0+ p(5)SINO(s), Yo + p(s) COSH(s)).

We define thavinding numbeof o around(xg, yo) as the number

1
(01 —06(0)|,

W (o, (xo0, yo)) = o

where[-] denotes integral part.
Next we consider two disjoint curveg andy» in the 3-dimensional
space which can be parametrized by theoordinate in the form

v (@) = (xi(2),i(2),2), =z €[z1,22]-



R. BAMON ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 551-581 565
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Fig. 3.

We define thelinking number of y1, v, in [z1, z2] to be the integer
W(o, (0,0)), whereo (z) = (x1(z) — x2(2), y1(z) — y2(2)), z € [z1, z2].

This number is obviously invariant under homotopies which preserve
endpoints of the curves, keep the curves disjoint and preserveztheir
coordinates.

Let ¢; (z) be a parametrization of the trajectoty, i = 0, oo, via thez-
coordinate, namely, (z) = x; (y tlogz). Fix numbers;; andz, and let
o1(s) andosy(s), s € [0, 1], be one-to-one parametrizations respectively
of U(z1) and U(zz), such thatoy1(0) = ¢o(z1), 01(1) = (0,0, z;) and
02(0) = (0,0, z2) andoz(1) = ¢o(z2).

See Fig. 3 for a description of the linking situation we are concerned
with.

The result of Proposition 1.1 is a direct consequence of the following
three lemmas.

LEMMA 3.1.-There exists a number, > 0 such that for any0 <
71 < z1 and all z > z; the winding number of curv&, contained in the
planez = z,, around the pointp,,(z2), W (o2, ¢ (z2)) €qualsm — 1 or
m, wherem is the linking number of the curveg and ¢, in [z1, z2].

LEMMA 3.2. —If k is the number given by the assumption of Proposi-
tion 1.1, andO < z; < zp, then the linking number of the curves and
¢ IN [z1, 22], is at leastk.

LEmmA 3.3. —If z; is chosen sufficiently large, then the curnié&)
and S(z») intersect at leasW (o>, P,,) times.
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We will devote the rest of this section to the proof of these results.

Proof of Lemma 3.1. et us observe that there is a unique value of
for which ¢..(z) crosses the plane= 0. We choose;; to be this value,
S0 thatp..(z) € {x > 0} for all z > z;.

Let ¢ be a small fixed positive number. Let us defifigz) to be the
following curve

01(5%) +(0,0,z — z1) if 1—<z<z1+e,
(Z’SO(Z)= 0,0, z7) fzi+e<z<zp—¢,
0a(2E) +(0,0,z —2) fzz—e <2<z,

Next we check that if is chosen small enough thefy and ¢, are
homotopic inside the region

S ={z21 <2< 22} \ P[22, 22),

leaving endpoints fixed and thecoordinate invariant. In fact, let us
consider the surfacél, defined earlier in this section, constituted by the
component of¥ (Og) which contains the-axis in its closure. Then the
set

U(z1) UU(z2) U{(0,0,2) | z1 <z < z2} Ugo([z1, 22]),

is the boundary ofHy, in manifold sense, see Fig. 3. We have that if
is sufficiently small, therp, can be homotopically deformed to a curve
$o which lies in Hy in such a way that that the deformation leaves the
z-coordinate unchanged and remains inside the refion

Indeed, letp(x, ) denote the solution of (2.3) wita(x, 0) = x. Let us
define the curved, in Hy as

¢(¢o(2),y tlog L) if - <z<zi+e,
¢o(z) =1 (0,0,2) if z1+e<z<z—e,
()0((;50(2)’ Vﬁllogé) if Z2—€<Z<22_

If ¢ is small, the distance betweég(z) andgo(z) is uniformly small for

7 € [z1, z2]. Fixing such are, a homotopy between the two curves with
the desired properties is readily constructed. We check nexpgtaatde,
are homotopic insidéfy, with invariantz-coordinate. It is straightforward
to check that there is a homeomorphigm Hy — [0, 1] x [z1, z2] which
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leaves the-coordinate invariant and satisfies the following properties

F(Ui(z1)) =10, 1] x {z1}, F(Ux(z2)) = [0, 1] x {z2},

F({(0,0,2) | z1 <z < z2}) = {0} x [z1, z2],

F(¢o([z1, z21) = {1} x [z1. z2].

