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ABSTRACT. – We consider the semilinear heat equation in a bounded
domain ofRd , with control on a subdomain and homogeneous Dirichlet
boundary conditions. We prove that the system is null-controllable at any
time provided a globally defined and bounded trajectory exists and the
nonlinear termf (y) is such that|f (s)| grows slower than|s| log3/2(1+
|s|) as|s| →∞. For instance, this condition is fulfilled by any function
f growing at infinity like|s| logp(1+ |s|) with 1< p < 3/2 (in this case,
in the absence of control, blow-up occurs). We also prove that, for some
functionsf that behave at infinite like|s| logp(1+ |s|) with p > 2, null
controllability does not hold. The problem remains open whenf behaves
at infinity like |s| logp(1+ |s|), with 3/26 p 6 2. Results of the same
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kind are proved in the context of approximate controllability.

AMS classification: 93B05, 93C20

RÉSUMÉ. – On considère l’équation de la chaleur semilinéaire dans
un domaine borné deRd , avec un contrôle à support dans un sous-
domaine et avec des conditions de Dirichlet au bord. On démontre que,
s’il existe une trajectoire bornée et globalement définie et le terme non
linéaire f (y) est tel que|f (s)| croît moins vite que|s| log3/2(1+ |s|)
quand|s| →∞, alors le système est exactement contrôlable à zéro dans
un temps arbitrairement petit. Par exemple, cette condition surf est
satisfaite sif (s) croît à l’infini comme|s| logp(1+|s|) avec 1<p < 3/2
(dans ce cas, en absence de contrôle, on a explosion en temps fini). On
démontre aussi que, pour toutp > 2, on n’a pas la contrôlabilité exacte
à zéro pour certaines fonctionsf dont le comportement à l’infini est
comme celui de|s| logp(1+ |s|). Cette question reste ouverte lorsque
3/26 p 6 2. Finalement, on démontre des résultats du même type dans
le contexte de la contrôlabilité approchée.

1. INTRODUCTION AND MAIN RESULTS

LetΩ ⊂Rd be a bounded domain with boundary of classC2, letT > 0
be given and assumef :R 7→ R is locally Lipschitz-continuous. We will
consider semilinear parabolic systems of the form

yt −1y + f (y)= v1ω in Ω × (0, T ),
y = 0 on ∂Ω × (0, T ),
y(x,0)= y0(x) in Ω.

(1.1)

In (1.1), y = y(x, t) is the state andv = v(x, t) is a control that acts
on the system through the nonempty open setω ⊂ Ω . 1ω denotes the
characteristic function of the setω. We shall denote byQ the cylinder
Ω × (0, T ) and byΣ its lateral boundary∂Ω × (0, T ).

We will assume thaty0 ∈L2(Ω) andv ∈L∞(ω× (0, T )). In most part
of this paper, we will also assume that, for somey0 andv, system(1.1)
admits a solution globally defined in the time interval[0, T ]. Of course,
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this holds immediately when

f (0)= 0, (1.2)

in which casey ≡ 0 solves(1.1), with y0= 0 andv ≡ 0.
In the sequel,C denotes a generic positive constant. For instance, the

equalityC = C(Ω,ω) means thatC only depends ofΩ andω.
For simplicity, we will requiref to satisfy∣∣f ′(s)∣∣6C(1+ |s|p) a.e., withp6 1+ 4/d. (1.3)

Under this condition, system(1.1) possesses exactly one local (in time)
solution.

In accordance with the results in [5], under the growth condition∣∣f (s)∣∣6 C(1+ |s| log
(
1+ |s|)) ∀s ∈R, (1.4)

the solutions of(1.1) are globally defined in[0, T ]. More precisely, one
has

y ∈C([0, T ];L2(Ω)
)∩L2(0, T ;H 1

0 (Ω)
)
.

This is also true if, instead of(1.4), we assume a “good-sign” condition,
like the following:

f (s)s >−C(1+ |s|2) ∀s ∈R. (1.5)

The main goal of this paper is to analyze the controllability of(1.1) when
blow-up occurs, i.e., without imposing any of these conditions(1.4) or
(1.5).

It will be assumed thatω 6=Ω . Otherwise, whenω =Ω , the problem
can be reduced to the controllability of the (linear) heat equation since
the nonlinear term is absorbed by the control in a trivial way.

We will first analyze the so-callednull controllability property. System
(1.1) is said to be null-controllable at timeT if, for any y0 ∈ L2(Ω)

and any globally defined bounded trajectoryy∗ (corresponding to the
datay∗0 ∈ L2(Ω) andv∗ ∈ L∞(ω × (0, T ))), there exists a controlv ∈
L∞(ω × (0, T )) such that the corresponding solution of(1.1) is also
globally defined in[0, T ] and satisfies

y(x, T )= y∗(x, T ) in Ω. (1.6)
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Obviously, when(1.1) is linear, this is equivalent to say that, for each
y0 ∈L2(Ω), there existsv ∈L∞(ω× (0, T )) such that the corresponding
solutiony satisfies

y(x, T )= 0 inΩ. (1.7)

This justifies the definition we have introduced of null-controllable
systems.

Notice that, if (1.6) holds, extendingv for t > T as the controlv∗
associated toy∗, we obtain a solutiony that coincides withy∗ as long as
y∗ exists. In particular, ify∗ is a stationary solution of(1.1) or, more
generally,y∗ is defined for allt > 0, theny is also globally defined
and coincides withy∗ for all t > T . Hence, from the viewpoint of
applications, it is very important to know whether or not(1.1) is null-
controllable.

Our first main result is of negative nature.

THEOREM 1.1. – There exist locally Lipschitz-continuous functions
f such thatf (0)= 0, satisfying∣∣f (s)∣∣∼ |s| logp

(
1+ |s|) as |s| →∞ (1.8)

with p > 2, for which system(1.1) fails to be null-controllable for all
T > 0.

Remark1.1. – For the proof of Theorem 1.1, we choosep > 2 and

f (s)=
|s|∫

0

logp
(
1+ |σ |)dσ ∀s ∈R (1.9)

and we prove a localized estimate (inΩ \ ω) that shows that the
control cannot compensate the blow-up phenomena occurring inΩ \ ω.
Arguments of this kind are well known. For instance, see J. Henry [14] for
the proof of the lack of approximate controllability of the heat equation
with nonlinear absorption terms; see also O.Yu. Imanuvilov [15] and
A. Fursikov and O.Yu. Imanuvilov [10] for examples of systems that
fail to be null-controllable with power-like nonlinearities, i.e., in the
more restrictive class of nonlinear terms growing at infinity like|s|p with
p > 1. 2

The functionf in (1.9) is such thatf (0) = 0. Therefore,y∗ ≡ 0 is a
stationary solution of (1.1) corresponding to the controlv∗ ≡ 0 and, as
mentioned above, the null controllability problem makes sense.
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It is important to observe that the solutions to(1.1) can blow up in the
absence of control as soon as|f (s)| grows at infinity as in(1.8) with
p > 1. Therefore, Theorem 1.1 does not exclude the null controllability
of a whole range of nonlinear systems for which blow-up occurs. Namely,
when(1.8) is satisfied with 1< p6 2.

In our second main result, we establish conditions under which(1.1)
is null-controllable:

THEOREM 1.2. – Let T > 0. Assume that(1.1) admits at least one
globally defined and bounded solutiony∗, corresponding to the data
y∗0 ∈L2(Ω) andv∗ ∈ L∞(ω× (0, T )). Assume thatf :R 7→R is locally
Lipschitz-continuous and satisfies(1.3) and

f (s)

|s| log3/2(1+ |s|) → 0 as |s| →∞. (1.10)

Then(1.1) is null-controllable at timeT .

