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ABSTRACT. — In this article, we introduce a general method for
studying the smoothing effects resulting from the non linearity in a
multidimensional scalar conservation law. It turns out that the regularity
of physical solutions is intimately related to a numbedelivered after a
scattering procedure. Using this approach, we recover and unify previous

information while obtaining new results.
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RESUME. — Dans cet article, on s'intéresse a I'effet de lissage induit
par la non linéarité dans une loi de conservation scalaire multidimension-
nelle. Il se trouve que la régularité des solutions entropiques est liée a
un nombre® obtenu a l'issue d’'une procédure de scattering. Cette ap-
proche permet de retrouver, d’unifier, d’étendre et d’améliorer les résul-
tats antérieurs. Voir Cheverry [5] pour une présentation concise en fran-
cais.
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0. NOTATIONS

This preliminary section is devoted to various notations that are used
throughout the paper. As usual, we set:

—a,rs,t, 1,7, are real numbers.

—i,j,k,i,j, k., l,m,n,N,p,q are natural numbers.

— f,g,h,u, w are functions.

— fogisthe non linear composition gf andg: fog(x) = f(g(x)).

— x,y are points inR? andz, v are points irR.

— x-y:=>.1  x;y isthe inner product ifR?.

— |lx||2 := x - x is the Euclidean norm ifk¢.

— B, (x, r]is the closed ball with center and radius-.

— dmyg is the Lebesgue measure R

— |A]:= [, dm, is the Lebesgue measure of the det R.

— convA is the (closed) convex hull of the satc RY.

— 0A is the boundary of the set C RY.

— The sumA + a of a setA C R? and of a numben € RT is:

A+a:={x+y,x€A, yeA, |yll, <a} CR%.

— B(X;Y) is a Banach space of functions fraknto Y.

— B(X) is a Banach space of functions fraxhto R.

— B.(X;Y)andB.(X) refer to functions that have compact support.

— Bioe(X; Y) andBjoc(X) refer to functions that are locally ifi(X; Y)
or B(X).

— Lip(X; Y) are the Lipschitzian functions froiXi to Y.

— suppu is the support of the functiom(-).

— CK(X) is the space of functions iK with continuous derivatives of
order less thahi.

— S(R?) is the Schwartz space of rapidly decreas®y (R?) func-
tions.

— S'(RY) is the dual space of tempered distributions.

— H™(RY) is the Sobolev space of distributions witl derivatives of
ordert. Its norm is denoted byu|| gy (ra).

— « is a multi-indexa = (a1, ..., o,) € N9,

— || is the lengthwy + - - -+, Of &

— (§)4 is an abbreviation for/1+ £ 7.

— 9 is the partial derivative;” ... 8,” whered,; := 5.
: J
— Vs (. ..., 3.
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— LP(R?) is the space consisting of all measurable functiongRén
that arepth-power integrable. Its norm iB«|| L» mq).

— W™P(R?) is the classical Sobolev space with nofm|ym.» ga) .

— WoL(RY) with 7 €]0, 1] is the space of functions with norm:

lu(y) —u(y)|

P —————dm, ® dm,.

Nl ety 2= il 2y + /

— M, (R?) is the space of finite Borel measures. Its norm is:

Il vy ey 2= SUP{I (e, @)1 ll@llcogray < 1}

— BV (R?) is the space of measurable functions with all distributional
derivatives of order 1 that are ik, (R?).

TViap(u) = SUHZf/;ll lu(yjr) —u@)l; a<yi<--- <y <b}

is the variation of«(-) € BV ([a, b[).

If u e BV(R), u(x—) andu(x+) are the one-sided limits of at x.
u_/u, designates a discontinuity separating the stateandu, .
Fow)(E) =i (§) := [pe €7 %u(y)dm, is the Fourier transform of
the functionu.

— (Dy)'u(-) is defined byF, ((Dy) u)(§) = (§);u(§).

It is now convenient to mtroduce some specific notations.

The symbolC (%) where the star is replaced by relevant quantities
stands for constants appearing in various estimates.

In what follows,P? denotes the space of all hyperplaneRt Each
elementH, , € P4 can be writterH,, . :={y; -y =z} wherew is a unit
vector in the spher&7~! andz € R. Theg — 1 dimensional Lebesgue
measure o, . is dm,, ;.

The symbok! designates any vector orthogonakio

We fix a coordinate system:

Rzay:(y/sy”)ER;’XR;{”s r+d:5],
with dual variables:
RI>&=(¢£") eR, xR,

In particular, the decomposition dR? into a family of parallel
hyperplanes with normal vectar corresponds to the choice:

RI>y=(y,y) = (ww,0") eRL xRS", (eR. (0.1)
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We will use the space:
HY (R, xRY,) :={ueS'(RY); (&) (");a) e L*(R)}
with the Hilbert norm:

) , 12
et e e, e, 2= (/(5’)?(5”)?!ﬁ(§)| qu) .

Rg

We will need the following semi-norms:

|ul g ray == Z Ha;/uHB(]R‘I)’
{yeNe; |y|=k}
|M|3i,.f<R;_,xR;{,,) = Z Ha;l'ag’“HB(Rq)’

{(a.p)eN" xN9; |a|=i, | B|=/}
with the corresponding norms:

llull g way == Z || gt ra)»
(keN; k<k)
”u”BiJ'(R;,xR;f,,) = Z |”|B’T-5<R§,,xR§’,,,)‘

(@, ))eN? i<i, j<j)
According to the preceding conventions, we have for instance the
identification:
(LY (R?) = w™H(RY),  M;(RY)=BV(RY), meN.

The Radon transform af is defined as the functioia onP? given by
the formula:

u(w,z) = / u(yydmg, ., (w,z)¢€ St x R.
Hy 2

The operator:
Ra:LY(R7) — LY (P7)
{ Ra(u):P? — R,
ur—

(w,2) > u(w, ),



C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413-472 417

is a continuous linear map. An indexas for:

Ra,(u)(w, z,a) == / u(y,a)dm,., wueL®(RI;L(R?))

{v: wy=z}

indicates that the integration concerns only theariable.

Let us now state without proof (we refer for the details to the book
of Helgason [13]) a few elementary properties related to the Radon
transform. It is closely connected with the Fourier Transform since:

n(sw) = /eﬁi“ft(a), 2)dz, V(s,w)eR x ST, (0.2)
R
We have:
Ra(dy,u)(w, ) = w;(0;1) (@, 7). (0.3)

Moreover, the functiom can be recovered from its Radon transfarm
by means of an explicit inversion formula (see [13, p. 72)).

It will be convenient to introduce the velocity distributions (or profiles)
X« (v) Which are parameterized lye R and that are defined by:

1 if0<v<a,
Xe() =49 -1 ifa<v<0,
0 elsewhere.

Finally, we introduce a family of semi-norms which are indexed by the
unit vectors in the sphei®

lulrg @) = [0: (e, ')HMb(R) = |ii(w, ')|M%(R)

= sup{| [ Vute(@- vy dm, i lgllco, <1f. (0.)
R4

1. MAIN RESULTS

We consider the initial value problem for a multidimensional scalar
conservation law:

{ 00t x) + 211 0 (A 0 @) (1, ) =0, (1,x) ERT xRY, 1y,
Q(O,X) :QO(X)’ 0
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where the fluxA(-) is assumed to be sufficiently regular:
A= (A1,...,Ay) € C*™(R;RY), neN,. (H1)
The initial datago(-) is chosen in the spagd > N LY)(R"Y). We set:

08° = llooll L=@~) = sup{loo(x)|; x e RV} < oco. (H2)

As shown by Krizkov [14], under assumptior(¢{;) and(H), there is
a unique entropy solution(-) € CO(R}; LY(R")). The correspon- ding
solution operator does not increase fHenorm. It satisfies the maximum
principle. For allt > 0:

||Q(ts ')||L1(RN) < ”QO”Ll(RN)s HQ(t, ')HLOO(]RJFXRN) < QE))O (11)

Natural questions arise concerning the smoothness of the admissible
L solutions exhibited by Krzkov [14]. Regularity is delimited on the
lower end byL* and on the upper end by the inherent smoothness of
generalBV functions, described in Vol'pert [29]. In fact, depending on
the features ofi(-), the solutions are sure to be better tdaA(R"). They
can possibly be less thanV (RV). The task is precisely to examine the
exact level of smoothness attained.

Now, without loss of generality, we can make some simplifications.
Since the valueg with |o| > o§° are not solicited, the fluxd(-) can be
chosen to satisfy:

A e C*(R;RY): 3n > 0; suppA C B(0, o + 1.
Moreover the speed of propagation is finite and limited by:

V = sup{||A'(v)|

v vl <o}

Therefore, it would suffice to work locally in the space variable, with
a Cauchy data that has a compact support:

00 € LZ°(R") = | suppool < oc.
The derivative of the fluX(-) is the vector field denoted by:

CH"(R;RY) 3 a(v) = (a1(v), ..., ay(v)) := A'(v), VveR.
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We will make use of the following polarized quantities:
A,(v) i =w-AW), a,(v):=w-a), VY(,w)elRx sV,
When equation(£})) has constant coefficients:
Jag e RY; a(v) =ag, VYveR, (LDYN

the solutionp(z, x) is equal topo(x — rag). It is simply a translated
function of gg(-). For all t > 0, it is still in the spacgL> N LY)(RY)
without any amelioration. Its regularity does not improve after resolution
of (LY).

The situation is quite different when the speed of propagationdoes
depend on the state

Jug € R; @’ (vo) = (A (vo), ..., Ay (vo)) #O. N LN

It is well known that the appearance of the solutief) is affected
by a number of dissipative mechanisms (entropy decrease, spreading
of ra- refaction waves, mutual cancellation of interacting shocks with
rarefaction waves..) mostly prominent in the presence of non linearity.
On account of these phenomena, the functi@f) recovers more
smoothness than the one mentioned in (1.1).

Intuitively regularizing effects are all the more marked as the ac-
celerationA”(-) does not vanish a lot. In the one dimensional setting
(N=1,A(-)= A1(")), itis easy to classify fluxes according to this crite-
rion. The two (distinct) following conditions which can be imposed to a
single conservation law will be of particular interest:

— The flux is strictly convex or strictly concave (the usual terminology

is referred as genuine non linearity):

A"(v) #0, Vve[-oF, 0] (VNL)?

— The flux has just one inflection point. It means that there is a unique
pointi, in [—og°, 05°] such as:

A"(v)#0, Yve[-og,057] \iak; A’ =0. (D

Subsequently, we will only consider non degenerate cases for which
the difference

Rovi> A(w) :=A(is +v) — A(ix) — A'(ix), veR,
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is subjected to (see Remarks 2.2.2 and 3.2.1):

s > 1 [vA' (V)] = va] A(v)

, Yve [o8°, 057 (D)3

In the multidimensional framework, it becomes more difficult to
measure how the fluXd(-) vanishes. A natural way to proceed (in order
to recover the preceding discussion) consists in projecting the function
A(-) in each directionw. It leads to a well adapted notion:

DEFINITION. —We define the flud(-) as admissibleif for all w in
SN-1 the polarized application4,,(-) is either subject tq£D)?! or to
(VNL)orto (Z):=(Z)}u(Z)} (with a constantv, which does not
depend on the directions in the spherés¥—1).

These preliminary ideas being introduced, we turn our attention to the
(free) transport equation:

3,8(s, x,v) +a(v) - Vig(s, x,v) =0, (s, x,v) e RN, N
(7,)
g(t’ X, U) = gt(x’ U) = XQ([,X)(U)’
whose solution is given by the explicit formula:
g(s, x,v) = g (x — (s = a(v), v) = Xo(r.x—(s—natwy) (V) (1.2)

Define the scattering operator:
Y L®(RY) - Lo RV,
=N -TN+1 _
QO'_){H[ (QO)R _>{ 1s0s 1}s
(X, V) B> Xo(t.x+ta(w)) (V).

Its mechanism can be understood on the following diagi®m

L>®(RY) 3 0(t, x) ——= o0 (v) € LX (RN

o T e

L¥(RY) 3 00(x) ——3= Xott.v+1a(uy(v) € LY (RN,

Let us introduce the number:
O(t. 0o) == |& (00| o1 gy x,)

= ||avEtN(QO)||Mb(RN+1) € R+ U {OO}



C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413-472 421

At first glance, functionZN (0o)(-) is only bounded. Since the three
top arrows of diagraniD) preserve or diminish thé&! norm, we easily
infer:

HE[N(QO)HL1<RN+1) = HQ(I’ ')HLl(RN) < lleoll Lrwny- (1.3)

It turns out that the situation is even better. The construction of the
operatorz/N is endowed with a special compatibility property (between
equations £{) and(Z,")) that gives rise to a more subtle estimate. This
fact is borne out by studying the cade= 1:

THEOREM 1.1 (Scattering in one space variableAssume that the
flux A(-) is admissible. Then

3C(A) e RY; Voo € L¥(R), Vt € R},
O(t,00) < C(A)|suppoo + 1| < oo. (1.4)

Thanks to (1.4), it is possible to recover the previous considerations of
[15—-22] and to substantially improve (see Section 5.3) the results exposed
in [1-30].

