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ABSTRACT. — We consider the semilinear heat equation in a bounded
domain ofR¢, with control on a subdomain and homogeneous Dirichlet
boundary conditions. We prove that the system is null-controllable at any
time provided a globally defined and bounded trajectory exists and the
nonlinear termf (y) is such that f (s)| grows slower thars| log®?(1 +
|s|) as|s| — oo. For instance, this condition is fulfilled by any function
f growing at infinity like|s|log” (14 |s|) with 1 < p < 3/2 (in this case,
in the absence of control, blow-up occurs). We also prove that, for some
functions f that behave at infinite likgs|log” (1 + |s]) with p > 2, null
controllability does not hold. The problem remains open wfidrehaves
at infinity like |s|log” (1 + |s|), with 3/2 < p < 2. Results of the same
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kind are proved in the context of approximate controllability.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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RESUME. — On considére I'équation de la chaleur semilinéaire dans
un domaine borné d&?, avec un contréle a support dans un sous-
domaine et avec des conditions de Dirichlet au bord. On démontre que,
s'il existe une trajectoire bornée et globalement définie et le terme non
linéaire f(y) est tel quel f(s)| croit moins vite quéds|log®?(1 + |s|)
guand|s| — oo, alors le systeme est exactement contrdlable a zéro dans
un temps arbitrairement petit. Par exemple, cette conditionfsest
satisfaite sif (s) croit a l'infini comme]s|log” (1+ |s|) avec 1< p < 3/2
(dans ce cas, en absence de contréle, on a explosion en temps fini). On
démontre aussi que, pour topt> 2, on n'a pas la contrélabilité exacte
a zéro pour certaines fonctions dont le comportement a l'infini est
comme celui dgs|log?”(1 + |s|). Cette question reste ouverte lorsque
3/2 < p < 2. Finalement, on démontre des résultats du méme type dans

le contexte de la contrdlabilité approchée.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION AND MAIN RESULTS

Let 2 c R? be a bounded domain with boundary of claSslet7 > 0
be given and assumg: R — R is locally Lipschitz-continuous. We will
consider semilinear parabolic systems of the form

yt_Ay+f(y):vlw InQX(O’T)s
{ y=0 onos2 x (0, 7), (1.2)
y(x,0) = yo(x) in 2.

In (1.1), y = y(x,1) is the state and = v(x,r) is a control that acts
on the system through the nonempty openwset 2. 1, denotes the
characteristic function of the set. We shall denote by) the cylinder
2 x (0, T) and by X its lateral boundary$2 x (0, T).

We will assume thapg € L2(£2) andv € L>(w x (0, T)). In most part
of this paper, we will also assume that, for somgeandv, system(1.1)
admits a solution globally defined in the time interf@| 7']. Of course,
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this holds immediately when

f(©=0, (1.2)

in which casey = 0 solves(1.1), with yo =0 andv = 0.

In the sequelC denotes a generic positive constant. For instance, the
equalityC = C(£2, w) means that only depends of2 andw.

For simplicity, we will requiref to satisfy

|£/()| <C(1+1s1”) ae., withp <1+ 4/d. (1.3)

Under this condition, systerfil.1) possesses exactly one local (in time)
solution.
In accordance with the results in [5], under the growth condition

| f()] <C(1+IsIlog(1+]s])) Vs €eR, (1.4)

the solutions o0f1.1) are globally defined ifi0, T']. More precisely, one
has

y e C([0, T1; L?($2)) N L?(0, T; HF(£2)).

This is also true if, instead dfL.4), we assume a “good-sign” condition,
like the following:

f(s)s >—C(14|s]?) VseR. (1.5)

The main goal of this paper is to analyze the controllabilitylol) when
blow-up occurs, i.e., without imposing any of these conditichg) or
(1.5).

It will be assumed thab # §2. Otherwise, whemw = §2, the problem
can be reduced to the controllability of the (linear) heat equation since
the nonlinear term is absorbed by the control in a trivial way.

We will first analyze the so-callealll controllability property System
(1.1) is said to be null-controllable at tim& if, for any yo € L?(£2)
and any globally defined bounded trajectory (corresponding to the
datayj € L?(£2) andv* € L*®(w x (0, T))), there exists a contral €
L>(w x (0, T)) such that the corresponding solution @1) is also
globally defined in0, 7] and satisfies

yx, T)=y*(x,T) in 2. (1.6)
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Obviously, when(1.1) is linear, this is equivalent to say that, for each
yo € L?(£2), there exists € L>®(w x (0, T)) such that the corresponding
solutiony satisfies

yx,T)=0 ing2. a.7)

This justifies the definition we have introduced of null-controllable
systems.

Notice that, if (1.6) holds, extending for + > T as the controb*
associated te*, we obtain a solutiory that coincides withy* as long as
y* exists. In particular, ify* is a stationary solution ofl.1) or, more
generally, y* is defined for allz > 0, theny is also globally defined
and coincides withy* for all + > T. Hence, from the viewpoint of
applications, it is very important to know whether or ri@tl) is null-
controllable.

Our first main result is of negative nature.

THEOREM 1.1. — There exist locally Lipschitz-continuous functions
f such thatf (0) = 0, satisfying

| f ()]~ Isllog? (1 +[s]) as|s| - oo (1.8)

with p > 2, for which systen(1.1) fails to be null-controllable for all
T > 0.

Remark1.1. — For the proof of Theorem 1.1, we chogse 2 and

s|

fs)= / log’(1+|o|)do VseR (1.9)
0

and we prove a localized estimate (i2 \ @) that shows that the
control cannot compensate the blow-up phenomena occurris\i.
Arguments of this kind are well known. For instance, see J. Henry [14] for
the proof of the lack of approximate controllability of the heat equation
with nonlinear absorption terms; see also O.Yu. Imanuvilov [15] and
A. Fursikov and O.Yu. Imanuvilov [10] for examples of systems that
fail to be null-controllable with power-like nonlinearities, i.e., in the
more restrictive class of nonlinear terms growing at infinity liké& with
p>1 0O

The function f in (1.9) is such thatf (0) = 0. Thereforey* =0 is a
stationary solution of (1.1) corresponding to the conirbl= 0 and, as
mentioned above, the null controllability problem makes sense.
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It is important to observe that the solutions(fiol) can blow up in the
absence of control as soon pg&(s)| grows at infinity as in(1.8) with
p > 1. Therefore, Theorem 1.1 does not exclude the null controllability
of a whole range of nonlinear systems for which blow-up occurs. Namely,
when(1.8) is satisfied with 1< p < 2.