Remark1.2. – There is an extensive literature on semilinear parabolic
and elliptic problems analyzing the existence of global and/or stationary
solutions. At this respect the following result by H. Brezis et al. [3] is
worth mentioning:Assume that, for someσ > 0, one hasf (σ ) < 0 and

∞∫
σ

1

f (s)
ds >−∞. (1.11)

Also, assume there existsy0 ∈ L∞(Ω), with y0> 0, such that the system
(1.1) corresponding to this initialy0 and v ≡ 0 possesses one global
classical solution(defined for allt > 0). Then there exists at least one
weak stationary solution of(1.1) corresponding tov ≡ 0.

Recall that (1.11) guarantees the existence of solutions of(1.1) that
blow up in finite time. Roughly speaking, this result shows that, in the
class of nonlinearities in which blow-up arises, forv ≡ 0, the existence
of positive global solutions implies that weak stationary solutions exist.
It is a routine argument to show that, under the growth conditions we are
imposing onf , these weak solutions are bounded.2

Remark1.3. – The proof of Theorem 1.2 provides estimates on the
size of the control needed to achieve null controllability. Furthermore,
by inspection of the proof, one sees that null controllability still holds
under slightly more general conditions. More precisely, for each globally
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defined and bounded solutiony∗, there exists̀ (y∗) > 0 such that, if

lim sup
|s|→∞

|f (s)|
|s| log3/2(1+ |s|) 6 `(y

∗) <+∞

and y0 is given, we can findv∗ ∈ L∞(ω × (0, T )) such that(1.6) is
satisfied. 2

Remark1.4. – In particular, Theorem 1.2 says that, for eachy0 ∈
L2(Ω), there exists a controlv such that the corresponding solution of
(1.1) is globally defined in[0, T ]. In other words, if a globally defined
trajectory exists, then for eachy0 a controlv can be found such that the
corresponding solution is globally defined as well. Of course, this cannot
be guaranteed to hold for any right-hand side and any initial datum, since
we are in the range in which blow-up may occur.2

Remark1.5. – Without the assumption(1.3) on f , the uniqueness of
a solution to(1.1) for a givenv is not guaranteed. In these conditions,
arguing as in the proof of Theorem 1.2, we can deduce the existence
of a controlv such that system(1.1) admits at least one solution that is
globally defined in[0, T ] and satisfies(1.6). We refer to [16] for a similar
discussion. 2

Theorem 1.2 asserts that system(1.1) is null-controllable under the
growth condition(1.8) provided p < 3/2. Obviously, there is a gap
between Theorems 1.1 and 1.2:We do not know whether or not system
(1.1) is null-controllable whenf satisfies(1.8) with 3/26 p 6 2.

As we shall see, the proof we give of Theorem 1.1 does not hold
for p 6 2. The same can be said about the proof of Theorem 1.2 when
p > 3/2. Thus, the case 3/26 p 6 2 is an interesting open problem. We
shall return to it in Section 6.

In [8], it was shown that zero controllability holds under the more
restrictive condition

f (s)

|s| log(1+ |s|) → 0 as|s| →∞. (1.12)

Note that, under condition(1.12), the solutions to(1.1) cannot blow
up. Recently, V. Barbu [2] has proved the zero controllability of(1.1)
under the growth condition(1.10), but imposing additional “good-sign”
conditions similar to(1.5) (see also [1]). Therefore, to our knowledge,
Theorem 1.2 is the first result in the literature on the null controllability
of blowing-up semilinear heat equations.
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Recall that, in the context of the semilinear wave equation, due to the
finite speed propagation property, if blow-up occurs, exact controllability
cannot hold (see [19]). Thus, Theorem 1.2 holds due to the parabolic
nature of the equation under consideration.

For the proof of Theorem 1.2, we will use the explicit estimates on
the cost of controllability obtained in [9] and the fixed point method
introduced in the context of the semilinear wave equation in [17] and
later applied to semilinear heat equations in [7,8] and [18] (see also [10]).
Recall that the estimates in [9] were obtained by adapting the global
Carleman inequalities in [10].

However, when applying the fixed point argument, we introduce a
new ingredient to avoid blow-up to occur. Indeed, as usual, we first
linearize the system and show its controllability analyzing how the
control depends of the size of the potential of the linearized equation.
Usually, one takesT as the control time for all the linearized equations
(see, e.g., [17]). However, in the proof of Theorem 1.2, the control time is
chosen depending on the size of the potential so that, roughly speaking,
it decreases as this size increases and tends to zero as the size tends to
infinity. This is made in order to avoid blow-up phenomena to occur. Note
that this strategy is in agreement with common sense:In the presence of
blow-up phenomena, one has to act on the system very fast, before blow-
up occurs.

This idea of taking short control times has been used in [16] for the
one-dimensional heat equation with nonlinearities that behave sublin-
early at infinity and by O. Glass [13] in the context of the 3-d Euler
equations.

Let us now analyze theapproximate controllability property. System
(1.1) is said to be approximately controllable at timeT if, for any y0 ∈
L2(Ω), y1 ∈L2(Ω) andε > 0, there exists a controlv ∈L∞(ω× (0, T ))
such that the solution of(1.1) is globally defined in[0, T ] and satisfies

∥∥y(·, T )− y1
∥∥
L2(Ω)

6 ε. (1.13)

In other words, system(1.1) is approximately controllable if the set of
reachable states is dense inL2(Ω).

In the context of linear heat equations, approximate controllability is
a consequence of the null controllability property (see for instance [9]).
But this is not necessarily true for semilinear equations.

Our third main result is the following:
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THEOREM 1.3. – There exist locally Lipschitz-continuous functions
f satisfying(1.8) with p > 2, such that, whateverT > 0 is, system(1.1)
is not approximately controllable at timeT .

Remark1.6. – The proof of Theorem 1.3 is similar to the proof of
Theorem 1.1. In this case, we introduce the following functionf :

f (s)=
s∫

0

logp
(
1+ |σ |)dσ ∀s ∈R.

The absorption effect of the nonlinearity allows to prove that, for any
y0 ∈ L2(Ω), the set of reachable states are uniformly bounded away
from the control subdomainω. Recall that, whenf (s) = |s|r−1s for
somer > 1, this was already observed by A. Bamberger (see for instance
[14]). 2

Remark1.7. – It would also be interesting to know whether blow-
up phenomena can be an obstruction to approximate controllability even
when the initial data are small. In particular, let us assume thaty0 = 0
and letf be as in(1.9) with p > 2. We do not know if the following
is true: For any y1 ∈ L2(Ω) and anyε > 0, there exists a controlv ∈
L∞(ω× (0, T )) such that the corresponding solution of(1.1) is globally
defined in[0, T ] and satisfies(1.13). 2

We also have the following result:

THEOREM 1.4. – Let T > 0 and let the assumptions of Theorem1.2
be satisfied. Then(1.1) is approximately controllable at timeT .

Let us briefly describe the strategy of proof of Theorem 1.4. We will
argue as follows. Lety0, y1 and ε > 0 be given and assume thaty1 is
regular enough. We divide the time interval[0, T ] in two parts. In the
first (large) subinterval[0, T − δ], we choosev1 such thaty satisfies
(1.6), with y∗ being the globally defined solution whose existence is
assumed. In the second one,[T − δ, T ], we apply a controlv2 that drives
the solution fromy∗(·, T − δ) tow(·, T ) exactly. Here,w is the solution
of the auxiliary problem

wt −1w+ f (w)= 0 inΩ × (T − δ, T ),
w = 0 on ∂Ω × (T − δ, T ),
w(x, T − δ)= y1(x) in Ω.
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The existence ofv1 andv2 is implied by Theorem 1.2. Furthermore, ifδ
is sufficiently small, we have∥∥w(·, T )− y1

∥∥
L2(Ω)

6 ε. (1.14)

Consequently, by settingv = v1 for t ∈ (0, T − δ) and v = v2 for t ∈
(T − δ, T ) we will have found a controlv such that the corresponding
solution to(1.1) satisfies(1.13).