On the other hand, it can also be checked that the cuf\es(z)) and
F(¢o(2)), z € [z1, z2] are homotopic inside the rectang® 1] x [z, z2],
with a homotopyG which leaves the endpoints of these curves as well
as theirz-coordinates invariantF ~1oG is a homotopy inH, with the
desired properties. See Fig. 4.

It follows that the linking number oy and¢, equals that o, and

Do
Let us write

$oo(z1) = (0, y1, 21), b0 (22) = (X2, y2, 22).
We definep,, as

O, y1,2) Ifzi<z<zi+e,
(0, y1, 21+ ) + =25, (x2, y2 — y1, 22 — 21 — 2¢)
ifz1+e<z<z2—¢,

éoo(Z) =

(x2,v2,2) ifzo—e<z< 2.

—

F(Ulz)

F(Ho\ - Fo;%

\F"%

NCFu)

Fig. 4.
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Then¢., and¢., are homotopic inside

{z1 <z <22} \ po(lz1, 22)),

leaving endpoints fixed angtcoordinate invariant. Indeed, if we choose
§ ande sufficiently small, we obtain thap., ([z1, z2]) and ¢ ([z1, z2])
are contained in the set

R={|x,») =0, y1)| <8, za<z<z1+¢}
U{x>0, z1+e<z<z2—¢}
U{|(x,y) = (x2, y2)| < 8,20 — e <z < 22},

and¢o([z1, z2]) N R = . Itis easily checked that a homotopyRwith
the desired properties can be built up.

Hence the linking number of the curves, ¢.. in [z1, z2] equals that
of o and¢g...

We claim that the winding number ef, around the point..(z>,),
measured in the plane= z,. is greater than or equal 0 — 1 and less
than or equal tan, wherem is the linking number o, andg... We have
that

$0(2) — oo (2)

o1(32) — (0, y1, 21) ifz1<z<z1+¢,

&

Z—21—¢

= _(O’ylso)_zz_z:l_zg(st y2_)’1,0) If Zl+8<2<22—€7

02(F2=E) — (x2, y2. 22) if 22— <z< 22

Let us call ¢(z) the x — y component ofgy(z) — ¢oo(2). Let us
write ¢(z) = (p(z) sinB(z), p(z) oK (z)). We observe thaW (¢, (0, 0))
corresponds precisely to the linking numbergfand¢,,,

- 1
W(¢,(0,0) = {Z(Q(Zz) - O(m))}

1
= [Z(G(zl—i-s) —0(z1) +0(z2—¢) —0(z1+ ¢)

+9(Z2)—9(Zz—8):|. (3.1)

We claim that

6(z14¢) —0(z1)| <7 (3.2)
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and
0(z2—¢) —0(z1+¢)| <. (3.3)

We check first (3.2). We recall that is a parametrization of/ (z1) =

W4 (0o0) N {z = z1}. Because of the form of vector field defining system
(2.3), Wi (Oo) cannot intersect the s¢tr = 0,y > 0}. On the other
hand, W"(0q) splits into a half-planeH contained in{x < 0,y < 0}
and W (0o). From these facts it follows thdl (z1) does not intersect
{x <0,y > 0} and hence (3.2) holds true. Now, since betwege# ¢ and

72 — ¢, the curvep (z) is a line segment, inequality (3.3) readily follows.
From (3.2), (3.3) and (3.1) it follows that

n<W(,(0,0)<n+1,
where

= = 0 0
n= E( (z2) — (22—8)) .

But n is precisely the winding number we want to estimate and
W (¢, (0,0)) = m. Thus the claim follows, and hence the lemma

Proof of Lemma 3.2. We will show that the linking number afg
and ¢ In [z1, z2] Where exactly 2 + 1 zeros ofxg — x,, €xist in the
interval [r_, z,.] and they are in the interior of the interval, is at lekst
Heret. = y~tlogzi o.