We then present (see Section 3.3) a mild assumptign (defined
p. 41, it is fulfilled if for instance all the components af-) are at most
quadratic) under which the majoration (1.4) extends to the general case:

THEOREM 1.2 (Multidimensional scattering). Assume thatd(.) is
admissible and thatX) is true. Then

3C(A) e RY; Vope L®(RY), vt e R},
O(t, 00) < C(A)|suppoo + | < 0. (1.5)

In Section 3.3, we explain wh§#) should be systematically observed
as soon as the flux () is admissible. The demonstration of Theorem 1.2
is very significant.

Indeed, the proof shows that the bound @riz, op) is linked to a
smoothing effect concerning the divergence of the wave speed. This
aspect is established at the level of Lemma 3.3.1 and Proposition 3.3.1.
In particular, under the assumptions of Theorem 1.2, we have:

tl|divia o 0)(t, )| oy, gy < C(ISUPPR(L, 1), ViR

The scattering process connects the non linear evolutigh with
the linear transpor(Z,V). It is worth noting that equation(Z,") is
reversible. Thereby, it can also be interpreted as the Cauchy problem
(73¥) whose initial data has a semi—nong*l(RQ’ x R,) bounded by
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O(t,00).- This new point of view allows to make a synthesis of the
previous lines of research relative to regularizing effects. It gives access
to optimal level for the time regularity of the underlying semi-group (see
Corollary 5.3.3), to Sobolev smoothness (see Corollary 5.3.4) and to two-
microlocal regularity (see below and Proposition 2.2.1).

In this summary, we point out some version of the last aspect
mentioned. LetC%(R) be the subspace of?(R) consisting in all
functionsB(-) that can be written in the following integral form:

)
3b € Lip(R); B(o) = / b(v)a,, (v)dv, Yo € R. (1.6)

Now, there is a natural extension of the (classical) result due to [15-22]
stating that the solutiop(-) of a convex scalar conservation law becomes
instantaneoushB V (R). Indeed, in the multidimensional framework, for
t > 0, the averages with respect to some variables of well adjusted non
linear expressions of the traggz, -) are suitably bounded iBV . To be
more precise:

THEOREM 1.3 (Multidimensional BV regularizing effect). We have
V(A,1, 00, B) € C*" x RY x L® x "1 x €%, 3C(A, b) e RY;
C(A,Db)

7(@0, 0o0) + ”QO”Ll(RN)) (1.7)

where functionsB(-) andb(-) are linked according t@1.6).

|B OQ(t’ )’Mtw(R) <

This paper is organized as follows.

Section 2 is a detailed introduction. Some complementary statements
are furnished. A few historic reminders and counter-examples give a good
insight into our position. Theorems 1.1 and 1.2 have to be combined.
Used together, they are able to unify the former contributions of Lax [15,
16] — Dafermos [7,8] and these of Lions, Perthame and Tadmor [18].

Section 3 describes how works the opera®y. It is divided in three
paragraphs. We first consider a flux which is strictly convex or strictly
concave. In this particular case, the mechanism underlying diagfgm
is simple and speaking so that Theorem 1.1 is rather easy to demonstrate.
Then, we focus our attention to the other restriction on the flux (with just
one non degenerate inflection point). Follows a demonstration of (1.4)
which explains in concrete terms how the intricacies of the shock set are
managed by the scattering process. This overcomes the main difficulty
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encountered at this stage: the possible occurrence of right contact shocks.
Finally, we show (in the multidimensional setting and for admissible
fluxes) that (1.5) is equivalent to some convenient bountin(RY) for

the distribution diva o 9)(z, -). Using the condition), we can deduce
(1.5). Thus, we dispose of two different (and complementary) arguments
that indicate the relevance of (1.4) and (1.5).

Section 4 deals with the transport equati@g). We consider a special
class of initial datagg(-) that are calledwell prepared. The solution
g(s, ) is integrated with respect to and we seek the regularity in the
resulting variablex € R. This averaging technique and the restriction
imposed to the Cauchy datg(-) allow a transfer of derivatives. It
follows that the application which te associatesf; g(s., x, v) dv has
more regularity than expected.

The remainder of the article is concerned with applications. The
approach of Section 4 extends to the multidimensional framework
(7J¥) provided that one appeals to the Radon transform. It leads to
Theorem 1.3. Next, by following the method of P. Gérard [11], we deduce
(see Propositions 2.2.1 and 5.2.1) a two-microlocal smoothing effect
expressed in the clasg™® of Hormander. Finally, we point out other
consequences. We take up the case of periodic initial data with zero mean
and show sharp decay rates (Corollaries 5.3.1 and 5.3.2). In the spirit
of [1] and [23], we study (see Corollary 5.3.3) the smoothnesg(of
evaluated in the space Lip(R}; L*(R")). Following [18], we also seek
the exact level of Sobolev regularity obtained for the solution.

2. DETAILED INTRODUCTION
2.1. Historical reminders

The non linearity of the flux does induce smoothing effects and
decreasing large time behavior. These two aspects have been an on-
going preoccupation which dates back to Oleinik [22] and Lax [15].
Besides its intrinsic interest, this topic is connected to a fundamental
issue in conservation laws such as existence theory and convergence of
approximate solutions to exact solutions.

This subject has been tackled by different ways: method of character-
istics [6,7,15,17,25,30]; compensated compactness [10,21]; semi-group
point of view [1,23]; kinetic formulation and ave- raging lemma [18,28].
We will first draw a rapid picture of the matter. Then, we will attempt to
unify all these approaches.
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In one space variabléN = 1 and A(v) = A;1(v)), the things are
relatively well understood. We observe that the result does not share the
same nhature when the type of non linearity is changed.

> (1~ i) The flux is strictly convex or strictly concave (VN L)

In such a case, solutions undergo instantaneous cancellation:

IC(A) e RT; TV (e, ) < C(A)(y —x)/t,
V(t,x,y) eRF xR, 0<r<y—nx. (2.1)

The bound (2.1) is mentioned for the first time in Oleinik [22]. Then,
Lax [15,16] considered a more specific version:

THEOREM (Lax [15, p. 23]). -Each periodic solution:
LPR"xT)s0(t,x+ P)=o0(t,x), VY, x)eR" xR,
of (£}) satisfies sharp rates of decay in the variation of the wave speed
TViaatpil@aco, )< 2P/t, Y(t,x)eRf xR. (2.2)
Inequality (2.1) taken with the particular choices:
x=x, y=x+P, C(A)= 2/(rvrliﬂg/|A”(v)|)

can be deduced from (2.2).

A rigorous demonstration of (2.1) in the absence of periodicity
is recorded in Lax [16], Schaeffer [25] and Dafermos [7] (see also
Lucier [19] who suggested another approach). Estimate (2.1) insures that
the solution operator corresponding(if) is compact. This particularity
partly explains the interest devoted to (2.1).

> (1~ ii) The flux has one (non degenerate) inflection peintZ)*:

This situation was already studied in the 1980’s by Benilan and
Crandall [1], Dafermos [8] and Liu and Pierre [17]. These authors planed
to describe the way in which the non linearity of the flak) influences
the large time behavior of solutions t&@3). With other techniques and
other purposes in mind, K. Zumbrun [30] and F. Otto [23] have recently
reconsidered this question.

We refer here to the analysis of Dafermos [8] and its method of
generalized characteristics that is sufficiently sharp to produce precise
results. The dissipative mechanisms that affect the solution become
weaker the more so as the inflection point is flatter.
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Some approximate contact discontinuity may propagate (with zero
speed) in the vicinity of(z, x) € RT x R; o(¢, x) = 0}. The occurrence
of such singularities prevents the applicatiof) from instantaneously
getting a bounded variation:

Counter-example2.1 (The single lawm(£3) with A(o) = 0%/3). — Let
us consider the cubic lawC}) associated with initial data:

0 if x <O,
) 0 ifl/n+1)<x<1l/n, ne2N+1,
QW =4 1) 1/ 41D <x<l/n, ne2N,
1 if1<x.

Before timet = 1/6, the admissible solution(z, -) is composed with
a sequence of shocks and rarefactions that don’t touch each other:

0 if x <O,

VE ifx=1/n+1£, 0<E<1/(n—1)2, ne2N+1,
n f1/n+1) +t/n>?<x<1/n+1/3n% ne2N,,

0 if1/n+1/3n><x<1/(n—1), n € 2N,,

1 if r/3 < x.

Due to the presence of the inflection point, the total variation(of-)
remains infinite:

TVr(o(t, ) _1+Z =400, Vrel0,1/6. (2.3)

The total variation of higher moments that is bounded at0 is not
changed. For alt > 2, one has:

TVz (0@, ") _HWZ <+oo, Viel0,1/6[. (2.4)

Condition (7)1 isolates the point, in the state space. Elsewhere, we
find again the genuine non linearity restrictiod N £)* and the corre-
sponding smoothing effect. Thereby, it is logical to recover the analogue
of (2.1) on condition that one erases what occurs in a neighborhood of
the set{(r, x) € R™ x R; o(t, x) = 0}. This point of view is implicitly
exploited in a statement of Dafermos [8]. For the sake of completeness,
we record it:



426 C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413472

THEOREM (Dafermos [8, p. 232]). Fhe expressiorD o o(-) where
D(") is the conjugate function of(-) that is:

0
D(o) :=0A'(0) — A(0) + A(0) = /va’(v) dv, VYp€eR, (2.5)
0

gains theBV (R) regularity. More precisely:
TVe(Doo(t, ) <2loollr@/t, V1 €R]. (2.6)

Remark 2.1. — For the cubic law, we geD (o) = 20°/3. In general,
on combining definition (2.5) and propert¥)*, we deduce:

limsup D(0)/0®| < <. (2.7)
0#0—0

We observe that a behavior similar to (2.7) does not take into account
what happens in the state space near the origingLednd ¢, be two
states (whose values approach zero) connected by a shock. According to
(2.7), the jumpo_ /o contributes to (2.6) in accordance with an amount
that is equivalent to:

2
~max(lo-I; lo+1)lo+ —o-I K loy —o-I. (2.8)
This comparison implies:
AC eR}; TVr(D o) > CTVgr(0), Yo € BV(R).

It is in agreement with Counter-example 2.1. It shows that estimate
(2.1) is inaccessible under the single knowledge of (2.6).

— (1~iii) Any non linear flux\'£)*: This situation is (forN = 1)
the most general. For example, it includes the case of a flux fundtion
whose second derivative is identically equal to zero on an open interval
of R or the case of an applicatioA(-) that has many inflection points.
It combines some aspects that are regularizing and others that are not.
The compensated compactness (developed by Tartar [27] and Murat [21])
brings here qualitative indications. The Young measy€i) associated
to some extracted sequengg (z, x)) jen Of uniformly bounded solutions
of (£}) reduces to a Dirac mass at each point where the flgy
is genuinely non linear. It implies that the sequerige o;(z, x)) jen
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converges strongly in.X(RY). Beyond that, it does not produce any
guantitative information. Some estimates generalizing (2.6) are needed
here. The purpose of Theorem 1.3 is precisely to remedy to this gap.

In the multidimensional settingV > 2), the information on regularity
recorded in the literature are far from definitive. Let us refer to progresses
in this field.

— (2 ~ i) A rather negative sign‘An easy computation due to
Conway [6] indicates that the solutiqn(z, -) can not become3 V (R")
for an acceleration vector even if it is submitted to:

a'(v)#0, YveR. VN LYN

More exactly, in the context faced by Conway [6], there is one direction
wo in S¥! adjusted in such a way that (the flux is called linearly
degenerate in the directian):

a, (V) =wy-a'(v)=0, YveR. (ED)C’ZO
It follows that for allz > 0, the application
R>s+ o(t,x +swg) € R

is for almost everyx in RY in L>*(R) and not better. It means that
both the loss of convexity and the addition of space variables (these two
occurrences being linked together) reduce the regularizing effects.

