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ABSTRACT. – The purpose of this paper is to investigate the limit of
some kinetic equations with a strong force. Due to friction, the solution
concentrates to a monokinetic distribution so as to keep the total of force
bounded and in the limit we recover a macroscopic system. This kind of
asymptotics is a natural question when the mass of the particles is very
small or their inertia is neglected. After that we also study the properties
of the limit system and especially the uniqueness of solutions which
provides the full convergence of the family of solutions to the kinetic
equation.

RÉSUMÉ. – Cet article se propose d’étudier la limite de solutions d’une
équation cinétique avec frottement lorsque les termes de force devien-
nent prédominants. A cause du frottement, les solutions se concentrent
progressivement en vitesse de manière à ce que la somme des forces reste
bornée ; à la limite cette concentration nous oblige à remplacer l’équation
cinétique par un système macroscopique. Cette problème apparait notam-
ment quand on fait tendre vers zéro la masse des particules ou quand on
néglige leur inertie. Enfin certaines propriétés du système, et particulière-
ment l’unicité, seront détaillées afin d’obtenir une convergence de toute la
suite des solutions et pas seulement d’une suite extraite.
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INTRODUCTION

We are interested in the behaviour whenε vanishes of kinetic equations
of the kind

∂fε

∂t
+ v · ∇xfε + 1

ε
divv

(
(F [fε] − v)fε)= 0, t > 0,

(x, v) ∈R2d ,
fε(t = 0, x, v)= f 0(x, v).

(1)

Here we work in any dimensiond and the force termF [fε] only depends
on the mass densityρε or on the first momentjε of fε, defined by

ρε(t, x)=
∫
Rd

fε(t, x, v)dv,

jε(t, x)=
∫
Rd

vfε(t, x, v)dv.
(2)

The guiding example throughout this paper will be the modified
Vlasov–Stokes system

∂fε

∂t
+ v · ∇xfε + 1

ε
divv

(
(g+K ?x jε − v)fε)= 0, t > 0,

(x, v) ∈R6,
fε(t = 0, x, v)= f 0(x, v).

(3)
While the general equation(1) contains for instance the classical

Vlasov–Poisson system, the system(3) is a simplified model for the
dynamics of dilute particles in a Stokes flow and submitted to gravity
(g in the above equation) when we take for the matrixK

K(x)=−c
(
Id

|x| +
x ⊗ x
|x|3

)
, c > 0. (4)

This model is derived by Jabin and Perthame in [15] and its basic
properties are stated in [14] and in [6] by Gasser, Jabin and Perthame.
Hamdache also worked on the existence for a slightly different model
in [11]. In another situation, kinetic equations for a system of particles
in a potential flow have been introduced by Herrero, Lucquin-Desreux
and Perthame in [12] and by Russo and Smeraka in [17]. An evolution
equation, close to the limit systems we obtain here (see(5) and (6)
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below), has also been derived for an infinite suspension of particles (see
Rubinstein and Keller in [16]).

Formally, whenε converges to zero, the limits of the systems(1) is
∂ρ

∂t
+ div j = 0,

j (t, x)= ρF [ρ, j ],
ρ(t = 0, x)= ρ0(x),

(5)

and in the special case of(2), we obtain
∂ρ

∂t
+ div j = 0,

j (t, x)= ρ(K ?x j + g).
(6)

This paper aims at proving this rigorously, for someF or K regular
enough. In particular more regular than the matrixK defined by(4), this
additional regularity is necessary because in these limits,fε concentrates
to a monokinetic distributionρ(x)δ(v − u) with ρu= j . Notice that the
initial data is given and does not depend onε, the concentration is thus
only due to the natural evolution of the equation.

This kind of singular perturbation and this way of deriving macro-
scopic limits is quite recent and the usual methods, see for instance
Glassey in [7], do not apply. The main difficulty is that the density func-
tion f , in this limit, concentrates as a Dirac mass. This problem is related
to the quasi-neutral limit for plasmas (see Brenier [3], and Grenier [9]) or
the limit of the Vlasov–Poisson system towards the pressureless Euler–
Poisson system (see Sandor [18]) where the same phenomenon of con-
centration occurs. A remarkable difference is however that here the only
scaling of the force term is enough, and it is not necessary to also scale
the initial data. Another remarkable feature is that our limiting system
does not have a notion of dissipative solution and the method of [3] can-
not be used here. Another class of singular perturbation problems with
strong force terms has been treated by Frénod and Sonnendrücker in [5]
(fixed magnetic force) and Golse and Saint-Raymond in [8] (the so-called
gyrokinetic limit). KeepingLp (p > 1) bounds onf , the analysis in [5] is
then based on two-scale Young measures (see Allaire [1] and N’Guetseng
[10]), and in [8] it is based on a compactness argument due to Delort. The
methods developed in these papers cannot be applied here because of the
concentration phenomenon and the different structure of the force term.
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We will first present three theorems: the first one proves the limit
for “regular” force terms, the second gives some properties of existence
and uniqueness for the macroscopic system with the same regularity
assumption, whereas the last one studies the system (6). The rest of the
paper will be devoted to the proof of these theorems.

