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ABSTRACT. — The purpose of this paper is to investigate the limit of
some kinetic equations with a strong force. Due to friction, the solution
concentrates to a monokinetic distribution so as to keep the total of force
bounded and in the limit we recover a macroscopic system. This kind of
asymptotics is a natural question when the mass of the particles is very
small or their inertia is neglected. After that we also study the properties
of the limit system and especially the uniqueness of solutions which
provides the full convergence of the family of solutions to the kinetic

equation.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Cet article se propose d’'étudier la limite de solutions d’'une
équation cinétique avec frottement lorsque les termes de force devien-
nent prédominants. A cause du frottement, les solutions se concentrent
progressivement en vitesse de maniére a ce que la somme des forces reste
bornée ; a la limite cette concentration nous oblige a remplacer I'équation
cinétique par un systéme macroscopique. Cette probléme apparait notam-
ment quand on fait tendre vers zéro la masse des particules ou quand on
néglige leur inertie. Enfin certaines propriétés du systeme, et particuliere-
ment 'unicité, seront détaillées afin d’'obtenir une convergence de toute la

suite des solutions et pas seulement d’'une suite extraite.
© 2000 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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INTRODUCTION

We are interested in the behaviour wheranishes of kinetic equations
of the kind

e Ly.vify ;—Ldivu((F[fg] _wf)=0, 130,

ot
(x,v) e R¥, @
fot=0,x,v)= fOx, v).

Here we work in any dimensiash and the force tern#[ f.] only depends
on the mass density, or on the first momenj, of f,, defined by

pe(t,x) = [ fe(t, x, v) dv,
g

&)
Je(t, x) =/vfs(t,x, v) dv.
R4
The guiding example throughout this paper will be the modified
Vlasov—Stokes system

% +v-V f + %divu((g + K % je—v)f;)=0, >0,
(x,v) e RS,
fo(t=0,x,v)= fOx,v).
(3)

While the general equationl) contains for instance the classical
Vlasov—Poisson system, the syst&B) is a simplified model for the
dynamics of dilute particles in a Stokes flow and submitted to gravity
(g in the above equation) when we take for the mafix

K(x):—c<ﬁ+x®x>, c>0. 4)

x| Ixf?

This model is derived by Jabin and Perthame in [15] and its basic
properties are stated in [14] and in [6] by Gasser, Jabin and Perthame.
Hamdache also worked on the existence for a slightly different model
in [11]. In another situation, kinetic equations for a system of particles
in a potential flow have been introduced by Herrero, Lucquin-Desreux
and Perthame in [12] and by Russo and Smeraka in [17]. An evolution
equation, close to the limit systems we obtain here (&eand (6)
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below), has also been derived for an infinite suspension of particles (see
Rubinstein and Keller in [16]).
Formally, where converges to zero, the limits of the systeftisis

ap .
— +divj =0,
ar TV

J(x) = pFlp, jl, ®)

p(t=0,x)=p°x),
and in the special case @), we obtain

ap .
— +divj =0,
{ ar TV

J,x)=p(K*: j+8).

(6)

This paper aims at proving this rigorously, for sofieor K regular
enough. In particular more regular than the makixefined by(4), this
additional regularity is necessary because in these lirfiitspncentrates
to a monokinetic distributiom (x)3 (v — u) with pu = j. Notice that the
initial data is given and does not dependarthe concentration is thus
only due to the natural evolution of the equation.

This kind of singular perturbation and this way of deriving macro-
scopic limits is quite recent and the usual methods, see for instance
Glassey in [7], do not apply. The main difficulty is that the density func-
tion £, in this limit, concentrates as a Dirac mass. This problem is related
to the quasi-neutral limit for plasmas (see Brenier [3], and Grenier [9]) or
the limit of the Vlasov—Poisson system towards the pressureless Euler—
Poisson system (see Sandor [18]) where the same phenomenon of con-
centration occurs. A remarkable difference is however that here the only
scaling of the force term is enough, and it is not necessary to also scale
the initial data. Another remarkable feature is that our limiting system
does not have a notion of dissipative solution and the method of [3] can-
not be used here. Another class of singular perturbation problems with
strong force terms has been treated by Frénod and Sonnendrticker in [5]
(fixed magnetic force) and Golse and Saint-Raymond in [8] (the so-called
gyrokinetic limit). KeepingL? (p > 1) bounds ory, the analysis in [5] is
then based on two-scale Young measures (see Allaire [1] and N'Guetseng
[10]), and in [8] it is based on a compactness argument due to Delort. The
methods developed in these papers cannot be applied here because of the
concentration phenomenon and the different structure of the force term.
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We will first present three theorems: the first one proves the limit
for “regular” force terms, the second gives some properties of existence
and uniqueness for the macroscopic system with the same regularity
assumption, whereas the last one studies the system (6). The rest of the
paper will be devoted to the proof of these theorems.

