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ABSTRACT. — We consider the periodic problem for a class of planar
N-body systems in Celestial Mechanics. Our goal is to give a variational
characterization of the Hill's (retrograde) orbits as minima of the action
functional under some geometrical and topological constraints. The
method developed here also turns out to be useful in the study of the

full problem with N primaries each having at most two satellites.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Key words:N-body problem, Non-collision orbits

AMS classification70F10, 47J30

RESUME. — On considére le probléme périodique pour une certaine
classe de systémes décorps en Mécanique Céleste. Notre but est de
donner une caractérisation variationnelle des orbites (rétrogrades) de Hill
comme minima de la fonctionnelle d’action sous certaines contraintes
géomeétriques et topologiques. La méthode ici développée est également
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utile pour I'étude du probléeme complet avat corps primaires ayant
chacun au plus deux satellites.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

This paper concerns the periodic problem for a class of plahar
body systems in Celestial Mechanics. We mainly deal with a class of
3-body problems, though our method may be applied in some particular
cases of more generd&¥-body systems. We consider the case of two
major bodies and a satellite and we seek orbits when the whole system
revolves with a frequence, while the third mass rotates around one of
the other bodies with & -periodic motion. In the restricted case, when
the motion of the satellite takes place close to one of the primaries, this
problem is known as Hill's problem and a simple argument based on the
inverse function theorem shows the existence of periodic orbits (in the
rotating frame) for small values of the quant#t§’, see [12]. Our goal is
to give a variational characterization of the Hill's (retrograde) orbits as
minima of the action functional under some geometrical and topological
constraints. The method developed here also turns out to be useful in the
study of the (full) problem withNV primaries each having at most two
satellites.

The periodic problem for both restricted and fMibody systems has
such a long story that it is impossible to give an extensive bibliography
here; we refer the reader to the classical texts [12—-14]. In the last two
decades, a new method for finding periodic motions has been provided by
the use of variational techniques, see, e.g., the book [3] and the references
therein. The first variational characterization of the periodic solutions
of the 2-body problem goes back to a paper by Gordon [11], where it
is shown that the periodic orbits are local minima of the action under
the topological constraint of non triviality of the rotation index. This
constraint is used to overcome the lack of coercivity of the action integral
in the space of periodic functions. However, from the functional point of
view, the minimization problem (even in a local sense) is degenerate,
that is it possesses a continuum of solutions. This is due to the fact
that every solution to the associated differential equation is periodic,
provided its energy is negative, and the period (and the associated action
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value) depends only on the energy. In particular all the periodic orbits,
including the degenerate ellipses, where the two bodies collide, share
the same variational characterization; in other words, it is impossible
to distinguish them by looking at their functional levels. On the other
hand, even though they can be extended as global solutions to the
differential equations, the motions of collision type are periodic only in a
mathematical sense.

Starting from the subsequent paper by Gordon [10], different kinds
of assumptions have been considered in order to rule out the collision
solutions, in the case of 2-body amd-body problems. In the case
of Keplerian interaction potentials, a fundamental remark is that the
minimization problem may become non degenerate by imposing further
symmetry constraints in the space of periodic functions. This fact has
been first pointed out in the 2-body case in [9], and then exploited in order
to obtain noncollision periodic orbits in various situations [4,6-8,16,17].
In the planarN-body problem this idea has led to associate the boundary
conditionx; (r + 7) = R,x;(¢) with the equations system, whetg) is
the position of theé-mass, andR,, a rotation of the plane of angle and
7 is the period of the mutual distances between the bodies see [4]. In this
setting, it can be shown (see [5]) that the simple minimization argument
in the space of symmetric functions leads to th&ative equilibrium
motionsthat are well known periodic solutions to the system [1]. In order
to avoid such a triviality, Bessi and Coti Zelati [4] imposed a further
topological constraint, that is one of the body couples has a non trivial
rotation index in the rotating frame. However, though they ruled out the
simultaneous collisions of the whole system, they were unable to avoid
periodic solutions having partial collisions. The aim of this paper is to
go further in the analysis in [4], and prove, by level estimates, that the
minimum of the action functional under both symmetry and topological
constraints is free of any collision. We first deal with the 3-body problem
in the restricted and full cases: to this end, we exploit the variational
structure of the problem, looking for minimizers of the action integral
among the functions which satisfy the above mentioned constraints. More
precisely, we require the system coordinak&®) = (x1(t), xo(t), x3(t))
to satisfyx; (r + T) = Ryrx;(t), where Ry7 is a rotation of angle®T
in the plane; in addition we require the motion Bf 4,x3(z) to have
a negative rotation index with respect to the first body, that is, to be
retrograde. Finally, we use similar arguments to study more general
problems with more major bodies each one having at most two retrograde
satellites.
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2. STATEMENT OF THE RESULTS

Throughout this paper we denote ly the universal gravitation
constant, byB, ..., B, (n = 3 orn = 4) the bodies of the problem we
consider and byn4, ..., m, their respective masses; their positions in the
planeR? are described by the functionsx; = x;(¢) (i =1, ..., n).

DEFINITION 1.—We say thatxy,...,x,) is a noncollision orbit on
theintervallO, T']if x;(r) #x;(¢t)forall 1<i < j <nandallt € [0, T].

We first deal with a restricted 3-body problg,, B,, B3}, which we
briefly describe. Consider for a moment only the systdéin B,}: if we
assume the center of mass to be fixed in the origin and we set the period
to be 2r /¥, then a solution of the following equations of motion

" Xi —Xj
—m;X; = Gmimy

2
xi<0>=x,~<§), =12 %]

X; — leg,
is given by
x1(t) = —R1(cosvt, sindt), xo(t) = Rp(cosdt, sindr), (2.1)

where

Ry =maGY3(my + mp) =39 723,

Ry =myGY3(my + mp) %3923,
The restricted problem we consider consists in assigning, x»(¢) as
in (2.1), while the motion o33 satisfies the equation

—m3z¥s = V'(x3), (2.2)

where

Gm1m3 szl’)’lg
\% X3) = — - .
() |x3 —x1]  |x3 —x2]

Fix 7,9 > 0 so that? T < 2r. Let R, be the rotation irR? by an angle
«; we denote byr, the corresponding matrix as well

cosw —Sina
Ry=|_
sine  cosw
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Note thatx;(7) = Ry;x1(0) andx,(r) = Ry;x2(0). We look for solutions
of (2.2) satisfyingx3(T) = Ry7x3(0); to this end we introduce the space

H={xeH[0,T],R?): x(T) = Ryrx(0)}.