Leth = xg — x. Thenh satisfies a second order equation of the form

h' +oah’ +a(t)h =0

andh has exactly 2 + 1 zeros in(z_, t, ). By definition of the linking
number, it equals the winding number around the origin of the curve
o(z) = (h, W) (ytlogz) in [z4, z2]. But this number is invariant under a
reparametrization of the curve it hence equals that éf(r) = (h, 1) (1),

t € [t_,t,]. Note that this curve does not touch the poift0) since

h cannot have a double zero, hence the winding numés, (0, 0))

is indeed well defined. Let us also observe that whenéveanishes,
o crosses transversally the lile= 0 in the clockwise direction. Let
I <t <ty<--- <ty <ty bethe zeroes oi, and consider a lifting
(p(1),0(r)) of &, so thato (1) = (p(r) Sind(z), p(r) cosd(t)). Assume
6(t-) € (0, ). Thenb(t;) = jm for j =1,...,2k + 1. Since no more
zeros exist beyongy 1, it follows that (2k + 1) < 0(¢y) < (2k + 2)7.
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and hence

N 1
WE.(0,0) = | - (0(1) = ) | = k.

as desired. The proof #f(r_) € (7, 27r) is similar. O

Remark— We observe from the above proof that the linking number
of ¢p and ¢, is hondecreasing as a function of the interval where it is
measured, namely the linking numberi, z5] is larger than or equal to
that in[z1, z2] whenevelzy, z2] C [z}, 25

Proof of Lemma 3.3. ransformation of, via (2.4). We recall that
for z, > 0, the sectiorS(z,) is given byH,, N {z = z,}, which is a curve
with endpoints(0, 0, z2) and X, (y tlogz,). We have that the orbit of
Xxo lies in W¥(04,), so that in coordinates (2.4%(r) — 0 ast — +oo.
Hence if%, is sufficiently small,S(Z,) is well approximated by the seg-
ment joining its endpoints. Now, the image of this segment via transfor-
mation (2.4) is a line segment joinin@, 0, z2) andx,(y ~*logzz), where
2o=2, P74V Thus, ifz, is small enough, we also have tHit.) is
well approximated by the segment joining its endpoints.

Let 2(s), s € [0, 1] be a parametrization of(z») such thatn,(0) =
(0,0, z2), 712(1) = Poo(z2) = (x2, y2, z2). Let us cally the vector inR?
whose components are the y coordinates ofyp,. Since S(zp) does
not have self-intersections, we may choogs¢o be one-to-onen(s),

s € [0,1), can be lifted to a curvey(s) = (6,(s), p,(s)) in the polar
coordinates plane, so that

n(s) = (p,(s) SiNG, (s) + x2, p; (s) COSH, (s) + y2).

Now, as we have mentioned, theaxis separatedV“(0g) into two
components, one of them a half-plane contained in 0, y < 0 and
the other the surface we calléd{ (Oog). ThusU (z2) does not intersect
this half-plane. We denote biythe parametrization afx, y)-coordinates
of the line constituting the intersection of the half plane angz,, let us
sayl(s) = —(s,as), s > 0, for somez > 0. We calll = (6, p;) its lifting
to polar coordinates arour, y,). Sincen(0) = o (0) =1(0") = (0, 0),
thenn(0) = o (0) = 1(0) = (Ao, po)-

Let us callm the integein = W (o, (x2, y2)). Then there exist numbers
0=s0 <51 <--- <, <1 such thatd,(s;) = 2jm + 6p. Now, if z»
is sufficiently large, we have that(1) € {x < 0} and we can conclude
0,(1) = 2(m + L)z + 6q. Thus, if we set,, .1 = 1, thens,, < s, 1. We
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will show that for each K j <m o((s;_1,s;41)) intersects the curve
n(s) + (2jm, 0).

Let us observe that sinegis well approximated by the segment joining
(0,0) and(x2, y»), then

0o —m <0,(s) <bo+m forallsel0,1).
We also have that
Op—1m <6;(s) <O+ forallse(0,c0).

Besides;(s) — oo if s — +o0. Thus, the curve.; obtained by joining
the curves; + (25, 0) andl + (25, 0) is contained in the set

((2j = D7 + 60, (2] + Dt 4 6) x (0, 00).