In our second main result, we establish conditions under wtfich)
is null-controllable:

THEOREM 1.2.— Let T > 0. Assume thatl.1) admits at least one
globally defined and bounded solutiorf, corresponding to the data
vg € L2(£2) andv* € L®(w x (0, T)). Assume thaf : R — R is locally
Lipschitz-continuous and satisfiék3) and

f(s)
|s[log¥?(1+s])

— 0 as|s| — oo. (1.10)

Then(1.1) is null-controllable at timeT".

Remark1.2. — There is an extensive literature on semilinear parabolic
and elliptic problems analyzing the existence of global and/or stationary
solutions. At this respect the following result by H. Brezis et al. [3] is
worth mentioningAssume that, for some> 0, one hasf (¢) < 0 and

/ ! ds > —o0. (1.11)
J f(s)

Also, assume there existg € L*°(£2), with yo > 0, such that the system
(1.1) corresponding to this initialyg and v = 0 possesses one global
classical solution(defined for allr > 0). Then there exists at least one
weak stationary solution afl.1) corresponding ta = 0.

Recall that (1.11) guarantees the existence of solutiond.af that
blow up in finite time. Roughly speaking, this result shows that, in the
class of nonlinearities in which blow-up arises, foe 0, the existence
of positive global solutions implies that weak stationary solutions exist.
It is a routine argument to show that, under the growth conditions we are
imposing onf, these weak solutions are bounded

Remark1.3. — The proof of Theorem 1.2 provides estimates on the
size of the control needed to achieve null controllability. Furthermore,
by inspection of the proof, one sees that null controllability still holds
under slightly more general conditions. More precisely, for each globally
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defined and bounded solutiori, there exist€(y*) > 0 such that, if

|f(s)]
sloco |s[10g¥2(1+ |s])

<L(Y*) < 400

and yg is given, we can finb* € L>®(w x (0, T)) such that(1.6) is
satisfied. O

Remark1.4. — In particular, Theorem 1.2 says that, for eaghe
L?(£2), there exists a contral such that the corresponding solution of
(1.1) is globally defined in0, T]. In other words, if a globally defined
trajectory exists, then for eagly a controlv can be found such that the
corresponding solution is globally defined as well. Of course, this cannot
be guaranteed to hold for any right-hand side and any initial datum, since
we are in the range in which blow-up may occun

Remark 1.5. — Without the assumptiofi.3) on f, the uniqueness of
a solution to(1.1) for a givenv is not guaranteed. In these conditions,
arguing as in the proof of Theorem 1.2, we can deduce the existence
of a controlv such that systenil.1) admits at least one solution that is
globally defined if0, 7] and satisfie$1.6). We refer to [16] for a similar
discussion. O

Theorem 1.2 asserts that systé€inl) is null-controllable under the
growth condition (1.8) provided p < 3/2. Obviously, there is a gap
between Theorems 1.1 and 1\®e do not know whether or not system
(1.1) is null-controllable whenf satisfies(1.8) with 3/2 < p < 2.

As we shall see, the proof we give of Theorem 1.1 does not hold
for p < 2. The same can be said about the proof of Theorem 1.2 when
p > 3/2. Thus, the case/2 < p < 2 is an interesting open problem. We
shall return to it in Section 6.

In [8], it was shown that zero controllability holds under the more
restrictive condition

1)

I L0 as|s|— oo. (1.12)
Is|log(1+ [s])

Note that, under conditioril.12), the solutions to(1.1) cannot blow
up. Recently, V. Barbu [2] has proved the zero controllability(bfl)
under the growth conditioil.10), but imposing additional “good-sign”
conditions similar to(1.5) (see also [1]). Therefore, to our knowledge,
Theorem 1.2 is the first result in the literature on the null controllability
of blowing-up semilinear heat equations.
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Recall that, in the context of the semilinear wave equation, due to the
finite speed propagation property, if blow-up occurs, exact controllability
cannot hold (see [19]). Thus, Theorem 1.2 holds due to the parabolic
nature of the equation under consideration.

For the proof of Theorem 1.2, we will use the explicit estimates on
the cost of controllability obtained in [9] and the fixed point method
introduced in the context of the semilinear wave equation in [17] and
later applied to semilinear heat equations in [7,8] and [18] (see also [10]).
Recall that the estimates in [9] were obtained by adapting the global
Carleman inequalities in [10].

However, when applying the fixed point argument, we introduce a
new ingredient to avoid blow-up to occur. Indeed, as usual, we first
linearize the system and show its controllability analyzing how the
control depends of the size of the potential of the linearized equation.
Usually, one taked" as the control time for all the linearized equations
(see, e.g., [17]). However, in the proof of Theorem 1.2, the control time is
chosen depending on the size of the potential so that, roughly speaking,
it decreases as this size increases and tends to zero as the size tends to
infinity. This is made in order to avoid blow-up phenomena to occur. Note
that this strategy is in agreement with common sehséhe presence of
blow-up phenomena, one has to act on the system very fast, before blow-
up occurs.

This idea of taking short control times has been used in [16] for the
one-dimensional heat equation with nonlinearities that behave sublin-
early at infinity and by O. Glass [13] in the context of the 3-d Euler
equations.

Let us now analyze thapproximate controllability propertySystem
(1.1) is said to be approximately controllable at tirfieif, for any yg €
L?(£2), y1 € L3(2) ande > 0, there exists a contrele L>(w x (0, T))
such that the solution afL.1) is globally defined if0, 7] and satisfies

1y T) =yl 200, <& (1.13)

In other words, systenil.1) is approximately controllable if the set of
reachable states is denselif(£2).

In the context of linear heat equations, approximate controllability is
a consequence of the null controllability property (see for instance [9]).
But this is not necessarily true for semilinear equations.

Our third main result is the following:
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THEOREM 1.3. — There exist locally Lipschitz-continuous functions
f satisfying(1.8) with p > 2, such that, whateveF > 0 is, systen(1.1)
is not approximately controllable at tinig.

Remark1.6. — The proof of Theorem 1.3 is similar to the proof of
Theorem 1.1. In this case, we introduce the following functfon

f(s)=/log” (1+ol)do VseR.
0

The absorption effect of the nonlinearity allows to prove that, for any
yo € L?(£2), the set of reachable states are uniformly bounded away
from the control subdomaimw. Recall that, whenf(s) = |s|"~1s for
somer > 1, this was already observed by A. Bamberger (see for instance
[14]). O

Remark1.7. — It would also be interesting to know whether blow-
up phenomena can be an obstruction to approximate controllability even
when the initial data are small. In particular, let us assume fat O
and let f be as in(1.9) with p > 2. We do not know if the following
is true: For any y; € L2(2) and anye > 0, there exists a controb e
L>(w x (0, T)) such that the corresponding solution(@fl) is globally
defined in[0, 7] and satisfieg1.13). O

We also have the following result:

THEOREM 1.4, — LetT > 0 and let the assumptions of Theordn2
be satisfied. The(l.1)is approximately controllable at timg.