— (2~ 1) A rather positive signLet us now refer to:

THEOREM (Lions, Perthame and Tadmor [18, p. 179]Jrder the
non stationary constraint

3C e R, Jw €]0,1]; V8 €]0,1], V(r,w) € SV,

NN
mi({v; vl < 0g°, [7 + au(v)| < 8}) < €3,
the solutiono(z, -) has the Sobolev regularity:
ot,) e WH(RY), Vre[0,a/(a+2)[, VteR]}. (2.9)

We present below an outline of the analysis of Lions, Perthame and
Tadmor [18]. Their method relies essentially on two notions:

(1): The kinetic formulation of equationC)) ) introduced by Perthame
and Tadmor [24]. It substitutes faiC)) a transport equation with a
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source term
{atf-i-a(v)-fo:avm in S'(Rf x RV*Y), cy
f(os X, U) = XQO(X)(U)’ 0

that must be completed by the two following constraints:
ft,x,v) = X0 (v) forsomeo € L®(R} x RY). (2.10)
0< m(t, x,v) € M, (RS x R¥)  has compact support. (2.11)

(2): The velocity averaging principle in the version presented by
DiPerna, Lions and Meyer [9].

Please note that the method following the steps (1) and (2) leads to a
regularity levele /(o + 2) which is definitely not optimal with respect to
the order of Besov space:

Example2.1. — ForN = 1, the condition(\/S)! taken witha = 1 is
equivalent ta VA £)1. The number given by (2.9) is less than 3/i.e.,
far from the foreseen value 1 obtained in (2.1)).

The step (2.9) is important since it is sufficient to guarantee the
compacity inL*(R") of the operator solution and thereby it allows to
pass to the limit in non linear terms. According to this standpoint, it
is decisive. However there are still things lacking. First, the condition
WSV is rather restrictive. Anyway, it is not sufficiently precise to take
separately into account what occurs in each directiafiRY . Moreover,
according to Example 2.1, the conclusion (2.9) applied Witk 1 and
(VN'L£)! does not recover fully the classical result of Oleinik [22].

The solutionf(-) of (C)) can be decomposed intg-(-) plus fs(-).
Here, fc(-) is the solution of(C{’) without the source term,m(-) but
with the initial condition x,,(-) whereasfs(-) is the solution of(C{')
solved globally in space-time with the second menther(-) but without
the Cauchy datg,,.,(-). The function f(-) owns at least the minimal
regularity of fc(-) and fs(-). The termd,m(-) is apparently the worst. For
this reason, the attention in [18] is turned towaridé). Now, the source
term 9,m(-) is removed by applying the scattering operator. Therefore,
the componentf(-) is the one that becomes determinant regarding the
regularity. In fact, the problem is pushed elsewhere. The question is
now to identify constraints ogq(-) in order to recover at the time
quantitative informations on(z, -). Such a program is described in the
next paragraph. In the frame of mind of [18], it gives access to a better
level of Sobolev regularity (see Corollary 5.3.4). This leads also to a new
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interpretation (that is quite sharp) of questions relative to regularity in
hyperbolic conservation laws.

2.2. Aninteresting case

We observe that the conditions previously imposed on the flux allow
the scalar product/ (v) to vanish. For instance, it is systematic under
(LD)Y and it is taken into account bW S)™. In fact, whenN > 2, it is
guaranteed to happen:

YoeR, JoeS" ™ d (1) =0 (wed@®)?r). (2.12)

Hence, forN > 2, parameters andt involved in (VS)Y and (2.9)
are necessarily limited by:

a<1/2,  1©<1/5 (2.13)

We pick @ in such a way thatd v € R; @ -d’(v) = 0. The search
for solutions of the formo(z,x) = p(t,® - x) where p € L¥*(R* x
R) gives rise to the non linear evolution problepd}) built with the
polarized applicatiom (). Therefore, we necessarily have to deal with
the situation (1~ii) or (1 ~ iii). On account of Counter-example 2.1,
this remark means that, under hypoth&gis) and for any fluxA(-), the
spaceBV (RV) is certainly not available for the trags?, -).

The picture is even more disadvantageous since it cannot be directly
restored by non linear composition:

Counter-example2.2. —
LEMMA 2.2.1.—Let B(-) be some non vanishing function @t (R).
Then

vt e R}, 300 € L (RY);

|Boo(t, )|y v = +o0. (2.14)
Proof of Lemma 2.2.1. Befine:
&= {v; B'(v) #0} N {v; A" (v) # 0}.

We distinguish two cases:
— (1) & =0: Let [c, d] with ¢ < d some closed interval contained in
the interior of the support aB’(-). There is always a functiop(-) with:

oo(x) €le,d]l, VxeRY, [|Bogollgy@y) =+oo.
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As the functiona(-) is constant oric, d], the transport is linear
Boo(t,x) = Booo(x —ta(c)), VxeR".

Hence we easily get (2.14).

—(2)& #@: Letus fixs in R} . Let[c, d] with ¢ < d be some closed
interval included in the open set. We choose a poini in ]c, d[ and
a direction® orthogonal to the vectoA”(v). We can now sketch the
proof. By reproducing for the flux - A(-) in the neighborhood of in
the state space the construction made at the level of Counter-example 2.1,
we produce some (one dimensional) solutgar) such that:

ot,x) =p(t,w-x) ele,dl, YxeRY, o )| gyg =+00
It implies (since the derivativ8’(-) does not vanish oft, d]):

|B oot ')HBV(RN) ~|lo, ')HBV(]R) =+oo. O

In view of (2.14), an inequality analogous to this of Dafermos (With
replaced byR") is certainly not accessible. Since, in another connection,
Lions, Perthame and Tadmor [18] observe a little smoothing effect, the
problem is to know what is the regularity exactly reached and how
it expresses itself. We will bring a few details relative to these two
questions.

The notion of scattering is essential in various contexts (non linear
wave equation, Schrodinger’s equation, diffusion). At first sight, its
relevance to our theme can be surprising.

Now, it was already present at the beginning. In his pioneering work, in
order to get (2.2), Lax [15] returned to time= 0 by following backward
characteristics. Modern regularizing theory has partially left behind this
old method using characteristics. However, the short advance of Lax [15]
admits a more abstract formulation intending to absorb the most general
situations. It consists in passing through the diagt@am This transfers
the problem towards the search of the uniform bound (1.5). We wiill
establish (1.5) for a large class of fluxes (Theorems 1.1 and 1.2). One is
tempted to conjecture that (1.5) is true without any assumptioA©n

When equation(£{) has constant coefficients or when the solution
of (£Y)) is smooth up to time, we find thatZ" (0o)(-) coincides with
Xoo(» (). As a result:

O(t, 00) = |8, — 50”/\/1,)(1@)’(")(1@,]) = 2| suppgol- (2.15)
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Thus, we observe that, under the conditiofD)" or for regular
solutions, inequality (1.5) is satisfied with'(A) = 2. The bound
(1.5) expresses a compatibility property betwegg) and (7,V). The
equation(£Y) can be interpreted in view dt’}’). The constraint (2.10)
comes from the so-called “transport-collapse operator” introduced by
Brenier [4]. It prevents the solutioffi(-) of the transport equatio(C{’)
from becoming multivalued. In particular, it implies:

|f(, ')|M2*1<Mxmu) = 2| suppo(t, )| < oo. (2.16)

Theorems 1.1 and 1.2 state that the return to the initial time thanks
to (Z,¥) does not change the boundedness noted line (2.16) precisely
because the tracg(z, -) has conveniently been prepared by the non linear
evolution(£Y)). This last hypothesis is very important. Undéf£)", the
bound (1.5) is unstable. When the trade, -) is replaced by any bounded
function which does not descend from the resolution), the bound
(1.5) is violated:

YC e R}, Vs e R\{r}, 3o € L (R");
’XQ(X—(S—[)a(v))(v)|Mgv1(Ri‘/XRv) = C.

Inequality (1.4) is true unde¢VAN'L)!. In this particular case, this
result is a trivial consequence of a property given at Proposition 3.1.1. It
is satisfied unde¢Z)*. Under(H), this is also guaranteed for a large class
of multidimensional fluxes (see Remark 3.2.2). Thus, it is now clear that
the operator=" is a key to the understanding of the smoothing effects
induced by non linearity. Using this operator allows to transcribe all the
non linear informationsg.Y)) towards the linear modéfZ ") and thereby
to simplify notably the analysis.

The point is now to understand at the right of diagr&®) how
some control o (¢, go) leads to a gain of regularity after averaging
in v. With respect to the two-microlocal point of view, such a progress
is not systematic. It only appears when the initial conditigs(-)
is well adjusted. The manipulation preparing the Cauchy dat@
gives rise, after integration with respect tg to the advent of the
non linear expressions o o(-) with B(-) chosen in the spac€ (R).
These considerations underline the importance of two complementary
ingredients which are interdependent in view of Counter-example 2.2,
the averaging procedure and the non linear composition. In Theorem
1.3, the geometry is quite rigid in so far as the averages are taken along
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a fixed family of hyperplanes (the same result can be expressed more
intrinsically by integrating along the leaves of a regular foliation). Once
such decomposition of the space variaBi§ is fixed, we can adapt

to it the non linear compositions by choosing appropriately the diverse
functions B(-). We can clarify the link between notions of averaging
and composition. The relevant applicatioB$) are collected in the set
C%(R). What is important here is the flatness Bf-) in the vicinity of

zero. Following this idea, the equivalent definition:

C4R)=C; (R)={B; B’ ed, x Lip(R)} C C*(R)

is perhaps more suggestive since it brings out the singularity, 6% . Let
us now describe more carefully the elemeBts) allowed when different
behaviors of the fluw — A(v) are taken into account.

— C%(R) reduces td0} in case of LD)". Thus, unde(LD)", one has
C%(R) equal to{0} for all anglesw in the spheré&™ 1.

— Itis always a non trivial subspac€ (R) # {0}) when:

v eR; a(v) #0. WNL)Y

— When the polarized flux,,(-) is subject to(Z)?!, the setC%(R)
contains the conjugate function of Dafermos [8] (chobé&e defined by
b(v) =v if v>0and b(v)=0 if v <0; plug thisb(-) into (1.6) and
then compare with (2.5)) but also a number of other expressions. Some
of them inherit a behavior at the origin less flat than the one observed
with D(-). For example, the polarized speeg(-) corresponding to the
choiceb(-) = 1 does satisfy a better estimation than (2.7) since:

limsupla,,(0)|/0? < co. (2.17)
0—0

— Let us assume that:
a,(v)#0, VYveR. (VN L)Y

Then, the restrictionC%(R) — W2 ([—05% o)) is surjective. It
means that all non linear compositions (and in particular the linear
onev > v) are allowed. However, note that conditioW\ L)Y never
happens for all the directions in the sphBfe? (see (2.12). The lack of
BV regularity occurs at this particular level.

The control on® (z, gg) does depend on the measure of the support
of oo(-) but not on the regularity obo(-) (beyond L*(RY)). In order



C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413-472 433

to establish (1.7), it is sufficient to get a bound that is uniformly valid
for a dense subset (for instanBd’ (RY)) of (L* N L>)(RY). This way,
the regularizing effects are evaluated at the level of “smooth” functions
yet. It is much more practical and more precise to work wtri(RY)
solutions than directly witl.>(R") solutions. This explains partly why
the method is powerful and leads to the quantitative estimates (1.7). These
last ones are sharper than the informations obtained by compensated
compactness.

The reader should also note that functigg(-) (in case of weak
solutions) is completely different frony,,(-). This change of initial
data can be surprising. When you come to think of it, it is coherent
with our purpose (and with the observation (2.1) of Lax [15]) since the
controls (1.4), (1.5) and therefore (1.7) do not depend on the features of
0o(-) (besides itsL'-norm that after all is preserved by the scattering
procedure: see (1.3)). Thus, it is justified to concentrate on the right
of diagram (D). Theorem 1.3 is established under this perspective and
captures the essential features of the regularity of solutions. Its strength
is illustrated below by a succession of remarks.

Remark2.2.1. — Let us interpret (1.7) whevi = 1. We have:

S°={-11}, oa(-lLz)=o0(-2). &1 2)=0(2).
Hence, Statement 1.3 says that:
TVR(Rax(B 00)(t, 1, -)) :TVR(Rax(B op)(t, -1, -))
:TVR(B o o(t, -))

< C(B)(O(t, 00 + llooll1w) /1. (2.18)
for all functions B(-) satisfying:

o
Ib e Lip(R), B(o) = / b(v)d'(v)dv, Yo € R.

Under (WA L)%, according to (1.4), bound (2.18) is the same as (2.1).
In this very particular case, our method rediscovers in an elegant way the
results of Oleinik [22] and Lax [15,16].