Moreover, we requirds to orbit aroundB; without colliding with neither
B nor By; more precisely we consider the noncollision set

Ao={x e H: x(1) #x;(t) i =12 forallz [0, T]}

and
A= {x € Ao:. ind(x —x1) # 0},

where indy) denotes the winding number of in the interval[O, T].
Consider the following Lagrangian functional

T
L(x) =/%|)e|2— V), (2.3)
0

whose critical points correspond to solutions of (2.2). Then, we have

THEOREM 1.— There exists a continuum of periodic and quasi-
periodic noncollision solutions dR.2). More precisely, there existse
(0, 2) (depending only on the ratim,/m1) such that if9T < v then
problem(2.2) admits a solutiorxz € A1; moreover,xz minimizesL over
Aq.

We prove Theorem 1 in Section 3. Of course, a major problem
concerning the statement of Theorem 1 is to estirnate order to show
that our results are not perturbative we take the massss, @, and B3
to be respectively the masses of the Earth, the Sun and the Moon. In this
casem,/m1 ~ (3.3)10°: moreover, the real (direct) motion of this 3-body
system has the correspondiftg” ~ 0.46; hence, it is of some interest
to show that our method avoids collisions (for the retrograde motion)
whenv = 0.46. In fact, our next result states that even larger values are
allowed:

THEOREM 2. — Assume thain,/m, = (3.3)1C°; then, if 97 < 0.8
problem(2.2) admits a solutiorxs € A1; moreoverxz minimizesL over
A1,
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This result is proved in Section 6 where we also give the pictures of
some numerical experiments: such results lead us to conjecture that the
upper bound fow could be even larger.

Next we consider a full planar 3-body problef®,, B,, B3}; their
motion is described by the equations

—ml').C.,' = V,'()C), = 1, 2, 3, (24)

where the potential is given by

V(x) — Z Gmimj

1<isy<a X — il
andV;(x) =9V (x)/dx;. Consider the Hilbert space
H = {x = (x1,%2,x3), xi € HY([0, T], R?): x;(T) = Ryrx: (0},
the noncollision set
Ao={xeH: x;(t) #x;(t) 1<i<j<3forallre[0,T]}

and
A1 = {x € Ag: ind(x3 — x1) # 0}.

By adding the three equations in (2.4) we détm;X;(r) = 0, therefore,
without loss of generality we may seek solutians= (x3, x2, x3) € H

of (2.4) which satisfy the constraint; m;x;(t) = 0; in particular, this
implies that the “interesting” degrees of freedom of the system are 4. The
Lagrangian of this 3-body problem is

T 3 '
®(x) = /Z %p’mz — V(). (2.5)
0 i=1

Also in this case we obtain infinitely many noncollision periodic or
guasi-periodic solutions of (2.4): in Section 4 we prove

THEOREM 3. — If mg3 is sufficiently small, then there exists a contin-
uum of periodic and quasi-periodic noncollision solutiongz#). More
precisely, there exist two constantse (0, 27) and M > 0 depending
only onmq, m, such that if¢7T < v and ms < M, then problem(2.4)
admits a solutionx € A;; moreoverx minimizes® over A;.
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This result enables us to study the planar 4-body prolBmB,, Bs,
B4} where Bz and B4 are two satellites oB,. Their motion is described
by the equations

—ml').C.,' = V,'()C), = 1, 2, 3, 4, (26)

where the potential is given by

Vx)=— Z M

1<isr<a X — il
Define the Hilbert space
H = {x = (x1, X2, X3, x0), x; € H*([0, T],R?): x;(T) = Ry7x:(0) },
the noncollision set
Ao={xeH: xi(t)#x;t) A<i<j<dforallre[0,T1},

and
A= {x € Ao:. ind(x,' —Xx1) # 0,i=3, 4}
The corresponding Lagrangian is

ra
q)(x)=/2%|x,~|2—\/(x). 2.7)
0 i=1

Then, in Section 5 we will prove

THEOREM 4. — If mz andmy are sufficiently small, then there exists a
continuum of periodic and quasi-periodic honcollision solution206).
More precisely, there exist two constanise (0,27) and M > 0
depending only omz,, m, such that if0T < v andmgs, ms < M, then
problem(2.6) admits a solutiornx € A;; moreover,x minimizes® over
Aj.

Remark 1. — The proofs of our results may be naturally modified in
order to obtain similar statements fof-body problems{By, ..., By}
with k£ major bodiesX < N), each one having at most two satellites.

Remark 2. — Although we seek solutions iy, (a set having nontrivial
index for some couples of bodies), in fact by construction all the solutions
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we find have the index equal tel, therefore they represent a clockwise
motion, while the two major bodies are assumed to rotate anticlockwise.

3. THE RESTRICTED PROBLEM

In this section we prove Theorem 1.

First assume that 7 < 27. We switch to a rotating coordinate frame
(0, e1, e») so that the bodie®; and B,, whose motions in the original
coordinate frame are described by (2.1), are at rest. More precisely,
the position ofB; is —Rie; and the position ofB; is Rye;. If we set

q(t) = R_y,x3(¢) and if
0 -1
1=(1 %)

denotes the standard symplectic matrix, then weiget = Ry,q(r) +

Ry:g (1) and|x3(1)|? = | (1) + 9 Jq(¢)|?; the conditionys(T) = Ry7x3(0)
becomes (T) = ¢(0). Next we rescale the peridd and we translate the
system in order to havB; at the origin by setting(z/T) = g (t) + R1ex,

so that we get the standard Lagrangian functional of the restricted 3-body
problem:

1
1 [m3 . 2 o
I(y):? 7|y+TﬁJ(y—R1€1)’ =TV (y),

0

where
Gmqms Gmoms
Iyl |y — (R1+ Ro)es]|

Up to the addition of a constant, we may redefine the Lagranfjias
follows:

V(y)=-—

1

"ms3 .
/ 15+ Ty = met?T2Ra(y, 1) = T2V (3);
0

1
I(y):;

we remark that the corresponding Euler—-Lagrange equations are un-
changed. We set(¢) = (T?Gm1)"Y3y(t), we introduce the adimen-



G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617—-650 625

sional parameters = m,/m, andv = 9T and we define

o123

() =m3 T™Gm) ™1 () = .

so that we get
; 1
D(x) :/ X + Tl?]xl + ﬁ
0
T23GY3;, m12/3
T T2Gmy) Px — (m -+ mp) AG9 - 2/36’1|
92T4/3 moG/3 5. e pv?/
— x’ e —
(Gmp)Y3 (my+mp)2Pp23 " (p + 1)1/

1
/1 TP + ma/ 1
= —X X —
" 2 x| |x = (mz/my+ DYV3WT)~2 3|

194/3T4/3m2 pU2/3
YR 23()6,61)— 1)1/3
my " (my + mp)? (r+1

1 P
vJ —
v o

Il
O\u—\

P13 p12/3
(p+ 173 (p+ DU
For all £ € R? define the functions

(x’ 61) -

. P
88 = e G D2y
and
B p12/3 oV
F©=8®) ~ o= +1)2/3<s e1),
so that

1
1 1

D(x) =/§x+v1x| —i-ﬂ—i-f(x)

0

Note that
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£E—(p+ D323,
TPl o+ DV
pl¢I?
|€: _ (p + 1)1/3v72/3el|3
3p(€ — (0 + D3y, £)?
& — (p+ D323, 5
and, by expanding in McLaurin polynomial, there exists (0, 1) (s =
s(&)) such that

pv?/3 pvi3 pl&1?
Bo(s§ — (0 4+ D372y, )%
215 — (p + DWv 2,5

therefore, we also have for some-s(¢) € (0, 1)

plE?

205§ — (p + )23, 3
3p(s§ — (p+ D373, £)?
25§ — (p+ DH2v=2ey?
The Lagrangian functional defined in (2.3) is therefore transformed

into @ while the original spacé/ is transformed in the Hilbert spadé!
of 1-periodic functions inf*. Consider the noncollision open subset

Veg(§) =

V3 (@®)l¢, 1=~

’

f&)=-

(3.1)

Ag={x € H}: x(t) #0 andx(r) # (p + 1)*3v=?3¢; for all r € [0, 1]}

and
A= {x € Ag: ind(x) = —1} (3.2)
Theorem 1 is proved if we show that the problem
LAS

admits a solutionr € A1 and no solutions i A;.

LEMMA 1.- Let {x"} C A; be a minimizing sequence far; then
there existsc € A; such that” — x, up to a subsequence, ada(x) =
infyca, @(x).

Proof. —In the followingc represents a generic positive constant which
may vary within the same formula. Let = R(sin2rtt, cos 27 ¢) with
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R = (27)~%/3; thenx, achieves the minimum of the functional
k2 1
W) = / T

under the constraint ind) = —1; xp is not a minimum of®, therefore
for large values ofi we have® (x") < @ (xg) and

[+

Note that ifv < vV then

pv2/3

x" +v]x| —c(x" )<¢(XO)+W:

I\JIH

2 2

lelrllf— /Ix+v]x| = <1— E) > (l— %) ; (3.3)

so the last inequality yields
a2 .
el [z = el < e

and finally ||x"|l» < ¢. By the topological requirements and Poincaré
inequality we infer||x" |« < c||x"]l2 < ¢, therefore{x"} is bounded in

H and, up to a subsequence, it admits a weak limit H, which is a
minimum of @ by the weak lower semicontinuity of the functional.
Finally, x € A1 by uniform convergence df”"}. O

To complete the proof of Theorem 1 we exclude the cased A; in
the statement of the previous lemma,; first of all it is possible to obtain
a contradiction to a collision betwedBy and B,, because they are not
linked by a topological constraint. Indeed, if there exists [0, 1] such
thatx(t) = (p + 1)3v~%3¢,, we can modify the trajectory of = x(¢)
in a neighborhood ot in order to lower both the kinetic part and the
potential part of® and to avoid a collision. Since the proof is standard,
we omit it.

LEMMA 2.— Letx be as in Lemma; thenx(r) # (p + 1)Y/3p=2/3
for all r € [0, 1].

The proof thatB; does not collide withB, is more subtle and requires
some estimates; we exclude collisions for sufficiently small
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LEMMA 3. - Letx denote an orbit obtained in LemmaThere exists
v € (0, 27) such that ifv <7V thenx(z) #0forall r € [0, 1] and

inf® < inf @;
Aq A1

in particular, x € A;.

Proof. —In this proof we denote b¥; (i =1, ..., 4) positive constants
depending (eventually) op. By contradiction, assume thate dAq,
where x is determined by the statement of Lemma 1; without loss of
generality, we may assume thai0) = 0 and hence

1 . 1 .
lxll2 < =lx]l2, lxlloo < Sl1X]l2. (3.4)
T 2

Consider again the functiory = R(sin 2rt, cos 2 t)with R = (2)~%/3;
if v is sufficiently small, then we havgxy(r) — (p + 1)Y3v=%/3¢,| >
Z(p+ D32 forall r € [0, 1] ands € (0, 1), hence, (3.1) yields

pR?

< < K2, Vrel0,1],
f (o) 2|sx0 — (p + D)3v=2/3¢ |3 1 0.4
and
(27 —v)? 2/3 » 3 2/3_
Q§(xo)§W+(2n’) + K1y <§(27r) Kov+ K3v?. (3.5)

Sincex minimizes®, by (3.3) (3.4) and (3.5) we get

1 v pv/3 . pv
- — || il - =5l - ——=53
2\" 2¢ m(p+ D% (o +DY
3
<P(x) < P(xg) < 5(2’”2/3 — Kov + K3v%;

therefore, we obtain (independently 0K v < ) ||X]l2 < K4: inturn, if
v is sufficiently small, by (3.4) this yields

1(p+ DY
”l”oo < E v2/3 . (36)
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On the other hand, by (3.1)

1

cz>(>>/|+f|+1 plxP
x) > x+v — =
22 x| 25z — (p + D302, P

which, together with (3.6), gives

1
1 1
B (x) > / e il (3.7)
0

finally, note that

: 1
inf /2|x+v]x| + — —d?|x)?

xEH | |

— inf /2|x| +— 42 2. (3.8)

er

Therefore, since we assume that Hi minimizes®, by (3.4), (3.5),
(38.7) and (3.8)

3
5(271)2/3 — Kov + Kqv?