Let us briefly describe the strategy of proof of Theorem 1.4. We will
argue as follows. Lebg, y; ande > 0 be given and assume that is
regular enough. We divide the time intervl, 7] in two parts. In the
first (large) subintervalO, T — §], we choosev; such thaty satisfies
(1.6), with y* being the globally defined solution whose existence is
assumed. In the second of&,— §, T'], we apply a control, that drives
the solution fromy*(-, T — §) to w(-, T') exactly. Herew is the solution
of the auxiliary problem

w=0 onaR x (T —4,T),

w;—Aw+ f(w)=0 N2 x (T -6,T),
{w(x,T—S):yl(x) in £2.
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The existence ofi; andwv, is implied by Theorem 1.2. Furthermore gif
is sufficiently small, we have

Consequently, by setting = v, for r € (0,7 — §) andv = v, for ¢ €
(T — 6, T) we will have found a controb such that the corresponding
solution to(1.1) satisfies(1.13).

Analyzing this proof, we see that the main ingredients needed for the
proof to work are (@) there exists a trajectory starting franaefined in
the whole time interval0, T — 8] and (b) the system is null-controllable
in any arbitrarily short time interval. Sincgl.4) avoids the presence
of any blow-up phenomena, we find that an immediate consequence of
Theorem 1.4 is the following:

COROLLARY 1.1.— Let T > 0. Assume thatf is locally Lipschitz-
continuous and satisfiegl.3) and (1.4). Then(1.1) is approximately
controllable at timeT .

The rest of this paper is organized as follows. Section 2 is devoted to
prove Theorem 1.1. In Section 3, we prove Theorem 1.2. In Section 4, we
prove Theorem 1.3. Section 5 is concerned with the proof of Theorem 1.4.
Finally, in Section 6, we discuss in detail the open problem mentioned
above (f satisfieg(1.8) with 3/2 < p < 2) and other related issues.

2. PROOF OF THE LACK OF NULL CONTROLLABILITY

This section is devoted to prove Theorem 1.1. Let us introduce the
following function f:

Is]
fls)= /Iog”(l+o) do VseR, (2.2)
0

with
p>2

Obviously, f is convex andf (s)s < 0 fors < 0. On the other hand,

f(s)~Isllog”(1+|s]) as|s| — oo.
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Therefore, f is in the range of nonlinearities in which blow-up occurs
in the absence of control, i.e., with= 0. The proof of Theorem 1.1 is
based on the fact that there are initial data which lead to blow-up before
time T', whatever the contral is.

We proceed as in [10], Section 1.5 (see also [14] for a similar argument
in the context of approximate controllability). Thus, we introduce a
nonnegative functiop € D(£2) such that

p=0 inow, /pdx:l. 2.2)

2

Letv e L*(w x (0, T)) be given and ley be the solution tq1.1). Let
us multiply by p the equation satisfied by and let us integrate ovee.
Taking into account that the control is supported:by (O, T), we obtain:

d n n n
= / pyd = / p(Ay)dx - / pf (y)d. (2.3)
2 2 2
Moreover,
/'pmy) dv = / (Ap)y d. (2.4)

2 2
From (2.3), (2.4) and the definition off, we have

d : '
E(—/pydx) =—/(Ap)ydx+/pf(|y|) dx. (2.5)
2 2 2

Taking into account thatf is convex, we can introduce its convex
conjugatef*. For the moment, let us assume that

pf*(20p/p) € LH(£2) (2.6)
(we shall return to(2.6) later on). Then, from Young’s inequality, we
have
A
/(Ap)ydx </p =2y de
2 2
17 . 1/
<3 [or @)+ 3 [ pf(vl)ar. @7)
2

2
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Let us set

2
Q

k=3 [ o @aslip)d. (2.8)

which is finite according to(2.6). From (2.5), (2.7) and (2.8), the
following is deduced:

d
a[—/pydx

2

>— /(Ap)y dx

2

1
>kt [ f(xD e
2

+/pf(|y|)dx

From Jensen'’s inequality, we also have

[efy e f</p|y|dx>.

2 2

On the other hand, taking into account tifais increasing o0, co), we

know that
f(/pIyIdX> >f< /Pydx>=f<—/pydx>.
Q Q Q

Thus, if we set(t) = — [, p(x)y(x, 1) dx for all r andzo = — [, p(x) x
yo(x) dx, we find that

, 1
{z (1) > —k+ 5 f (). 2.9)
z(0) = zo.

We are now going to us@.9) to prove that, for appropriate initial data,
z blows up at a finite time. More precisely, lef € L?(£2) be such that

o= / p()yo()dr > 0, f(zo) > 2k
2

and assume that: [0, 7,) — R is aC* function satisfying(2.9). Let us
see thatl,, < 4+o0.
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The functionz is nondecreasing. Furthermore, if we set
G( ) / 2 do Vs>
20;8) = | ————=-00 Vs =2z,

then we find that

d ) 27
EG(ZQ, z(1)) = ) % >1 Vvtel0T,). (2.10)

Notice that, in view 0f(2.1),
f(o)~olog’(l4+0) aso — +oo,with p > 2.

Consequently,
+00 2
G (zo; +00) = / —————do < +o00. 2.11
’ J fo) -2 N

Going back t0o(2.10), we see that
G (z0; 2(1)) — G(z0; 20) = G(z0; 2(1)) =t Vi €[0, T,). (2.12)

Combining(2.11) and (2.12), we deduce that blows up in finite time
and, thereforey blows up inL(£2).

In fact, we have found the following estimate for the maximal time of
existence:

+00

2
T, < / ————do, wherek is given by(2.8).
flo)—2k
<0

Obviously, aszg — oo, the blow-up time ofz and, consequently, the
blow-up time ofy in L1(£2) tend to zero.

This completes the proof of Theorem 1.1 (assuming it2a6) is
satisfied). Indeed, we have shown that, whateler O is, by taking
yo € L?(£2) with

20= —/p(x)yo(x)dx sufficiently large,
2
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the solutiony of (1.1) is not globally defined if0, T'], regardless of the
choice of the controb € L>®(w x (0, T)).

It remains to prove that, for the functighin (2.1) (with p > 2), there
exists a nonnegative functigne D(s2) satisfying(2.2) and(2.6).

We first claim that

F5(s) ~ pls|* VP exp(|s|V?) ass — +oo. (2.13)
Indeed, we have by definition that

f(s) = Suﬂg[as — f(a)]. (2.14)
The supremum in(2.14) is achieved at a critical poin such that
s— f'(a)=0,i.e.,a=(f)"s). Thus,

&) =L = FLFT7H6)).
According to the definition2.1), we have
f'(ry=sgnr)log? (1+|r|) Vr>0.
Consequently,

expsP)—1
f*(s) =s[exp(s*?) — 1] — / log” (1+ o) do (2.15)
0
and it is easy to dedug@.13) from (2.15) applying I'Hopital’s rule.