L; does not have self-intersections, so that it separates the half-plane
p > 0 into two components, one of them containing the{8et (2 —
1 + 6} and the othedd > (2j + 1) + 6p}. Therefore, for all 1<
Jj <m, a(sj,sj41) intersectsL ;. Sinceo does not intersedt, o does
not intersect + (27, 0). Henceo (s;, s;4+1) intersects) 4+ (2, 0), and
the claim is thus proven, see Fig. 5. Next we see that these correspond to
distinct intersections n the original coordinates. Nowglet (s;_1, s;+1)

T+(2m0)

! L |
B+ 2% B2/ Q2T B 42GHIT G+ B(Y) 6
1+ (2jm,0)

Fig. 5.
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be such tha# (a;) lies on the curvey + (2, 0). We have that ifji; # j»
theno(a;) # o(aj,). In fact, if otherwise, the curve§ + (2ji7, 0)
and 77 + (2,7, 0) would intersect, and then the curvewould self
intersect, and this does not happen. Thus, forjallhere is ab; such
tato (a;) = n(bj) + (2jm,0), so thato (a;) = n(b;). Sinceo is one-to-
one, all pointss (a;) are distinct, and hendé (z2) and S(z») intersect at
least atn — 1 points. This concludes the proofo

4. THE PROOF OF THEOREM 1.1

Let us consider first the situation described in Theorem 1.1. We fix
a numberg with ¢ > (N +2)/(N — 2). In view of Proposition 1.1 it
is sufficient to establish that, giveh > 1, there is a numbep, <
(N +2)/(N — 2) such that forp, < p < (N +2)/(N — 2) there exist
solutions of (1.4, andu, with u; positive in(0, R;) andu, positive in
(R2, co) with the property thati; — u, is not identically zero and has at
least Z + 1 zeros. To do this, we establish first the following fact.

LEMMA 4.1. -Assumep = (N +2)/(N —2) andg > p. Let (x(¢),
y(t), z(t)) be any trajectory inW,(0Og) with z(z) > 0 and x(¢) > 0 as
t — —oo. Then

(i) x(r) >0forall ¢t >0.

(i) x(r) defined by transformatiori2.4) is uniformly bounded and

remains away from zero as— oo.

Proof. —Consider such a trajectory and |&étr) be defined by the
transformation (2.4), for thig and forp = (N +2)/(N — 2). Thenx
satisfies the second order equation

7 + )ESFN+2)/(N—2)

+e 73l — =0 —oo<t<+o0. 4.1)

Assume thatx vanishes at a first point = 7. Observe thati() =
Ce+ o(e) ast — oo for someC > 0. Integrating Eq. (4.1) betweenoco
andT, after multiplying byx’ we obtain

i/(T)Z
2

T
+/e"7’i+(t)qi’(t) dr =0,
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so that after integration by parts we obtain

)Z/(T)Z
2

B T
14 —Vt > +1
+ — /eyx+(t)q dr =0,
q+1.J

and this is a contradiction, unless= 0. This proves the first assertion.
For the second assertion, let us assume that there is a seguenceoo
so thatx (z,) — 0. Now one gets the identity

B L () S N (7 L N ()

e
p+1 2 + g+1 2

- In
14 _5f~ 1
—— [ e7'x () dr =0.
+q—|—1/ x4(1)
—00

Lettingn — oo we obtain that
o
/ e "3, () dr =0,
—00

hencex = 0, a contradiction. Observe that a similar identity also shows
thatx is also uniformly bounded. O

Let x,(¢) be the only trajectory of (2.3) with-component & whose
orbit coincides withW* (Py.).

Consider also any (fixed) trajectory(zr) in W*(0Oq) which does
not coincide withx,(z). Let x,(z) and x(zr) be their respective first
coordinates in the transformatiai2.4). We claim thatx — x, has an
infinite number of zeros. In fact, let be any sequence witf) — +o0.
Let us setx, (t) = x(¢, + t). Then from the previous lemma&,, () is
uniformly bounded above, and below away from ze¥p.satisfies the
equation

X4 g INTDIIN=2) 4 @715 50 _ B, =0, —oo<t <400, (4.2)

with §, = e — 0. By a standard compactness argument, it follows
that, passing to a subsequenge— i, uniformly on compact intervals,
wherex solves

¥ 4 xWNHADIN=2 _ gx =0, —o00<t<+400, (4.3)
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X is bounded above and below away from zero. Besides, sirared X,
do not coincide, andl, is the only trajectory irW, (P.,) andx, (¢t +t,) —
BYP=D uniformly on compacts, thehis nonconstant. But the only solu-
tions positive and bounded away from zero of the above equation are pe-
riodic, and cross the constant valg&*»—b an infinite number of times.
This proves the claim.