> ®(xg) = P(x) > mf/ %2 + — M2 |x|?
xEH1 2
1
, 1
> inf (1——>| 12+
yeHolo 2 | |

1/3 8 2 1/33
(1— —) inf / 122 + Sl (1— ”2) 2 (2m?/3
2 T

which is impossible ifv > 0 is small enough: hence, for suchwe get a
contradiction and the lemma is proved:o

Theorem 1 is proved: i#7T < v we obtain a solution of (2.2); such
solution is periodic ifoT /7 € Q while it is quasi-periodic 9T /7 €

R\ Q.



630 G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617—-650
4, THE FULL 3-BODY PROBLEM

In this section we prove Theorem 3.
To this end, we show that the Lagrangian functio@adefined in (2.5)
admits a global minimum in the (open) set

A= {x € Ao: ind(x3 —X1) = —1},
where Ag is the noncollision open set
Ao={x € H: x;(t) #x;(t) forall s € [0, T] andi # j }.

We first prove

LEMMA 4. —Let{x"} C A; be a minimizing sequence fdr, then{x"}
is bounded inH.

Proof. —Since @ (x) > Y, [y % |%;|? for all x € Ao, then |4, is
bounded. Since;(T) = Ry7rx;(0), then|x;(t + T) — x; (1)|> = |(Ryr —

Ro)xi(1)|? = ¢|x;(1)% But x;(t + T) — x;(t) = [ %:(s)ds, hence
lx; ()2 < 7213 < Te |3 for all ¢, so ||x"||« iS bounded and

finally ||x" || is bounded. O

We use again a rotating coordinate system by seting) = R_y.x; (1)
for all x = (x1, x2, x3) € H s0 thatx; (1) = Ry, Q; (1) + Ry, Q;(t) and
15 (D)2 = 10:(t) + ©0J Q:(1)|2. Next we rescale the period by setting
y(t/T) = Q(t). Up to a multiplication byT", the Lagrangian becomes

13
m; .
1(y) = /§ g T Tl = T2V ()
'O i=1

clearly, the constraind_; m;x;(t) = 0 transforms intoy_, m;y;(t) = O.
We introduce a new Hilbert space of periodic functions (which we still
denote byH), defined by

i=1

3
H= {y = (y1. 2. y3) € H*([0, 11, R®): y(1) = y(0), > _m;y; (1) EO},

the corresponding noncollision open set

Ao={y € H: yi(t)#y;@) forallt € [0, 1] andi # j}
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and its subset

A1 ={y € Ag: ind(yz — y1) = —1}.

Therefore, the original problem of minimizing is reduced to the
following minimization problem:

jnf 10y). (4.1)

We prove that the infimum in (4.1) is achieved:
LEMMA 5. —There existy € A4 such that/ () =infyca, I(y).

Proof. —Let {y"} C A; be a minimizing sequence far; then, the
corresponding sequende”} defined by setting" (t) = Ry, y!'(t/T) is
minimizing for @: by Lemma 4, it is bounded and so{ig’}. Therefore,
up to a subsequencéy”} admits a weak limity € H, which is a
minimum of I by the lower semicontinuity of the functiondt finally,
y € Ay by uniform convergence of the sequerigé}. O

As in Section 3, one can easily exclude collisions betwBgand Bs:
we have to exclude the other possible collisions.

Let Iy be the Lagrangian corresponding tans = 0: as/y does not
depend on the third component of y, we may identify it with its
restriction to the subspadé, corresponding ta; = 0, namely

2
Ho= {y = (y1. y2) € H*([0, 11, RY): y() = y(0), > _myi(t) = 0}

i=1
and we study the minimization (2-body) problem

inf Io(x), (4.2)

where 2, is the corresponding noncollision open set. Consider the
function f : R* — R defined by

2

m; mqmo
&) =) S 0%E
f1,6) ; R —

(& € R?);

one can easily check thgt has a unique strict global minimum, up to a
SQ(2)-symmetry: more precisely, there exisisc R* (which is aSQ(2)
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orbit), such thatf attains its global minima o&x'. One such minimum is

mo nmi
4 2/3<_ ’ 0’ ) 0)
(my+mp)?/3 (my+m2)?/3

and the corresponding Hessian matrixfofias rank 3 with 3 strictly pos-
itive eigenvalues (we denote lay> 0 the smallest of these eigenvalues);
the 0 eigenvalue corresponds to the direction tangept.t@herefore, if
we denote by * = (¢, £5) the projection onZ of any& = (&1, &) € R?
sufficiently close taX we have

2

m; maymp
—02& > +
2 2 &1 — &

i=1

2
>3 Foe 4 i+ Z|s, 7
pa 161
in particular, any (stationary) pomt iX is also a minimum for the
functional I,.

Fix 9 > 0: we prove that ifmz and T are small enough ang =
(y1, y2, y3) is the minimum obtained in Lemma 5, thém, y,) is close
to X' in the H norm topology. In particular, this shows that and B, do
not collide.