Analyzing this proof, we see that the main ingredients needed for the
proof to work are (a) there exists a trajectory starting fromy0 defined in
the whole time interval[0, T − δ] and (b) the system is null-controllable
in any arbitrarily short time interval. Since(1.4) avoids the presence
of any blow-up phenomena, we find that an immediate consequence of
Theorem 1.4 is the following:

COROLLARY 1.1. – Let T > 0. Assume thatf is locally Lipschitz-
continuous and satisfies(1.3) and (1.4). Then (1.1) is approximately
controllable at timeT .

The rest of this paper is organized as follows. Section 2 is devoted to
prove Theorem 1.1. In Section 3, we prove Theorem 1.2. In Section 4, we
prove Theorem 1.3. Section 5 is concerned with the proof of Theorem 1.4.
Finally, in Section 6, we discuss in detail the open problem mentioned
above (f satisfies(1.8) with 3/26 p6 2) and other related issues.

2. PROOF OF THE LACK OF NULL CONTROLLABILITY

This section is devoted to prove Theorem 1.1. Let us introduce the
following functionf :

f (s)=
|s|∫

0

logp(1+ σ )dσ ∀s ∈R, (2.1)

with

p > 2.

Obviously,f is convex andf (s)s < 0 for s < 0. On the other hand,

f (s)∼ |s| logp
(
1+ |s|) as|s| →∞.
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Therefore,f is in the range of nonlinearities in which blow-up occurs
in the absence of control, i.e., withv ≡ 0. The proof of Theorem 1.1 is
based on the fact that there are initial data which lead to blow-up before
timeT , whatever the controlv is.

We proceed as in [10], Section I.5 (see also [14] for a similar argument
in the context of approximate controllability). Thus, we introduce a
nonnegative functionρ ∈D(Ω) such that

ρ = 0 in ω,
∫
Ω

ρ dx = 1. (2.2)

Let v ∈ L∞(ω × (0, T )) be given and lety be the solution to(1.1). Let
us multiply byρ the equation satisfied byy and let us integrate overΩ .
Taking into account that the control is supported byω×(0, T ), we obtain:

d

dt

∫
Ω

ρy dx =
∫
Ω

ρ(1y)dx −
∫
Ω

ρf (y)dx. (2.3)

Moreover, ∫
Ω

ρ(1y)dx =
∫
Ω

(1ρ)y dx. (2.4)

From(2.3), (2.4) and the definition off , we have

d

dt

(
−
∫
Ω

ρy dx

)
=−

∫
Ω

(1ρ)y dx +
∫
Ω

ρf
(|y|)dx. (2.5)

Taking into account thatf is convex, we can introduce its convex
conjugatef ∗. For the moment, let us assume that

ρf ∗(21ρ/ρ) ∈ L1(Ω) (2.6)

(we shall return to(2.6) later on). Then, from Young’s inequality, we
have ∣∣∣∣∣

∫
Ω

(1ρ)y dx

∣∣∣∣∣6
∫
Ω

ρ

∣∣∣∣∣1ρρ
∣∣∣∣∣|y|dx

6 1

2

∫
Ω

ρf ∗
(
2|1ρ|/ρ)dx + 1

2

∫
Ω

ρf
(|y|)dx. (2.7)
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Let us set

k := 1

2

∫
Ω

ρf ∗
(
2|1ρ|/ρ)dx, (2.8)

which is finite according to(2.6). From (2.5), (2.7) and (2.8), the
following is deduced:

d

dt

[
−
∫
Ω

ρy dx

]
>−

∣∣∣∣∣
∫
Ω

(1ρ)y dx

∣∣∣∣∣+
∫
Ω

ρf
(|y|)dx

>−k+ 1

2

∫
Ω

ρf
(|y|)dx.

From Jensen’s inequality, we also have

∫
Ω

ρf
(|y|)dx > f

(∫
Ω

ρ|y|dx
)
.

On the other hand, taking into account thatf is increasing on[0,∞), we
know that

f

(∫
Ω

ρ|y|dx
)
> f

(∣∣∣∣∣
∫
Ω

ρy dx

∣∣∣∣∣
)
= f

(
−
∫
Ω

ρy dx

)
.

Thus, if we setz(t)=−∫Ωρ(x)y(x, t)dx for all t andz0=−∫Ωρ(x)×
y0(x)dx, we find that {

z′(t)>−k+ 1

2
f (z(t)),

z(0)= z0.
(2.9)

We are now going to use(2.9) to prove that, for appropriate initial data,
z blows up at a finite time. More precisely, lety0 ∈L2(Ω) be such that

z0=−
∫
Ω

ρ(x)y0(x)dx > 0, f (z0) > 2k

and assume thatz : [0, T∗) 7→ R is aC1 function satisfying(2.9). Let us
see thatT∗ <+∞.
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The functionz is nondecreasing. Furthermore, if we set

G(z0; s) :=
s∫

z0

2

f (σ )− 2k
dσ ∀s > z0,

then we find that

d

dt
G
(
z0; z(t))= 2z′(t)

f (z(t))− 2k
> 1 ∀t ∈ [0, T∗). (2.10)

Notice that, in view of(2.1),

f (σ )∼ σ logp(1+ σ ) asσ →+∞, with p > 2.

Consequently,

G(z0;+∞)=
+∞∫
z0

2

f (σ )− 2k
dσ <+∞. (2.11)

Going back to(2.10), we see that

G
(
z0; z(t))−G(z0; z0)=G(z0; z(t))> t ∀t ∈ [0, T∗). (2.12)

Combining(2.11) and (2.12), we deduce thatz blows up in finite time
and, therefore,y blows up inL1(Ω).

In fact, we have found the following estimate for the maximal time of
existence:

T∗ 6
+∞∫
z0

2

f (σ )− 2k
dσ, wherek is given by(2.8).

Obviously, asz0→∞, the blow-up time ofz and, consequently, the
blow-up time ofy in L1(Ω) tend to zero.

This completes the proof of Theorem 1.1 (assuming that(2.6) is
satisfied). Indeed, we have shown that, whateverT > 0 is, by taking
y0 ∈L2(Ω) with

z0=−
∫
Ω

ρ(x)y0(x)dx sufficiently large,
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the solutiony of (1.1) is not globally defined in[0, T ], regardless of the
choice of the controlv ∈L∞(ω× (0, T )).

It remains to prove that, for the functionf in (2.1) (with p > 2), there
exists a nonnegative functionρ ∈D(Ω) satisfying(2.2) and(2.6).

We first claim that

f ∗(s)∼ p|s|1−1/p exp
(|s|1/p) ass→+∞. (2.13)

Indeed, we have by definition that

f ∗(s)= sup
a∈R
[
as − f (a)]. (2.14)

The supremum in(2.14) is achieved at a critical pointa such that
s − f ′(a)= 0, i.e.,a = (f ′)−1(s). Thus,

f ∗(s)= s[f ′]−1(s)− f ([f ′]−1(s)
)
.

According to the definition(2.1), we have

f ′(r)= sgn(r) logp
(
1+ |r|) ∀r > 0.

Consequently,

f ∗(s)= s[exp
(
s1/p)− 1

]− exp(s1/p)−1∫
0

logp(1+ σ )dσ (2.15)

and it is easy to deduce(2.13) from (2.15)applying l’Hopital’s rule.
Let us prove the existence of the desired functionρ taking into account

the asymptotic shape off ∗.
We will first discuss the one-dimensional case (d = 1). Obviously, to

show that(2.6) holds, the unique delicate point concerns the behavior
of f ∗(2|ρ ′′|/ρ) when ρ vanishes. Note that we can always chooseρ
supported by an intervalI ⊂ Ω \ ω and strictly positive in the interior
of I . Thus, the difficulties arise only at the extremes of the intervalI .
Without loss of generality, we may assume that we are considering the
lower extreme, located atx = 0. We claim that it is then sufficient to
takeρ behaving like exp(−x−m) with m> 2/(p− 2) (recall thatp > 2).
Indeed, if

ρ(x)= exp
(−x−m),
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then

ρ ′(x)=mx−(m+1) exp
(−x−m),

and

ρ ′′(x)= [−m(m+ 1)x−(m+2) +m2x−(2m+2)]exp
(−x−m).