Let us consider an intervéd, o] where one sees 2k1 zeros oft — x;.
For fixedgq, we take a numbep slightly smaller thanN + 2) /(N — 2).
Then in the coordinates W* (P.,) remains as close as we wish on each
given compact interval of thé-coordinate to the trajectory; if one
choosesp close enough to critical. Similarly, one can find a trajectory
in W*(0Op) very close tax for all p near critical. Since the 2& 1 zeros
of x — x; are simple, the same will be true for those close-by trajectories,
in the interval(z,, r,) for p sufficiently close to critical. In this way, the
assumption of Proposition 1.1 do hold in the situation described in (a) of
Theorem 1.1 and the result hence follows. The proof of assertion (b) is
actually symmetric. It can be understood as basically a reflection of the
situation just described. We need the following analogue of Lemma 4.1.

LEMMA 4.2.-Assumeg; = (N+2)/(N -2 andN/(N—-2) <p <
g. Let (x(2), y(¢), z(¢)) be any trajectory inW*(04,) with z(¢) > 0 and
x(t) >0asr — +oo. Then

(i) x(r) >0forall ¢t >0.

(i) x(#) is uniformly bounded and remains away from zeror as

—0OQ.

Proof. —x(¢) satisfies the second order differential equation
x"+ xiNﬂ)KN*z) +e&x! —Bx=0, —oo<t<+oo. (4.4)

Notice thatg > 0 sincep > N/(N — 2). Assume that vanishes at a last
pointt = T. Observe thak () = C&/’ + o(e’) ast — —oo for certain
numbersC > 0 andd > 0. Integrating Eq. (4.4) betweeh andoco, after
multiplying by x’, and then integrating by parts we now obtain

x/(T)Z
2

Y t p+l
+—/e?’x+ (r)dr =0,
p—i—l.T

and this is a contradiction, unless= 0. This proves (a). The proof of (b)
is analogous to the corresponding assertion in Lemma 411.
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After this result, the proof of part (b) of the theorem follows by a
similar perturbation analysis as that carried out in part (a), except that
now we consider — —oo. This concludes the proof of Theorem 1.1.

5. THE PROOF OF THEOREM 1.2

In this section we will perform the proof of the nonexistence result
Theorem 1.2. Thus, we fig > (N +2)/(N —2) and show that ifp
is taken sulfficiently close t&//(N — 2), then no ground states of (1.1)
(singular or nonsingular) exist.

We consider the initial value problem

N-1

r

u// +

u' +ul +ul =0 r>0 (5.1)

u'(0) =0, u(0)=a > 0. (5.2)

Let u,(r) be the unigue solution of this initial value problem. Let us
denote by, () andx, (¢) their Emden—Fowler transformations, namely

Xo(1) =€V (&),  Fu(r) =P Dy, (€).

Thenx, (¢) has associated a trajectory of system (2.3yVi(Oy), X, (1) =
(xo (1), yo (1), €"). Let us also consider the unique trajectagyr) with z-
component ¥, corresponding to the one-dimensional unstable manifold
of Py, W"(Pyp). Associated to this is then the (unique) singular solution of
(5.1) given byu.,(r) = r~?@ VY, (logr), wherex, is thex-component
of X,.

We need the following result.

LEMMA 5.1.—
aﬂjj}mxa(t) = x.(1)
uniformly on compact intervals.

Proof. -We know that the tangent plane to the maniféld (Oo) is
the plane which contains theaxis and the vectofl, 2/(¢ — 1), 0). By
Hartman and Grobman Theorem, see Theorem 1.1.3 in [3], we know that
the dynamics nea@, of the system is characterized I6if-conjugation
with that of the linear system

/

x'=y, V' =ay — Bx, 7 =vyz,
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whose unstable manifold of the origin is precisely the above mentioned
plane. Thus there is a unique orbit of the linear system, let us say

2
() = ae?/ab <1, — o> +¢€7'(0,0, 1),
q —_—

whose associated trajectory approximates thak,of But the initial
conditions (5.2) read in terms of this trajectory as

(xa(®), yo (1)) = €/ (1, il) +o(e?/@ D), ast — —o0.
q—

Hence& = «, and the two trajectories remain uniformly close in a
neighborhood of the origin independent @f But asa — +oc0, this
trajectory gets closer and closer to the (invariant) plare 0, hence

to the heteroclinic orbit contained in= 0 which connect®)q and Pg.