1. MAIN RESULTS

We will only deal with force termsF [ρε, jε] which are a sum of two
convolution operators inρε andjε

F [ρε, jε] =A ?x ρε +K ?x jε +G(x), (7)

with the assumption

A,G ∈ (C0(Rd)
)d
, K ∈ (C0(Rd)

)d2

. (8)

Alternatively, we will also use the assumption of the negativity of the
operatorK more precisely∫

Rd

u(x) · (K ?x u(x))6 0, ∀u ∈ (C0(Rd)
)d
. (9)

We consider Eq. (1) for a non-negative bounded initial data with finite
mass and finite kinetic energy

f 0 ∈L1∩L∞(R2d),

E0=
∫
R2d

|v|2f 0(t, x, v)dx dv <+∞. (10)

For developments we will also use the functional

∆ε(t)=
∫
R2d

∣∣v − F [ρε, jε]∣∣2fε(t, x, v)dx dv. (11)

The systems (1) admit the following a priori estimates∥∥fε(t, . , .)∥∥L1(R2d)
= ∥∥f 0∥∥

L1(R2d)
, (12)∥∥fε(t, . , .)∥∥L∞(R2d)

6 edt/ε
∥∥f 0∥∥

L∞(R2d)
. (13)
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We will consider weak solutions of Eq. (1), which we define as
distributional solutions to(1) satisfying the natural conditions

fε ∈L∞([0, T ],L1∩L∞(R2d)), ∀T > 0,

fε ∈C([0,∞[,L1(R2d)),

Eε(t)=
∫
R2d

|v|2fε(t, x, v)dx dv <∞, ∀t > 0,

fε is the weak* limit inL∞([0, T ],Lp(R2d))

of classical solutions to(1) for all 1< p 6∞.

(14)

Notice that the energy andL1 estimates in(14)give estimates inL1 for
ρε andjε. We are thus able to give a precise meaning to(1) in the space of
distributions for weak solutions sinceF [ρε, jε] ∈ L1

loc. They also satisfy
the a priori estimates(12)and(13). For a precise theory of existence and
estimates of this kind of systems, see Arsenev [2], DiPerna and Lions [4],
and also [6,7], Horst [13] and [14].

In all the paper,M1 will denote the space of Radon measures. We are
now ready to state our three theorems

THEOREM 1. –Let (fε) be a sequence of weak solutions in the sense
of (14) to Eq. (1). Assume(7), (8) and that the kinetic energyEε(t) is
uniformly bounded over any interval[0, T ]. Then, asε converges to zero,
there is a subsequence such that

(i) ρε ⇀ ρ̄(x), jε ⇀ ̄(x) weakly inL∞([0, T ],M1(Rd)) , andρ̄
and ̄ are solutions to the system(5),

(ii) if ‖K‖L∞‖f 0‖L1 < 1 or if (9) holds, then ∆ε(t) → 0 in
C([t?,∞[) for all t? > 0.

(iii) if K,A,G are inW 1,∞ and(9) holds, then there exists a constant
C > 0 such that∆ε(t) 6 C(t?)ε2 ∀t ∈ [t?,∞[, t? > 0, and
fε ⇀ ρ̄(x)δ(v − F [ρ̄, ̄ ]) weakly inL∞([0, T ],M1(R2d)).

Moreover if condition(9) holds true, the kinetic energy is bounded.

Remarks. – (1) The main limitation of this theorem comes from
assumption(8), because it does not allow the natural singularity in the
forces. This is due to the fact that we only haveM1 estimates in the
phase space forfε, ρε or jε and we need to pass to the limit in the term
ρεF [ρε, jε]. However, if we suppose that divF [ρ̄, ̄ ] = 0 (again a natural
condition in view of(4)), then the limit system(5) conserves allLp norm
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of ρ̄ and of̄ because we then have

∂ρ̄

∂t
+ F [ρ̄, ̄ ] · ∇ρ̄ = 0,

while the second equation of(5) shows that theLp norm ̄ is dominated
by theLp norms ofρ̄, (see the Theorem 3 below). Since it is very natural
to get divF [ρ̄, ̄ ] = 0, especially in the case of Vlasov–Stokes equation
(A = 0, G = cst , divK = 0), it is a natural open question to know if
condition(8) can be removed in that case.

(2) A crucial step in this theorem is the estimate for the functional
∆ε(t) and the main difficulty is to prove that it converges to zero even
if K , A or G are not differentiable and without condition(9). If K , A
andG areC1 and if (9) is true, we prove that∆ε is less thanε2. Notice
nevertheless that, even in this case, the decay is not enough to compensate
the exponential growth offε and the question of the regularity inx of ρε
or jε is still not solved.

(3) From the first remark we can expect thatρ̄ and ̄ have the same
regularity asρ0 andj0 (L1∩L5/3 for ρ̄ in dimension three for example).
Another natural question arising from Theorem 1 would hence be to
prove weakL1 convergence instead of weak measure convergence.

THEOREM 2. –Let F be given by(7), with conditions(8) and (9),
and assume thatdivK , divA and∇G belongL∞. Then

(i) the second equation of the system(5) determines uniquelyj in L1

as a function ofρ in L1,
(ii) the system has distributional solutionsρ, j ∈L∞([0, T ],L1(Rd)),
∀T > 0 for any non-negativeρ0 in L1,

(iii) if ρ0 belongs toW 1,1, and is small inL1 the solution is unique for
small times,

(iv) if K andA ∈W 1,∞, uniqueness holds globally in time.

This theorem provides a framework for existence of solutions to the
system(5) also. But a more general existence framework is easy to
settle. It should also be noticed that Theorem 1 already provides a partial
existence result (at least forρ0 andj0 given by the second equation being
the zeroth and the first moment in velocity of a function inL1 ∩ L∞).
However existence can be proved more generally forρ0 ∈ L1. We can
still get a stronger result (no smallness assumption) if we precise the
structure of the matrixK . It shows that we can allow a singularity in
the matrix whereas we are unable to prove a variant of Theorem 1 with
any singularity.
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THEOREM 3. –Assumed = 3, F is given by(7) with A = 0, G ∈
W 1,∞ and K the matrix given by(4). Then, the system(5) has
distributional solutionsρ, j ∈ L∞([0, T ],L1(R3)) for any initial data
ρ0 in L1 ∩ L3/2. If ρ0 belongs toW 1,3, this solution is unique locally in
time.