Consequently

|ρ ′′(x)|
ρ(x)

= ∣∣m2x−(2m+2) −m(m+ 1)x−(m+2)∣∣
∼m2x−(2m+2) asx→ 0+. (2.16)

Then, according to(2.13)and(2.16):

f ∗
(
2|ρ ′′(x)|/ρ(x)) (2.17)

∼ pm2(1−1/p)x−(2m+2)(p−1)/p exp
(
m2/px−(2m+2)/p) asx→ 0+.

From (2.17), we see thatρf ∗(2|ρ ′′(x)|/ρ) ∈ L1(Ω) if and only if m >
(2m+ 2)/p or, equivalently,m> 2/(p − 2), as we have chosen above.
This proves our assertion.

In several space dimensions, without loss of generality, we may assume
that the ballB(0; r) is contained inΩ \ ω. Then, we can chooseρ
behaving like exp(−(r − |x|)−m) as |x| → r−. The same computations
above show that(2.6) is satisfied whenm> 2/(p− 2).

3. PROOF OF THE NULL CONTROLLABILITY RESULT

This section is devoted to prove Theorem 1.2. First of all, we will
recall some observability estimates obtained in [9] as a consequence of
appropriate global Carleman inequalities. Then, we will deduce some
refined versions of these observability estimates. This will serve to
prove null controllability results (and estimates) for linear heat equations
with bounded potentials, with controls inL∞(ω × (0, T )). Finally, we
will apply a fixed point argument and we will deduce the desired null
controllability result for the semilinear heat equation.

3.1. Preliminaries on observability inequalities

Let us consider the adjoint system
−ϕt −1ϕ + aϕ = 0 inQ,
ϕ = 0 onΣ ,
ϕ(T )= ϕ0 in Ω.

(3.1)
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In (3.1), a = a(x, t) is a potential. We assumea ∈ L∞(Q) and ϕ0 ∈
L2(Ω). The following result was proved in [9]:

PROPOSITION 3.1. – There existsC =C(Ω,ω) > 0 such that∥∥ϕ(·,0)∥∥2
L2(Ω)

(3.2)

6 exp
[
C

(
1+ 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

)] ∫∫
ω×(0,T )

|ϕ|2 dx dt

for anyϕ0 ∈ L2(Ω) andT > 0, with ϕ being the solution of(3.1).

The proof of this result requires appropriate global Carleman inequal-
ities, as in [10]. It is important to observe that(3.2) provides precise
estimates on how the observability constant depends onT and the size
of the potentiala. This will be essential when dealing with the semilin-
ear problem(1.1) and in particular, when dealing with nonlinearities that
may lead to blow-up phenomena.

However, in order to prove Theorem 1.2, we need a refined version
of the observability inequality(3.2). This will be obtained in the next
section.

3.2. A refined observability inequality

The following holds:

PROPOSITION 3.2. – There existsC =C(Ω,ω) > 0 such that∥∥ϕ(·,0)∥∥2
L2(Ω)

6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]

×
( ∫∫
ω×(0,T )

|ϕ|dx dt
)2

(3.3)

for anyϕ0 ∈ L2(Ω) andT > 0.

Proof. –We will proceed in several steps.

Step 1. – Letω′ be a nonempty open set satisfyingω′ b ω.
Notice that, as an immediate consequence of(3.2), the following

observability inequality holds with, possibly, a larger constantC:∥∥ϕ(·,0)∥∥2
L2(Ω)

(3.4)

6 exp
[
C

(
1+ 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

)] ∫∫
ω′×( T3 , 2T

3 )

|ϕ|2 dx dt.
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Indeed, from Proposition 3.1 applied toω′ in the time interval[T3 , 2T
3 ],

we deduce that∥∥ϕ(·, T /3)∥∥2
L2(Ω)

6 (3.5)

exp
[
C

(
1+ 3

T
+ T

3
‖a‖∞ + ‖a‖2/3∞

)] ∫∫
ω′×( T3 , 2T

3 )

|ϕ|2 dx dt.

On the other hand, classicalL2 estimates imply the following for any
solution of(3.1):

∥∥ϕ(·,0)∥∥2
L2(Ω)

6 exp
(

2T

3
‖a‖∞

)∥∥ϕ(·, T /3)∥∥2
L2(Ω)

. (3.6)

Combining(3.5) and(3.6), we see that(3.4) holds.

Step 2. – Let us prove that∫∫
ω′×( T3 , 2T

3 )

|ϕ|2 dx dt (3.7)

6 CT α
(
1+ T 1/2(1+ ‖a‖∞))β( ∫∫

ω×(0,T )
|ϕ|dx dt

)2

for anyϕ0 ∈L2(Ω), whereα andβ are positive numbers only depending
of d.

To this end, we first claim that, whenever the nonempty open setsωi ,
the parametersδi and the exponentsri satisfy

ω′ ⊂ ω0b ω1⊂ ω, 0< δ1< δ0<
T

2
, 16 r1< r0<∞

and (
d

2
+ 1

)[
1

r1
− 1

r0

]
<

1

2
, (3.8)

we have( ∫∫
ω0×(δ0,T−δ0)

|ϕ|r0 dx dt
)1/r0

(3.9)

6 CT γ
(
1+ T 1/2(1+‖a‖∞))( ∫∫

ω1×(δ1,T−δ1)
|ϕ|r1 dx dt

)1/r1
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for all ϕ0 ∈ L2(Ω), whereC = C(Ω,ωi, δi, ri, d) andγ = γ (ri, d), i =
0,1.

Indeed, let us introduce a functionθ ∈D(ω1× (δ1, T − δ1)) such that
θ ≡ 1 in ω0× (δ0, T − δ0) and 06 θ 6 1 everywhere. Let us setψ = θϕ.
Then 

ψt +1ψ = aψ + [θt +1θ]ϕ + 2∇θ · ∇ϕ in Q,
ψ = 0 onΣ ,
ψ(x,T )= 0 inΩ.

In order to simplify the computations, let us reverse the sense of time.
More precisely, let us put̃ψ(x, t) = ψ(x,T − t). We also introducẽϕ
andθ̃ , defined in a similar way. We then have ψ̃t −1ψ̃ =−aψ̃ + [θ̃t −1θ̃ ]ϕ̃ − 2∇ θ̃ · ∇ϕ̃ in Q,

ψ̃ = 0 onΣ ,
ψ̃(x,0)= 0 inΩ.

Let us denote by{S(t)}t>0 the semigroup generated by the heat equation
with Dirichlet boundary conditions. Then

ψ̃(·, t)=
t∫

0

S(t − s){− aψ̃ + [θ̃t (s)−1θ̃(s)]ϕ̃(s) (3.10)

− 2∇ θ̃ · ∇ϕ̃}(·, s)ds.
TakingLr0-norms in(3.10)and using theLr1−Lr0 regularizing effect

of the heat equation, we obtain the following for allt ∈ (δ1, T − δ1):∥∥ψ̃(·, t)∥∥
Lr0(Ω)

(3.11)

6 C
[
‖a‖∞

t∫
0

(t − s)− d2
(

1
r1
− 1
r0

)∥∥ψ̃(·, s)∥∥
Lr1(Ω)

ds

+
t∫

δ1

[
(t − s)− d2

(
1
r1
− 1
r0

)
+ (t − s)− d2

(
1
r1
− 1
r0

)
− 1

2
]
‖ϕ̃(·, s)‖Lr1(ω) ds

]
.