In particular there are points of the trajectory xof which get closer

and closer toPy asa — +oco. Therefore, for largex, this trajectory
enters a neighborhood d@f, where the dynamics of the system is well
described by its linear part. Let us recall thiatis a hyperbolic attractor

on thez = 0 plane, either a focus or a node, while it has one expanding
direction transversal to this plane, precisely the tangent line to the one-
dimensional unstable manifold @. Examination of the linear system
yields that an orbit not contained in the= 0 plane which gets close to

Py, turns upwards, staying close ¥" (Pp) in an entire neighborhood of

Py. Since this neighborhood is independentrothe conclusion is that in

a neighborhood oPy, the trajectory ok, gets uniformly close t&v* (Pp)

as a — +oo. Continuity in the initial conditions of the initial value
problem associated to the system implies then that given any compact
subset of the real line, large alpha impligsstays uniformly close ta,.

This concludes the proof.

Remark— The first part of Lemma 2.2 follows immediately from
this result. A proof symmetric to the one just carried out, but applied
to Eqg. (2.5), shows that als®¥*(P.) is contained in the closure of
W (Ox).

LEMMA 5.2.-GivenN/(N —2) < p < (N +2)/(N — 2) there is a
numbera such that for alle < a there is a unique point, with x(z,) = 0.
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Proof. —~We consider now directly problem (5.1)—(5.2). Let us set
iy (r) = a? P~y (ar). Theni, satisfies

N-1

~// ~/ ~ y ~
Uy + i, +ub, +a’al, =0, r>0

i (0)=0,  i,0) =1

Sincea” — 0 asa — 0, it follows by continuity of the solution of this
problem in«, thatu, — ug uniformly over compacts, wherg* is the
unique solution of the initial value problem

N —
u” + u'+ul =0, r>0

r

u'(0) =0, u(0)=1.

This solution vanishes exactly once at certain number 0, with
u* (r*) < 0 since p is subcritical. ¥* is bounded by some number
depending only orp. Hence for alle sufficiently small, the same will
happen at certain poimt,.

Proof of Theorem 1.2. ket us fix g supercritical, and consider first
the casep = N/(N — 2). We claim that no solution of (5.1) positive in
the interval(0, co) exists in this situation. In this cage= 0, hence the
equation satisfied in theoordinates is

X" —ax' +xPe”x1=0.

Let us observe that this solution satisfies tha) — 0 andx’(r) — 0 as
t - —o00, hence integrating the equation frorpo to ¢ we obtain the
relation

(1) — ai(r) + / %P (7)dr <0. (5.3)

We have thaf (r) andx’(z) are uniformly bounded. In fact, for instance
boundedness of is equivalent to that of the function? ?=Vu(r).
Integrating(5.1) we obtain that

/ 1 I N-1
—u'(r) > Y u? (s)s" "+ ds.

0
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In particularu is decreasing, so that,
() = —uP (r)
—u (r) =2 —u(r).

N

From here it easily follows that(r) < Cr=?®=Y and u'(r) <
Cr~(+D/(r=1 which imply thatx andx’ are bounded.

Coming back to relation (5.3), we obtain from the boundedness of
andx’ that [%_ X7 () dr < +o0. Hence there is a sequengesuch that
x(t,) — 0 andx’(r,) — 0. But, invoking again relation (5.3) at=, and
lettingn — co we obtainffooo XP(t)dr =0, hencex =0, a contradiction
which proves the claim.

Let us now proceed to the proof of the theorem. From Lemma 5.3, we
see that the singular solutiofy crosses transversally the plane= 0 at
some height = z. From Lemma 5.1, it follows that for eagh close to
N/(N — 2) and allx,’s with sufficiently largea, let us sayx > b > 0,
also crossx = 0 before reaching heightz2 On the other hand, from
Lemma 5.2, we see that & s with sufficiently smallx, say O< « < a,
also cross the plane= 0 and the distance from the crossing point to the
x-axis is bounded below, away from zero.