2. PROOF OF THEOREM 1

This proof is divided into four parts. First of all we show that the main
quantities have limits and we explain whyρ̄ and̄ satisfy the system(5)
(part (i) of the theorem), then we prove that the functional∆ε defined
by (11) converges to zero (part (ii) of the theorem), the next subsection
being devoted to the caseA, K , G ∈ W 1,∞ and the Dirac form of the
limit of fε. At last we explain why condition(9) ensures the uniform
boundedness of the kinetic energy.

2.1. Existence of limits forfε, ρε, jε and ρεF [ρε, jε]
We prove the point (i). First of all the conservative form of Eq. (1) and

condition(14) imply the estimate(12). We therefore have

‖ρε‖L∞([0,T ],L1(Rd)) =
∥∥f 0∥∥

L1(R2d)
, (15)

‖jε‖L∞([0,T ],L1(Rd)) 6
∥∥f 0∥∥1/2

L1(R2d)
supE1/2

ε (t). (16)

Therefore, we can extract a subsequence so as to get

fε ⇀ f̄ weakly inL∞
([0, T ],M1(R2d)

)
,

ρε ⇀ ρ̄ weakly inL∞
([0, T ],M1(Rd)

)
,

jε ⇀ ̄ weakly inL∞
([0, T ],M1(Rd)

)
.

The continuity equation∂ρε
∂t
+ div jε = 0 is obviously satisfied thanks

to the boundedness of the force termF [ρε, jε] (assumption(8)). To show
that ρ̄ and̄ are solutions to the system(5) and end the proof of the first
part of Theorem 1, we only need to apply Lemmas 1 and 2.

LEMMA 1. –Assumeρε andjε are two sequences uniformly bounded
in L∞([0, T ],L1(Rd)), weakly converging inL∞([0, T ],M1(Rd)) and
satisfying the continuity equation. Then the productρεF [ρε, jε] con-
verges weakly inL∞([0, T ],M1(Rd)) towardsρ̄F [ρ̄, ̄ ].
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Proof. –Notice first that, using assumption(8), F [ρ̄, ̄ ] belongs to
L∞([0, T ],C0(Rd)) and thereforēρF [ρ̄, ̄ ] is well defined.

Formula(7) allows us to decomposeρεF [ρε, jε] in three terms

ρεF [ρε, jε] = ρε(K ? jε)+ ρεA ? ρε + ρεG(x).
We will show that the three terms converges weakly inL∞([0, T ],

C0(Rd)). This is obvious forρεG(x). The only problem is to get some
time compactness in the two other products, which is done by using the
continuity equation. This is well known forρεA ? ρε and so we only
explain the procedure for the first term since∂tjε is not a priori uniformly
in any negative Sobolev space.

The term ρε(K ? jε) is bounded inL∞([0, T ],L1(Rd)) and so,
extracting a subsequence, it converges weakly inL∞([0, T ],M1(Rd)).
We only have to identify its limit. Let us first choose a regularizationKδ
of K in C1(Rd). For allφ(t, x) in C1

0(Rd+1), we have∫
Rd

φ(t, x)ρε(t, x)(Kδ ? jε)dx =
∫
Rd

jε(t, x)(K̃δ ? ρεφ)dx,

with, if KT denotes the transpose of the matrixK ,

K̃δ(x)=KT
δ (−x).

The continuity equation and theL1 bound onjε imply thatρε belongs
to W 1,∞([0, T ], W−1,1(Rd). Applying Ascoli theorem, this shows that
K̃δ ? φρε converges strongly inC0([0, T ],C0(Rd)) towardsK̃δ ? φρε,
which enables us to conclude.2

LEMMA 2. –The limit ofρεF [ρε, jε] in w − L∞([0, T ],M1(Rd)) is
precisely the limit̄ of jε in the same space.

Proof. –Multipliing Eq. (1) by v and integrating in velocity, we obtain

∂jε

∂t
+ divx Eε + 1

ε

(
jε − ρεF [ρε, jε])= 0,

Eε(t, x)=
∫
Rd

v⊗ vfε(t, x, v)dv.
(17)

The uniform bound on the kinetic energy gives a uniform bound onEε
in L∞([0, T ], L1(Rd)). As a consequence we immediately deduce that
jε − ρεF [ρε, jε] converges towards zero inW−1,1([0, T ] ×Rd)).
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Since we already know thatjε and ρεF [ρε, jε] converge towards̄
andρ̄F [ρ̄, ̄ ] in w−L∞([0, T ],M1(Rd)), the two limits are necessarily
equal. 2
2.2. Concentration in velocity

First of all, let us consider sequences of regularisationsKδ ,Aδ andGδ

in C1
0(Rd) of K ,A andG. Using these sequences, we define a force term

Fδ and the functional

∆ε,δ =
∫
R2d

∣∣v− Fδ[ρε, jε]∣∣2fε(t, x, v)dx dv. (18)

We are able to prove Lemma 3 which almost directly implies that∆ε

vanishes withε (thus ending the proof of part (ii) of the theorem), since
∆ε,δ converges to∆ε with δ, uniformly in ε.

LEMMA 3. – If ‖Kδ‖L∞‖f 0‖L1 < 1, then∆ε,δ = α(ε, δ)+ β(δ), on
[t?, T ] for all t? > 0, withα a function vanishing withε for δ fixed andβ
a function vanishing withδ.