The constantC in (3.11) depends on theL∞-norm of θ̃t , 1θ̃ and∇ θ̃ .
Therefore, it is determined byωi andδi, i = 0,1. This gives∥∥ψ̃(·, t)∥∥

Lr0(Ω)
6CT −1[1+ T 1/2+ T 1/2‖a‖∞]
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×
t∫

δ1

(t − s)− d2
(

1
r1
− 1
r0

)
− 1

2
∥∥ϕ̃(·, s)∥∥

Lr1(ω)
ds

for all t ∈ (δ1, T − δ1). Now, from Young’s inequality, we find that∥∥ψ̃∥∥
Lr0(Ω×(δ1,T−δ1)) (3.12)

6 CT −α
(
1+ T 1/2(1+‖a‖∞))‖ϕ‖Lr1(ω1×(δ1,T−δ1)),

whereα = ( d2 + 1)( 1
r1
− 1

r0
)+ 1

2. This is possible because

d

2

(
1

r1
− 1

r0

)
+ 1

2
+ 1

r1
< 1+ 1

r0
,

which is equivalent to(3.8). The desired estimate(3.9) follows immedi-
ately from(3.12).

We cannot apply(3.9) directly to deduce(3.7), since the exponents
r1 = 1 andr0 = 2, may not satisfy condition(3.8). Thus, we will apply
(3.9) recurrently.

Let us setr0= 2 and letr1, r2, . . . be given by

1

ri
= i

2(d + 2)
+ 1

2
for all i.

For an appropriateI > 0, one hasrI > 1 andrI+1 6 1. Let us redefine
rI+1 by settingrI+1= 1. Let us introduceδ > 0 so that[T /3−Iδ,2T /3+
Iδ] ⊂ [0, T ] and also a finite family of increasing open setsωi , with

ω′ = ω0b ω1b · · ·b ωI+1= ω.

For eachi = 0,1, . . . , I − 1, we can use(2.9) with ω0, ω1, δ0, δ1, r0 and
r1 respectively replaced byωi , ωi+1, iδ, (i+1)δ, ri andri+1. In this way,
it is immediate to deduce the inequality(3.7) with β = I andα being the
sum of the exponentsγ arising in(3.9) at each step.

Step 3. – The inequalities(3.4) and(3.7) give together

∥∥ϕ(·,0)∥∥2
L2(Ω)

6K
(
Ω,ω,d,T ,‖a‖∞)( ∫∫

ω×(0,T )
|ϕ|dx dt

)2

,

where
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K
(
Ω,ω,d,T ,‖a‖∞)= exp

[
C

(
1+ 1

T
+ T ‖a‖∞ + ‖a‖2/3∞

)]
× T α(1+ T 1/2(1+‖a‖∞))β.

This implies immediately that(3.3) holds for all ϕ0 ∈ L2(Ω). This
completes the proof of Proposition 3.2.2
3.3. Null controllability of the linear heat equation with a potential

For the proof of Theorem 1.2, we will use a fixed point argument
below. One of the main ingredients is to obtain explicit estimates of the
norms of the controls needed to achieve the null controllability of the
linear heat equation with a potential.

Let us consider the system:
yt −1y + ay = v1ω in Q,
y = 0 onΣ ,
y(x,0)= y0(x) in Ω,

(3.13)

wherea ∈L∞(Q). The following holds:

THEOREM 3.1. – For any T > 0, any a ∈ L∞(Q) and any y0 ∈
L2(Ω), there exist controlsv ∈ L∞(ω×(0, T )) such that the correspond-
ing solution of(3.13) satisfies

y(x, T )= 0 in Ω . (3.14)

Furthermore,v can be chosen such that the following estimate holds:

‖v‖L∞(ω×(0,T )) (3.15)

6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]‖y0‖L2(Ω).

Proof. –Let us fixT > 0, a ∈ L∞(Q) andy0 ∈L2(Ω). For anyε > 0,
we consider the following functional:

Jε
(
ϕ0)= 1

2

[ ∫∫
ω×(0,T )

|ϕ|dx dt
]2

+ ε∥∥ϕ0∥∥
L2(Ω)

(3.16)

+
∫
Ω

ϕ(x,0)y0(x)dx ∀ϕ0 ∈L2(Ω).

Here, for eachϕ0 ∈L2(Ω), ϕ is the corresponding solution of(3.1).
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It is not difficult to see thatϕ0 7→ Jε(ϕ
0) is a continuous and strictly

convex function onL2(Ω). Moreover,Jε is coercive. In fact, proceeding
as in [7], it can be checked that

lim inf
‖ϕ0‖

L2(Ω)→∞
Jε(ϕ

0)

‖ϕ0‖L2(Ω)

> ε.

Therefore,Jε achieves its minimum at a uniquêϕ0
ε ∈ L2(Ω). Let ϕ̂ε be

the associate solution of(3.1). Again arguing as in [7], it is easy to see
that, for some

vε ∈
( ∫∫
ω×(0,T )

|ϕ̂ε|dx dt
)

sgn(ϕ̂ε) ,

the solutionyε of (3.13) satisfies∥∥yε(·, T )∥∥L2(Ω)
6 ε. (3.17)

We claim that, for a suitableC = C(Ω,ω) > 0, the following holds:

‖vε‖L∞(ω×(0,T )) (3.18)

6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]‖y0‖L2(Ω).

Indeed, at the minimum̂ϕ0
ε , we have

Jε
(
ϕ̂0
ε

)
6 Jε(0)= 0.

In accordance with(3.16), we find that

1

2

[ ∫∫
ω×(0,T )

|ϕ̂ε|dx dt
]2

6
∫
Ω

ϕ̂ε(x,0)y0(x)dx

6
∥∥ϕ̂ε(·,0)∥∥L2(Ω)

‖y0‖L2(Ω)

and, therefore,∫∫
ω×(0,T )

|ϕ̂ε|dx dt (3.19)

6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]‖y0‖L2(Ω)
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(we have used here(3.3)). From (3.19), we obtain(3.18) taking into
account that

‖vε‖L∞(ω×(0,T )) =
∫∫

ω×(0,T )
|ϕ̂ε|dx dt.

In view of the uniform bound(3.18), by extracting an appropriate
subsequence, we deduce that

vε→ v weakly-∗ in L∞
(
ω× (0, T )),

wherev satisfies(3.15). Since we have(3.17) for all ε > 0, we deduce
that v is such that the solution of(3.13) satisfies(3.14). This ends the
proof. 2

Remark3.1. – An immediate consequence of Theorem 3.1 is that we
can also estimate the minimal norm of a controlv needed to drive an
initial datum y0 to a final statez(·, T ), with z being the solution of
(3.13) corresponding to an initial datumz0 ∈ L2(Ω) and a right hand
sidew ∈ L∞(ω × (0, T )). Indeed, by means of the change of variable
p = y − z, we see thatv drivesy from y0 to z(·, T ) if and only if the
control ν = v − w drivesp from y0 − z0 to zero. In accordance with
Theorem 3.1, we can find such aν satisfying

‖ν‖L∞(ω×(0,T ))6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]

× ‖y0− z0‖L2(Ω).

Hence, we have

‖v‖L∞(ω×(0,T ))6 exp
[
C

(
1+ 1

T
+ T + (T 1/2+ T )‖a‖∞ + ‖a‖2/3∞ )]

× ‖y0− z0‖L2(Ω) +‖w‖L∞(ω×(0,T )).
3.4. The fixed point method: Conclusion

Let us complete the proof of Theorem 1.2. Lety∗ be a bounded
and globally defined solution of(1.1), associated toy∗0 ∈ L2(Ω) and
v∗ ∈ L∞(ω× (0, T )). Let us perform the change of variablep= y − y∗.
Then,y solves(1.1) if and only if p satisfies

pt −1p+ f (y∗ + p)− f (y∗)= ν1ω in Q,
p = 0 onΣ ,
p(x,0)= p0(x) in Ω,

(3.20)
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whereν = v− v∗ andp0= y0(x)− y∗0. Our task is then to show that, for
eachp0 ∈L2(Ω), there existsν ∈ L∞(ω× (0, T )) such that

p(x,T )= 0 inΩ. (3.21)

We will argue as follows. Let us assume that∣∣y∗(x, t)∣∣6 k∗ in Ω × (0, T )
and let us set

M(k∗)= max
|a|6k∗

∣∣f (a)∣∣. (3.22)

We will first consider the case in whichp0 ∈C0,β(Ω) for someβ ∈ (0,1)
andf isC1 in [−k∗, k∗].