Under(Z)?, the control (2.18) extends (2.6) and gives access to sharper
informations. To be convinced of this fact, just compare the limits (2.7)
and (2.17). The progress can be illustrated easily in view of Counter-
example 2.1. Dafermos [8] allows the pow&rs 3 whereas Theorem 1.1
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combined with (2.18) givek > 2. For further results in this direction, see
the Corollaries 5.3.2 and 5.3.3.

Under the general hypothesis/£)*, the bound (2.18) puts in concrete
form the program drawn in (& iii ).

The contents of Theorems 1.1, 1.2 and 1.3 in the multidimensional
framework (N > 2) is more difficult to understand. Their novelty and
their interest can be founded by the following considerations:

Remark2.2.2. — For homogeneous fluxdgv) = cv™+! with m > 2,
we find:

VA W)/AW) =m+1=vy>3, Yve|[—oF, oF].

Now, an inflection point is generically not flat. In general, it is adjusted
so that:

Im, €[2,1+n]; A", ) #£0, (2.19)

wherem,, is related to the order of annulation 4f,(-) at positioni 4, :
AP, )=0, Vje{0,...,m,)}.

Condition (2.19) implies(Z)! (see the Remark 3.2.1). Thus, the
constraint imposed on the flux in Theorems 1.1 and 1.2 is not at all
restrictive. Itis globally verified for all polynomial (vector valued) fluxes
A(-) of degree less than three. Far= 0, we have only to consider
(LD)L. Form =1, we have to deal both withCD)* and with (VN £)*.
Form = 2, the three possibilitie6£D)?, (7)* and (VN £)* can occur.

The admissibility criterion is locally (near each fixedin the state
space) satisfied by the fluk(-) as long as:

—there is no accumulation of inflection poings: € R} such thatvw €
SN-1, either we have(LD)! either there exists at most one inflection
pointiy, € [0 — &, 8 + ;

— there is noC* flatnessYw € S¥71, if (Z)! is true on the interval
[0 — ¢, 0 + €] thenIm,, € N such thatA "+ (i, ) 0.

Please note also that if (2.19) is correct for all directiani; SV 1,
the indicea involved by (NS)" is exactly(inf, .sv-11/m,,).

Remark2.2.3. — The estimate (1.7) is optimal in its formulation. It
means that the regularity in of the applicationRa, (B o 0)(¢, w, 2)
cannot go beyond what is announced in (1.7). It is clear when compared
with the one dimensional solutiong#, w - x). Indeed, we find again the
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case(L}). We then know that théV (R) regularity cannot be improved
(because of the formation of shocks).

Remark2.2.4. — Let us suppose to simplify the discussion that the
first componentA;(-) is strictly convex (or strictly concave) and let
us fix the directionw; := (1,0, ...,0). The polarized fluxA,, (-) then
coincides withA;(-) and the spac&}*(R) can (locally) be identified
with W2 (R). The Radon transform evaluated for the anglas simply
the integration with respect to thé — 1 last variables

x//:(xz,...,XN), dx//zde...de.

It gives rise to the action:
(o) Rf xR—>R,
(0 Ra@t o = [ otzx)dx"
RN-1

Theorem 1.2 asserts BV (R) control over (o)(¢,-). We observe
that such an information is certainly not easily accessible since the
expression(p)(-) is visibly the solution of no (non linear) partial or
integral differential equation. For example, taking the averageCgf
with respect to the last variables, we only get:

0 (0)(t,2) + 31{ / Aioo0(t,z,x") dx”} =0,

RN-1

where the integration and the composition cannot be interchanged. This
difficulty is inevitable when we restrict our attention to the space-time
variables. On the other hand, it is removed by the kinetic interpretation:

E(o(t,2)) = E(0) + / E'(0)Xou.y(v)dv, VEeCYR). (2.20)
R

Indeed, it is now possible to pass under the integral sign:

Ra</ E'(v) o) (V) dv> (w,72)
R

:/ E'(W)Ray (X)) (@, z,v) dv. (2.21)
R
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From our perspective, property (2.21) is crucial in so far as improve-
ment (1.7) stems from (2.21) exploited on the right of diagdm.

Now there is still an objection since in general the Radon transform and
the kinetic action cannot be interchangeth(x,)(w, z, v) is not equal
t0 Xrao(w.z)(v). This lack of commutation explains why the following
statement:

Vo € SN71, VE € C3(R), AC(E) e RT; Vr e R,
[E o0t )| g @ < CENE 0000 pt )

is not directly available.

Such inequalities have not been demonstrated. Their validity (in
particular when the fluxz () is not convex) is not at all sure (even for
the special choic& =T). These inequalities are typical of a propagation
theorem where we have to estimaté, -) knowing some information
on go(+). This link between the trace(r, -) and the Cauchy datag(-)
compels to work on the left of diagra(®). Our scattering process allows
precisely to remove this obligation.

The information (1.7) is distinct from (2.9). On the one hand, the
condition (NS)" is not required. It means that the gap betwegm)”
and (WS)" is now filled. We see that the informations delivered are
all the less precise as we approach the linear degenerate case (in
particular, inequality (1.7) is empty undg€LD)V—(2 ~ i)) . On the
other hand, the regularities given in (1.7) and (2.9) don’t share the
same nature. They cannot be compared (see Remark 5.1.1). In fact,
the smoothing effect (1.7) can with difficulty lead to some Sobolev
woP(RY) interpretation. However, it is easily expressed in the class
H®"(R x R¥~1) of Hormander. In other words, it is possible to derivate
a little in each directionw certain well adjusted non linear expressions of
o(+) (that depend on the selected angleon condition that we accept to
lose some derivatives perpendiculaiio

PropPoOsSITION 2.2.1 (Two-microlocal smoothing effect).Fix any
decomposition oRY in a family of parallel hyperplanes with normal
unit vectorw (see(0.1) for notationg. We have

VA e C*™(R;RY), VB € C4(R), 3C(A, B) e R™;

Ve | —o0,3[, Ve ] —oo,—MH[ VvieR],
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1B oo, )]

HOF(RY, xRN

1+
( p 2 (©(t, 00) + llooll L1 n))- (2.22)

Remark2.2.5. — This last statement is interesting only whege 2. It
thus cannot be deduced from (2.9) (or from Corollary 5.3.4). Indeed the
parameterr involved in inequality (2.9) is according to (2.12) far from
the limit 1/2 given at (2.22).

<C(A, B)

3. THE SCATTERING OPERATOR
3.1. The strictly convex casé€N = 1)
We point by this terminology the contekt ~ i) out. This situation is
particularly favourable:
PROPOSITION 3.1.1. ~Assum&VN £)L. Then
Yoo € LT (R), Y(1,5) € R* x [0,¢], 3o(¢,s,-) € L (R);
suppo(z, s, -) C suppoo +1tV,
Xo(t.x—(s—0a@)(V) = Xa(t.5.0)(V)- (3.1)
Furthermore, constrain{3.1) characterizes the physical soluti@r-)
among all possible weak solutions of equatia).
The contents of this statement is first illustrated by an example.

Example 3.1.1. — We consider the Blrger’s law associated with initial
data:
0 (x)':{_l if x <O,
Ol ifx>o0.

Two weak solution4(-) andp,(-) will be examined:

-1 ifx < -1,
o1(t,x) = o(x), o20t,x):=¢& ifx=&, -1<&<l,
1 if + <x.

We draw in stippled line the corresponding backward characteristics (see
Fig. 1).

On the left picture, the stippled straight lines are crossing each other
at each intermediate timee [0, ¢]. It means that coming back with the
operatorZ! leads to the formation of a fold. In Brenier [4] and Perthame
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p(t) P, (t.)

shock shock

Fig. 1.

and Tadmor [24], this fold is corrected (and forbidden!) by the source
terma,m(-) of (C3). In the absence df,m(-), when looking a(Z,*) with
g:(+) that coincides withy,, ,(-), a fold appears. Thus, we reject the
function p1(+) since it fails to satisfy criterion (3.1).

On the right picture, the backward characteristics collide only at time
t = 0. It thus creates a centered compression wave, plaa@d@twhich
gives rise to a shock for negative times. But it does not matter since the
process stops at= 0. As a result, the functiop,(-) is acceptable with
regard to criterion (3.1).

The solution sorted out by the condition (3.1) is the physical one.

It is well known that the evolutioli£}) is not reversible. With the help
of the traceo(z, -), it is not possible to recover the values of the solution
o(+) inside the cones of determination descended from the discontinuities.
The scattering process completes these gaps by smoatlingn the
places where the information is lost.

The non linear evolution which governs the formation of shocks is
excluded to be replaced by a linear model. The graplg©f that is
{(s,x,v) = (s,x,0(,5,x)); (s,x) €[0,7] x R} is hence formed by
straight lines whose projections i@, x) coordinates get settled in a
succession of fans (Fig. 2)

We now leave these formal considerations in order to present a rigorous
demonstration:

Proof of Proposition 3.1.1. Applied to initial datapg(:) in BV (R),
the criterion of reduction (3.1) is issued from two reasons. On the one
hand, the well-known deterministic principle (evoked in Lax [15]) im-
poses that every point can be connected by a backward drawn character-
istic to a point on the initial axis (for a convex law, characteristics may
enter but may never emerge from a shock curve). On the other hand, the
wave speed is monotone between the left and right valuegrof) on
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—<—— < X

—— shocks ~_

—  forward characteristics Intervals where function po(.) is

....... backward characteristics undetermined and completed by fans
Fig. 2.

a shock which prevents the solutigtis, -) of being multivalued when
coming back by the free transport equation.

In particular, the different characteristics passing through the ex-
tremal points of supp(z,-) have null speed. It leads to inclusions
suppo(t, s, ) C suppe(t, -) C suppeg + ¢V which justify (3.1).

We just have explained why the assertion of Proposition 3.1.1 holds
for oo(-) in the spaceBV (R). To cover the caseo(-) in L*®(R), the
reasoning rests on a smoothing argument. (kgt-)),cn be a sequence
of Cauchy data subjected to:

n“_)”go ”Qn - QO”Ll(R) = O’ On € BV(R)s Vn e N. (32)

Let (0,(-))nen With 9,(0, ) = 0, be the sequence of corresponding
solutions. By virtue of Proposition 3.1.1, for eaclke N, we have:

30, (t,5,) €LEMR);  Xo,¢tx—(s—0a@) (V) = Xg, (1.5, (V). (3.3)
Moreover, a straightforward computation yields:
lxw = Xall ey = llu — il pry, V(. it) € LE(R)?. (3.4)

Since the solution operator is a contraction in the spat@) (see
Kruzkov [14]), we get from (3.2):

nll—n)‘looH(én - Q)(t’ ')HL]'(]R) < nli—r>TlOO ”Qn - QO”L]'(R) = 0, Vi € R+-
The L norms of solutions t¢7,") are unchanged. Hence:

im || Xa,,—s—0ae) () = Xott.—-0atn ) || L1zz) = 0. (3.5)

n—oo
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Combining (3.3), (3.4) and (3.5), we deduce that, for(alls), the
sequencgo,(t, s, -)).en IS Of Cauchy type. Therefore it converges in
LY(R) to a functiong(z, s, -) which is necessarily subjected to (3.1).

The entropy condition (in its geometrical formulation) requires that the
different characteristics starting on either side of a discontinuity curve
when continued in the direction of increasimgintersect the line of
discontinuity. By reversing the picture (see Example 3.1.1), we exactly
recover (3.1). This observation shows that (3.1) characterizes physical
solutions, as asserted

As a direct consequence of Proposition 3.1.1, we infer Theorem 1.1
with C(A) = 2. Applying Theorem 1.3, we then deduce (2.1).

Remark3.1.1. — Inequality (1.4) can be refined. Lgtand yo be the
endpoints determined by condition convsugp= [xo, yol. It is well
known (see Lax [15, p. 19]) that:

convsupp(t, -) C {x; x —a(0)t € [xo, yol + C(A)V1}. (3.6)
It follows that:
O(t, 00) < 2min(| suppeo + tV|; yo — xo + 2C (A)V/1).

Remark 3.1.2. — According to identities (3.1) and (1.2), we have (in
the weak sense) for all positive tinne

ta’ (v)0, g (1, X, V) = —85:1,0.x—ta(wy) (V) + 8ot (V) < Spr,x) (V).

After integration with respect to, this inequation yields the one-sided-
Lipshitz condition of Oleinik [22]:

o(aop)(t,x)<1/t, VxeR, Vte R:.

Since(7}) is reversible, we notice by the way thatz, 0, -) is also in
BV (R) with a bound similar to (2.1). Observe also that control (1.4) is
no more verified if the trace(z, -) is replaced by some applicati@n(-)
that only satisfies at the timethe compatibility condition on the jumps.
Indeed, inequality (1.4) is a manifestation of the fact that the function
o(+) is an admissible solution on all the inter@, ] and not only on
some subinterval db, ].