1. MAIN RESULTS

We will only deal with force termg[p,, j.] which are a sum of two
convolution operators ip, and j,

F[/Os’js]=A*x ps+K*x js—i-G(X), (7)

with the assumption

A,G e (Co®D)!, K e (Co®)™. ®)
Alternatively, we will also use the assumption of the negativity of the
operatorK more precisely
/u(x) (K %, u(x)) <0, Vuce (Co(Rd))d. 9
Rd

We consider Eg. (1) for a non-negative bounded initial data with finite
mass and finite kinetic energy

fO c Ll N LOO(RZd),
E°= [ 1v2f°@, x, v) dx dv < +o0. (10)
R2d
For developments we will also use the functional
. 112
Aoy = [ o= Floe [ e, x,v) de o (11)
R2d

The systems (1) admit the following a priori estimates
Hfs(ts-,')HLl(RZd) = HfoHLl(RZd)s (12)
Hfs(t’ © ')HLOO(RZd) S edt/SHfOHLoo(RZd)' (13)



P.-E. JABIN / Ann. Inst. Henri Poincaré 17 (2000) 651-672 655

We will consider weak solutions of Eq. (1), which we define as
distributional solutions t@l) satisfying the natural conditions

fe € L¥([0, T1, L' N L*(R™)), VT >0,

f. € C([0, oo, LY(R*)),

E0= [ WPt vdid <o, Viz0 (1)
]RZd

f. is the weak* limit inL>([0, T'], L” (R*"))

of classical solutions t¢l) forall 1< p < oo.

Notice that the energy andf estimates ir{14) give estimates id.* for
p. andj.. We are thus able to give a precise meaningljan the space of
distributions for weak solutions sind€[p;, j.] € Li.. They also satisfy
the a priori estimate€l2) and(13). For a precise theory of existence and
estimates of this kind of systems, see Arsenev [2], DiPerna and Lions [4],
and also [6,7], Horst [13] and [14].

In all the paperM?* will denote the space of Radon measures. We are
now ready to state our three theorems

THEOREM 1. —Let(f,) be a sequence of weak solutions in the sense
of (14) to Eq.(1). Assumg7), (8) and that the kinetic energ¥, (¢) is
uniformly bounded over any intervgd, T]. Then, ag converges to zero,
there is a subsequence such that

(i) pe = p(x), je = j(x) weaklyinL>([0, T], M*(R?)), andp
and ;j are solutions to the syste(d),

(i) if K|zl f 2 < 1 or if (9) holds, then A.(r) — 0 in

C([t*, o) for all * > 0.
(i) if K, A, G are in W> and (9) holds, then there exists a constant
C > 0 such thatA,(r) < C(t*)e? ¥t € [t*,00[, t* > 0, and
fe— p(x)8(v — F[p, j]) weakly inL>([0, T], M*(R*")).
Moreover if condition(9) holds true, the kinetic energy is bounded.

Remarks. — (1) The main limitation of this theorem comes from
assumption(8), because it does not allow the natural singularity in the
forces. This is due to the fact that we only haVe estimates in the
phase space fof;, p. or j. and we need to pass to the limit in the term
p:Flpe, jo1. However, if we suppose that di¥{p, j]1 = 0 (again a natural
condition in view of(4)), then the limit systeni5) conserves all.” norm
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of p and of j because we then have

ap

F[p,7]1-Vp=0,
5 + F[p,j]-Vp

while the second equation @) shows that the.” norm j is dominated

by the L? norms ofp, (see the Theorem 3 below). Since it is very natural
to get divF[p, j]1 =0, especially in the case of Vlasov—Stokes equation
(A=0, G =cst, divk = 0), it is a natural open question to know if
condition(8) can be removed in that case.