Proof. –

d

dt
∆ε,δ =−2

∫
R2d

(
v− Fδ[ρε, jε]) · (Kδ ? ∂tjε)fε(t, x, v)dx dv

− 2
∫
R2d

(
v −Fδ[ρε, jε]) · (Aδ ? ∂tρε)fε(t, x, v)dx dv

+
∫
R2d

∣∣v −Fδ[ρε, jε]∣∣2∂tfε(t, x, v)dx dv = I + II + III .

Let us first deal withI . Using Eq.(17)on jε, we find

I = 2
∫
R2d

(
v −Fδ[ρε, jε]) ·(Kδ ? (divx(E)+ 1

ε

(
jε − ρεF [ρε, jε])))

×fε(t, x, v)dx dv

= 2
∫
R2d

(
v −Fδ[ρε, jε]) · (∇Kδ ? E)fε(t, x, v)dx dv

+ 2

ε

∫
R2d

(
jε − ρεFδ[ρε, jε]) · (Kδ ? (jε − ρεF [ρε, jε]))dx dv.
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Thus, settingc= ‖Kδ‖L∞‖f 0‖L1,

I 6 2∆1/2
ε,δ ×

∥∥f 0∥∥1/2
L1 × ‖∇Kδ‖L∞ × ‖E‖L1 + 2c

ε
∆ε,δ + 2

ε

∫
R6

(
jε

− ρεFδ[ρε, jε]) · (Kδ ? (ρεFδ[ρε, jε] − ρεF [ρε, jε]))dx dv

6
(
C(δ)+ γ (δ)

ε

)
∆

1/2
ε,δ +

2c

ε
∆ε,δ,

with C(δ) bounded forδ fixed (it depends on‖∇Kδ‖L∞ ) andγ (δ)→ 0
asδ→ 0. Notice that if condition(9) holds we can takec equal to zero.

For II , we use the continuity equation

II = 2
∫
R2d

(
v − Fδ[ρε, jε]) · (Aδ ? div jε)fε(t, x, v)dx dv

=−2
∫
R2d

(
v − Fδ[ρε, jε]) · (∇Aδ ? jε)fε(t, x, v)dx dv

6C(δ)∆1/2
ε,δ .

And for III , we insert Eq.(1) onfε

III =−
∫
R2d

∣∣v− Fδ[ρε, jε]∣∣2divx(vfε)dx dv

− 1

ε

∫
R2d

∣∣v− Fδ[ρε, jε]∣∣2divv
((
F [ρε, jε] − v)fε)dx dv

=−2
∫
R2d

(
(v · ∇x)Fδ[ρε, jε]) · (v− Fδ[ρε, jε])fε dx dv

+ 2

ε

∫
R2d

(
v −Fδ[ρε, jε]) · (F [ρε, jε] − v)fε dx dv

=−2
∫
R2d

(
(v · ∇x)Fδ[ρε, jε]) · (v− Fδ[ρε, jε])fε dx dv

− 2

ε
∆ε,δ + 2

ε

∫
R2d

(
v − Fδ[ρε, jε])(F [ρε, jε] −Fδ[ρε, jε])fε dx dv,

which shows that

III 6 C(δ)∆1/2
ε,δ −

2

ε
∆ε,δ + γ (δ)

ε
∆

1/2
ε,δ .
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Putting all this together, we get

d

dt
∆ε,δ 6

(
C(δ)+ γ (δ)

ε

)
∆

1/2
ε,δ −

2(1− c)
ε

∆ε,δ.

We recall here thatc = ‖Kδ‖L∞‖f 0‖L1 (c = 0 if (9) is true) and is
strictly less than 1. Using Gronwall lemma, we eventually end up with

∆ε,δ(t)6 Max
(

e−(1−c)t/ε∆ε,δ(0),
ε2

(1− c)2C
2(δ)+ γ (δ)

(1− c)2
)
,

which proves the lemma.2
2.3. A simpler case

We now prove (iii). WhenK,A andG belong toW 1,∞ and condition
(9) is true, then minor modifications of the above proof show that

∆ε(t)6 Max
(
e−2t/ε∆ε(0),Cε

2),
indeed, in the calculation of section 2.2 we do not regularize withδ and
the main difficult term

∫
(jε − ρεF [ρε, jε]) · K ? (jε − ρεF [ρε, jε]) is

negative. So we obtain the inequalities

I 6 C∆1/2
ε , II 6 C∆1/2

ε , III 6 C∆1/2
ε −

2

ε
∆ε.

Knowing that∆ε is dominated byε2, we are able to prove the Dirac
form of f̄ . The convergence towards zero is not enough in itself, because
to prove the special form̄ρ(x)δ(v − F [ρ̄, ̄ ]) we need some information
on a functional like

∆̄ε(t)=
∫
R2d

∣∣v −F [ρ̄, ̄ ]∣∣2fε(t, x, v)dx dv. (19)

This new functional converges towards zero on all[t?, T ] whenever∫
R2d

∣∣F [ρε, jε] − F [ρ̄, ̄ ]∣∣2fε→ 0 inL∞
([t?, T ]),

and this is proved by the following lemma (notice that its hypothesis
holds under the assumption of part (iii) of Theorem 1).
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LEMMA 4. – If ∆ε is less thanCε2 on[t1, t2], thenF [ρε, jε] converges
strongly towardsF [ρ̄, ̄ ] in C0([t1, t2]×Rd). In particular ifK,A andG
belong toW 1,∞ and if condition(9) is true,F [ρε, jε] converges strongly
towardsF [ρ̄, ̄ ] in C0([t?, T ] ×Rd) for all t? > 0.