The beautiful property (3.1) fails in the conteit ~ ii). There is no
reason forg(s, -) to remain a graph for every values ofn [0, ¢]. This
point is clear in view of the following counter-example:
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Graph of u(.) Return by scattering
attime t=1 v at time t= 0
ClL — ci
(x-) U]
© —mmmm— o _________ | i Yy________
u(x+) \ u(x+) e
— x - u(x-)? : :
T~ :
x X
x —a(x+)> / x
Fig. 3.

Counter-example3.1. — Let us pick the mesh:

xNE:=14+ne—4", nel0,...,N}, (e, N) e R} x N,.

Now, consider the cubic lawC}) associated to the initial data (that is
suitably truncated for large values of.

1 if x <0,
Qg]’s(x) = (=Dr2™" Ifx l<x<xN ne{l,...,N},
(=N2=N if xl\-/€<x.

The corresponding SO|UtIO@N ( ) is composed of a succession f
shocks that, fon taken in{0, . — 1}, issue from absuss&aﬂv with
slope 4" and reach at time 1 the positionHlne. Letting parametee
tends to zero yields a compression wave placed in pogition = (1, 1).
Moreover:

!'TOH QN’O)(L ')HLl(R) =0,

with:
N.0 _J1 o ifx <1,
@ a””‘{e4ﬂzw if 1<x.

The graph of function:(-) is completed at the discontinuity points by
a vertical segment:

ug(x) = A —s)ulx—) +sulx+), sel0,1]. (3.7)
The coming back by the transport equati@g') of the curve

Ccl.= {Rz 5 (x,v) = (x,us(x)); x €R, s€[0,1]}
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is the path:
CL? = {Rz > (x,v) = (x — us(x)z, us(x)); xeR, s €0, 1]}.

The jumpsu(x—)/u(x+) that involve states with the same sign (i.e.:
the productu (x—)u(x+) is positive) are replaced by a fan according to
Example 3.1.1.

The mixed jumps:(x—)/u(x+) with switching sign (i.e.: the product
u(x—)u(x+) is negative) lead to the formation of a fold (double-valued
solution) that at initial time is confined inside the interval of extremities
x — min(u(x—)?, u(x+)?) andx.

Thus, the curvefgﬁ‘s ., s composed withv folds that come together
and accumulate as pafametetends to zero in the vicinity of abscissa
x = 1. Therefore:

e € RY: [|0,55(00) (L )| gy ) = 4N (3.8)

The criterion (3.1) is clearly in contradiction with (3.8). It is not stable
after passing to the limit since:

180 (X v 0011102 ) | a0y S A# 4N, VN €N\ {0, 1}.
Identity (3.8) shows that an uniform estimate of the type:

3C e R™; sup|[8,5," (00) (x, )| uy, ) < € Voo € L (RY)

xeRN

is not true. On the other hand, it does not contradict (1.4) since:

N
q q 2
gupygll(gghs) ’Mg’l(R}va) <2 §uﬂsuppg(’)v»8| + Z 7T <% (3.9)
NeN NeN n=1

Equality (3.1) implies (1.4) withC(A) = 2. It is sufficient in order to
deduce (1.4) but not necessary. Fortunately, in so far as it is violated by
Counter-example 3.1.1 and, with greater reason, it is false in the extended
situations (1~ iii), (2 ~ii).... There, it has to be replaced by a more
flexible constraint which incorporates the possibility for the acceleration
a’(+) to be equal to zero. In this direction, the bound (1.4) is adequate. Its
relevance is borne out by the next paragraph.
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3.2. The case with an inflection point N = 1)

Our next project is to prove theorem 1.1 in the contgxt- ii). For
definiteness, we can suppose that= 0 and we can normalize the flux
so that:

A(0)=A'(0)=A"(0) =0,
vA”"(v) >0, Vv|€]0, o8], (D)t
v i=Iinf{vA'(v)/A(v); [v| €]0, 05°1} > 1.

Proof of Theorem 1.1. # is sufficient to obtain the uniform control
(1.4) for all BV solutionsp(-) corresponding to smooth initial dagg(-).

Then, passing to the limit, we easily recover (1.494t-) is in L2 (R).

When the fluxA (-) has an inflection point, the extremal backward char-
acteristics are no longer necessarily straight lines. Nevertheless, Dafer-
mos [8] established that these characteristics are endowed with a spe-
cial geometric structure. Under assumpti@n?®, the maximal backward
characteristi¢ () through(z, x+) is a convex Lipschitzian curve along
which the speed o ¢o(s, ¢ (s)+) is continuous and decreasing. As a con-
sequence, it is not sure that the vale, x) can be connected to some
00(X) (see Serre [26] — Chapter 2.5). This particularity makes the com-
putations relative to the variation pf-) more complicated. This problem
is faced in Zumbrun [30]. We present here another point of view that fi-
nally leads to more precise information.

Fix at the timer > 0 some position(z, x) where a discontinuity (of
order zero) occurs. We denote by(-) and¢, (-) the maximal backward
characteristics issued respectively from the positions—) and(z, x+).
According to this definition, we have:

(M) =x, () <¢y(s), Vsel01].
d d¢_
vy (1) = %(t) =aog(t,x+) <v_(t):= %(t) =aop(t,x—).

d
0< ve(s) = %(s) =aoo(s, ¢e(s)+), Vse[01]. (3.10)
N
Let | A| be the area of the regiad delimited by¢_(-), ¢, (-) and the
initial axis:
13

Ali= [[6:65) = ¢-(5)| ds.

0
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right contact shock
]

v4(s)

Zv T(vs))
. Jo S
---------------- UNO)
0,(1)=0
0 0
Convex situation: all Non convex situation: the X
backward characteristics backward characteristics
are straight line segments. may be convex curves.
Fig. 4.

When both¢_(-) and ¢, (-) are classical characteristics (it means:
straight lines), we have:

aoo(s,te(s)+) =v.(t), VselO0,1].

It follows that:
JAl =12 (v_(1) — vi.(2)) /2. (3.11)
When ¢_(-) (or ¢, () is incurved, identity (3.11) is no more valid.
Nevertheless, we can substitute for (3.11) a convenient lower bound:
LEMMA 3.2.1.-n all cases

3 .2

uyt _ L _i
13 (v_(1) —v4(1)), O<pys:=1 o <1 (3.12)

|Al =

Proof of Lemma 3.2.1. Fhe key point is a good understanding of what
happens when two states andg., are separated by a mixed shock (that
is a shock withp _ andg, on both sides of the inflection point; it means
here:p_o, < 0) (Fig. 5).

Oleinik's condition is satisfied for a discontinuigyy_/o satisfying
o+ —o- > 0 (or < 0) when the chord that joins the points_, A(o_))
and(p, A(o4)) lies below (or above) the graph af(-) betweerp_ and
o.. To simplify the discussion, we will only treat the case > 0. The
other situatioro_ < 0 is completely similar.

Oleinik’s condition means that the right state involved when
constructing a mixed shock must be strictly confined ingileand 0
where the endpoind’, (which corresponds to a right contact shock) is
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Interval of a(p) A(p-) 1p_
acceptance aP)
for statep , :
1 - - - - - >
. N
/ — Graph of the flux A() — slopes

Fig. 5.

determined by the implicit relation:

A(e}) = Ale-) — (o} —o-)a(d},) =0. (3.13)

Giveng_ > 0, Eq. (3.13) admits a unique negative solution. We define
the transfer functiong andT by the relations:

a(o-)=T(a(0})). o-=T(d\). Yo-=>0.

In view of the preceding figure, we have for all admissible statem
the intervallo’,, O[ :

Ao-)

<a(e-). Ve-€]0.¢7]. (3.14)

0<aloy) <ald,) <

Remark3.2.1. — For example, for the cubic law, we find:
T(v)=—2v, Vv| €]0,0F] and T(v)=4v, V|v| € ]0, (05°)?].

The constrainiZ)? is not at all restrictive since an inflection point is
generically adjusted so th&l)? is true. Indeed, in general the property
(2.19) is satisfied. It yields immediately:

, 1 Am+1) m+1
im eA@ _yj, (A DIAT Q" o5 (315
0=0 A(0)  ¢~0 m!AMTD(0)omHL

Now, the applicationo — 0A’(0)/A(0) is clearly continuous on
[—05°, 0[U]0, oF°]. In view of (3.14), it is strictly above 1 on this set.
Combined with (3.15), it shows that numbey is strictly above 1.

Condition (7)* also extends to certain fluxes whose derivatives up to
any order are equal to zero at the origin (for instance consider the function

that to o associates the expression e@}'e—l/gz). However, there still
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exists some fluxes that have a degenerate inflection point (in the sense
that liminf,_.00A'(0)/A(0) = 1). It does not mean that the associated
estimate (1.4) is inexact. We will indeed not exploit all the margins that
are available.

Combining (3.14) andZ)?, we find:

A(o_
a(Q)>a(Q)—a(Q+)>a(Q)<l— (e-) )
o-a(o-)
>ppalo-) > paals), Yor€ld,,0[.  (3.16)

Inequality (3.16) is important. It means that the difference between
a(o_) anda(p.) cannot be fixed arbitrarily. This property distinguishes
mixed shocks from usual shocks (wigh o, > 0) for which the number
a(o_) —a(p,) can be taken as small as wanted. As a consequence, we
can refine (3.12):

LEMMA 3.2.2. -Suppose thatz, x) is the position of a right contact
shock. Then the corresponding ardas bounded above by
lA| > 13r2v_(1)/216. (3.17)
Proof of Lemma 3.2.2. By hypothesis:

v_(t)=aoo(t,x=)=T(vi(t)) =T (aoo(t,x+)).

Fors € [z, t], the straight line issued from the position ¢, (s) with
slopeT (v, (s)) intersects the curve_(-) at the point(gg(s), {_ o @o(s))
(see Fig. 4). It is necessarily tangent to the curve). Fors € [0, 7],
it reaches the initial axis. If_(-) is a straight segment, we have=t.
Otherwise, we get & t < ¢ and by conventiompg(t) = 0.

The pathz_(-) can obviously be recovered by the family of its tangent
lines:

{(r,x); x=rT(vi(s)) +L4(5) — 5 T(v+(s)}se[r’t]. (3.18)

The biggerT, the more these lines are inclined. This fact implies that
the aread is increasing with":

T1(v) = To(v), Yv € |0, 05°] = | Azl = | Apl.

Since by(Z)* and (3.14) the authorized transfer functions are subject
to T (v) > vav, we only have to work with the special choi€€v) = v, v.
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The exact

- The model -*
solution .

O fs) e
exact backward backward characteristics X
----- characteristics of the model
—— discontinuities ——  thecurve £,0)
Fig. 6.

This remark will notably simplify the analysis. An easy computation
leads to an explicit formula for the gap:

A(s) :=5 —@o(s) = —pa v4(s) /v (5) >0, v\ (s) <0, Vselr,z1].

Let us fixa € [0, 1] and setp, (s) := ¢o(s) + aA(s). At this stage, we
need some intermediate result:

LEMMA 3.2.3. —

Ly 0 @u(s) — &4 () + (L —a)vaAls)vy(s)
Za(l—a)(va —DA()vy(s),
Y(a,s) €[0,1] x [, 1]. (3.19)

Proof of Lemma 3.2.3. ket us consider the domaid, delimited on
the left by the inclined segmeity, (s), ¢4 (s) — va(l — @) A(s)v,(s));

a € [0, 1]}, on the right by the piece of cundé, (r); r € [¢o(s), s]} and
below by the horizontal lin¢(po(s), x); ¢_(s) < x < ¢4 (s)}. We clearly
have the inclusions, C A, Vs € [z, t] (Fig. 6).

Now, the formation of a right contact shock comes necessarily from
the presence of a rarefaction wave on the left side (that possibly radiates
out of some other contact discontinuity). Exploiting this particularity, we
can forget the exact history of the formation of the cugyvé).

We can replace insidd, the exact solution by a function (still denoted
by o(-)) that is constant along segments. The slope of a segment issued
from a point (s, ¢, (s)) on ¢, (-) must coincide withv,v, (s) and the
function o(-) is there taken to be constant equalltt (s, ¢4 (s)+). The
entropy condition implies that these segments cannot cross one other.
This manipulation allows to deal with backward characteristics which
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are partly right contact shocks and partly (straight line) characteristics.
In fact, it induces a modification only between regions delimited by
backward characteristics issued from endpoints of straight segments
included inz, () (where the true characteristics are replaced by a family
of straight parallel lines; see the preceding picture).