(2) A crucial step in this theorem is the estimate for the functional
A, (1) and the main difficulty is to prove that it converges to zero even
if K, A or G are not differentiable and without conditigd). If K, A
andG areC?! and if (9) is true, we prove that\, is less thare?. Notice
nevertheless that, even in this case, the decay is not enough to compensate
the exponential growth of. and the question of the regularity inof o,
or j. is still not solved.

(3) From the first remark we can expect thiatind j have the same
regularity ase® and j° (L' n L3 for 5 in dimension three for example).
Another natural question arising from Theorem 1 would hence be to
prove weakL' convergence instead of weak measure convergence.

THEOREM 2. —Let F be given by(7), with conditions(8) and (9),
and assume thativ K, div A and VG belongL®. Then
(i) the second equation of the systé@ndetermines uniquely in L*

as a function op in L%,

(i) the system has distributional solutiops;j € L>([0, T, L*(R%)),
VT > 0 for any non-negative® in L1,

(iii) if p° belongs tow1, and is small inL! the solution is unique for
small times,

(iv) if K andA € W, uniqueness holds globally in time.

This theorem provides a framework for existence of solutions to the
system(5) also. But a more general existence framework is easy to
settle. It should also be noticed that Theorem 1 already provides a partial
existence result (at least fpP and j° given by the second equation being
the zeroth and the first moment in velocity of a functionZihn L>°).
However existence can be proved more generallyofbe L. We can
still get a stronger result (no smallness assumption) if we precise the
structure of the matrixk. It shows that we can allow a singularity in
the matrix whereas we are unable to prove a variant of Theorem 1 with
any singularity.
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THEOREM 3. —Assumed = 3, F is given by(7) with A =0, G €
wi> and K the matrix given by(4). Then, the systent5) has
distributional solutionsp, j € L>([0, T], L*(R?)) for any initial data
p%in LN L32.If p° belongs tow3, this solution is unique locally in
time.

2. PROOF OF THEOREM 1

This proof is divided into four parts. First of all we show that the main
guantities have limits and we explain wjyand j satisfy the systeni)
(part (i) of the theorem), then we prove that the functional defined
by (11) converges to zero (part (ii) of the theorem), the next subsection
being devoted to the caske, K, G € W* and the Dirac form of the
limit of f.. At last we explain why conditior{9) ensures the uniform
boundedness of the kinetic energy.

2.1. Existence of limits for f;, p., j. and p. F[pe, Jje]

We prove the point (i). First of all the conservative form of Eq. (1) and
condition (14) imply the estimatg12). We therefore have

| oe |l oo 10,77, L2 (R = HfOHLl(RZd)’ (15)

. o11/2 1/2
| Je ll Loo o, 71, L2 (RAY) < Hf HL1<R2(1)SUDE5/ (). (16)
Therefore, we can extract a subsequence so as to get

fo—f weakly inL>([0, T], M*(R*)),
pe—p weakly inL>®([0, T], M*(RY)),
—j weakly inL>([0, T], M*(R?)).

Je

The continuity equatiorﬁ?a% + div j. = 0 is obviously satisfied thanks
to the boundedness of the force tefifp,, j.] (assumption8)). To show
thatp and are solutions to the syste(B) and end the proof of the first
part of Theorem 1, we only need to apply Lemmas 1 and 2.

LEMMA 1. —-Assume, and j. are two sequences uniformly bounded
in L>®°([0, T1, L*(RY)), weakly converging ir.>([0, T'], M*(R%)) and
satisfying the continuity equation. Then the product[p,, j.] con-
verges weakly i > ([0, T'], M*(R%)) towardss F[ 5, J1.
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Proof. —Notice first that, using assumptiof®), F[p, j] belongs to
L>([0, T, Co(R%)) and therefores F|p, j] is well defined.
Formula(7) allows us to decompose. F[p., j.] in three terms

PeF s, jel = pe (K * jo) + pe A * pe + p.G(x).

We will show that the three terms converges weakh.i ([0, T1],
Co(R%)). This is obvious forp,G(x). The only problem is to get some
time compactness in the two other products, which is done by using the
continuity equation. This is well known fop, A x p. and so we only
explain the procedure for the first term sirtzg. is not a priori uniformly
in any negative Sobolev space.

The term p.(K * j.) is bounded inL>([0, T], L*(R%)) and so,
extracting a subsequence, it converges weaklyg. ([0, 7], M1(RY)).