Let us set

g̃(a, s)=

f (a + s)− f (a)

s
for |a|6 k∗, s 6= 0,

f ′(a) for |a|6 k∗, s = 0.
(3.23)

Theng̃ is continuous. We claim that, for eachη > 0, there existsCη > 0
(which only depends ofη, k∗ and the functionf ) such that{ |g̃(y∗(x, t), s)|2/36 Cη + η log(1+ |s|),

∀s ∈R, ∀(x, t) ∈Q. (3.24)

Indeed, it will be sufficient to prove that, for eachη > 0, one has∣∣g̃(y∗(x, t), s)∣∣6 Cη + η log3/2 (1+ k∗ + |s|) (3.25)

for all s ∈ R and (x, t) ∈ Q. Let η be given and lets(η) be such that
s(η)> k∗ + 1 and∣∣∣∣f (s)s

∣∣∣∣6 2η

3
log3/2 (1+ |s|) for |s|> s(η). (3.26)

For |s|6 2s(η), we have∣∣g̃(y∗(x, t), s)∣∣6L(k∗ + 2s(η)
) ∀(x, t) ∈Q, (3.27)

whereL(k∗ + 2s(η)) is a Lipschitz constant forf in [−k∗ − 2s(η), k∗ +
2s(η)]. On the other hand, for|s|> 2s(η), we see that
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∣∣g̃(y∗(x, t), s)∣∣6 ∣∣∣∣f (y∗(x, t)+ s)s

∣∣∣∣+ 1

2s(η)

∣∣f (y∗(x, t))∣∣
6 max
|s|
2 6|σ |6|s|+k∗

∣∣∣∣f (σ )s
∣∣∣∣+ 1

2s(η)
max
|a|6k∗

∣∣f (a)∣∣
6 3

2
max

|s|
2 6|σ |6|s|+k∗

∣∣∣∣f (σ )σ
∣∣∣∣+ 1

2k∗
M(k∗).

Here, we have used thats(η) > k∗ and, consequently,|σ |6 |s| + k∗ and
|s|> 2s(η) imply |σ |< 3|s|/2. We deduce that, for|s|> 2s(η),

∣∣g̃(y∗(x, t), s)∣∣η log3/2 (1+k∗+|s|)+ 1

2k∗
M(k∗) ∀(x, t) ∈Q. (3.28)

Combining(3.27)and(3.28), it is not difficult to deduce(3.24), with Cη
only depending ofη, k∗ andf .

Notice that two different functionsf for which the restrictions to
R\ (−k∗−1, k∗+1) and the quantitiesM(k∗) andL(k∗+1) (a Lipschitz
constant in[−k∗ − 1, k∗ + 1]) coincide lead to the same constantsCη in
(3.25)and(3.24). This will be used below.

Let us setZ = L∞(Q). Let R > 0 be a constant whose value will be
determined below. We will use the truncation functionTR , which is given
as follows:

TR(s)=
{
s if |s|6 R,
R sgn(s) otherwise.

For eachz ∈Z, we will consider the linear system
pt −1p+ g̃(y∗, TR(z))p= ν1ω in Q,
p = 0 onΣ,
p(x,0)= p0(x) in Ω.

(3.29)

Obviously,(3.29) is of the form(3.13), with a = g̃(y∗, TR(z)) ∈L∞(Q).
Let us set

T ∗z =min
[
T ,
∥∥g̃(y∗, TR(z))∥∥−2/3

∞ ,
∥∥g̃(y∗, TR(z))∥∥−1/3

∞
]
. (3.30)

According to Theorem 3.1, there exist controlsνz ∈ L∞(ω × (0, T ∗z ))
such that the solution of(3.29) in Ω × (0, T ∗z ) with ν = νz satisfies

p(x,T ∗z )= 0 inΩ
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and

‖νz‖L∞(ω×(0,T ∗z )) 6 C0
(
Ω,ω,T ∗z ,

∥∥g̃(y∗, TR(z))∥∥∞)‖p0‖L2(Ω), (3.31)

where

C0
(
Ω,ω,T ∗z ,

∥∥g̃(y∗, TR(z))∥∥∞) (3.32)

= exp
(
C

(
1+ 1

T ∗z
+ T ∗z +

(
(T ∗z )

1/2+ T ∗z
)∥∥g̃(y∗, TR(z))∥∥∞

+ ∥∥g̃(y∗, TR(z))∥∥2/3
∞

))
.

Let A(z) ⊂ L∞(ω × (0, T )) be the family formed by the extensions
by zero to the whole interval[0, T ] of all these controls. Assume that
νz ∈A(z). From the definition(3.30)of T ∗z and(3.31)–(3.32), it is clear
that

‖νz‖L∞(ω×(0,T )) 6 exp
[
C
(
1+ ∥∥g̃(y∗, TR(z))∥∥2/3

∞
)]‖p0‖L2(Ω), (3.33)

whereC = C(Ω,ω,T ).
Now, let Λ(z) ⊂ L∞(Q) be the family of the solutions of(3.29)

corresponding to the controlsνz ∈ A(z). Obviously, if pz ∈ Λ(z), one
has

pz ≡ 0 inΩ × (T ∗z , T ).
In particular,

pz(x, T )= 0 inΩ. (3.34)

In this way, we have been able to introduce a set-valued mapping
z 7→Λ(z). We will now check that, for someR, this mapping possesses
at least one fixed pointp such that

‖p‖∞ 6R. (3.35)

Of course, this will imply the existence of a controlν ∈ L∞(ω× (0, T ))
such that the solution of(3.20) satisfies(3.21).

To this end, we will first see that Kakutani’s Fixed Point Theorem can
be applied toΛ. Indeed, it is not difficult to see thatΛ(z) is, for each
z ∈ L∞(Q), a nonempty closed convex set. From parabolic regularity,
we also see that there exists a fixed compact subsetK ⊂ L∞(Q) such
that

Λ(z)⊂K ∀z ∈ L∞(Q)
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(we are using here the hypothesisp0 ∈ C0,β(Ω)). Furthermore,z 7→Λ(z)

is upper hemicontinuous, i.e., the real-valued function

z 7→ sup
p∈Λ(z)

〈µ,p〉

is upper semicontinuous for each bounded linear formµ on L∞(Q).
Consequently, Kakutani’s Theorem will imply the existence of a fixed
point ofΛ if we prove that, wheneverR is sufficiently large, any fixed
point of Λ must satisfy(3.35). We will use (1.10) (and (3.24); notice
that, up to now, this has been ignored).

Thus, letp be a fixed point, associated to the controlνp ∈A(p). From
classicalL∞ estimates on the solutions of(3.29), we have

‖p‖∞6 eT
∗
p ‖g̃(y∗,TR(p))‖∞‖p0‖L∞(Ω)
+ T ∗peT

∗
p ‖g̃(y∗,TR(p))‖∞‖vp‖L∞(ω×(0,T )).

Consequently, taking again into account the definition ofT ∗p and using
(3.24)and(3.33), we deduce that

‖p‖∞6 eC(1+‖g̃(y
∗,TR(p))‖2/3∞ )

(‖p0‖∞ + ‖vp‖L∞(ω×(0,T )))
6 eC(1+Cη+η log(1+‖TR(p)‖∞))‖p0‖∞
= eC(1+Cη)‖p0‖∞(1+‖TR(p)‖∞)ηC
6 eC(1+Cη)‖p0‖∞(1+R)ηC,

whereC = C(Ω,ω,T ). Taking η > 0 small enough to haveηC < 1,
we deduce the existence ofR > 0 such that‖p‖∞ 6 R. As mentioned
above, this proves that, for someν ∈ L∞(ω× (0, T )), the corresponding
solution to(3.20) satisfies(3.21). Hence, our assertion is proved when
y0 ∈C0,β(Ω) andf isC1 in [−k∗, k∗].