We perform the analysis at the level of the aforesaid model, with
fixed. We introduce the position:

xo{(r):: {+(V)—UA(T—QDQ(S))U+(V), rE[‘Pa(S),S]s (320)
and the width:
lo(r) = (4 0@u(s) —xo(r), 1 €lpy(s),s]. (321)

The curvez, () is completely determined by the speeds of propagation
of the incoming rarefaction wave. We introduce the family of functions
(Ho () yepo.1; defined by the relation:

Hy(xo (M) =T (0(r, ¢ (N+)), 7 €lpa(s), sl (3.22)

With this convention, the applicatiof, (-) is increasing on the interval
(- 0 @u(5), ¢4 o pu(s)]. In fact, whena €]0, 1], we recover a more
subtle estimate that expresses the regularizing effect due to spreading of
rarefaction waves. To see this point, just consider the positions:

z(y):=y+aA(s)aoHo(y), y=uxo(r), relpols),sl,
and observe that we have by construction:
Hy(z(y)) = Ho(y), Hy(z) >0. (3.23)
The derivation of (3.23) with respect toensures that:
0< aA(s)H, (2(y)) @' o Ho(y) =1~ [H,(2)/Ho(y)] < L.
Using (3.23) again, we deduce:
0<d’ o Hy(z) Hy(z) <1/[aA(s)]. (3.24)
We plug (3.22) inside (3.20) and use definition (3.10) to find:

lo(r) = &4 0 9o (5) = £4.(r) + (r — @u(s))a o Hy 0 X ().
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After derivation with respect to, it yields:
I(r)=wa—1) vi(r)/[14 (r — @uls))a’ o Hy 0 xq(r)H,, 0 x4(r)].
By virtue of (3.24) and the decreasingwf(-), we infer that:
L(r) Zaa —Dui(s), Vrelpa(s),s].
Hence, after integration from= ¢, (s) tor =s:
lo(s) 2 (va—Da (1—a)A(s)vi(s), Ve €]0,1],
which is exactly (3.19). O

As a direct consequence of (3.19), we find:

1
Al = AGs) / () dat > vy — Vv () A(s)2/6. (3.25)
0

To obtain Lemma 3.2.2, we argue by contradiction. We suppose that:
(4 — Doy (s)A()? < u3r?v_(1)/36, Vs e[r,1], (3.26)
and show that it is impossible. Therefore:
35 e [1,1]; (va—DoyG)AG)?> udr?v_(r)/36, (3.27)
which guarantees (3.17) since by (3.25) and (3.27):
JA| > [A5] = (va — Duy () AG)?/6 > pit?v_(1)/216.
We then interpret (3.26) as a differential inequality

d 3
@ 2 o=, Wselr1]

VORON
which requires after integration:

3(t—s) 1 1 1
Og g - g ’
(Vo) T Vo) Jui(s) T V()

Vs e[r,t]. (3.28)
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shock
- the curves §_and §

backward characteristic
issued from (T4, §4(T)-)

Fig. 7.

Assumption (3.26) written with = 7 gives:

A(r) <

mt( fia v- (1) >l/2_MAt<U—(t)>l/2<M_At

6 \wa—Dv(t)) 6 \v(t)) ~ 6

(3.29)

Inequality (3.28) is consistent only if — ¢t < ¢t/3. Combined with
(3.29), it yields:

O<t=t—1t+A(1) <

’

Hal
+—<
6

Wi~
N~

which is the expected contradiction

Finally, we turn to the proof of Lemma 3.2.1. According to inequa-
lities (3.11) and (3.17), cases consisting in a classical shock and in a right
contact shock are already gained. Thus, we can restrict our attention to
the other situations. Now, fore [y, t]withO<t_ <rorO< 1, <1,
the backward characteristic. (-) is a straight line segment whereas it
becomes strictly convex at time..

We cut up the surfacd in three parts4;, A, and.A; defined on Fig. 7.

Clearly:

|Al= [ Azl + | A2l + | As]. (3.30)

| A1l > (1 = 2)? (v- (1) — v1.(D)) /2. (3.31)

Since it appears a right contact shock at the position ¢, (t,)), we
can apply lemma 3.2.2 to the arga to get:

|As| = 13 72 T (v4(24)) /216> 1 72 v_(1)/216. (3.32)

Combining (3.30), (3.31) and (3.32), we find (3.12). The proof of
Lemma 3.2.1 is complete.O
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x4

the right backward characteristic
issued from (t,x”) becomes
incurved at time T’

the right backward characteristic
issued from (t,x’) is still a straight
line segment

Fig. 8.

We now study the passage between two successive discontinuities. The
notations are as before. We just add a priwéen dealing with the shock
on the right (and not to mark a derivation) (Fig. 8).

We introduce the straight line segment:

Li:={0,y); . <s<t,y=0()+vi(t)s — 1))}
We denote byB the surface delimited above by the horizontal line
s = t, on the left by the curve, (-) and on the right by. .. We designate

by C the surface bordered by=1¢, s =0, L, and ¢’ (-). With this
convention, the domaig@ is absent ift’ > 0.

LEMMA 3.2.4. -
max(|B[; |A]) > uSr%v,(z/)/2000, |C|>1(;2(0) - £1(0)/2.
Proof of Lemma 3.2.4. ket us consider the intermediate time:
T:=min{s € [t_,1]; 2v(s) > v4(r))}.
If T<t/2, we estimatéB|:
1B] > (1 = )% (vy.(z)) — v1.(9)) /22 1% vy (z)) /16.

If T >1r/2, we refer to Lemma 3.2.2 applied to the positiegn¢, (7)).
Since the corresponding area is obviously less {hnit yields:

Al > p3 72T (v4(9)) /216> 13 12 v, (/)/2000.
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If £/ (0) > ¢, (0), the maximal backward characteristit(-) is neces-
sarily a straight line that does not cross. Therefore, the minoration
given for|C| is immediate. O

Finally, we implement the preceding lemmas in order to get (1.4). By
approximation, it suffices to obtain (1.4) for a solutipi}) that has a
finite number of discontinuities. We mark their positions at time

—co <)<t << () <) < +o0.

In this interpretationc(r) and ¢/+1(r) denote the endpoints of the
convex hull of supp (¢, -). By convention, a symbol is indexed kywhen
dealing with the discontinuity/ (¢). The strip[0, 1] x R is partitioned into
J + 1 regionsR?, ..., R/*! bordered according to:

RI={(s,x); 0<s <1, L) <x <o)}, 0<j<

The complete graph (see (3.7)) of the restrictigrt, -) of the trace
o/ (t,-) on the interval[c’(¢), ¢/*1(t)[ brings a contribution®;(z, 0o).
More precisely:

@j (ta QO) = Hav{X@j(t,x+ta(v))(v)}HMI’(RZ)-

Our aim is to control eacl®; (¢, o). From this perspective, we classify
the domainsR’ according to the nature of the shock involved at the
position(z, ¢/ (1)).

a) Usual shockd o, > 0). In the convex framework, it is the only
situation that occurs. A short computation yields:

0;(t,00/2=1(v.(1) = v}.1) + ¢ (0) — ¢ (0)
el (1) — vl () — d(rf“) + tf+1vi(ti+l)
<1l — vl )+l (77 + 770 - £10).

b) Mixed shock ¢_o, < 0). Discontinuities with switching sign lead
to the formation of a fold (see the picture of Counter-example 3.1.1)
whose width evaluated at= 0 is equal tcxvi (t). We have to incorporate
this new contribution in the preceding expression:

O;(t, 00)/2 < 1v (1) + tv]. (t/7) + ¢/ TH0) — £(0).
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Combining Lemmas 3.2.1, 3.2.4 and (3.16), we find:
tO;(t, 00) < 800Q(|A/| + |B/| + |CI|) /%y, VjelO,..., T}

We only need to sum the contributions; (¢, 0o) to get:

/ 8000
10,00 =1)_O;(1,00) < —
j=0 Ha

13
/]suppg(s, )| ds.
0
Thereby, the bound (1.4) becomes an easy consequence of the finite
speed of propagation.O

Remark3.2.2. — When the fluxA(-) has several inflection points, it
becomes more difficult to unravel the intricacies of the shock set (see
Dafermos [8]). Inequalities (3.16) are no more true. In particular, a
discontinuity could be simultaneously a right and left contact shock. At
present, we are not able to take into account these non local effects.
However, since locally the situation is acquired, the bound (1.4) is
probably true whatever the number of inflection points is.

3.3. The multidimensional casgN > 2)

We use in this paragraph the notations of Vol'pert [29](o) is
the set of points of jump fop(:); v denotes a unit vector normal to
I'(0); Ao(t,x) = (l,o —1_,0)(t, x) is the jump ofp(-) at (¢, x).... We
introduce the distribution:

N
D(t,):=div@oo)(t,) =) 3@ 00)t,) € S'(RY),
i=1

and the expressions:

&ump:/4mmme,vmmeRfu&Jean

—00

LEMMA 3.3.1. -The mass of the divergence of the wave speed is
controlled by® (z, oo) whatever the flux (.) is:

t| D@, )| jgy vy < O, 00),  ¥(t,00 €RY x LE(RY).  (3.33)
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Assume thati(-) is admissible. Then, the converse is true. There exists
some positive constait(A) such that

@(t’ QO) < 2| SUpr(t, )| + C(A)IHD(t’ ‘)HM[,(RN)' (334)

Proof of Lemma 3.3.1. By definition, number® (¢, o) is the same
as:

’

@(t,Qo)=SUP{‘ //go(x,v)a,, [b(x +ta(v),v)] dxdv
RN R

be CHRY x R,), [bllcomy iy < 1}.

The different integral terms which occur in this supremum are
interpreted by adding a well adjusted null contribution:

//go(x, 0)8,[b(x + ta(v), v)] dx dv
=//g(t,x,v)8vb(x,v)dxdv
—I—t/ g(t,x,v)a' (v) - Vib(x,v)dx dv
—t/div(/g(t,x,v)b(x,v)a’(v)dv) dx

:/b(x,g(t,x))dx—/b(x,O)dx
N
+tZ/{(8xiBi)(x,Q(t,x)) — 8, [Bi(x,0(t,x))] } dx
i=1

=/b(x,g(t,x))dx —/b(x,O)dx
—t / b(x,o(t,x))D(t, x)dx
RM\I"(0)

~t [ et 0nel D1, (3.35)
I'(e)
where we have used the functional superposition:

1
e (t,x) :=ba,(x,0(t, x)) =/ (ba,)(x,1_,0(t, x) +rAo(t, x)) dr.
0
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Identity (3.35) written withb () independent of yields:

// go(x, v) 3, [b(x +ta(v))]| dxdv=—t / D(t,x)b(x)dx. (3.36)

Taking the supremum ob(-) in (3.36), we obtain the first part (3.33)
of Lemma 3.3.1. Then, we deduce from (3.35) that:

‘//g()(xsv)av [b(x +ta(v),v)] dxdv

RV R

< 2| suppo(t, )| +1 / |D(t, x)|dx
RN\T"(0)

+1 / ey (1, x) Ao (t, x)|Hy_1(dx).

I'(e)

The functional calculus of Vol'pert [29] gives:

HD(I")HM,,(RN): / |D(t,x)|dx
RN\ I"(0)

+ / ’A(avog)(t,x)’HNfl(dx)‘
I'(o)

Thereby, to get (3.34), we only have to show that:

lew(t, x)No(t, x)| < C(A)|Aay 0 0)(t,x)|, (t,x) € (o). (3.37)

Let us consider any jump_/o, placed at a positiofis, x) on the set
I (o). If the polarized fluxA, (-) do satisfy(£D)?!, inequality (3.37) is
trivial since both terms are null. K, (-) is genuine non linea®W N £)* or
if o_ andp are in the same side of the inflection point, the functift)
keeps a constant sign on the interval separatingndp . It follows that:

ey (1, x) Ao(t, x)| < |Aay 0 @) (1, x)|,  (1,x) € T (0).

Suppose now that the discontinuigy /o, is a mixed shock. By
condition(Z)}, we have:

ey (1, x) Mo (t, x)| < |ay (lo(t, x)) —ay(ia,)
+ ’av (lva(ta )C)) —ay (iAv)
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Combining (3.14) and (3.16), we deduce the majoration:
ey (t, x)Ao(t, x)| < 2|Aay 0 0)(t, )|/ 124
which completes the proof of (3.37).0

At this stage, Theorem 1.2 becomes a corollary of the following result:

PropPosITION 3.3.1. — Assume that the fluX(.) is admissible and
that the hypothesiéH) (given p.41)is true. Then, the divergende(z, -)
belongs to the spac#1,(R"). More precisely

t|| Dz, ')HM;,(RN) < C(|suppo(t,-)]), VieR]. (3.38)
Proof of Proposition 3.3.1. Fhe demonstration is decomposed in
three steps (1), (2) and (3). It is first given in a sketchy (but very

significant) way. Technical details are then furnished.