Let us prove the existence of the desired funcjidaking into account
the asymptotic shape gf*.

We will first discuss the one-dimensional cage<{1). Obviously, to
show that(2.6) holds, the unique delicate point concerns the behavior
of f*(2|p”|/p) when p vanishes. Note that we can always chogse
supported by an interval C 2 \ @ and strictly positive in the interior
of I. Thus, the difficulties arise only at the extremes of the intefval
Without loss of generality, we may assume that we are considering the
lower extreme, located at = 0. We claim that it is then sufficient to
take p behaving like exp-x—") with m > 2/(p — 2) (recall thatp > 2).
Indeed, if

p(x) =exp(—x~"),
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then
p'(x) = mx~ " exp(—x),
and
p"(x) = [ —m(m + Dx~ "2 4 m%x @2 exp(—x ).
Consequently
|/;)((;C))| — |2~ (4 Dx— 42|
~m?x~@"+2  gsx — Ot (2.16)

Then, according t92.13) and(2.16):

2" @)1/ p(x)) (2.17)

Nme(l—l/p)x—(Zln+2)(p—l)/pexp(mZ/px—(Zln+2)/p) asx — Ot.

From (2.17), we see thapf*(2|p”(x)|/p) € L*(£2) if and only if m >
(2m + 2)/p or, equivalentlyyn > 2/(p — 2), as we have chosen above.
This proves our assertion.

In several space dimensions, without loss of generality, we may assume
that the ball B(0; r) is contained in$2 \ @. Then, we can choosg
behaving like exp—(r — |x|)™™) as|x| — r~. The same computations
above show that2.6) is satisfied whem > 2/(p — 2).

3. PROOF OF THE NULL CONTROLLABILITY RESULT

This section is devoted to prove Theorem 1.2. First of all, we will
recall some observability estimates obtained in [9] as a consequence of
appropriate global Carleman inequalities. Then, we will deduce some
refined versions of these observability estimates. This will serve to
prove null controllability results (and estimates) for linear heat equations
with bounded potentials, with controls b (w x (0, T)). Finally, we
will apply a fixed point argument and we will deduce the desired null
controllability result for the semilinear heat equation.

3.1. Preliminaries on observability inequalities

Let us consider the adjoint system
—¢r—Ap+ap=0 inQ,
=0 on X, (3.2)
o(T) = ¢° in 2.
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In (3.1), a = a(x, ) is a potential. We assumee L>®(Q) and ¢° ¢
L?(£2). The following result was proved in [9]:
ProOPOSITION 3.1. — There exist€ = C(£2, w) > 0 such that

HQ"("O)HiZ(Q) (3.2)

1
< exp[c (1+ 4 Tlall + ||a||§43>] [ witava

wx(0,T)
for any¢® e L?(£2) and T > 0, with ¢ being the solution of3.1).

The proof of this result requires appropriate global Carleman inequal-
ities, as in [10]. It is important to observe thé&.2) provides precise
estimates on how the observability constant depend% amd the size
of the potentiak:. This will be essential when dealing with the semilin-
ear problem(1.1) and in particular, when dealing with nonlinearities that
may lead to blow-up phenomena.

However, in order to prove Theorem 1.2, we need a refined version
of the observability inequality3.2). This will be obtained in the next
section.

3.2. Arefined observability inequality

The following holds:
PrROPOSITION 3.2. — There exist€ = C(£2, w) > 0 such that

1
o€ 020 < exp{c (1+ =+ T+ (T4 T)llall + ||a||§és)]

><< // |<p|dxdt>2 (3.3)

wx(0,T)
forany¢®e L?(22) andT > 0.
Proof. —We will proceed in several steps.

Step 1. — Letw’ be a nonempty open set satisfyinge .
Notice that, as an immediate consequence(32), the following
observability inequality holds with, possibly, a larger constant

e, O)HiZ((z) (3.4)

1 n
< exp{C<1+ 4 Tl + ||a||§g3>} [ wrara.

I 2r
o' x(3,5)
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Indeed, from Proposition 3.1 applied &8 in the time interval[%, %T],
we deduce that

loC.T/3)|[3 2 < (3.5)
3 T
explc(1+ 2+ Tl 102)] [] ioldra

On the other hand, classicaP estimates imply the following for any
solution of(3.1):

2T

Combining(3.5) and(3.6), we see that3.4) holds.
Step 2. — Let us prove that

// || dx dit (3.7)
)

/(L 2T
o'x(3.5

2
<CT*(1+TY?(1+ ||a||oo))*"< / o] dx dt)

wx(0,T)

for any¢® € L?(£2), wherex andg are positive numbers only depending
of d.

To this end, we first claim that, whenever the nonempty openasets
the parameter8; and the exponents satisfy

T
@ CwyEwi Cw, 0<81<80<§, 1<r<rg< oo
and

(51+1> F—E] - % (3.8)

we have

( // o]0 dx dt) " (3.9)

wox (80, T —80)

1/ry
SCTV(1+TY?(1+ ||a||oo>)( // Isol”dxdt)

@1X(81,T—61)
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for all ¢° € L?(2), whereC = C(2, w;, 8;,r;,d) andy =y (r;,d),i =
0,1.

Indeed, let us introduce a functiéhe D(w; x (81, T — 81)) such that
0 =1inapyx (89, T —3p) and 0< 6 < 1 everywhere. Let us set =6¢.
Then

v=0 on X,

{W[+A1ﬁ=a1ﬁ+[0[+A9]g0+2V9-Vga in Q,
Y(x,T)=0 in$2.

In order to simplify the computations, let us reverse the sense of time.
More precisely, let us puf (x,t) = ¢ (x, T —t). We also introducep
andé, defined in a similar way. We then have

v =0 onx,

{@—A%—mﬂ[@—Aé]@—zvé-va in Q,
VU(x,00=0 ing.

Let us denote byS(r)},>0 the semigroup generated by the heat equation
with Dirichlet boundary conditions. Then

Je= /'S(t — 9 —a¥ +[0,(s) - AB©)]Fs)  (3.10)
0

—2V0-VG}(-,s)ds.