We only have to identify its limit. Let us first choose a regularizatign
of K in CY(RY). For all¢(t, x) in C3(R4*1), we have

/ (1. ) pe (. X) (K5  jo) dx = / Jo (6 ) (s % pep) dlx,
]Rd

Rzl
with, if KT denotes the transpose of the matkix
Ks(x) = K{ (—x).

The continuity equation and the' bound onj, imply that p, belongs
to Wt([0, T], W~LLR?). Applying Ascoli theorem, this shows that
K; = pp. converges strongly iCo([0, T, Co(R?)) towardsKs x ¢p,,
which enables us to conclude

LEMMA 2. —-The limit of p, F[p,, j.] in w — L*®([0, T], M*(R?)) is
precisely the limitj of j. in the same space.

Proof. —Multipliing Eqg. (1) by v and integrating in velocity, we obtain

e . 1 . .
B_Jt +dlvx 88 + g(]e - paF[psa Js]) =Oa

(17)
Sg(t,x)=/v®vf8(t,x,v)dv.

R4

The uniform bound on the kinetic energy gives a uniform bound.on
in L>([0, T1, L*(R?)). As a consequence we immediately deduce that
je — pe Flpe, jo] converges towards zero Wi —11([0, 7] x RY)).
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Since we already know that and p. F[p,., j.] converge towardg
andpF[p, j1in w— L>([0, T1, M*(R?)), the two limits are necessarily
equal. O

2.2. Concentration in velocity

First of all, let us consider sequences of regularisatiknsAs andGs
in C&(Rd) of K, A andG. Using these sequences, we define a force term
Fs and the functional

Acs= | |v= Fslpe. jel|*£(t, x, v) dx do. (18)
RZ[I

We are able to prove Lemma 3 which almost directly implies that
vanishes withe (thus ending the proof of part (ii) of the theorem), since
A, s converges ta\, with §, uniformly ine.

LEMMA 3. —If ||Ks|lz<|l fOl.2 < 1, thenA, s = a(e, 8) + B(8), on
[#*, T] for all * > O, with « a function vanishing witla for § fixed ands
a function vanishing witla.

Proof. —
d ' . .
LAy ==2 / (v = F3lpe. jul) - (Ks % 8,j2) f.(t. x. v) dx dlo
RZ[I
—2 [ (v—Fslpe., jel) - (As % 0, pe) fo (2, x, v) dx dv
RZ[I

+ / v — Fylpes jel| 20, fo(t, x, v) dxdo =1 411 111,
R2d
Let us first deal witH. Using Eq.(17) on j,, we find

. 1
=2 /(v - FS[pSs ]s]) : (KS * (dlvx(g) + g(]s - PgF[Ps, ]s]))>
R2d
X fe(t, x, v) dx dv

=2 [ (v~ Flpe i) - (VKs + ) £t 3, v) dr o

R2d
2
+ g /(.]8 - /OstS[/OSa Js]) : (Ké * (]5 - paF[psa Js])) dx dv.
R2d
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Thus, setting: = || K; | [l /Il .1,
1/2 1/2 2c 2 )
| <280 x| £ X NVl x 11+ 5 A5+ = [ (i

R6
- PeF(S[,Osa Js]) : (KS * (;OSF(S[;OS’ Je] - /OsF[/Os’ Je])) dx dv

(cw) + @) A2 ZCASS,

with C(8) bounded fors fixed (it depends ofiVK;s||;~) andy (§) — 0
ass — 0. Notice that if condition9) holds we can take equal to zero.
Forll, we use the continuity equation

1=2 [ (v=Filpe. i]) - (As+div jo) fi(r, 3, v) e

R2d

——2 / (v = Folpes je1) - (VAs % jo) £, x, v) de do
R2d
<C© AL,
And for Ill, we insert Eq(1) on f,

== [ o= Filpe. il divi(uf,) o

]R2d
1 .
- / ’U - F(S[/Osa js]’zdlvv((F[pSa Js] - v)fs) dx dU
SRZd
— 2 / ((v- V) Fslpes ju]) - (v = Fylpen jo) £ cx do
RZd
2
+ /(v — Fslpes jo]) - (Flpe. jol— v) fo dx o
SRZ(I
=-2 / ((v - V) Fslpe, ]s]) : (v — Fs[pe, ]a])fsdx dv
RZ(I
2 2
~ a0+ 2 / (v = Fslpes jol) (FLes ol — Fslpe. jo1) £ che d,
]R2d

which shows that

12 2 )’(5) 1/2

< COAL = Ay +
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Putting all this together, we get

d v (3) 1/2 2(1—o0)
EA (C(c?) + ) P A Ags.