Proof. –The only difficulty is again time continuity, which is dealt
using the specific form ofF [ρε, jε].

To prove the lemma, we first claim that

∂tjε ∈L∞([t1, t2], W−1,1(Rd)+L1(Rd)
)
.

This is deduced from Eq. (17) onjε and from the following inequality∥∥jε − ρεF [ρε, jε]∥∥L∞([t1,t2],L1(Rd))

6 sup
t∈[t1,t2]

∫
R2d

∣∣v− F [ρε, jε]∣∣fε(t, x, v)dx dv

6
(
sup∆ε(t)

)1/2∥∥f 0∥∥1/2
L1 6 C̃ε.

Secondly, we use the bounds on∂tjε and∂tρε to conclude by Ascoli’s
theorem and arguments similar to those of Lemma 1.2

To complete the convergence proof offε, we use Lemma 5.

LEMMA 5. – If ∆̄ε(t) converges towards zero inL∞([t?, T ]) for all
t? > 0, thenfε converges towards̄ρδ(v − F [ρ̄, ̄ ]) in w − L∞([0, T ],
M1(R2d)).

Proof. –Forφ andψ in C0([t?, T ] ×Rd), we have∫
R2d

φ(t, x)ψ(t, v)fε dx dv −
∫
Rd

φψ
(
t, F [ρ̄, ̄ ])ρε dx

=
∫

|v−F̄ |<η
φ
(
ψ(t, v)−ψ(t, F̄ ))fε dx dv

+
∫

|v−F̄ |>η
φ
(
ψ(t, v)−ψ(t, F̄ ))fε dx dv

6 C sup
t,|x−y|<η

|ψ(t, x)−ψ(t, y)∣∣+ C

η2

∫
R6

∣∣v −F [ρ̄, ̄]∣∣2fε dx dv

6 sup
|x−y|<η

∣∣ψ(t, x)−ψ(t, y)∣∣+ C

η2
sup
t
∆̄ε(t).
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Since we already know thatfε converges towards̄f in w−L∞([0, T ],
M1(R2d)), ρε towardsρ̄ in w − L∞([0, T ],M1(Rd)) and sinceψ(v −
F [ρ̄, ̄ ]) is in C0([t?, T ] × Rd) (becauseψ andF [ρ̄, ̄ ] belong to this
space), the previous computation means that

fε ⇀ ρ̄(t, x)δ
(
v −F [ρ̄, ̄ ]) in L∞

([t?, T ],M1(R2d)
)
, ∀t? > 0.

Taking now anyΦ in L1([0, T ],C0(R2d)), we have
T∫

0

∫
R2d

Φ(t, x, v)fε dx dv dt

=
T∫
t ?

∫
Φ(t, x, v)fε dx dv dt +

t ?∫
0

∫
Φ(t, x, v)fε dx dv dt,

and

t ?∫
0

∫
R2d

Φ(t, x, v)fε dx dv dt 6 C
t?∫

0

∥∥Φ(t, . , .)∥∥
C0

dt→ 0 ast?→ 0,

which ends the proof. 2
2.4. Uniform bound for the kinetic energy

Here, we prove bounds for the kinetic energy under condition(9). We
multiply (1) by |v|2 and integrate in space and velocity, we find

∂tEε(t)− 2

ε

∫
Rd

jε · F [ρε, jε]dx + 2

ε
Eε(t)= 0.

Since ∫
Rd

jε · F [ρε, jε]dx =
∫
Rd

jε · (K ? jε)dx +
∫
Rd

jε · (A ? ρε)dx

+
∫
Rd

jε ·G(x)dx,

the condition(9) gives

∂tEε(t)6−2

ε
Eε(t)+ 2

ε

∫
Rd

jε · (A ? ρε)dx + 2

ε

∫
Rd

jε ·G(x)dx.
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The assumption(8) and the uniform bound ofρε in L∞([0, T ],
L1(Rd)) imply thatA ? ρε andG(x) are bounded inL∞([0, T ] × Rd)
and thus

∂tEε(t)6−2

ε
Eε(t)+ C

ε
‖jε‖L1(Rd),

using(16), we deduce from this last inequality that

Eε(t)6Min
(
E0,

C2

4

)
.

Remark. – The condition (9) is used to deal with the quadratic
term in jε. However, just like in Lemma 3, here we can replace this
condition by the smallness assumption‖K‖L∞‖f 0‖L1 < 1 and still get
the boundedness of kinetic energy.

3. PROOF OF THEOREM 2

We first deal with the existence problem and in a second part we will
prove the uniqueness result.

3.1. Existence of solutions inL1

First of all notice that with the condition(9) the second equation of
system(5) has only one solutionj in L1 for a givenρ. Indeed for two
solutionsj1 andj2, the differencej = j1− j2 satisfies, thanks to(7), the
equation

j (t, x)= ρ(t, x)(K ? j).

Multiplying the equation byj/ρ (which exists and belongs toC0 since it
is equal toK ? j ) and integrating, we find∫

Rd

|j |2
ρ

dx =
∫
Rd

j · (K ? j)dx 6 0,

which means thatj = 0.
Theorem 1 provides an existence result for an initial dataρ0 in C0(Rd).

Indeed in that case it is very easy to find a functionf 0 in L1 ∩ L∞,
with bounded kinetic energy, which two first velocity moments areρ0

andj0. For example we can take forf 0 a local maxwellian in velocity.
Since we satisfy the asssumptions of Theorem 1, we get a coupleρ, j in
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L∞([0,∞[,L1(Rd)), solution to(5). To complete the existence proof in
L1, we only need a stability result for the system(5) which is given by
lemma 6.