Taking L"°-norms in(3.10) and using the.’t — L’ regularizing effect
of the heat equation, we obtain the following fora (§,, T — §1):

(1) (3.11)

L'0(R2)
t

<C ds

L'1(£2)

0

1 1

+ [ o= 80 40— 150 i o
A

The constant in (3.11) depends on thé.>°-norm of §,, A6 and V6.
Therefore, it is determined hy; ands;, i =0, 1. This gives

1 (1) SCT 14+ TY2+ TY2)|a)| o]

L)
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L' () ds

X /(t — s)f%(%f%)f% H@(., s)
51

forall r € (81, T — 81). Now, from Young’s inequality, we find that

H‘l’ L"0(§2x(81,T—81))
SCT™(L+ TY%(14 [lalloo)) 191l Lty x (50,7 —51))

wherea = (4 + 1)(+ — io) + . This is possible because

r1 r

d/1 1 1 1 1
TENEFEVE ST}
2\r1 ro 2 n 7o

(3.12)

which is equivalent t@3.8). The desired estimai®.9) follows immedi-
ately from(3.12).

We cannot apply3.9) directly to deduceg3.7), since the exponents
rp =1 andro = 2, may not satisfy conditiod3.8). Thus, we will apply
(3.9) recurrently.

Let us seto = 2 and letr, r, ... be given by

1 i

1 2d+2)

1
+§ for all 7.

For an appropriatd > 0, one has; > 1 andr; 1 < 1. Let us redefine
rr+1 by settingr; 1 = 1. Letus introducé > O so tha{7/3— 18, 2T /3+
18] C [0, T] and also a finite family of increasing open setswith

W' =w)EW € Ewi41 = .

Foreach =0,1,..., 7 — 1, we can us&2.9) with wg, w1, 89, 81, ro and
rq1 respectively replaced hy;, w; 1,168, (i +1)8, r; andr; 1. In this way,
itis immediate to deduce the inequal$§.7) with 8 = I anda being the
sum of the exponentg arising in(3.9) at each step.

Step 3. — The inequalitie$3.4) and(3.7) give together

2
Hso(-,0>Hi2(m<K(fz,w,d,T,nauoo)(/ |so|dxdt>,

wx(0,T)

where
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— 1 2/3
K(2,0,d.T, llale) =exp|C( 1+ 7 + Tlalloo + llall

x T*(14+ TY2(1+ Jlall))”.

This implies immediately that3.3) holds for all ¢° € L?(£2). This
completes the proof of Proposition 3.20

3.3. Null controllability of the linear heat equation with a potential

For the proof of Theorem 1.2, we will use a fixed point argument
below. One of the main ingredients is to obtain explicit estimates of the
norms of the controls needed to achieve the null controllability of the
linear heat equation with a potential.

Let us consider the system:

yo—Ay+tay=vl, inQ,
y=0 onxy, (3.13)
y(x,0) = yo(x) in £,

wherea € L*(Q). The following holds:

THEOREM 3.1.— For any T > 0, any a € L*°(Q) and any yg €
L?(£2), there exist controls € L>(w x (0, T)) such that the correspond-
ing solution of(3.13) satisfies

y(x,T)=0 in £. (3.14)
Furthermore,v can be chosen such that the following estimate holds:
lv]l L (wx 0, 7)) (3.15)
<oxp[C (14 2+ T+ (TV2+ T) lalo + 10122 ) [ Ipoliz

Proof. —Let us fixT > 0,a € L*(Q) andyy € L?(£2). For anye > 0,
we consider the following functional:

Js(900> = :_ZL[ // |¢|dth]2+8||9"OHL2(m (3.16)

wx(0,T)

+/g0(x,0)y0(x) dx V(poe LZ(Q).
Q2

Here, for eaclp® e L?(R2), ¢ is the corresponding solution ¢3.1).
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It is not difficult to see thap® — J,(¢°) is a continuous and strictly
convex function orL2(£2). Moreover, J, is coercive. In fact, proceeding
as in [7], it can be checked that

- Je (¢
liminf 75«0) >e.
1900 20,00 [19°1 L2(2)

Therefore,J, achieves its minimum at a uniquye € L?(2). Let ¢, be
the associate solution ¢8.1). Again arguing as in [7], it is easy to see
that, for some

v € ( / |@|dxdt) SING.) .

wx(0,T)

the solutiony, of (3.13) satisfies

We claim that, for a suitabl€ = C(£2, w) > 0, the following holds:
lve ll L (wx(0,7)) (3.18)

1
<explC (1+ SATH (T4 T) o + ||a||§43)} 1yoll 22ce-

Indeed, at the minimuma?, we have

In accordance witti3.16), we find that

%{ // |@|dxdtrg/wx,owo(x)dx
2

wx(0,T)
g H@s(a 0)||L2(.Q) ||)’0||L2((2)
and, therefore,

// |@e | dx dt (3.19)

wx(0,T)

1
< exp{c <1+ ST+ (T2 4Tl + ||a||§43)] 1yoll 2o
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(we have used her€.3)). From (3.19), we obtain(3.18) taking into
account that

lvell Lo (x 0.7y = // |@ | dx dr.
wx(0,T)
In view of the uniform bound(3.18), by extracting an appropriate
subsequence, we deduce that

v, > v weakly= in L% (w x (0,T)),

wherev satisfies(3.15). Since we haveé3.17) for all ¢ > 0, we deduce
that v is such that the solution a3.13) satisfies(3.14). This ends the
proof. O

Remark3.1. — An immediate consequence of Theorem 3.1 is that we
can also estimate the minimal norm of a controheeded to drive an
initial datum yg to a final statez(-, ), with z being the solution of
(3.13) corresponding to an initial datumy € L2(£2) and a right hand
sidew € L™ (w x (0, T)). Indeed, by means of the change of variable
p =y — z, we see thav drivesy from yq to z(-, T) if and only if the
control v = v — w drives p from yy — zo to zero. In accordance with
Theorem 3.1, we can find suchaatisfying

IVl oo @x 0,7y < eXp{C <l+ % F T+ (TY24 T)|alls + ”a”i/)s)]
X [lvo — zoll L2(2)-
Hence, we have
IVl Lo @x0,7)) < eXp{C (1—|— % + T+ (T1/2 +T)alloo + ”a”i/)s)]
X llyo = zollz2(2) + lwll Lo @x0.7)-
3.4. The fixed point method: Conclusion

Let us complete the proof of Theorem 1.2. Lgt be a bounded
and globally defined solution ofl.1), associated to); € L?(£2) and
v* e L®(w x (0, T)). Let us perform the change of varialpe=y — y*.
Then,y solves(1.1) if and only if p satisfies

{pz —Ap+ fO*+p)— fO)=vl, inQ,
p=0 on X, (3.20)

p(x,0) = po(x) in £2,
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wherev = v — v* and pg = yo(x) — y§. Our task is then to show that, for
eachpg € L%(£2), there exists € L®(w x (0, T)) such that

p(x,T)=0 ing. (3.21)
We will argue as follows. Let us assume that
Iy, 0| <k* in2x(0,T)

and let us set
M) = max|f(a). (3.22)
We will first consider the case in whighy € C%#(£2) for somep € (0, 1)

and f is Ctin [—k*, k*].
Let us set

g(a S) f(a +S§ - f(a) for |(l| <k*, s ?é O, (323)
f(a) for |a] < k*,s =0.