Notice that, in the previous argument,R can be chosen depending only
of Ω , ω, T , the restriction off to R \ (−k∗, k∗), M(k∗), L(k∗ + 1)
and‖p0‖L∞(Ω). Thus, we have solved the controllability problem(3.20)–
(3.21)with p andν respectively bounded inL∞(Q) andL∞(ω× (0, T ))
by constants which only depend of these data.

Now, let us assume thatf is only locally Lipschitz-continuous and
p0 ∈C0(Ω). We can put

f = lim
n→∞fn uniformly inR,
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for some locally Lipschitz-continuous functionsfn which areC1 in
[−k∗, k∗], coincide withf outside(−k∗ − 1, k∗ + 1) and have the same
Lipschitz constants in[−k∗ − 1, k∗ + 1]. We can also put

p0= lim
n→∞p

n
0 uniformly inΩ ,

for some functionspn0 ∈C0,β(Ω).
For eachn > 1, we can argue as before and find a controlνn ∈

L∞(ω× (0, T )) such that the solutionpn to
pnt −1pn + fn(y∗ + pn)− fn(y∗)= νn1ω in Q,
pn = 0 onΣ ,
pn(x,0)= pn0(x) in Ω,

(3.36)

satisfies

pn(x, T )= 0 inΩ .

From the estimates we have found, we deduce that it can be assumed
that ∥∥νn∥∥

L∞(ω×(0,T )) and
∥∥pn∥∥∞

are uniformly bounded. Accordingly, we can take limits in(3.36) (at
least on a subsequence). In other words, it can be assumed thatpn

converges (at least) strongly inL2(Q) and a.e. andνn converges weakly-∗
in L∞(ω × (0, T )). This provides a controlν ∈ L∞(ω × (0, T )) such
that the corresponding solution to(3.20)satisfies(3.21). This proves our
assertion whenp0 ∈L∞(Ω).

Finally, let us consider the general case, wherep0 ∈ L2(Ω) and f
is only locally Lipschitz-continuous. Letδ > 0 be sufficiently small
and let us setν ≡ 0 for t ∈ (0, δ). Then, by parabolic regularity, the
corresponding (local) solution to(3.20) satisfiesp(·, δ) ∈ C0(Ω). Now,
we can apply the arguments above top(·, δ) in the interval[δ, T ]. Of
course, this provides a controlν ∈ L∞(ω×(δ, T )) such that(3.21)holds.
This completes the proof of Theorem 1.2.

Remark3.2. – The arguments used for the proof of Theorem 1.2 also
lead to new proofs of some known facts on the local and large time null
controllability of (1.1). For instance, it can be shown that, iff satisfies
(1.2) and(1.3), for eachT > 0 we can findρ(T ) > 0 such that, whenever

‖y0‖L2(Ω) 6 ρ(T ),
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we have(1.7) for somev. On the other hand, assuming thatf satisfies a
good-sign condition andf (0)= 0, we can prove zero controllability for
largeT . Indeed, due to the nonlinear absorption effect, solutions without
control enter a small ball ofL2(Ω) at a uniform time. Then, making use
of local null controllability, solutions are driven to zero (see [8,10] and
[15] for more details concerning these and other related questions).

4. PROOF OF THE LACK OF APPROXIMATE
CONTROLLABILITY

This section is devoted to prove Theorem 1.3. The proof is similar to
the one of Theorem 1.1. This time, it will be seen that, for an appropriate
function satisfying(1.8) with p > 2, once the initial datumy0 and a
compact setF ⊂Ω \ ω are fixed, the restrictions toF of the reachable
states are uniformly bounded inL1(F ). We proceed as in [14].

Let us introduce the functionf , with

f (s)=
s∫

0

logp(1+ σ )dσ ∀s ∈R

and p > 2. Let us also introduce a nonnegative functionρ ∈ D(Ω)
satisfying(2.2).

Let y0 ∈ L2(Ω) and v ∈ L∞(ω × (0, T )) be given and lety be the
solution to(1.1). Let us multiply byρ sgn(y) the equation satisfied byy
and let us integrate overΩ . Then

d

dt

∫
Ω

ρ|y|dx =
∫
Ω

ρ sgn(y)(1y)dx −
∫
Ω

ρ
∣∣f (y)∣∣dx.

From Kato’s inequality, we know that∫
Ω

ρ sgn(y)(1y)dx 6
∫
Ω

(1ρ)|y|dx.

We also have∣∣∣∣ ∫
Ω

(1ρ)|y|dx
∣∣∣∣6 1

2

∫
Ω

ρf
(|y|)dx + 1

2

∫
Ω

ρf̃
(
2|1ρ|/ρ)dx, (4.1)
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wheref̃ is the conjugate of the convex functions 7→ f (|s|). Arguing as
in the proof of Theorem 1.1, we see that, by choosingρ appropriately
(depending ofΩ andω), the last integral in the right-hand side of(4.1)
is finite (becausep > 2). Consequently,

d

dt

∫
Ω

ρ|y|dx + 1

2

∫
Ω

ρf
(|y|)dx 6C,

whereC = C(Ω,ω,p). In view of the convexity of the functions 7→
f (|s|), this gives

d

dt

∫
Ω

ρ|y|dx + 1

2
f

(∫
Ω

ρ|y|dx
)
6C.

In other words, settingz(t)=
∫
Ω

ρ(x)|y(x, t)|dx for all t , we see that

z′(t)+ 1

2
f
(
z(t)

)
6 C.

This implies that

z(T )=
∫
Ω

ρ(x)
∣∣y(x, T )∣∣dx

is bounded independently of the controlv.
Therefore, oncey0 ∈ L2(Ω) and an arbitrary compact setF ⊂Ω \ ω

are fixed, the restrictions toF of the reachable states are indeed uniformly
bounded inL1(F ). This is obviously in contradiction with the density of
the set of reachable states inL2(Ω).

5. PROOF OF THE APPROXIMATE CONTROLLABILITY
RESULT

The goal of this section is to prove Theorem 1.4. We will use
Theorem 1.2. More precisely, we will deduce that(1.1) is approximately
controllable by driving the solution exactly to the final point of an
uncontrolled trajectory. In order to compensate the fact that we are in
the range of nonlinearities for which blow-up may occur, we have to
assume again that a globally defined solutiony∗ exists. This hypothesis,
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in combination with the null controllability property, allows to keep the
trajectory well defined during a large part of the time interval[0, T ].

First of all, notice that∣∣f (s)∣∣6 C(1+ |s| log3/2 (1+ |s|)) ∀s ∈R, (5.1)

as a consequence of(1.10). Let us fixT > 0, y0 ∈ L2(Ω), y1 ∈ C1(Ω)

(for instance) andε > 0 and let us try to findv ∈ L∞(ω × (0, T )) such
that the solution of(1.1) satisfies(1.13). Obviously, it will be sufficient
to consider final datay1 ∈C1(Ω), since this space is dense inL2(Ω).

For any smallδ > 0, we will consider the following auxiliary system:
wt −1w+ f (w)= 0 inΩ × (T − δ, T ),
w= 0 on ∂Ω × (T − δ, T ),
w(x,T − δ)= y1(x) in Ω.

(5.2)

There exists exactly one solutionw to (5.2) which is defined in the whole
interval [T − δ, T ]. Furthermore,w is bounded and there existsδ > 0
(small enough) such that∥∥w(·, T )− y1

∥∥
L2(Ω)

6 ε. (5.3)

δ depends ofΩ , ‖y1‖L∞(Ω), ε and the constantC in (5.1). We fix δ and
w from now on such that(5.3) is satisfied.