Let us now considerx, with « € [a, b]. From Lemma 5.3, alk,’s
vanish before infinity ifp = N/(N — 2). Continuity of the solution of
the initial value problem irp then implies that for alp sufficiently close
toN/(N — 2),and allx € [a, ], x,, also vanishes. Summarizing, we have
shown that no solution of problem (5.1)—(5.2) can remain positive for all
r > 0if p is sufficiently close taV/(N — 2). This concludes the proof of
the theorem. O

6. THE PROOF OF THEOREM 1.3

Let us fixg > (N + 2)/(N — 2). A first observation is that a singular
ground state with slow decay exists if and only if the one dimensional
manifolds W* (Py) and W*(P,,) coincide, while a singular ground state
with fast decay is present whenev&t (Pp) is contained inV* (Oy,).

Let us consider the solutiong(r) andX..(¢) with z-component ¥
whose trajectories coincide respectively Wittt (Po) and W* (Py.).

Referring to the notations introduced in the proof of Lemma 3.3, we
consider for a number, > 0 to be fixed later, the unstable and stable
sectionsU”(z,) and S”(z,). We consider one-to-one parametrizations
o? andn? with ?(0) = n”(0) = (0,0,z,) ando?(1) = ¢o(zy) = P?
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andn? (1) = ¢ (z) = QF. Let alsol(s) be the half line constituted by
the z . -section of the plane branch #f*(0y), contained inc < 0.
Let us consider liftings to polar coordinates around the pgiht

o’ (s) = (61(5)), pl(s), n’(s) = (67 (s), pj (),

17(s) = (6 (), o ()
of these curves, selected so that

(6o(p), po(p)) =57 (0) = 77 (0) = [7(0)

defines a continuous function pf
Let us consider a numbei, > N/(N — 2) such that

W' (Po) N (W*(Pso) U W*(0s)) = 0. (6.1)

Let N(po) be the total linking number 0, co) of the curvespy and
®oo- ThenN (pg) < +o00. From the proof of Theorem 1.1 we know that
N (p) grows to infinity asp 1+ (N + 2)/(N — 2). Let us choose a number
po<p1<(N+2)/(N—2) with N(p1) > N(po) +4 and such that (6.1)
also holds atp;. The claim, from which the result of part (a) of the
theorem readily follows, is that there must exist a numper (po, p1)
such that eithe” = Q” or P? € S”(z,). We will show this, making a
suitable choice of , .

Let us observe first that there is a numtdr> 0 such that for all
p €lpo, p1l, z+ 2 1,5 €[0,1], |p2(s)| < M. On the other hand, since
Xo(#) does not correspond to a singular ground state for@aay po, p1l,
it must cross the = 0 plane. It follows that if we fix, large enough we
may also assume tha? — P?| = p?(1) > M for all p € [po, p1]. Let
us fix such &

Let ng be the winding numbety = W (o 70, Q7°). Then, enlarging.
if necessary, we may also assume from Lemma 3.1 M@ly) < ng <
N (po) + 1. Now, from our choice op; we then have that

W (o?t, QP) = no+ 3. (6.2)

Let us consider, the translates of the culRel? (s) = I7(s) + (2n7, 0).
Then if M > 0 was chosen large enough, the curvésseparate the
region p > M into connected components, for alle [po, p1]. I"(s).
Now, 6, (s) € (6o(p) — 7, 0o(p) + ). Let us assume that the poimnte(1)
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was betweeri?® and/}?,. (Actually n = ng or n = ng — 1.) Then, by

continuity, 57 (1) is between’? and!?,, for all p € [po, p1] since this
point always was ip > M, see Fig. 6. We conclude that

071(1) < 6o(p1) + 7 + 27 (n+ 1) < 27 (no + 2),
and hence the winding number
W(a?t, Q) <ng+ 2.
We have reached a contradiction with (6.2), and hence the assertion of

the theorem in its part (a) holds. The proof of part (b) of the theorem is
analogous. O
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