Theng is continuous. We claim that, for eagh> 0, there exist<”, > 0
(which only depends aof, k* and the functionf) such that

1g(y*(x, 1), )3 < C,+ nlog(1+ |s),
{Vs eR, V(x,1)e0. (3.24)

Indeed, it will be sufficient to prove that, for eagh- 0, one has
g(y*(x,1),5)| < Cp +nlog®? (L+k* +s]) (3.25)

for all s e R and (x,r) € Q. Let n be given and lek(n) be such that
s(n) > k*+1and

f(S) 277

Iog3/2 (14 |s]) for|s| = s(n). (3.26)

For|s| < 2s(n), we have
]g(y*(x, 1), s)| < L(kK*+2s(n) V(x,1) €0, (3.27)

whereL (k* + 2s(n)) is a Lipschitz constant fof in [—k* — 2s(n), k* +
2s5(n)]. On the other hand, fds| > 2s(n), we see that
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< ‘ fO* D+
h N

8 (3" (x, 1), 8 [f(y*(x.0)]|

2s(n)

1
+ —— max
25(n) lal<k*

< max

Bl o< 4k

f(cr)‘

N

f (@)

1
Zk*

ro),
o

< max

3
2 Bl o<l -+

M (k™).

Here, we have used thaty) > k* and, consequentlyg | < |s| + k* and
Is] > 2s(n) imply |o] < 3|s|/2. We deduce that, fgs| > 2s(n),

1
|§(y*(x,t),s)]nlog3/2(1—|—k*+|s|)—i—%M(k*) V(x,1) € Q. (3.28)

Combining(3.27) and(3.28), it is not difficult to deduc&3.24), with C,,
only depending of, k* and 1.

Notice that two different functionsf for which the restrictions to
R\ (—k*—1, k*+ 1) and the quantitied/ (k*) and L (k* + 1) (a Lipschitz
constant if—k* — 1, k* 4+ 1]) coincide lead to the same constagtsin
(3.25) and(3.24). This will be used below.

Let us setZ = L*>°(Q). Let R > 0 be a constant whose value will be
determined below. We will use the truncation functin which is given
as follows:

s if |s] <R,

Tr(s) = { Rsgn(s) otherwise.

For eachy € Z, we will consider the linear system

p=0 on %, (3.29)

{ P —Ap+g(y*, Tr(z))p=vl, inQ,
p(x,0) = po(x) in Q.

Obviously,(3.29) is of the form(3.13), with a = g(y*, Tr(z)) € L*(Q).
Let us set
2" Te@) |2, (3.30)

T =min [T, |[2(y", Tr (@) |,

According to Theorem 3.1, there exist contrelse L*(w x (0, T}))
such that the solution aB.29) in 2 x (0, T¥) with v = v, satisfies

p(x, T)=0 inQ
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and

V2l L @x 0.7 < Co($2, @, T, || g (", TR(Z))HOO) lpoll 22y, (3.31)

where
CO (Q’ a)’ TZ*,

gy, Tr(2)] ) (3.32)

l ~( %
= exp( €1+ 77 + (@24 T207. e

Z

+ 207 @) ) ).

Let A(z) C L™®(w x (0,T)) be the family formed by the extensions
by zero to the whole intervdl0, T'] of all these controls. Assume that
v, € A(z). From the definition3.30) of 7" and(3.31)~(3.32), it is clear
that

1V 1 @wx 0.7 < exp[C (1 + Hg()’*’ Tr(2)) HZSH lPollL2e), (3.33)

whereC =C(2,w, T).

Now, let A(z) C L*°(Q) be the family of the solutions 0§3.29)
corresponding to the controls € A(z). Obviously, if p, € A(z), one
has

p.=0 inQx(T5T).
In particular,
p.(x,T)y=0 in$2. (3.34)

In this way, we have been able to introduce a set-valued mapping
7+ A(z). We will now check that, for som&, this mapping possesses
at least one fixed point such that

[Pl < R. (3.35)

Of course, this will imply the existence of a contiok L (w x (0, T'))
such that the solution aB.20) satisfies(3.21).

To this end, we will first see that Kakutani’s Fixed Point Theorem can
be applied toA. Indeed, it is not difficult to see that(z) is, for each
z € L*(Q), a nonempty closed convex set. From parabolic regularity,
we also see that there exists a fixed compact sukiset L°°(Q) such
that

A(z) CK VzeL™(Q)
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(we are using here the hypothepise C%#(£2)). Furthermorez — A(z)
is upper hemicontinuous, i.e., the real-valued function

ZH> sup (u, p)
PEA(R)

is upper semicontinuous for each bounded linear farmon L°°(Q).
Consequently, Kakutani’'s Theorem will imply the existence of a fixed
point of A if we prove that, wheneveRr is sufficiently large, any fixed
point of A must satisfy(3.35). We will use (1.10) (and (3.24); notice
that, up to now, this has been ignored).

Thus, letp be a fixed point, associated to the contrple A(p). From
classicalL > estimates on the solutions (8.29), we have

T ey T, ~
||p||oo<ep”g(y R ||P0||L°°(Q)
7 o T ~
+ T;‘e I8 Tr(pI ||Up||L0°(w><(0,T))-

Consequently, taking again into account the definitiory’ pfand using
(3.24) and(3.33), we deduce that
Py 2/3
1plloo < € HHIECTIREIID () pol g + v, [l L% (wx0,77)
< C (LHCy+n10g(L+ITr (P) 00)) Il Poll o

C
= e“UED | polloe (1 + 1 TR(P) o)
<& H | pollo(L+ R)'C,

whereC = C($2,w, T). Taking n > 0 small enough to haveC < 1,
we deduce the existence & > 0 such that|p|l.. < R. As mentioned
above, this proves that, for somes L*°(w x (0, T")), the corresponding
solution to(3.20) satisfies(3.21). Hence, our assertion is proved when
yo € COP(2) and f is Ctin [—k*, k*].

Notice that, in the previous argumemt,can be chosen depending only
of 2, w, T, the restriction off to R\ (—k* k*), M(k*), L(k* + 1)
and| poll L= (%)- Thus, we have solved the controllability probl¢&i20)—
(3.21) with p andv respectively bounded ib*>(Q) andL*®(w x (0, T))
by constants which only depend of these data.