We recall here that = || Ks|l.~|l f°ll;2 (c =0 if (9) is true) and is
strictly less than 1. Using Gronwall lemma, we eventually end up with

2
A M A=0e A, 5(0), ———C2(8 7O )
50 < Max( e SO T 0+

which proves the lemma.n
2.3. Asimpler case

We now prove (iii). Whenk, A andG belong tow*> and condition
(9) is true, then minor modifications of the above proof show that

A (1) < Max(e™?/# A,(0), Ce?),

indeed, in the calculation of section 2.2 we do not regularize $viind
the main difficult term [ (j. — pe Flpe, jel) - K * (o — peFlpe, jel) 1S
negative. So we obtain the inequalities

2
I<caAY?,  n<caA? o <ca¥?- 24,
&

Knowing thatA, is dominated by?, we are able to prove the Dirac
form of £. The convergence towards zero is not enough in itself, because
to prove the special form(x)s(v — F[p, J]) we need some information
on a functional like

A= [ o= Fio. P fitrx, vy dec, (19)
RZ(I
This new functional converges towards zero orjzll 7] whenever
[ 1Floc = Flp I fe >0 in™(i, 1),
R2d

and this is proved by the following lemma (notice that its hypothesis
holds under the assumption of part (iii) of Theorem 1).
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LEMMA 4. —If A, islesstharCe? on[ry, t5], thenF[p,, j.] converges
strongly towardsF [, 71in Co([t1, t2] x R?). In particular if K, A and G
belong tow!-> and if condition(9) is true, F|p,, j.] converges strongly
towardsF[p, 71in Co([t*, T] x R?) for all #* > 0.

Proof. —The only difficulty is again time continuity, which is dealt
using the specific form of'[p., j.].
To prove the lemma, we first claim that

3, je € L™ (11, 21, W LR + L1(RY)).

This is deduced from Eq. (17) g and from the following inequality
||]8 - IOSF[IOSs j8]||L°°([t1,t2],Ll(Rd))

< sup ’v_F[pmjs”fs(t,xsv)dde

tefty,t
[11 Z]RZd

< (supa, ()] £ 4 < Ce.

Secondly, we use the bounds &rj, andd, p, to conclude by Ascoli's
theorem and arguments similar to those of Lemmad.

To complete the convergence proof ff we use Lemma 5.

LEMMA 5.—If A.(r) converges towards zero ih>®([¢*, T']) for all
t* > 0, then f, converges towardgé(v — F[p, j]) in w — L*°([0, T,
Ml(de)).

Proof. —For ¢ andyr in Co([t*, T1 x RY), we have

/ (. ) (1. v) f chv co — / o (1, Fj. 1) ps
RZ[I ]er

= [ oW v -y ) fididy

lv—F|<n
+ [ o w—ya ) fdidy
|v—F|>r[
C
<Cosup i) =y )|+ [ o= Flp I fdec
tlx—yl<n n 26

C _
< sup [yt x) =y, )|+ p SUpA. (1).

[x=yl<n
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Since we already know that converges towardg in w — L>([0, T'1,
MYR)), p, towardsp in w — L>®([0, T], M*(R%)) and sincey (v —
F[p, j]) is in Co([t*, T] x RY) (becausey and F[p, j] belong to this
space), the previous computation means that

fe = p(t,x)8(v—FIp, j1) inL>([¢*, T], M} (R*)), V¢* > 0.

Taking now any® in L([0, T, Co(R?)), we have
T
/ ®(t,x,v) f dx dv ds

0 R2d

T t*
=//cD(t,x,v)fsdxdvdt+//¢(t,x,v)f8dxdvdt,
t* 0

and
tk

t*
//¢(t,x,v)fsdxdvdt<C/H(D(t,.,.)HCOdt—>0 ast* — 0,

0 R« 0
which ends the proof. O
2.4. Uniform bound for the kinetic energy

Here, we prove bounds for the kinetic energy under condit®ynWe
multiply (1) by |v|? and integrate in space and velocity, we find

2 . , 2
AED - [ o Flow jdr+ SE(0 =0
R4
Since
[ Flocinde= [ o wjode+ [ (axpoar
R4 R4