LEMMA 6. –Let ρn, jn ∈ L∞([0,∞[,L1 ∩ Lp(Rd)), p > 1, be two
sequences of distributional solutions to(5). Assume(9), and thatρ0

n→
ρ0 in L1(Rd). Then, extracting subsequences,ρn and jn converge
weakly inL∞([0,∞[,M1(Rd)) to ρ and j . Also, ρ and j belong to
L∞([0,∞[,L1(Rd)) and are solution to the system(5).

Proof. –Sinceρ0
n converges strongly inL1, ρn is bounded inL∞([0,

∞[,L1(Rd)). Multiplying the second equation of(5) by jn/ρn and
integrating, we find thanks to(9)∫

Rd

|jn|2
ρn

dx 6
∫
Rd

j · (A ? ρn +G(x))dx,

which gives a uniform bound on|jn|2/ρn in L∞([0,∞[,L1(Rd)). We
deduce a bound onjn in the same space

∫
Rd

∣∣jn(t, x)∣∣dx 6 (∫
Rd

|jn|2
ρn

dx
)1/2

·
(∫
Rd

ρn dx
)1/2

.

Extracting subsequences if necessary, we now suppose thatρn andjn
converge towardsρ andj in L∞([0,∞[,M1(Rd)). The first equation of
system(5) is linear inρn andjn, so we can pass to the limit and we find
in distributional sense

∂tρ + div j = 0.

We now consider the limit of the termρnF [ρn, jn]. The only difficulties
arise inρn(K ? jn) andρn(A ? ρn). We use the Lemma 1 forρn andjn
instead ofρε andjε and as a consequenceρnF [ρn, jn] converges towards
ρF [ρ, j ] in w? − L∞([0,∞[, M1(Rd)) and we get the second equation
of the system(5)

j (t, x)= ρ(t, x)F [ρ, j ].
To prove thatρ andj are functions and not only measures, we notice

that, sinceρ0 is in L1, there exists a functionβ fromR+ toR+ with

β(x)> |x|, β(x)

|x| →∞ as|x| →∞,
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and such that ∫
Rd

β
(
ρ0(x)

)
dx <∞.

Regularizing ρn if necessary, we can suppose that
∫
R3 β(ρ

0
n) are

uniformly bounded. Then sinceρn are solutions to the system(5)
and since the divergences ofK , A andG are bounded, the quantities∫
Rd β(ρn) are uniformly bounded inL∞[0,∞[ and finally∫

Rd

β
(
ρ(t, x)

)
dx ∈ L∞[0, ∞[,

which shows thatρ belongs toL∞([0, ∞[,L1(Rd)). Using the second
equation of the system(5), we find thatj has the same property. Notice
that this proves that we have weak convergence inL∞([0, T ],L1). 2
3.2. Uniqueness inW 1,1(Rd)

Choose anyρ0 in W 1,1(Rd) with∥∥ρ0∥∥
L1(Rd) × ‖K‖L∞(Rd) < 1,

∥∥ρ0∥∥
L1(Rd) × ‖divK‖L∞(Rd) < 1.

Suppose that we have two couples of solutions(ρ1, j1) and (ρ2, j2)

to the system(5) with initial dataρ0 in L∞([0, ∞[,L1(Rd)). Applying
Lemma 7 shows that these quantities are also inL∞([0, T ],W 1,1(Rd))
for a timeT depending only on the initial data and on the norms ofK , A
andG in L∞. We prove uniqueness only on this time interval.

LEMMA 7. –For all constantC with C‖K‖L∞ < 1, there exists a
time T such that if ‖ρ0‖L1 6 C and if ρ0 belongs toW 1,1, then
any solutionρ in L∞([0, ∞[,L1(Rd)) to the system(5) belongs to
L∞([0, T ],W 1,1(Rd)).

Proof. –We first differentiate Eq.(7)

∇F [ρ, j ] =A ?∇ρ +K ?∇j +∇G .

Using now the second equation of(5), we find

∇F [ρ, j ] −K ?
(
ρ∇F [ρ, j ])=A ?∇ρ +∇G.
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Thanks to the smallness assumption on theL1 norm of ρ0 and thus on
theL1 bound onρ, we deduce the estimate∥∥∇F [ρ, j ]∥∥

L∞ 6 k
(∥∥∇ρ(t, .)∥∥

L1(Rd) + 1
)
.

Now, we replacej by ρF [ρ, j ] and we differentiate the continuity
equation in(5)

∂t∇ρ + div
(
ρ∇F [ρ, j ])+ div

(∇ρF [ρ, j ])= 0,

which shows that

d

dt

∫
Rd

|∇ρ|dx 6
∫
Rd

∣∣∇F [ρ, j ]∣∣ · |∇ρ|dx 6 k∥∥∇ρ(t, .)∥∥2
L1(Rd),

the constantk depending only on the bound on‖ρ0‖L1 and on the norms
of K , A andG. As a consequence there exists a constantT depending
only on these quantities such thatρ belongs toL∞([0, T ], W 1,1(Rd)). 2

Notice that of course ifK andA are inW 1,∞, the same proof holds
without any assumption on theL1 norm ofρ0 and for all times.

We are now able to prove uniqueness. Let us substractF [ρ1, j1] and
F [ρ2, j2] by using formula(7)

F [ρ1, j1] −F [ρ2, j2] =A ? (ρ1− ρ2)+K ? (j1− j2),

and denotingF [ρ1, j1] by F1 andF [ρ2, j2] by F2, since

K ? (j1− j2)=K ? (ρ1F1− ρ2F2)

=K ? (ρ1(F1− F2)
)+K ? ((ρ1− ρ2)F2

)
,

we have

F1− F2−K ?
(
ρ1(F1− F2)

)= A ? (ρ1− ρ2)+K ? ((ρ1− ρ2)F2
)
.