Now, let us assume that is only locally Lipschitz-continuous and
po € CO(2). We can put

f= ILmOO fn uniformly in R,
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for some locally Lipschitz-continuous functiong, which are C* in
[—k*, k*], coincide withf outside(—k* — 1, k* + 1) and have the same
Lipschitz constants ifi—k* — 1, k* + 1]. We can also put

po= lim pg uniformly in 2,
n— oo

for some functiong} € C%#($2).
For eachn > 1, we can argue as before and find a contrble
L*>(w x (0, T)) such that the solutiop” to

pi —Ap"+ fu (" + p") = fu(y) =v"1, inQ,
p'=0 onx, (3.36)
p"(x,0) = pg(x) in £2,

satisfies
p'(x,T)=0 ing2.

From the estimates we have found, we deduce that it can be assumed
that

||vnHL°°(w><(O,T)) and Hanoo

are uniformly bounded. Accordingly, we can take limits (&36) (at
least on a subsequence). In other words, it can be assumegthat
converges (at least) strongly fif(Q) and a.e. and” converges weakly-

in L*(w x (0, T)). This provides a controb € L*®(w x (0, T)) such
that the corresponding solution ¢8.20) satisfieq3.21). This proves our
assertion whempg € L*(£2).

Finally, let us consider the general case, whgges L2(2) and f
is only locally Lipschitz-continuous. Let > 0 be sufficiently small
and let us sev = 0 for ¢t € (0,8). Then, by parabolic regularity, the
corresponding (local) solution t8.20) satisfiesp(-, §) € C°(£2). Now,
we can apply the arguments above 0, ) in the interval[s, T]. Of
course, this provides a contmok L*(w x (8, T)) such that3.21) holds.
This completes the proof of Theorem 1.2.

Remark 3.2. — The arguments used for the proof of Theorem 1.2 also
lead to new proofs of some known facts on the local and large time null
controllability of (1.1). For instance, it can be shown that,fifsatisfies
(1.2) and(1.3), for eachT’ > 0 we can findp(T) > 0 such that, whenever

lyoll 22y < p(T),
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we have(1.7) for somev. On the other hand, assuming thasatisfies a
good-sign condition ang'(0) = 0, we can prove zero controllability for
large T . Indeed, due to the nonlinear absorption effect, solutions without
control enter a small ball af?(£2) at a uniform time. Then, making use
of local null controllability, solutions are driven to zero (see [8,10] and
[15] for more details concerning these and other related questions).

4. PROOF OF THE LACK OF APPROXIMATE
CONTROLLABILITY

This section is devoted to prove Theorem 1.3. The proof is similar to
the one of Theorem 1.1. This time, it will be seen that, for an appropriate
function satisfying(1.8) with p > 2, once the initial datumy, and a
compact sefr C 2 \ @ are fixed, the restrictions t& of the reachable
states are uniformly bounded In'(F). We proceed as in [14].

Let us introduce the functioif, with

f(s):/log”(l—i-o)do Vs eR
0

and p > 2. Let us also introduce a nonnegative functipre D(£2)
satisfying(2.2).

Let yo € L?(£2) andv € L®(w x (0, T)) be given and lety be the
solution to(1.1). Let us multiply byp sgn(y) the equation satisfied by
and let us integrate ove®. Then

d
E/plyldX=/pSgn(y)(Ay) dx—/p!f(y)!dX-
2 2 2
From Kato’s inequality, we know that
[ psaronands < [aplyids.
2 2

We also have

1 17 -
‘/(Ap>|y|dx‘ <2 [orishes+ [of@apode @)
2
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where f is the conjugate of the convex functiem> f(|s|). Arguing as
in the proof of Theorem 1.1, we see that, by choosingppropriately
(depending of2 andw), the last integral in the right-hand side @f1)
is finite (because > 2). Consequently,

d 1r
1 d " d < )
o [oiviar+2 [prynar<c
2 2

whereC = C(£2, w, p). In view of the convexity of the function
f(s]), this gives

OI/||o|+1 (/||d)<c
g | Plyldx ngpyx\.

2

In other words, setting(z) = /,o(x)|y(x, t)| dx for all ¢, we see that
2

, 1
20+ 5f(z0) <C.
This implies that

21 = [ p()ly 1)
2
is bounded independently of the conttol
Therefore, onceyp € L?(£2) and an arbitrary compact sétC 2 \ @
are fixed, the restrictions t6 of the reachable states are indeed uniformly
bounded inL1(F). This is obviously in contradiction with the density of
the set of reachable stateslii($2).

5. PROOF OF THE APPROXIMATE CONTROLLABILITY
RESULT

The goal of this section is to prove Theorem 1.4. We will use
Theorem 1.2. More precisely, we will deduce tkatl) is approximately
controllable by driving the solution exactly to the final point of an
uncontrolled trajectory. In order to compensate the fact that we are in
the range of nonlinearities for which blow-up may occur, we have to
assume again that a globally defined solutidrexists. This hypothesis,
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in combination with the null controllability property, allows to keep the
trajectory well defined during a large part of the time intef@alr'].
First of all, notice that

|f(s)| < C(L+]s|log¥? (1+]s])) VseR, (5.1)

as a consequence @f.10). Let us fixT > 0, yp € L?(R2), y1 € CX(R2)
(for instance) and > 0 and let us try to find € L*(w x (0, T)) such
that the solution of1.1) satisfies(1.13). Obviously, it will be sufficient
to consider final data; € C1(£2), since this space is densefif(2).

For any small > 0, we will consider the following auxiliary system:

w;— Aw+ f(w)=0 In2x((T—-46,T),
{w:O onaR x (T —6,T), (5.2)
wkx, T —8)=y(x) Iing.
There exists exactly one solutianto (5.2) which is defined in the whole
interval [T — &, T']. Furthermorew is bounded and there exists> 0
(small enough) such that

[w(, T)_y1HL2<Q) Se. (5.3)

8 depends of2, ||y1|l.~), € and the constar® in (5.1). We fix § and
w from now on such thats.3) is satisfied.

Our strategy is as follows:

e Fort € (0, T — §), we setv = vy, wherev, € L®(w x (0, T — §))
is such that(1.1) is driven toy*(-, T — §) at timer =T — 4. In
view of Theorem 1.2, such a contro} exists. This definey in
2 x (0, T — §), with

yx, T —8)=y"(x, T —8) inS£. (5.4)

e We see from(5.3) that, in[T — §, T], the problem is reduced to
drive our system frony* (T — §) to the statew(-, T') exactly. Again
in view of Theorem 1.2, there exists € L>(w x (T —§, T)) such
that the solution to

i — Ay + f(y) =v2l, in 2 x(T-4,T),
y=0 ona2 x (T —-6,T), (5.5
yx, T —8)=y*(x,T —38) ins2,
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satisfies
yx, T)=wx,T) ing2.