R4

+ [ -G,
R4
the condition(9) gives

2 2 [ 2 [
0, E.(1) <__Es(t)+_/]s‘(A*ps)dx+_/]s‘G(x)dx-
& SRd SRd
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The assumption(8) and the uniform bound of, in L*([0, T],
LY(R?)) imply that A x p, and G(x) are bounded in.>*([0, T] x RY)
and thus

2 C .
0 Ec(1) < —gEs(f) + ;”]s”Ll(R")s

using(16), we deduce from this last inequality that
2
E. (1) <Min <E°, %)

Remark— The condition (9) is used to deal with the quadratic
term in j.. However, just like in Lemma 3, here we can replace this
condition by the smallness assumptipk || .~ || f°|l,2 < 1 and still get
the boundedness of kinetic energy.

3. PROOF OF THEOREM 2

We first deal with the existence problem and in a second part we will
prove the uniqueness result.

3.1. Existence of solutions in.!

First of all notice that with the conditio®) the second equation of
system(5) has only one solutiorj in L* for a givenp. Indeed for two
solutionsj; and j,, the differencej = j; — j, satisfies, thanks t¢r), the
equation

Jt,x)=p@, x)(K * j).
Multiplying the equation byj/p (which exists and belongs G, since it
is equal toK * j) and integrating, we find
iR .
—dx=/j - (K%xj)dx <0,
o

ﬂ'@zl R4

which means thaj = 0.

Theorem 1 provides an existence result for an initial géta Co(R?).
Indeed in that case it is very easy to find a functighin L1 N L>,
with bounded kinetic energy, which two first velocity moments age
and j°. For example we can take fgi® a local maxwellian in velocity.
Since we satisfy the asssumptions of Theorem 1, we get a couplen
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L>°([0, oo[, L*(R%)), solution to(5). To complete the existence proof in
L*, we only need a stability result for the syst&B) which is given by
lemma 6.

LEMMA 6.—Let p,, j, € L®°([0, oo, L* N L?(RY)), p > 1, be two
sequences of distributional solutions ). Assumg9), and thatp,? —
% in LY(RY). Then, extracting subsequences, and j, converge
weakly in L>([0, oo[, M*(R?)) to p and j. Also, p and j belong to
L>=([0, oo[, LY(R%)) and are solution to the syste(8).

Proof. —Since p? converges strongly ik}, p, is bounded inL>([0,

oo[, LY(R%)). Multiplying the second equation of5) by j,/p. and
integrating, we find thanks t®)

12 .
/U;' dX</j'(A*pn+G(X))dx,
R

R4

which gives a uniform bound ofy,|?/p, in L>([0, oo[, L*(R%)). We
deduce a bound ojj, in the same space

[litolar<( [ ";'def/z- ([ o)
R¢ RY

R4

1/2

Extracting subsequences if necessary, we now suppose,tlaad j,
converge towardg and j in L>([0, oo[, M*(R%)). The first equation of
system(5) is linear inp, and j,, so we can pass to the limit and we find
in distributional sense

We now consider the limit of the terp), F[p,,, j.]. The only difficulties
arise inp, (K = j,) and p,(A * p,). We use the Lemma 1 fgs, and j,
instead ofp, andj, and as a consequenpgF[p,, j,] converges towards
pFlp, jlin w* — L>®([0, oo[, M*(R?)) and we get the second equation
of the system(5)

Jjt,x)=p(t, x)Flp, jl.

To prove thato and j are functions and not only measures, we notice
that, sincep® is in LY, there exists a functiof from R, to R, with

B(x) > |x], % — 00 as|x| — oo,
X
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and such that

/ﬁ(po(x)) dx < c0.
R4

Regularizing p, if necessary, we can suppose thit p(o°) are
uniformly bounded. Then since, are solutions to the systern(b)
and since the divergences &f, A and G are bounded, the quantities
Jza B(pn) are uniformly bounded i.*[0, oo[ and finally

[ Blo.x)) dr € L¥10, o0,
R4

which shows thap belongs toL>([0, oo[, L1(R%)). Using the second
equation of the systerb), we find that; has the same property. Notice
that this proves that we have weak convergencg([0, 7], LY). O

3.2. Uniqueness ilV1(RY)
Choose any? in W1 (R%) with
HPOH“(Rd) X K || Lo ray < 1, HPOH“(Rd) X ||diVK||L°°(Rd) <1l

Suppose that we have two couples of solutiépsg j1) and (2, jo)
to the system(5) with initial datae® in L> ([0, oo[, L*(R?)). Applying
Lemma 7 shows that these quantities are alsa¥([0, 7], WH1(R?))
for atimeT depending only on the initial data and on the norm&ofA
andG in L. We prove unigueness only on this time interval.