Our strategy is as follows:
• For t ∈ (0, T − δ), we setv = v1, wherev1 ∈ L∞(ω × (0, T − δ))

is such that(1.1) is driven toy∗(·, T − δ) at time t = T − δ. In
view of Theorem 1.2, such a controlv1 exists. This definesy in
Ω × (0, T − δ), with

y(x, T − δ)= y∗(x, T − δ) in Ω . (5.4)

• We see from(5.3) that, in [T − δ, T ], the problem is reduced to
drive our system fromy∗(T − δ) to the statew(·, T ) exactly. Again
in view of Theorem 1.2, there existsv2 ∈ L∞(ω× (T − δ, T )) such
that the solution to

yt −1y + f (y)= v21ω in Ω × (T − δ, T ),
y = 0 on ∂Ω × (T − δ, T ),
y(x, T − δ)= y∗(x, T − δ) in Ω,

(5.5)
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satisfies

y(x, T )=w(x,T ) in Ω .

Now, we setv = v2 for t ∈ (T − δ, T ).
Obviously, v has the desired property. This completes the proof of

Theorem 1.4.

6. FURTHER COMMENTS, RESULTS AND OPEN PROBLEMS

6.1. On the assumption of existence of a globally defined trajectory

The positive results of this paper, both in what concerns null and ap-
proximate controllability, require the existence of a globally defined and
bounded solution for suitabley0 andv. Obviously, this assumption is nec-
essary since, otherwise, no global solution exists and the controllability
problems do not make sense since they require the trace of the solution at
time t = T to be well defined.

The existence of global and/or stationary solutions for semilinear
parabolic problems like(1.1) with v ≡ 0 has been the objective of
intensive research. See for instance [3,5,6,11,12] and the references
therein. However, the wider issue of whether global solutions exist for
suitable right-hand sidesv localized in a given subdomainω seems to be
much more open.

Of course, it would be interesting to have at our disposal sharp
sufficient conditions guaranteeing the existence of globally defined
solutions of(1.1) with possiblyv 6= 0.

6.2. On the optimality of the null controllability results

Let us first discuss the optimality of the negative result in Theorem
1.2. Its proof is based on a localization in space of classical estimates for
semilinear heat equations. Therefore, the critical growth conditions are
determined by the interaction between the elliptic operator−1 and the
nonlinearityf . For second order O.D.E.’s, the critical growth condition
is

f (s)∼ |s| log2 |s|.
Below this critical range, blow-up and localization phenomena do not
occur. On the contrary, this can happen when the nonlinear terms grow
faster at infinity. This explains the need of(1.8) with p > 2 to prove
Theorem 1.1.
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It is clear that the techniques we have used will not serve to prove
negative results for nonlinearities with slower growth rate.

In what concerns the blow-up of solutions of the uncontrolled system
(1.1) with v ≡ 0, it is well known that, whenf (s) ∼ |s| logp |s| with
p > 2, the blow-up is generically of pointwise nature. However, when
p < 2, the blow-up occurs globally in the whole domainΩ . The case
p = 2 makes the transition: the blow-up is “regional”, i.e., it occurs in
an open subset ofΩ (see [11] and [12]). Obviously, the arguments we
have used in the proof of Theorem 1.1, that rely on the localization of
energy, are compatible with pointwise blow-up but not with regional or
global blow-up. Therefore, it is not reasonable to expect the same proof
to extend to the casep 6 2.

A more careful analysis of the critical nonlinearity shows that, in the
class of nonlinearities that grow at infinity like

f (s)= |s| log2(1+ |s|)g(s),
the critical growth condition forg is

g(s)∼ log2(log2(1+ |s|)).
Very likely, the negative result of Theorem 1.1 still holds for nonlineari-
ties behaving at infinity like

f (s)∼ |s| log2(1+ |s|) log2(logp
(
1+ |s|))

with p > 2. But this remains to be done and, anyway,|s| log2(1+|s|) will
always be a lower bound on the growth at infinity of the nonlinearities for
which Theorem 1.1 might apply.

We refer to [4] for a sharp analysis of nonlinear terms behaving at
infinity like iterated logarithms in the context of the exact controllability
of the one-dimensional semilinear wave equation.

Let us now discuss the optimality of the positive result in Theorem
1.2. The need of the growth condition(1.10) is clear when analyzing the
proof of Theorem 1.2. It is a consequence of the presence of the term

exp
(
C‖a‖2/3∞

)
(6.1)

in the estimate of the cost of null controllability of linear heat equations.
Roughly speaking, if the estimate of the cost of controllability contains

a factor of the formh (‖a‖∞), the growth of nonlinearities of order
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sh−1(s) is critical. This explains the need of(1.10). Note that the estimate
of the cost of null controllability for the linear heat equation with a
potential also contains a factor of the order of

exp
(
C
(
T 1/2+ T )‖a‖∞).

According to this, the critical growth forf would bef (s) ∼ s log(1+
|s|). However, we have been able to go beyond this level and reach the
growth conditions(1.10) by choosing a sufficiently small effective time
of control.

The presence of the factor(6.1) in the estimate of the cost of null
controllability is a consequence of the obervability estimate(3.2). It
arises naturally when applying Carleman inequalities. Whether or not
this factor may be dropped (or relaxed) in the observability inequalities
in order to improve the growth condition(1.10) is an interesting open
problem.

6.3. On the optimality of the approximate controllability result

In what concerns the optimality of the negative result in Theorem 1.3,
the same remarks of Section 6.2 above apply.

In what concerns the growth condition(1.4) in Corollary 1.1, it is
important to recall that it excludes nonlinearities leading to blow-up
phenomena (see [5]). In Theorem 1.4, we have relaxed this growth
condition, but at the prize of imposing the additional condition that a
globally defined and bounded solution exists.

6.4. Finite-approximate controllability

The techniques of this paper also serve to analyze the finite-approx-
imate controllability problems for semilinear parabolic systems.

Assume a finite-dimensional spaceE ⊂L2(Ω) is given. Let us denote
by πE the orthogonal projector onE. It will be said that(1.1) is finite-
approximate controllable at timeT (with respect toE) if, for any y0 ∈
L2(Ω), y1 ∈L2(Ω) andε > 0, there exists a controlv ∈L∞(ω× (0, T ))
such that the solution of system(1.1) is globally defined in[0, T ] and
satisfies

πE
(
y(T )

)= πE(y1),
∥∥y(T )− y1

∥∥
L2(Ω)

6 ε.

Obviously this a stronger notion than the approximate controllability
property. The cost of finite-approximate controllability inL2(ω× (0, T ))
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for linear systems like(3.13) was addressed in [9]. Assuming thatE
is a finite-dimensional subspace ofH 1

0 (Ω) and (for instance)y0 = 0
andy1 ∈H 2(Ω)∩H 1

0 (Ω), the finite-approximate controllability property
was proved with the following estimate on the control:

‖v‖L2(ω×(0,T )) (6.2)

6 exp
[
C

[
N
(
T ,‖a‖∞)+ (1+ΛE)

M(‖a‖∞, y1)

ε

]
+ΛE

]
‖y1‖L2(Ω),

with

N
(
T ; ‖a‖∞)= 1+ 1

T
+ T ‖a‖∞ + ‖a‖2/3∞ ,

M
(‖a‖∞, y1

)= ‖a‖∞‖y1‖L2(Ω) + ‖1y1‖L2(Ω),

ΛE = ‖πE‖exp
[
T
[
µ(E)+ ‖a‖∞]eT ‖a‖∞/4+CN(T ,‖a‖∞)],

µ(E)= max
ϕ∈E\{0}

‖∇ϕ‖2
L2(Ω)

‖ϕ‖2
L2(Ω)

.

Observe that the constant in(6.2) is of the order of exp[C1 exp[C2 ×
exp[C3‖a‖∞]]]. Thus, it can be expected that the fixed point techniques
we have used in this paper serve to prove finite-approximate controllabil-
ity at least for functionsf satisfying

f (s)

|s| log(log(log(1+ |s|)))→ 0 as|s| →∞.

However, this has to be done.

6.5. Extensions

The results we have proved may be extended to other situations
including boundary controls, parabolic operators with variable smooth
coefficients, initial data inLp with p not neccesarily equal to 2, etc.
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