It is sufficient to get an uniform control on quantitiés(z, -) which
correspond to solutions issued frar® initial data. Now, such solutions
are generically smooth (say?) outside a set of jumpg$ (o) which is
a countable union of surfaces of discontinuities. The distribufign -)
can always be split into:

My(RY) 3 D(t,)=D*(t,-)— D (t,-), D*(t,)>0. (3.39)
— (1): SinceD(t, -) has zero mean, we have:
HD(I’ ')HMb(RN) = 2HD+(I’ ')HMb(RN)‘ (3.40)
Therefore, to get (3.38), we can concentratelon, -).

— (2): Oleinik’'s condition implies that\ (a, o ¢)(¢, x) is negative on
the set of jumpl™ (o). It follows that for all subsef” C I'(¢), we have:

/ D(t, ) Hy_1(dx) = / Alay 0 0)(t, ) Hy_1(dx) <O.
r I

It means that the singularities (of order zero) of the solutign
contribute only taD~ (¢, -). They are not seen at the levelBf (z, -). This
fact has an important consequence. When carrying out the ana- lysis at
the level of D*(-), we work in the domaiiR" \ I"(¢) where the function
D™ (-) is sufficiently regular to use differential calculus.
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— (3): It follows that D" (-) does satisfy the constraint:

N
DY (t,x) + Y aio0(t,x)d, D (1, x) + DT (1,x)?=0  (3.41)
i=1

which is valid in each connected component of the set:
T :={(t,x); D (t,x) >0} C (R"\ I'(0)).

The identity (3.41) indicates th& ™ (¢, x) is controlled by ¥z once the
backward characteristic issued frgmx) is well defined and included in
T on the whole intervalOQ, r]. Such an estimate is in agreement with
(3.38).

The rigorous implementation of steps (1), (2) and (3) comes up against
technical difficulties. On the one hand, the relevant information (3.38)
does not involve an.*°-norm but anL*-norm. This first objection is
overcome by introducing a convenient functiongl(-) (defined next
page). On the other hand, the separation betwEép) and T* may
be thin. It can reduce to zero. Moreover, near a pdgint) placed
on a contact surface, the expressibri(z, y) tends to+oo when the
position(z, y) converges towardg, x) on one side of (). This second
disadvantage is compensated by conditi@ which implies the (strict
and crucial !) inequalityA(a, o 0)(t,x) <0 onI'(p). It means that the
jump is the dominant singularity 4dt, x). It follows that the setd™(p)
and T are effectively separated after regularizing the solugon. We
propose now a (not exclusive) way to tackle these two difficulties. Let
0,.(+) be the parabolic approximation of-) defined by:

N

00, (1, x) + Y 05, (A; 00,)(t, x) = uAQ, (1, X)
i=1

N
=Y 850u(t.0).
i=1
Let us consider the divergence of the corresponding wave speed:

N
D,(t,)==diV(aogu)(t,) = dy(ai0gu)t. ) € CX(RY).
i=1

We denote b)d)lj(t, ) and D/ (¢, ) respectively the positive part and
the negative part of functio®, (z, -). An easy computation shows that
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the quantityD,, (¢, -) is subjected to:

N
9 Du(t, x) + Y dyla; 00y Dul(t, x) = p Ery(t, %), (3.42)
i=1

with:

N
Eru(t,x) = dylaj o 0y Ao, 1(t, x)
i=1

N
= AD,(t,x) = > 3y [al 00ulVoul*](t,x). (3.43)
i=1

We introduce the (unique) positive scatgy(¢) that realizes:

/ D,(t,x)dx =C,(t), D,(t):={xeR"; D,(t, x)>C,t)}.
Dy(r)

With this convention, we have necessarily:

D, (t,x)=C,(t), VYxe€dD,(1), (3.44)
0< DS (1, x) <Cpu(r), Vx e RV\D,(0), (3.45)

1D, )|y = / D (1, x)dx + / DF(t,x)dx. (3.46)
Dyu(t) RM\D,, (1)
We deduce from (3.40), (3.45) and (3.46) the following majorations:

2C, (1) < || Dyt ) || 1@y < 2(1+ [suppo, (7, )]) Cu(n).  (3.47)

We setf, (1) := e Px0IC  (r) and compute its derivative with respect
to timet. We use (3.42), (3.44) and Stoke’s formula to find:

d

/Dy ()]

e r f.(t
It u()

= / 0,D,(t,x)dx

Dy (1)

N
=—Z / Oy,[ai oo, D, (t, x)dx + 1 / Ery(t,x)dx
=1p,m D, (1)
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__ / (D, ay 00, 1(t, x)Hy_1(dx) + 7{@
m

Dy (1)

=—C,() / Dﬂ(t,x)dx+%(¢):_Cﬂ(t)2+%(t)
H H

Dp(t)

< —@Pull £ (12 4 f (o). (3.48)
m

In (3.48), the undefined term is computed by using the two forms of
definition (3.43). We find:

f )= p / [d 0 0, A0, (t, x)Hy_1(dx)
m

D, (1)

—u / [0,D,, — a0 0,1V, | (1, x)Hy_1(dx),

Since the sequend®,, (¢, -)} .- 0 converges weakly id.!(R") towards
D(t, ), the majoration (3.38) becomes a consequence of:

||D(t’ ')“Mb(]RN) < lim S(L)JpHD,u(ts ')||L1(RN)
=

< C(Isuppo(t,-)|) < oc. (3.49)

To verify the uniform control (3.49) by applying (3.47) and Gronvall's
lemma to the differential inequality (3.48), it clearly suffices to suppose
that the following hypothesigH) is valid for all (z, 0o) in R x C>°(R"):

t

lim 0/ f(s)ds<0(ysuppg<r, M+ fu®). (D

First notice tha®, D, (¢, -) is negative on the bounda#p,, (¢). Indeed,
function D, (z, -) is by construction decreasing from the interior to the ex-
terior of the domairD, (r). Thereby, for a quadratic (multidimensional)
law, we are sure th%(r) < 0. In this simple cas&;H) is obvious.

Finally, we explain why assumptiofi{) should be true in the general
situation. In fact we need an additional argument to compensate the
(possibly positive) quadratic contributiona” o 0, (¢, -)|Vo,(t, -)|? by
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the negative ternd, D, (z, -). At this stage the argument is formal (for
N =1, it corresponds to the hard core of the demonstration given in
Section 3.2). By conditioriZ)3, it is natural to expect that:

IimoDM(t, x)=—o00, V(t,x)eTl (o). (3.50)
n—>

In other words, the contribution due to points éhp) should be
asymptotically negligible:

() (D) N (@) =9.

n>0

Now, out of I'(¢) + ¢ with ¢ > O fixed, the scalaiVo,(z,)| is
uniformly bounded whereas the produetVo,(z,-)| should be well
controlled or lesgin the sense of inequalitg#)) than—ud, D, (¢, -) in
the remainder satl” (o) +¢) \ I'(0). These observations and Section 3.2
indicate why hypothesiéH) is grounded. O

4. TRANSFER OF REGULARITY BY AVERAGING

We have to deal with a basic principle that can be observed on equation
(7¢). The solution of(74) with initial condition go(-) is given by an
explicit formula which leaves the!(R, x R,)-norm unchanged:

g(S, X, U) = go(x - sa(v), U), Hg(s’ ')HL]'(RZ) = ”go”Ll(Rz)' (41)

We focus our attention on some special class of Cauchy data that
inherit suitable features with respect to our purpose:

DEFINITION 4.1. -We say that a functiogo(-) in L®(R?) is well
prepared up to the order(m, n) € N2 for the fluxA(-) if it decomposes
according to a product

_ [ bo(v)go(x, v), if n =0,
golx, v) = {bn(v) a2 g, (x,v), ifn>0, (4-2)

whose constituents are subjected to
by € C/(R), g€ My (R, x R,). (4.3)

Remark4.1. — Of course, if functiorz(-) is well prepared up to the
order(m, n), it is so also for the other paiKa:, n) satisfying 0<m <m
and 0< n < n.
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The next proposition reveals the property that we have in mind:

ProOPOSITION 4.1. — We suppose that the initial datge(-) has
support contained in the strif x [—og°, 05°] and that it is well prepared
up to the order(m, n) for the fluxA(-). At each positive time, we then
have the bound:

’R/g(s, -, v)dv

Remark4.2. — The constant involved in (4.4) can be computed:

g C(na aa bn)

l&n ll A (xR, - (4.4)
Mgy s MR

C(n,a,b,) < Cm)(llallcrq—o.oxn + 1balleni—og.0pn)- (4.5)

C(k,a,bi) = lbellck-oz.0xn,  k €{0,1}. (4.6)
Proof of Proposition 4.1. By density, we just have to prove all the
assertions with the symbo\1,, replaced byL*. By virtue of (4.1) and
(4.2), we have:
g(s. x,v) = b, (v)a' )* g, (x — sa(v), v). (4.7)
We mention now some formula that will be used repeatedly in the

sequel. By expanding the derivative inside the brackets in the following
integral:

0= / 3y {by()a' (v)'H(328,) (x —sa(v),v)}dv, (1) €N, x N,
R

we obtain the identity:

s /b,, (v)a’(v)l(a)l?rl g,) (x —sa(v),v) dv
R
— /(avbn)(v)a’(v)lfl(aj;gn) (x — sa(v), v) dv
R
+ /bn(v)av [@' () ) (0] 2,) (x — sa(v), v) dv
R

+ / by (v)d' ()"H(319,3,) (x — sa(v), v) dv. (4.8)
R
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The left part of inequality (4.4) can be written:

Hz 8f+"{ﬂzg(s,x, v)dv}
-/

It is therefore enough to consider the pdi@, n)},cn. We first discuss
the case: = 0 andn = 1 apart. Whem = 0, we have to deal with:

dx

dx. (4.9)

a{/ b,(v)a' ()*1(8"g,) (x — sa(v), v) dv}
R

/‘/bo(v)go(x —sa(v),v) dv|dx.
R R

We pass the absolute value under the sign sum and then proceed to
the change of variable# : (x, v) — (x — sa(v), v) to obtain (4.4) with
the constant given in (4.6).

Whenn = 1, we exploit (4.8) with the choicé, 7) = (1, 0). Interpret-
ing the first integral in terms of our solutiqy(-), we obtain:

sax{ g(s,z,v) dv} = [ (3,b1)(v)g1(x — sa(v),v) dv
/ /
+ /bl(v)(a,,gl)(x—sa(v),v) dv. (4.10)
R

The integrands on the right hand side of (4.10) are evaluated as before,
by making use ofF. This yields again (4.4) with the constant indicated
at (4.6). The key point here is the special structurgqdf) which allows
to transfer the derivative im towards a derivative im.

Following the same principle, we now proceed by induction on the
indexn.

The first stem = 1 has already been achieved. We assume now that the
result (4.4) is true up to the order— 1 withn — 1 > 0. We are looking
at what occurs at level. Using again (4.8) but this time with the choice
(I,1)=(2n —1,n—1), we find:

3

saf{/'g(s,x,v)dv}zz 8Q_1{/gk(S,x,v)dv}. @.11)
B R

k=1
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Above, functionsg® correspond to the resolution ¢f;") where the
initial data are decomposed according to:

g, v)i=b () d @AV gk (), kefl,23)
with:

b (v) == (3,b,)(v) @' (v), g 1(z,v) = gu(z, ).

b2 1(v):=@2n—2) b,(v)a"(v), &> 1(z,v) =8&u(z, V).

b3 1 (v) :=Db,(v) d'(v), g2 1(z,v) = (3,80) (2, V).
We see that:
bt e CY(R), Vke(l,2 3]
H§571|‘(L1)0.n71<R2) < ”gn”(Ll)Ov”(Rz)a Vk €{1,2, 3}.

Obviously, the three functiong'(-) are well prepared up to the order
(0,n — 1) for the flux A(-). According to the induction hypothesis, each
term on the right hand of identity (4.11) can be analyzed. This is how we
obtain inequality (4.4). O

Remark4.3. — Equation(Z4') does not involve any source term. There
is an extended literature on the case with second member. Mostly [9,11,
12], the regularity is evaluated in terms of betandx variables. There
is also an optimal version due to Bouchut and Desvilettes [2] whese
fixed. Our approach differs from these previous standpoints in that we
exploit special features on the initial data. This is the reason why we can
go further.

5. APPLICATIONS

The previous general considerations are now applied in order to obtain
concrete results.