LEMMA 7.—For all constantC with C||K||.~ < 1, there exists a
time 7 such that if |p°),2 < C and if p° belongs to Wb!, then
any solutionp in L>([0, oo[, L*(R?)) to the system5) belongs to
L>([0, T], WHL(RY)).

Proof. —We first differentiate Eq(7)
VF[p,jl1=A*Vp+K*«Vj+VG.
Using now the second equation @), we find

VF[p,jl—K*(pVF[p,jl)=A*Vp+ VG.
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Thanks to the smallness assumption on Etenorm of p° and thus on
the L* bound onp, we deduce the estimate

Now, we replacej by pF[p, j] and we differentiate the continuity
equation in(5)

Vp+div(pVF(p, j1) +div(VpF[p, j1)=0,
which shows that
d . 2
R4 R4

the constant depending only on the bound ¢p°||;: and on the norms
of K, A andG. As a consequence there exists a consfaaepending
only on these quantities such thabelongs ta.>([0, 7], WY1(R4)). O

Notice that of course ik and A are in W, the same proof holds
without any assumption on the! norm of p° and for all times.

We are now able to prove uniqueness. Let us subsfrget, j;] and
F[p2, j»] by using formula(7)

Flp1, 1l = Flp2, j2l = Ax (p1 — p2) + K x (j1 — J2),

and denotingF[p1, j1] by F1 and F[p,, j»] by F», since
K % (j1— j2) = K x (p1F1 — p2F>)
=K x (p1(FL— F2)) + K x ((p1 — p2) F2),
we have

Fi1— F— K (p1(F1— F2)) = Ax(p1— p2) + K % ((01 — p2) F2).
The bound|p°||;1||K .~ < 1 gives the estimate
||(Fl - FZ)(ts ‘)||L90(Rd) < k||(101 - p2)||L1(Rd)-

Moreover taking the divergence of the previous expression and since
we also have|p°||;1||div K| .~ < 1, we obtain

Hd|V(F]_ - FZ)(t’ -)HLOO(]R(I) g kH(Pl - /OZ)HLl(]Rd)-
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Eventually, we substract the two continuity equations satisfiegiby
andp, with j; and j, replaced byF; and F», and we get

3 (p1 — p2) + div((p1 — p2) F1) + div(p2(FL — F2)) =0,

which leads to

d S
= /|p1 —paldr < /|Fl Byl |Vl +/ div(Fy — F2)| - |pa] d,
p? p? Fe

and combining this with the previous estimates

d
a”(pl - /02)(t’ ')HL]-(]R[[) < kH(pl - /02)(t’ ')HL]-(]Rd)‘

Gronwall lemma implies
P1= P2,

and the proof of Theorem 2 is complete.

4. PROOF OF THEOREM 3

Throughout this section, we consider the syst@nwith the matrix
K given by formula(4) (in particular we work in dimension 3). The
first part of the proof is devoted to gettingas a function ofp with
the second equation @6), after that we prove the existence result and
the uniqueness. These last two subsections use the same methods as in
Section 3 and so we do not write the detalils.

4.1. The second equation of (6)

Here we show the following lemma

LEMMA 8. —Assume thap (x) belongs toL' N L¥?(R%). Then, there
is a functionj(x) in L* N L*? such that the second equation @ is
satisfied. Moreover this function is unique in evér; 1 < p < 3/2.

Proof. —First of all notice that the singularity itk is in 1/|x|. As a
consequencg lies in L? with p < 3/2 to define the ternk « ;.

Now if p belongs toL! N L%?, the producto (K * j) is well defined
for any j in L” with 1 < p < 3/2. IndeedK « j belongs toL? with
1/qg =1/p — 2/3 and so ¢is always between 3 ansb.
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To prove the existence of @ in L' N L¥2, we use an iterative
procedure. We define the following sequence

Jo(x) = gp(x),
Jnr1(x) = p(K * j, + &).