The bound‖ρ0‖L1‖K‖L∞ < 1 gives the estimate∥∥(F1− F2)(t, .)
∥∥
L∞(Rd) 6 k

∥∥(ρ1− ρ2)
∥∥
L1(Rd).

Moreover taking the divergence of the previous expression and since
we also have‖ρ0‖L1‖divK‖L∞ < 1, we obtain∥∥div(F1− F2)(t, .)

∥∥
L∞(Rd) 6 k

∥∥(ρ1− ρ2)
∥∥
L1(Rd).
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Eventually, we substract the two continuity equations satisfied byρ1

andρ2 with j1 andj2 replaced byF1 andF2 and we get

∂t(ρ1− ρ2)+ div
(
(ρ1− ρ2)F1

)+ div
(
ρ2(F1− F2)

)= 0,

which leads to

d

dt

∫
Rd

|ρ1− ρ2|dx 6
∫
Rd

|F1−F2| · |∇ρ2|dx +
∫
Rd

∣∣div(F1−F2)
∣∣ · |ρ2|dx,

and combining this with the previous estimates

d

dt

∥∥(ρ1− ρ2)(t, .)
∥∥
L1(Rd) 6 k

∥∥(ρ1− ρ2)(t, .)
∥∥
L1(Rd).

Gronwall lemma implies

ρ1= ρ2,

and the proof of Theorem 2 is complete.

4. PROOF OF THEOREM 3

Throughout this section, we consider the system(6) with the matrix
K given by formula(4) (in particular we work in dimension 3). The
first part of the proof is devoted to gettingj as a function ofρ with
the second equation of(6), after that we prove the existence result and
the uniqueness. These last two subsections use the same methods as in
Section 3 and so we do not write the details.

4.1. The second equation of (6)

Here we show the following lemma

LEMMA 8. –Assume thatρ(x) belongs toL1∩L3/2(R3). Then, there
is a functionj (x) in L1 ∩ L3/2 such that the second equation of(6) is
satisfied. Moreover this function is unique in everyLp, 16 p6 3/2.

Proof. –First of all notice that the singularity inK is in 1/|x|. As a
consequencej lies inLp with p 6 3/2 to define the termK ? j .

Now if ρ belongs toL1 ∩ L3/2, the productρ(K ? j) is well defined
for any j in Lp with 1 6 p 6 3/2. IndeedK ? j belongs toLq with
1/q = 1/p− 2/3 and so qis always between 3 and∞.
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To prove the existence of aj in L1 ∩ L3/2, we use an iterative
procedure. We define the following sequence

j0(x)= gρ(x),
jn+1(x)= ρ(K ? jn + g).

We assume thatρ is small enough inL1 ∩ L3/2. More precisely for
|K|6 c/|x|, we assume

C = c‖ρ‖L1∩L3/2 < 1.

Since we have

‖jn+1‖L1∩L3/2 6C
( |g|
c
+ ‖jn‖L1∩L3/2

)
,

we deduce that the sequencejn is uniformly bounded inL1∩L3/2. Hence
we extract a subsequence weakly converging inL1 ∩ L3/2 towards a
functionj . The convolutionK ?jn thus converges strongly towardsK ?j
in L3∩L∞ and so we obtain

j (x)= ρ(x)(K ? j + g).
Eventually ifρ is not small, then we use this argument to findj such

that

j (x)=N2ρ(Nx)

(
K ? j + g

N2

)
,

with N large enough so that‖N2ρ(Nx)‖L1 is small enough (we work
in dimension 3) and the functionj (x/N) satisfies the second equation
of (6) with ρ. The uniqueness of such a function is proved exactly as in
the beginning of Section 3.1 because the matrixK given by(4) satisfies
condition(9).

4.2. Existence of solutions

Let us denoteKδ a sequence of regularisations ofK inW 1,∞. Theorem
2 provides the existence ofρδ andjδ , solutions to(5) with Kδ ,A= 0 and
G = g. As a consequence, we prove that these two sequences converge
towards the solution of(6).

Sincejδ/ρδ is divergence free, the continuity equation implies that

‖ρδ‖L∞([0,∞],L1∩L3/2) 6
∥∥ρ0∥∥

L1∩L3/2.
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Now using Lemma 8,jδ is uniformly bounded inL∞([0,∞],L1∩L3/2).
We then extract subsequences (still denotedρδ andjδ) which converge
weakly inL∞([0,∞],L1 ∩L3/2) towardsρ andj .

The coupleρδ , jδ satisfying the continuity equation, it is also true
for ρ, j . As to the second equation of(6), we have to prove that the
termρδ(Kδ ? jδ) converges weakly towardsρ(K ? j). This is done as in
Lemma 1, since the convolution provides compactness in space and the
continuity equation provides compactness in time.

4.3. Uniqueness

We show first that the system(6) propagates theW 1,3 norm of ρ in
small time.

LEMMA 9. –Assume thatρ0 ∈W 1,1 ∩W 1,3. Then, there exists a time
T such that for any solutionρ to (6) obtained by weak limit of classical
solution to a regularisation of(6), we haveρ ∈ L∞([0, T ],W 1,1 ∩
W 1,3(R3)).