2

; (4.3)

LEMMA 6. — There exist two constans, M > 0 depending only on
0,mq, my and a constant > 0 such that for allT < T, all mg < M
and ally = (y1, y2, y3) € H achieving the minimum i(4.1) (as given by
Lemmab) we have

2

15:12 + T2||y: — yZ|[2) < cT*3ms,
S >
i=1

wherey? = y# () is the (pointwise projection ofy, (¢) onto X.
Proof. —Take any(yg, ys) € ¥ and consider the functiory € H

defined by

Yi(t) = yE,

Yo(t) = ys,

Ya(t) = yg + T?3(sin2rt, cos 2nt),
so that

mams
T2/3

Vos(yE, Y3) = —
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and Y5(¢) = 27 T%3(cos 2xt,— sin 2rt). Then the kinetic part of; is
given by

|Y3+ T J Ya|? = T3|2 (cos 2rrt,— sin 2rt)
+ TY39 J (yg + T?3(sin 2tt, cos 2rt)) ]2.
If T is small enough, the¥ € A;, and by taking into account that
inf,, I < I(Y) we obtain

inf I(y) <infI <inf 10+ClT4/SM3+CzT2m3. (4.4)
Ay Ay Ay

Let {m%} be a vanishing sequence, lgtbe the functional correspond-
ing tom% and lety” = y"(m4, T) € A} be the minimum of,, obtained in
Lemma 5. Ify” (i = 1, 2, 3) denote the components of, then by (4.4)
we infer that(y7, y3) is a minimizing sequence fdp, hence it converges
weakly in H and uniformly to some&y,, ys) € X, up to a subsequence.
In particular, this proves that for any given- 0 there exists:5 > 0 such
that if ms < m$, then

Iyi(t) —ye| <e and |y(r) —ys|<e forallze[0,1]. (4.5)

For all y € H(S', R?) satisfying [; y = 0 we have||y|l. < [|I7]l1 <
v Iyll2 (the first is Wirtinger inequality and the second is Holder’s). Then

1

i

0

1 1

Joo )

0 0

< Iy ll5. (4.6)

1Now lety = (yg, vs), fix y € HY(SY, R% and lety = y — y; since
Jo(Jy,¥) =0, then

1 1
/|y',»+TﬁJyl-|2=/(ly'i|2+rzﬂz|vi+yl-|2—2Tﬁ<Jyy-,m), =12
0 0

Recall thatf (y) = f(y* (1)) for all # € [0, 1], using (4.3), (4.5) and (4.6)
we get:

2

m; . ..
7(|y,~|2+T2ﬁ2|yl~|2—2m(fyi,y,~>)

i=1

1
Io(y) — Io(y) =/
0
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T2
e / N
i P p)
|y1—y2| lyi — ¥
2

2/12

i=1

3

i

C
(19:12 = 2T 9 (T 31, 5:)) + ETzlyi - yﬂz

N |

c
>Z I3il5+ STy = 57

the last inequallty foIIows by Wirtinger inequality and (4.6) since, Tor
small enough, we have

2

15
/Zmimy',»,fy, <> 2l
0

i=1 i=1

Finally, from (4.4) we get inf, I —inf,, Io < c1T*3m3 + c2T?m3 and
therefore

2

i C
Z mj”)’i 15+ ETZH)’Z = Hz < eiTPms+ e, T%ms,
i1

which proves the estimate.O

Finally, to prove that the minimum obtained in Lemma 5 is a
noncollision minimum, we show tha; and Bz do not collide:

LEMMA 7.— If T andmgs are sufficiently small, then
inf 1 inf I(y);
ot () < s »);

in particular, there existy € Ay such that/ (y) =infyc4, 1(y).

Proof. —Fix T > 0, let Ir be the corresponding functional and let
yI € A; be the minimum ofl; over A; obtained in Lemma 5: we
claim thaty” ¢ 9 A; for T andmg sufficiently small. By contradiction,
let y € dA; be a collision minimum, that isf (y) = inf ,, I, where we
have setl = Ir. By Lemma 6 we know thaty,, y,) is close in the norm
topology of H1([0, 1], R*) to some point inZ; in particular,y; (1) # y»(t)
for all r € [0, 1]. Moreover, if we set

mi nma

V(Q) = - - )
lg —yil  lg — y2l
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thenys minimizes the restricted functional

1
wq):/
0

on the set2 of functionsg € H([0, 1], R?) satisfying ¢(0) = ¢(1),
q(t) #y; () forallr €[0,1] andi = 1,2 and indg — y;) = —1.

We sete(t) = T=23y.(1), q(x) = T?3(x + ¢) and @ (x) = T3¢
(g(x)); then, we infer thatyo(r) = T~%3(y3(t) — y1(t)) minimizes the
functional

lg +T0Jq> —T?V(q)

NI

1

_ 1

B (x) = / {Elxlz + T;—T F (b )+ TG Jx) + 2T (@, Jx)
0

292

2

ma
|T2/3(x + ) — yal

T
+ x|+ T20%(e, x) + T3 +c(e),

where

1
|€|2 . T2192
cle)= | —+TV(e, Je)+

2
> > le|”.
0

Next we define

1
" m2T2/3

D) = Bx) — cle) — ,
1) =) — cle) 0/ -

so thatyg also minimizes the functional

1
®(x) = / Emz $ M Ga 4 TOG Tx) + 2T 0@, Tx)

|x|
292
+— X2+ T20%(e, x) + T4/3m2G(x)},
whereG (x) is the smooth function given by
1 1
G(x) = T2/3< 3 - —>;
IT?3(x +e) —y2|  |yal
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moreover, since,(t) #~ 0 for all ¢, by the asymptotic expansion

1 1 (u, v)
=—<1+8 +O(8))
lew —v[  |v] V]

(which holds for allz, v € R?\ {0} ase — 0) we have a§’ — 0

G(x) = (x te, i) +o(1).
ly2|3

Let Z ={r € [0, 1]: yo(z) = 0}. It is well known [2] thatE has measure
zero and thawg(z) satisfies the Euler equation correspondingtéor all
t ¢ &, namely

So=—2T0J 30— T?9yo + T?0% — 2T 9 Jé — é — ml|y—0|3
Yo
+ (T*3m3) VG (yo)

and if we compute the scalar product of this equationy ywe obtain
g (o /30) = Glo, Jyo) = (=219 /o + T*9% — 2T Jé — &, Jyo)

+ TY3my (VG (yo), Jyo0);

sinceyg € 3 A1 we may assume that O is a collision time, (&, Jyg)(0)
= 0: hence, by integrating the previous equation on the int¢@val with
O0<t<1,weqget

(o, Jy0) (£) = —2T9 /(y'o, Yo) + T29° /'(e, Jyo) — 2T9 /(é, ¥0)
0 0 0

t

t
+ [@ 750+ 1%, [(VGGo. Jy0).  @47)
0 0
Now we estimate the integrals in (4.7): singg,= yo(T) is bounded in
H'asT — 0, we have

< 2T 9 | yollzllyollz < 24T (4.8)

t
279 / Go. o)
0

for a.e.r € [0, 1]. Choose a constapt > 0 and let

mg < uT%3; (4.9)
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since e(t) = T-?3y,(t), by Lemma 6 we have|é|, < uT*3 and
therefore

Tzﬂz/(e, Jyo) = 2T v /(é, yo) + /(é, Jyo) =0(T) (4.10)
0 0 0

fora.e.r € [0, 1]. Hence, by (4.7), (4.8) and (4.10) we obtain for snTall

| Go, Jy0)|| o, < AT.