Now, we setv = v, forr e (T — 6, T).
Obviously, v has the desired property. This completes the proof of
Theorem 1.4.

6. FURTHER COMMENTS, RESULTS AND OPEN PROBLEMS
6.1. On the assumption of existence of a globally defined trajectory

The positive results of this paper, both in what concerns null and ap-
proximate controllability, require the existence of a globally defined and
bounded solution for suitablg andv. Obviously, this assumption is nec-
essary since, otherwise, no global solution exists and the controllability
problems do not make sense since they require the trace of the solution at
timet = T to be well defined.

The existence of global and/or stationary solutions for semilinear
parabolic problems likg1.1) with v = 0 has been the objective of
intensive research. See for instance [3,5,6,11,12] and the references
therein. However, the wider issue of whether global solutions exist for
suitable right-hand sidaslocalized in a given subdomain seems to be
much more open.

Of course, it would be interesting to have at our disposal sharp
sufficient conditions guaranteeing the existence of globally defined
solutions of(1.1) with possiblyv # O.

6.2. On the optimality of the null controllability results

Let us first discuss the optimality of the negative result in Theorem
1.2. Its proof is based on a localization in space of classical estimates for
semilinear heat equations. Therefore, the critical growth conditions are
determined by the interaction between the elliptic operatar and the
nonlinearity /. For second order O.D.E.’s, the critical growth condition
is

f(s) ~|s|log?|s].

Below this critical range, blow-up and localization phenomena do not
occur. On the contrary, this can happen when the nonlinear terms grow
faster at infinity. This explains the need ¢.8) with p > 2 to prove
Theorem 1.1.
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It is clear that the techniques we have used will not serve to prove
negative results for nonlinearities with slower growth rate.

In what concerns the blow-up of solutions of the uncontrolled system
(1.1) with v =0, it is well known that, whenf (s) ~ |s|log” |s| with
p > 2, the blow-up is generically of pointwise nature. However, when
p < 2, the blow-up occurs globally in the whole domaih The case
p = 2 makes the transition: the blow-up is “regional”, i.e., it occurs in
an open subset aR (see [11] and [12]). Obviously, the arguments we
have used in the proof of Theorem 1.1, that rely on the localization of
energy, are compatible with pointwise blow-up but not with regional or
global blow-up. Therefore, it is not reasonable to expect the same proof
to extend to the case < 2.

A more careful analysis of the critical nonlinearity shows that, in the
class of nonlinearities that grow at infinity like

f(s) =1s]log?(1+ Is])g(s),

the critical growth condition fop is
g(s) ~ log?(log?(1+ [s1)).

Very likely, the negative result of Theorem 1.1 still holds for nonlineari-
ties behaving at infinity like

f(s) ~ |s]log?(1+ |s|) log?(log” (1 + |s]))

with p > 2. But this remains to be done and, anywajlog?(1+ |s|) will
always be a lower bound on the growth at infinity of the nonlinearities for
which Theorem 1.1 might apply.

We refer to [4] for a sharp analysis of nonlinear terms behaving at
infinity like iterated logarithms in the context of the exact controllability
of the one-dimensional semilinear wave equation.

Let us now discuss the optimality of the positive result in Theorem
1.2. The need of the growth conditigh.10) is clear when analyzing the
proof of Theorem 1.2. It is a consequence of the presence of the term

exp(CllallZ?) (6.1)

in the estimate of the cost of null controllability of linear heat equations.
Roughly speaking, if the estimate of the cost of controllability contains
a factor of the form# (Jlal|»), the growth of nonlinearities of order
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sh~(s) is critical. This explains the need ¢f.10). Note that the estimate
of the cost of null controllability for the linear heat equation with a
potential also contains a factor of the order of

exp(C (T2 +T)lalloo)-

According to this, the critical growth foy would be f(s) ~ s log(1 +

|s]). However, we have been able to go beyond this level and reach the
growth conditions(1.10) by choosing a sufficiently small effective time

of control.

The presence of the fact@b.1) in the estimate of the cost of null
controllability is a consequence of the obervability estim@ge). It
arises naturally when applying Carleman inequalities. Whether or not
this factor may be dropped (or relaxed) in the observability inequalities
in order to improve the growth conditio¢l.10) is an interesting open
problem.

6.3. On the optimality of the approximate controllability result

In what concerns the optimality of the negative result in Theorem 1.3,
the same remarks of Section 6.2 above apply.

In what concerns the growth conditiaii.4) in Corollary 1.1, it is
important to recall that it excludes nonlinearities leading to blow-up
phenomena (see [5]). In Theorem 1.4, we have relaxed this growth
condition, but at the prize of imposing the additional condition that a
globally defined and bounded solution exists.

6.4. Finite-approximate controllability

The techniques of this paper also serve to analyze the finite-approx-
imate controllability problems for semilinear parabolic systems.

Assume a finite-dimensional spaBec L2(£2) is given. Let us denote
by 7 the orthogonal projector of. It will be said that(1.1) is finite-
approximate controllable at timg (with respect tor) if, for any yg €
L?(£2), y1 € L?(£2) ande > 0, there exists a contrele L™ (w x (0, T))
such that the solution of systef.l) is globally defined in0, T] and
satisfies

g (y(T)) =me(y1), [3(T) = 31| 12 <&

Obviously this a stronger notion than the approximate controllability
property. The cost of finite-approximate controllabilityZid(w x (0, T'))
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for linear systems likg3.13) was addressed in [9]. Assuming thAt
is a finite-dimensional subspace &f}(£2) and (for instance)y, = 0
andy; € H?(£2)N H3(£2), the finite-approximate controllability property
was proved with the following estimate on the control:

”v”LZ(wx(O,T)) (6.2)

S eXp{C {N(T, lalleo) + (1 + AE)W}

+ AE:| Iyl 220y
with

1
N(T; llalloe) =14 = + Tllalle + lallZ3,
M (llalloos ¥1) = lalloo 11l L2y + 1ALl L2¢2)s

Ap = |l7e) exp[T [W(E) + llallo )€1/ + CN(T, llalls)].

IVelZ2
w(E)= max — 2
(pEE\{O} ”(0”L2(9)

Observe that the constant {16.2) is of the order of expC;expgCsy x
exXdCsllalls]1]. Thus, it can be expected that the fixed point techniques
we have used in this paper serve to prove finite-approximate controllabil-
ity at least for functionsf satisfying

J(s)
|s[log(log(log(1 + |s1)))

— 0 as|s| —» oo.

However, this has to be done.
6.5. Extensions

The results we have proved may be extended to other situations
including boundary controls, parabolic operators with variable smooth
coefficients, initial data iri.” with p not neccesarily equal to 2, etc.
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