Proof. –We use the same ideas as in Lemma 7. By Sobolev inequali-
ties, for allp <∞, ‖ρ‖Lpx is less than‖ρ‖L1∩W1,3. From the second equa-
tion of (6) and the bounds on‖j‖L3/2 and‖ρ‖L1, we deduce the a priori
estimate for allp < 3

‖j‖W1,p 6 C‖ρ‖W1,1∩W1,3.

This new estimate implies that

‖K ? j‖W1,∞ 6C‖ρ‖W1,1∩W1,3.

After differentiating the continuity equation, we eventually find for all
16 p6 3

d

dt

∥∥ρ(t, .)∥∥
W1,p 6 C

∥∥ρ(t, .)∥∥
W1,p ×

∥∥ρ(t, .)∥∥
W1,1∩W1,3,

which by Gronwall lemma means that‖ρ‖W1,1∩W1,3 remains bounded
on an interval[0, T ], T depending on‖ρ0‖W1,1∩W1,3. Of course this
computation is only formal. However we assume thatρ is a weak limit
of classical solution to(6) with a regularizedK and thus we can make it
rigorous. 2

Consider now anyρ0 in L1 ∩ W 1,1 ∩ W 1,3. Assume we have two
couples(ρ1, j1) and(ρ2, j2) in L1 ∩ L3/2 of solutions to(6) with initial
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dataρ0. We suppose thatρ1 satisfies the assumption of Lemma 9 (this is
possible because Section 4.2 ensures that such a solution exists). Hence
ρ1 belongs toL∞([0, T ],W 1,1∩W 1,3) for some timeT and we will prove
that ρ1 = ρ2 on this time interval. We first estimatej1 − j2 in term of
ρ1− ρ2

j1− j2= (ρ1− ρ2)(K ? j1+ g)+ ρ2
(
K ? (j1− j2)

)
,

using now the uniformL1 ∩ L3/2 on ρi and ji , i = 1,2, a minor
modification of Lemma 8 gives

‖j1− j2‖L∞([0,T ],L3/2) 6 C‖ρ1− ρ2‖L3/2.

We replace theji in the two continuity equations by their value given
by the second equation of(6) and we substract using the divergence free
condition ofK

∂t(ρ2− ρ1)+ (K ? j2+ g) · ∇(ρ2− ρ1)+ (K ? (j2− j1)
) · ∇ρ2= 0,

multiplying by (ρ2 − ρ1)/|ρ2 − ρ1|1/2, integrating and using Holder
inequalities and the previous estimate forj1− j2, we find

∂t
∥∥(ρ2− ρ1)(t, .)

∥∥
L3/2 6C

∥∥(ρ2− ρ1)(t, .)
∥∥
L3/2,

with C a constant depending on theW 1,1 ∩W 1,3 norm ofρ2 and on the
L1 ∩ L3/2 norms ofρ1, ρ2, j1, j2. To end the proof of Theorem 3, we
apply Gronwall lemma to show thatρ1= ρ2.

REFERENCES

[1] Allaire G., Homogenization and two-scale convergence, SIAM J. Math.
Anal. XXIII (12) (1992) 1482–1518.

[2] Arsenev A.A., Global existence of a weak solution of Vlasov’s system of equations,
USSR Comp. Math. and Math. Phys. 15 (1975) 131–141.

[3] Brenier Y., Convergence of the Vlasov–Poisson system to the incompressible Euler
equations, Comm. PDE, to appear.

[4] DiPerna R.J., Lions P.L., Solutions globales d’équations du type Vlasov–Poisson,
C.R. Acad. Sci. Paris Sér. I 307 (1988) 655–658.

[5] Frénod E., Sonnendrücker E., Long time behaviour of the two-dimensional Vlasov
equation with a strong external magnetic field, INRIA Report, 3428, 1998.

[6] Gasser I., Jabin P.-E., Perthame B., Regularity and propagation of moments in some
nonlinear Vlasov systems, Work in preparation.



672 P.-E. JABIN / Ann. Inst. Henri Poincaré 17 (2000) 651–672

[7] Glassey R.T., The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996.
[8] Golse F., Saint-Raymond L., The Vlasov–Poisson system with strong magnetic field,

LMENS 99 (2) (1999).
[9] Grenier E., Defect measures of the Vlasov–Poisson system, Comm. PDE 21 (1996)

363–394.
[10] N’Guetseng G., A general convergence result for a functional related to the theory

of homogeneization, SIAM J. Math. Anal. 20 (1989) 608–623.
[11] Hamdache K., Global existence and large time behaviour of solutions for the

Vlasov–Stokes equations, Japan J. Indust. Appl. Math. 15 (1998) 51–74.
[12] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed bubbles

in a potential flow, Siam J. Appl. Math, to appear.
[13] Horst E., On the classical solutions of the initial value problem for the unmodified

non-linear Vlasov equation, Math. Meth. in the Appl. Sci. 3 (1981) 229–248.
[14] Jabin P.-E., Large time concentrations for solutions to kinetic equations with energy

dissipation, Comm. PDE, to appear.
[15] Jabin P.-E., Perthame B., Notes on mathematical problems on the dynamics of

dispersed particles interacting through a fluid, in: Bellomo N., Pulvirenti M. (Eds.),
Modelling in Applied Sciences, a Kinetic Theory Approach, to appear.

[16] Rubinstein J., Keller J.B., Particle distribution functions in suspensions, Phys. Fluids
A 1 (1989) 1632–1641.

[17] Russo G., Smereka P., Kinetic theory for bubbly flow I and II, SIAM J. Appl.
Math. 56 (1996) 327–371.

[18] Sandor V., The Euler–Poisson system with pressure zero as singular limit of the
Vlasov–Poisson system, the spherically symmetric case, Preprint.