Consider the function

X(t) = R(sin2rt,cos2wt), whereR = \/m1/(4r?),

which minimizes the functional
1
A X1 my
I(x)=/—+—
Jo2 I

under the constraint ind) = —1; we have(X,JX) = —27 R? and
therefore

P(X) — P(yo)
1
=100 = 10)+ T [ [(4,73) = Go. Jy0)] +0(T) <0
0
for small T. This contradicts the assumption that minimizes® and

proves the lemma. O

To complete the proof of Theorem 3, note that a noncollision crit-
ical point x = (x1, xp, x3) of @ satisfies (2.4); then, it also satis-
fies

(x4 (T), p(T)) = (%(0), p(0)) = (Ry7%;(0), p(T)), =123,
for all p € H([0, T1, R?); hence,x;(T) = Ry7x;:(0). This proves that

the motion x is periodic if 6T /7 € Q while it is quasi-periodic if
0T /m e R\ Q.
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5. THE 4-BODY PROBLEM

In this section we prove Theorem 4.
We may assume that, < m3. As in the previous section, by rotating
and rescaling, the Lagrangian becomes

14
m; . .
0= [ S 2+ To IR - 12V (),
0 i=1

where

V(y)=— Z M,

1<i<j<4|)’j_)’i|

we consider the Hilbert spadé defined by

H= {y = (y1, ¥2, ¥3, ya) € H*([0, 1], R®): y(1) = y(0),

4
> miyi(t) = 0},
i=1

the corresponding noncollision open sé&§ and its subsetA; = {y €
Ag: ind(y; — y1) = —1, i =3, 4}. By arguing as in Lemmas 4 and 5 one
can prove that the Lagrangian achieves a minimunagn

LEMMA 8. — There existy € A3 such thatl (y) =inf,c 4, I(y).

We can exclude the collisions betwe®a and Bz and the collisions
betweenB, and B,.

Let Iy be the functional corresponding to the case=m4 =0, let Hy
and X be as in the previous section and consider again the problem (4.2);
then we obtain

LEMMA 9. — There exist two constans, M > 0 depending only on
0, mq, my and a constant > O such thatforalll < T, all mys <ms< M
and all y = (y1, y2, y3, y4) € H achieving the minimum i(#.1) (as given
by LemmaB) the following holds

2
> (I 15+ T2||y; — yi‘SHﬁ) < cTPmg,

1=

wherey? =y (1) is the (pointwise projection ofy, (¢) onto X.
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Proof. —Take any(yg, ys) € ¥ and consider the functiory € H
defined by

Y1(t) = ye,
Yo(1) = ys,
Y3(t) = yg + T?3(sin 2rt, cos 2xt),
Ya(t) = yg — T?3(sin 2rt, cos 2nt),

so that (4.4) holds (recall thaks < ms3). The proof may now be
completed as in Lemma 6.0

In particular, Lemma 9 excludes collisions betwedgrand B,.
Now we return to the original problem: in order to prove Theorem 4 it
suffices to show that the functional

G
o [ 5 o

1<z<,<4 _xll

satisfies
inf® < inf @;
Aq 0A1
indeed, by Lemma 8, this would imply thét achieves a minimum over
A1. Here® is defined on the space
H = {x = (x1,x2,x3,x4), x; € H*([0, T1,R?): x;(T) = Ryrx:(0) }
and A, is given by

Ay ={x € Ag, ind(x; —x1) =—1, i =3,4},

whereAo={x € H, x;(t) #x;(t) Yt [0, T] Vi # j}.

From now on we denote by = (x;, x5, x5, x,) the minimum of®
over A; corresponding to the orbit obtained in Lemma 8; we exclude
the collisions of the two satellites witB; .

LEMMA 10. - If T, m3 (andmy) are sufficiently small, them;(r) #
x1(¢) andx,(r) # x,(¢) forall ¢ € [0, T].

Proof. —Consider the functional
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defined on the spack, = {x € H([0, T], R?)} and the corresponding
noncollision set

21 ={x € K1, x(t) #x41(t) YVt €[0,T], ind(x — x;) = —1}.
Consider also the functionals

T /a4

D (x3,x4) = / (Z %w— V(x>>,
0 i=3

where
V( ) Gmlmg Gm1m4 Gl’)’lzm3 Gm2m4 Gm3m4
X)=— — — — —
lx3 —x3]  |xa—x3]  Ixs—xo|  |xa—xp|  |x3— x4
and
4 T G
— masaimagy
W (x3, x4) =Y miF(x;)=®(x3, xs) — [ ———
i=3 0 |X4 - )C3|

defined on the spack, = {x = (x3, x4), x; € H([0, T], R?)}; finally,
consider the noncollision set

2, ={x = (x3,x1) € K2, X3, x4 € 21, x3(t) # x4(t) V1 €[0, T1}.

Since x minimizes @ over A;, the couple(xs, x,) Minimizes the
functional @ over £25.