5.1. Proof of Theorem 1.3

Proof. —The results obtained in Section 4 incorporate the ¢ase 2
by appealing to the Radon transform. Indeed the function

g, 0,2, 0) =Tg" (s, 80)(z, v) := (Ra, &)(s,w, 2, V)
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issued from the solutiog(-) of (7;") is subjected to the following one
dimensional transport equation:

(T = { 8,85, .2, v) + @ - a()d§(s, 0, 2,v) =0,
0w/ g(osw’z’v)zg()(a), Z,v),

wherew € SV~ is simply a parameter.
An easy computation shows that:

sup ’g()(a), ')’Mg’l(szRu) < ‘g(O, ')’M,?'l(foRv) = 0O, QO)

weSN-1

In order to get rid of the assumptions required in Definition 4.1, we
fix someb(-) in CX(R) (with associated3(-) according to formula (1.6)
and multiplygo(-) by b(v)w - @’ (v). The resulting expression:

b()w-a' (vV)go(w,z,v), beCYR), we SN

is then well prepared up to the ordé€x 1). From Proposition 4.1, follows:

‘ /b(v)a) -a' (g, w,-,v)dv
R

M (R)
= ‘Rax</b(v)a) ~a'(v) xoa,) (V) dv> (w, -)‘ )
“ ML(R)
= ‘B oolt, ')’M;JR) < ||b||cl<[—gg°,g3°])(@(f, 00) + lleoll 1&m)) /1.
We thus have verified the assertion of Theorem 1.3.

Remark5.1.1. — Let us interpret more carefully the information:
Jw € SN—l; |”|M,f,w(R) < 00. (51)

In view of identity (0.4), this clearly measures some features of the
smoothness of the function(.). In fact, it combines regularity and
geometrical aspects. For instance, the expressian -) associated with
an application«(-) whose leaves are transversakto

u=itog; (ii,p)e L®R)x C*RY;R);
0# Vo) fo, VYxeRY,
is subjected to (5.1).
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5.2. A two-microlocal interpretation

We now proceed to interpret inequality (4.4) in the multidimensional
setting from the point of view of the initial variables:

PrROPOSITION 5.2.1. —

We consider the transport equati¢f;") associated with some initial
data go(-) chosen in the spaca1; " (RY x R,) with compact support
included in the strigR x [—05°, 05°]. Then, for any decomposition Bf
into a family of parallel hyperplanes with normal vecter we get an
inequality.

H /(a) - a'(v))zn*lgo(- —sa(v),v)dv
R

HF(RY xRN,
<C(m,n,a,b,)(1+s") ||g0||M,’j’*”(R§Vva)/Sn’ Vs eRl, (5.2)
which is true for all indexes and 7 limited by

1 1-N
T<m+n—§, 'E<—n+T. (5.3)

Proof of Proposition 5.2.1. For definiteness, we will work with
vector:

w=w1=(10,...,0

and the corresponding decomposition
RY 5 x = (x1, (x2, ..., xn)) = (z,x") € Ri X Ri\]fl
with dual variables
T*(RY)s&=(¢,&") e Ry xR

We shall designaté (v) := (ax(v), ..., ay(v)) the N — 1 last compo-
nents of the speed. We have the relation:

Fq (/al(v)z"_lgo(- —sa(v), v) dv) &)
R

= ;q( | / k€ (- = say(v), v) dv> (&. (5.4)
R
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Now, the proof is imbued from the one given in P. Gérard [11]. The
expressionk*¢”(-) introduced in (5.4) has parametarand&”. After a
short calculation, we obtain:

k¥ (2, 0) = by ()ar ()6 (2, v),
where:

by €C'R),  b,(v)=1, Yve[oF, o]

IE;;’EN(Z,U) = / g " E grisdWE g X vYdx.

RN-1

We select(i, j) in [0, m] x [0, n] and exploit the identity

0107k (z, v) = / e o] {e I gl oz, x, v) b,

RN-1

to get:

&

M R xR,) <C(A) (1 + S]) <€//>.}/V*l||g0”MZLn(RiV xRy)*

It follows that the Cauchy dat " () is well prepared up to the order
(m, n) for the flux A;(-). Therefore we can apply Proposition 4.1 which
implies:

H / k5 (- = say(v), v) dv
R

erjnJrn (R)
n

SCOm.n.a.by) —— EN_allgoll v @y s,y (5:5)

A classical Sobolev inclusion says that:

1
||u||Hr(R)§C||u||MZn+n(R), VT <m—|—n—§. (5.6)

Upon combining informations (5.4), (5.5) and (5.6), we conclude that
for every parameter selected according to (5.6) we have:

H &V T, ( / a1 (v)* go(- — sa(v), v) dv) &, &"
R

LZ(RS/)

145"

sn

< C(m,n,a,b,) (") N-allgol v @y -
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Finally, we multiply the left hand side by a powg&”)® where the real
numberzt is adjusted in such a way to win tHez(Rng) integrability
with respect tad&”. This criterion determines the bouridimposed in
(5.2). O

By applying to functionZ N (0o)(-) Proposition 5.3.1 with the partic-
ular choice(m,n) = (0,1), we obtain inequality (2.22). The proof of
Proposition 2.2.1 is complete.

5.3. Miscellaneous results

As an aside, we first consider the large time behavior of periodic solu-
tions. This subject has been studied in Dafermos [8], Lyberopoulos [20]
and Engquist-W. E [10]. The question is to know if the solutigm, -)
tends to some constant state.

It turns out that the demonstrations of Theorems 1.1 and 1.2 yield a
number® (z, o) which does not depend an This particularity gives
a powerful tool regarding the preceding preoccupation. It suffices to
exploit Theorems 1.1, 1.2, 1.3 and the inversion formula (given p. 72
in Helgason [13]).

We can assert:

COROLLARY 5.3.1 (Large time periodic behavior).Ll-et o(-) be an
admissible periodic solution afZ))) with A(-) satisfying the hypothesis
of Theoreml.1 (f N = 1) or the hypothesis of Theorein2 (f N > 2).
Then

AC(A,b) e RY; Y(w, B, 00) € SV ™1 x C4(R) x L>®(TV),
vt eR}, [|Boo(t,-) |M%ﬂ) < C(A,b)(1+ lloollrvy)/t. (5.7)

As noted by Zumbrun (see (2.5) in Theorem 2.1 of [30], the most
natural way to tackle the non convex case is in deriving estimates in terms
of the total variation of the wave speed. This (already mentioned) fact can
be recovered in our approach since functign belongs systematically
to the allowed spac€?(R). Combining Theorems 1.1 and 1.3, we can
improve the result of Zumbrun [30]:

COROLLARY 5.3.2 (smoothing of the wave speedyssume(7)*.
Then

vVt € R}, Yoo e L¥(R),
||Cl © Q(ts ')HBV(]R) < C(A)(l SUprO + tVl + “QO”Ll(R))/t' (58)
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Other non linear expressions have an interest. Let us introduce:
beC'R.), bo):=a(0)/d'(0), VoeR..

Under the more restrictive assumption (2.19), functign) can be
extended to all the@-axis in such a way thai(-) € Lip.(R). Therefore,
we can apply Theorem 1.3. We deduce:

COROLLARY 5.3.3 (time smoothing effect). Assume(2.19) Then,
o(-) belongs to the spadeip,.(R}; L1(R)).

Proof of Corollary 5.3.3. -The expressiorB(-) corresponding té(-)
is exactly the flux functiom () since:

e e
B(o) := / b(v)a'(v)dv = /a(v)dv:A(g).

—00

Using Theorem 1.3, keeping in mind equatiat}), we obtain:

luttz, ) = u(tr, )| 1) < /( [ lo[4@] .| dx) ds
R

1
<C(1y, 12, A, 0o) |12 — 11] < 00,

V) e (RY)? O

Remark5.1. — The topics of time regularizing effects has already been
treated. Using an elegant scaling argument Benilan and Crandall [1] show
that in the homogeneous cas&(io) = A1 A(p)) solutions of(L}) do
satisfy:

1

2
. — +
hILnOEHQ(t + h, ) - Q(t, ')HLl(R) g mt ”QOHLl(R)’ Vl’ (= R* .

In the absence of homogeneity, the strongest result of this type is due to
F. Otto [23]. This author considers the situation (2.19) and exhibits some
Hdolder exponent:

0€C*(Ry; LYRY)), a:=1/m<1/3<1.

His method is based on thi! contraction principle. Therefore, the
smoothing effect is controlled by thiet norm of oo(-) and nothing else.
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This restriction is at the origin of the bound given tarln Dafermos [8],

this was the reason of the occurrence of the conjugate fun@ion
Indeed, Dafermos comes back to zero with the help of its formula (2.9)—
[8] that produces thé.! norm of oo(-) but also , as a consequence, the
expressionD(-). We adopt a slightly different point of view: we have
more freedom fore and for the allowed non linear compositions on
condition that we incorporate in the right hand of the estimations the
measure of the support p§(-).

We investigate now the level of Sobolev regularity recovered at time
t > 0 by the average solution ¢f;") :

o(t,") :=/g(t, L v)ydve WHHRY),  vrelo, 7,
R

when working undeft/S)" and data subjected to:

g([’ X,v) = Xg(t,x)(v)a Hg(S, .)HMg’l(RfyxRu) <00, Vse [0’ t],
(5.9)
which is guaranteed once we hawét, og) < co.

COROLLARY 5.3.4 (Sobolev regularity). Assume the hypothesis of
Theorems1.1 or 1.2 and compute the index involved in (VS)V
according to RemarR.2.2.Then

ot,) e W3(RY), Vr<a/2, VieR}.

o(t,) e WrH(RY), Vr <2a/3, Vi e R].

Proof of Corollary 5.3.4. The demonstration relies on the work of
[18] and on a remark due to F. Bouchut (see [2] and [3]). We first multiply
g(-) by a cutoff functiony (-) € C°(Ry) with x =1 in a neighborhood
of 7. Ityields (xg)(-) in LR, x RY x R,).

Let () satisfy:

v()eCrR,), 0<y(v) <l YveR, /1//(v)dv =1
R

and set fore > 0: ¥, (v) := ¥ (v/e)/e. We can decomposg(-) into:

g5, x,v) = (g *y V) (5, X, 0) + (g — & % ¥e) (5, X, V), (5.10)
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where the convolutiorx, concerns only the variable. The idea is to
evaluate the first partg *, ¥.)(-) thanks to the averaging lemma (in a
version given by Bouchut [3]) and the second pa@rt g *, ¥.)(-) by
using the a priori estimate (5.9).

By applying the Proposition 5.1 line (5.24) of [3] to the equation:

As(x &)(s,x,v)+a) - V,(xg)(s,x,v) = x"(s)g(s,x,v), (5.11)
we obtain:

X & *v Vel L2, xR, Werz2®dy)
< C(”X 8||L2<R,xR§’xRu) +lIx’ g||L2(R,xRQ’xRu))/\/E- (5.12)

Sincey’(-) is null on some open interval containirig, the evolution
equation reduces near the tirfig to the free transportZg') which (by
interpolation) preserves the?(R,; W*/2>2(R"))-norm. This argument
allows to extract from (5.12) an information for the trace at time

18 %0 Vet )| L2, o2y < C//e (5.13)
Combining (5.6) and (5.9), we find:
1(& = & %0 ¥ (0. )| oy wm,) <75 VB <1/2. (5.14)
Let 7, be the translation operator in space variable:
(mg)(t, x,v) :==g(t,x +h,v), heRy.

We applyt, — I to the line (5.10) and use the informations (5.13) and
(5.14) to get:

I(tag = )t M| oz, < CRI1? /e +2e7), VB <1/2
We adjust parameterin an optimal way to find:
g(t,-) € L3(R,; WO2(RY)), Vso<a/4

We apply again the averaging lemma with, )*g(-) in place ofg(-)
to find:

||<Dx>S0g *v we(ta ')||L2(RU;W&/2,2(R§CV)) § C/\/g
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Reiterating the preceding argument, we deduce glyat) belongs to
the space:

g(t,) € L3(R,; Wr2(RY)), Vs <so/2+a/4
Sincex/2 is the unique fixed point of the relation— s/2 + /4, we
have:
g(t,) € L3(R,; W2(RY)), Vs <a/2,

which yields the first part of Corollary 5.3.4.
Following the same principle, we also have (foralk «):

[(thg — &)(s, ‘)HLl(RQ’xRU)

< || D% * ngLl(RivXRU)VH& + 218 — g * Vell 1wy xr,)
|DY2(DE2g) * e HL2<RQ’><RU)|h|& +2¢[008 (5, )| pa, @ s
C|h|® /e + 260 s, Qo).
We just have to set = |1|%*/3 to conclude.

<
<
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