We assume thap is small enough inL* N L32. More precisely for
|K| < c/|x|, we assume

C=cllplliinezz <1

Since we have
. F{ .
ljnsallpinpse < C o + Nl jullzinz32 |,

we deduce that the sequenids uniformly bounded in.*n L2, Hence
we extract a subsequence weakly convergingLinn L¥? towards a
function j. The convolutionk « j, thus converges strongly towar@sx j
in L3N L™ and so we obtain

J@x) =px)(K *j+g).

Eventually if p is not small, then we use this argument to fihduch
that

J () = N2p(Nx) (K*j+%),

with N large enough so thgtN2p(Nx)| ;1 is small enough (we work
in dimension 3) and the function(x/N) satisfies the second equation

of (6) with p. The uniqueness of such a function is proved exactly as in

the beginning of Section 3.1 because the maktigiven by (4) satisfies
condition (9).

4.2. Existence of solutions

Let us denote; a sequence of regularisationsfofin W, Theorem
2 provides the existence pf and s, solutions to(5) with K5, A =0 and

G = g. As a consequence, we prove that these two sequences converge

towards the solution of6).
Sincejs/ ps is divergence free, the continuity equation implies that

|08 |l oo (0,001, L1ML.372) < ||IOOHL10L3/2'
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Now using Lemma 8j; is uniformly bounded ir.>°([0, co], L1 N L3/?).
We then extract subsequences (still dengtgénd js) which converge
weakly in L>([0, co], L* N L¥?) towardsp and;.

The coupleps, js satisfying the continuity equation, it is also true
for p, j. As to the second equation ©6), we have to prove that the
term ps (K5 % js) converges weakly towards(K = j). This is done as in
Lemma 1, since the convolution provides compactness in space and the
continuity equation provides compactness in time.

4.3. Uniqueness

We show first that the systeli®) propagates th&*3 norm of p in
small time.

LEMMA 9. —Assume thap® € W1 N W3, Then, there exists a time
T such that for any solutiop to (6) obtained by weak limit of classical
solution to a regularisation of6), we havep € L>([0,T], Wil N
WL3(R3)).

Proof. —We use the same ideas as in Lemma 7. By Sobolev inequali-
ties, forallp < oo, ||pll,» is less tharp|| .1ny13. From the second equa-
tion of (6) and the bounds offj||;32 and| el .1, we deduce the a priori
estimate for allp < 3

Iillwer < Cllpllwrinwra.

This new estimate implies that
K * jllwiee < Clipllwrinwa.

After differentiating the continuity equation, we eventually find for all
1<p<3

d
EHIO(I’ ')le-p < CH/O(t’ ')le-p X H,o(t, ')le-lnwlﬁ’

which by Gronwall lemma means thdp| 11,13 remains bounded
on an interval[0, T'], T depending on||p°||y11rw1s. Of course this
computation is only formal. However we assume thas a weak limit
of classical solution t@6) with a regularized and thus we can make it
rigorous. O

Consider now any? in L' n Wl n w3, Assume we have two
couples(p1, j1) and(p,, j») in L N L3? of solutions to(6) with initial
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datap®. We suppose that; satisfies the assumption of Lemma 9 (this is
possible because Section 4.2 ensures that such a solution exists). Hence
p1 belongs taL> ([0, 71, WHN W3) for some timel" and we will prove

that p; = p, on this time interval. We first estimatg — j, in term of

P1— P2
Ji—jo=(p1— p2)(K * j1+ &) + p2(K * (j1— j2)),

using now the uniformZL* N L%2 on p; and j;, i = 1,2, a minor
modification of Lemma 8 gives

lj1 — JjallLeo.ry.32) < Cllp1 — p2ll 32

We replace thg; in the two continuity equations by their value given
by the second equation ¢6) and we substract using the divergence free
condition of K

(02— p1) + (K % jo+8) - V(p2 — p1) + (K * (j2— j1)) - Vp2 =0,

multiplying by (o2 — p1)/|p2 — pa|*?, integrating and using Holder
inequalities and the previous estimate jor j,, we find

|| (o2 — P, )| 132 < C (o2 — PO (@, )| 372,

with C a constant depending on ti&“* N W3 norm of p, and on the
LN L%2 norms of p1, p2, j1, j2. To end the proof of Theorem 3, we
apply Gronwall lemma to show that = p,.
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