Take T > 0 sufficiently small andns < uT%2 as in (4.9); then, by
Lemma 7, there exist§r > 0 (independent ofi3 andm,) such that

.
g, P = Jnf P > Cr,

the two infima being in fact two minima: Iet be one minimum ofF
over §2,. By definition of ¥ we also have

grg?fz v > ISI ¥+ Crmy (5.2)
and the minimum ofF over £2, is achieved by(X (1), X (t + s)) for any

s € [0, T]. Now takeX3(r) = X (t) and takeX4(r) = X (¢t + T/2) so that
X, is also a noncollision minimum aof. SinceX minimizes F, then a
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simple argument shows thaiz(r) # X4(¢) for all  and we can define
[0 Fa-Xal X E Assume by contradiction thak, x,) € 9£2,; then, by
(5 1), we have

Gmazmy Gmazmy
D (x3,x4) =W (x3, x4)+/ nf',l/+/
|xg — xa| = 022 x4 — X3
7 G G
— masm masm
>O(Xa, Xg) — | -+ [ 2 4 Crmy

Xa—X Xs— X
o| 3l " lxq — X3

> @ (X3, X4) — Comama + Crma

and therefored (x5, x,) > @ (X3, X4) for sufficiently smallnz (andmy):
this contradicts the assumption that;, x,) minimizes® over §2, and
proves the lemma. O

Finally, we exclude the case where the two satellites collide with each
other:

LEMMA 11.— x5(r) # x4(¢) forall ¢ € [0, T'].

Proof. —We make the following change of variables: let

m3+ my

m3x3 + maxq
X=——
r=X4— X3,

and we denote byX, r) the couple corresponding tas, x,). We focus
our attention orxz andx, and we consider the restricted Lagrangian

T
ma—+mg - mam . Gmsm
X = [T R 2 2y,

/ 2 2(m3+ ma) 7|
where
Gmim Gmim Gmom Gmom
Ve(X.r) = — ims g ams 24'
lx3 —x1|  |xa—x3]  |x3—x5]  [xa— x5
Obviously,

Gmlmz
D (xy. xp, X3 x8) = W (X, r>+/—| iy 22 P
|xo — x4q]
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By contradiction, assume that in the motion describedcby x(¢) the
satellitesB; and B4 collide with each other, but not witB,, atr = 0, that
isr(0) =0 andX (0) # x,(0). Lete > 0 satisfy

1 .
e<5 min{|X(0) —x,(0)}
and letr, < 0 < t* be such thair(z,)| = [r(t®)| = ¢ and [r(1)| < ¢ if
t € (., 1%); if ¢ is sufficiently small (sayg < g), thenr(z) # 0 for all
t € (t,,1°) \ {0}. We will get a contradiction by showing that there exists
e € (0,8) andr : [t,, t*] — R?\ {0} such that the function

_Jr@) ifrél, 1],
R(t)_{f(t) if 1 €[z, %],

satisfiesR € HY([0, T], R?) and¥ (X, r) > ¥ (X, R).

We may assume that(z,) = (¢,0) and r(t°) = ¢€* for somea e
(—m, 7]; let p = &%2€%/2, et

=

lr(t:) —pl _ 1r(*) — pl.
e - e ’

since|a|/2 < /2, we have

2 2 _ 2 3 _
2o P+ PP = 200). p) P4+ =200).p)

g2 g2
(5.2)
Let S; and S, be respectively the segments connectitig) and r(¢%)
with p and letr(z) be such that

F(tye Sy and |F(1) — p|=L|r@t)| Vielr,0l,
F()yeS; and |F(t) — p|=L|r(t)| Viel0,1°].

Since the motion of is straight, for allr € [z,, 0] we get

<f(t)—p, E(f(t)—p))‘

7(t) — p| - ‘dtr(t)‘

2
|r() E’E‘

‘Zdt

5 d
< r ()| - ‘Ez(t)|,
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and by (5.2)

2
<02

2
<(1+¢)

2

d d
El(” Ew) ; (5.3)

‘d%f(t)

similarly, we obtain the same inequality whea [0, #¢]. Next, note that
V(X (1), 7(1)) — Vr(X(1),r(1)) = —ce forallz e[t 1°];

this, together with (5.3) yields

&

mama ( % 2 - % 2)
2(m3 +my) dr
+ VR (X (1), (1)) — Vr(X(1), (1)) = —ce. (5.4)
To estlmate— E ‘, we argue as in [17]: by conservation of the total
energyE we obtaln for allz € [z,, t°]
i < B0 + ZE 520+ s + S a0
Gmym; Gmlmg Gmimy
[xo(1) —x1(D)]  |x3() —x1(O)]  |xg(F) —x1(8)]
Gmoms Gmomy Gmszmy c
lxa() —xo(D]  |xa() —x,(0] e @)l

the latter inequality being consequence of the fact that there eist®
such that for alk € (0, €) we have

V1<i<j<4, (i, )#BH} =K

tE(te,t?)
Therefore, if we leto () = |r(¢)], we have

1d

PP =-—

P2 = (r(0).i (1) < |r)| - [£(0)] < p——=:
2dr T == - = ﬁ’

this proves that
p(t) <ct?® Vielt, ] (5.5)

Let 7, <s1 <0 < s < t° satisfy |r(s;)| = ¢¥?/2 and |«(t)| < £¥?/2
for all 1 € (s1, s0); by (5.5) we obtain|s;| > ce**. Moreover, since
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|F ()| > |r(t)| for all r € (z,, t?) we infer that

51 IS IS
1 1 1 1
—_— > /T and /— > / -,
el J 7 Jolel o Ir]
te 52 52

on the other hand/(¢)| > %2 > 2|r ()| for all ¢ € (s1, s2) so that, by
(5.5), we obtain

1€ 52 ced4
1 1 1 1 1
Gmzsmg | — — —>GCGmamy | — — — >c¢ —
lr| 7] lr| 7] 2|r|
te 51 7089/4

ce9/4

51
te

1 3
_— /4
273 > ce”m.
_ce9/4
This, together with (5.4), implies that (X, r) — ¥ (X, R) > ce¥*—ce >
Oifeissmall. O

=>c

The proof of Theorem 4 may now be completed as in the previous
section.

6. NUMERICAL RESULTS

In this section we prove Theorem 2 and we give some numerical
results illustrating the orbits determined in Theorem 1. Since all the
solutions we obtained are minima, it is possible to numerically compute
them by a rather simple procedure. The technique is standard: one
chooses a finite dimensional vector spdée which approximates the
Hilbert spaceH, introduces a functiona®,: H; — R approximating
@ and looks for minima of®, by choosing an arbitrary starting
point xo € Hy and defining a sequende,} by settingx, 1 = x, —
h,V®s(x,), whereVo,: H; — H; is the gradient of> and represents
the maximum slope direction of the functior#}, while £, is computed
at each step in order to minimize the functibn— & (x,.1(h)). If the
approximated functional maintains the propertie®othen the sequence
{x,} converges to a minimum point of the functior@}.

We only treat the restricted problem (although there are no obstructions
to the treatment of the complete problem). As an approximate sace
we chose the set of closed-gonals and we let: vary between 100 and
300, depending on the values of the parameters. A funatienH is
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uniquely characterized by the coordinates of the vertices, therefore it can
be represented by a point®R?". Givenx € H, by x; € R? we denote the
coordinates of théth vertex. The (full) functional we consider is

1
0@ = [ S+ 4
X)= —|X VJX —
/2 e (o + DY)
P
- (p+1)2/3(xael)’

and its representation iH; is given by

2

N 1
TR ]
pv¥/3
- W(Xi, e1),
whereh = 1/m. We also have
e e
X — (o + Y323, pv?/3

"l = (o + D2 (p+ DFE

Clearly, also in the numerical approximation we have to cope with the
presence of the singularity in the potential; furthermore is it not very clear
how to implement the topological constraint. In order to overcome these
problems we introduced a naive method, i.e. we checked that at every
step no vertices af, were too close to the singularities. More precisely
we checked that the minimum of the distances of the vertices from the
singularity was larger than the maximum of the length of the sides of the
m-gonal. In fact this condition was satisfied at all times during all our
computations.

The following pictures represent the results we obtained for various
values of the parameteisand p. As a starting pointcg we chose the
orbit corresponding to the solution for the case 0, that is the circular
orbit of radiusR = (2r)~%2. Although analytically we could exclude
collisions in the case = (3.3)10° only for values ofv smaller than (B,
numerically it clearly appears that the minima of the functional is very
close to a circular orbit even for values ofup to 3. For larger values
the orbit becomes more similar to an ellipse, but still it does not come
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0.4
0.3
0.2
0.2
0.1 0.2 0.3

p=330000, v =1 p=330000 v =3

0.2 0.4

p =330000 v =6 v=>5p=

0.2 0.4 0.6

Fig. 1.

close to a collision orbit. In order to show some different behavior, we
also show a picture (Fig. 1) in the case= 1 andv = 5.

Proof of Theorem 2. ket p = (3.3)1C°, v < 0.8 and letx denote
a corresponding orbit found in Lemma 1. We argue as in the proof of
Lemma 3 making finer estimates. By contradiction, assumextkai A,
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and consider again the function
_ —2/3/ai
xg = (2m) (sin2rt,cos2mt).

By arguing corresponding to (3.5) we find that{i& 0.8)
d(x0) < g(Zn)2/3 — (0.541)v+ (0.175)1% < g(zn)%. (6.1)

Sincex minimizes®, by (3.3) and (6.1) we get

1 b2 pv¥/3 pv2/3 3
1- — ()2 — ———— |k — ————= < =(27)?3; (6.2
2( Zn) 41— il = s < 507 (62)

by (3.4) this proves that

(p+DY3

lillo <130, Jxlleo <65 < (0.811)— (6.3)
Now we claim that for alk € [0, 1] we have
4/3
o pv
h = - t )
WO = =+ D ey (ot PR )
p12/3

If (x(2),e1) <0, (6.4) follows readily. If(x (), e;) > 0, then by (6.3) we
get

(p+ D3 (p+ 1323

_ 2
(1) = (p + D' Per|” < xS + 55— < (1.658)— o —;

then (6.4) follows by estimatingx (), e1) with ||x ||, and by (6.3).
Sincev < 0.8, by (6.4) we may replace (6.2) with

03807 — (1.035)—22 1 < 3 (223 6.5
(0. )Hl“z—(- )m\i(”) ) ()
which, by (3.4), proves that
1 1/3
lil2 <106, [zl <53< 0660L T (56

p2/3
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this allows to prove that

pv?/3
Indeed, if(x(z), e1) <0, we have
2/3
o PV
> 6) ————.
MO e e~ 00 T

If (x(2),e1) > 0, then by arguing as for (6.4) and by taking into account
(6.6) we get (6.7).
By (6.7) the inequality (6.5) becomes

03807 | — (0.827)—" < 3 (0203 6.8
(0. x5 — (0. )W\E(n) ) ()
which, by (3.4), proves that
1 1/3
lillo <948  fxlle <47.4< (0.592)%

Finally, repeating once more the whole procedure, we/detr)) >
(0.267)p1"/3(p + 1)~2 which yields

1 1/3
lilla<89.1  |x|le < 44.55< (0.556)%
v

Hence,|sx (1) — (p + 1)Y3v%3¢4| > (0.444)(p+ 1)Y3v~22 and

1
plx/? v2|| 112 -
< (0.3705)|% 3.
O/ 25z — (o + DV 2Pe P~ 20.adapqz S OO

Therefore, by (3.1) and (6.1) we obtain

plx|?
(0 + DYy

1
3
S@n?= 0@ > 038071813 - |
2 l 2lsx —

> (0.0102)) £]I3;



G. ARIOLI ET AL. / Ann. Inst. Henri Poincaré 17 (2000) 617—-650 649
this proves that

1 1/3
il <224 lxlle <112< 0142

Repeating this procedure we get

/ plx|? < VR 6051y i3
2lsx — (p + D328 3~ 2(0.86)372

Therefore, by (3.1), (6.1) and Jensen’s inequality we obtain

(271)2/3 > (0.3297)|1 15 + ” n”

which proves that

1 1/3
Il <36 fxlle <18< (0. 023>u

and

1
plxf? v2|x13 ,
< (0.537)7 | x|l3.
/ Zisx — (o + DVov-2Reyf = 20,9777 = OOVl

Therefore, by arguing as in the proof of Lemma 3 we get

2(271)2/3 — (0.541)v+ (0.175)/

1 1
= D(x0) > Px) > /§|x+ wIxf 4 - 0537l
: x

(1074)1? 13
> <1 ) zeH1/2|Z| +_

(1.074)2\ /33
=(1-557) e
Sincev < 0.8 we have(l— (1'(:%)"2)1/3 > 1—(0.038)1# and therefore the

last sequence of inequalities yield®.37)v > 0.541 which contradicts
v < 0.8 and proves the statementt
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