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ABSTRACT. – In this article, we introduce a general method for
studying the smoothing effects resulting from the non linearity in a
multidimensional scalar conservation law. It turns out that the regularity
of physical solutions is intimately related to a numberΘ delivered after a
scattering procedure. Using this approach, we recover and unify previous
information while obtaining new results.
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RÉSUMÉ. – Dans cet article, on s’intéresse à l’effet de lissage induit
par la non linéarité dans une loi de conservation scalaire multidimension-
nelle. Il se trouve que la régularité des solutions entropiques est liée à
un nombre2 obtenu à l’issue d’une procédure de scattering. Cette ap-
proche permet de retrouver, d’unifier, d’étendre et d’améliorer les résul-
tats antérieurs. Voir Cheverry [5] pour une présentation concise en fran-
çais.
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0. NOTATIONS

This preliminary section is devoted to various notations that are used
throughout the paper. As usual, we set:

– a, r, s, t, τ, τ̄ , ι are real numbers.
– i, j, k, ī, j̄ , k̄, l,m,n,N,p, q are natural numbers.
– f,g,h,u,w are functions.
– f ◦g is the non linear composition off andg: f ◦g(x)= f (g(x)).
– x, y are points inRq andz, v are points inR.
– x · y :=∑q

i=1 xiyi is the inner product inRq .
– ‖x‖2q := x · x is the Euclidean norm inRq .
– Bq(x, r] is the closed ball with centerx and radiusr .
– dmq is the Lebesgue measure onRq .
– |A| := ∫A dmq is the Lebesgue measure of the setA⊂Rq .
– convA is the (closed) convex hull of the setA⊂Rq .
– ∂A is the boundary of the setA⊂Rq .
– The sumA+ a of a setA⊂Rq and of a numbera ∈R+ is:

A+ a := {x + y; x ∈A, y ∈A, ‖y‖q 6 a}⊂Rq.
– B(X;Y ) is a Banach space of functions fromX to Y .
– B(X) is a Banach space of functions fromX toR.
– Bc(X;Y ) andBc(X) refer to functions that have compact support.
– Bloc(X;Y ) andBloc(X) refer to functions that are locally inB(X;Y )

or B(X).
– Lip(X;Y ) are the Lipschitzian functions fromX to Y .
– suppu is the support of the functionu(·).
– Ck(X) is the space of functions inX with continuous derivatives of

order less thank.
– S(Rq) is the Schwartz space of rapidly decreasingC∞(Rq) func-

tions.
– S ′(Rq) is the dual space of tempered distributions.
– Hτ(Rq) is the Sobolev space of distributions withL2 derivatives of

orderτ . Its norm is denoted by‖u‖Hτ (Rq).
– α is a multi-indexα = (α1, . . . , αq) ∈Nq .
– |α| is the lengthα1+ · · · + αq of α.

– 〈ξ 〉q is an abbreviation for
√

1+‖ξ‖2q .
– ∂α is the partial derivative∂α1

1 . . . ∂
αq
q where∂j := ∂

∂yj
.

– ∇y is (∂1, . . . , ∂q).
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– Lp(Rq) is the space consisting of all measurable functions onRq
that arepth-power integrable. Its norm is‖u‖Lp(Rq).

– Wm,p(Rq) is the classical Sobolev space with norm‖u‖Wm,p(Rq).
– Wτ,1(Rq) with τ ∈]0,1[ is the space of functions with norm:

‖u‖Wτ,1(Rq) := ‖u‖L1(Rq) +
∫
Rq

∫
Rq

|u(y)− u(ȳ)|
|y − ȳ|q+τ dmq ⊗ dmq.

– Mb(Rq) is the space of finite Borel measures. Its norm is:

‖µ‖Mb(Rq) := sup
{|〈µ,ϕ〉|; ‖ϕ‖C0

c (Rq) 6 1
}
.

– BV (Rq) is the space of measurable functions with all distributional
derivatives of order 1 that are inMb(Rq).

– TV[a,b[(u) := sup{∑i−1
j=1 |u(yj+1)− u(yj )|; a 6 y1 < · · · < yi < b}

is the variation ofu(·) ∈ BV ([a, b[ ).
– If u ∈ BV (R), u(x−) andu(x+) are the one-sided limits ofu atx.
– u−/u+ designates a discontinuity separating the statesu− andu+.
– Fq(u)(ξ)≡ û(ξ ) := ∫Rq e−iy·ξu(y) dmq is the Fourier transform of

the functionu.
– 〈Dx〉su(·) is defined byFq(〈Dx〉su)(ξ)= 〈ξ 〉sq û(ξ ).
It is now convenient to introduce some specific notations.
The symbolC(∗) where the star is replaced by relevant quantities

stands for constants appearing in various estimates.
In what follows,Pq denotes the space of all hyperplanes inRq . Each

elementHω,z ∈ Pq can be writtenHω,z := {y; ω · y = z} whereω is a unit
vector in the sphereSq−1 andz ∈ R. The q − 1 dimensional Lebesgue
measure onHω,z is dmω,z.

The symbolω⊥ designates any vector orthogonal toω.
We fix a coordinate system:

Rqy 3 y = (y′, y′′) ∈Rry ′ ×Rdy ′′, r + d = q,
with dual variables:

Rqξ 3 ξ = (ξ ′, ξ ′′) ∈Rrξ ′ ×Rdξ ′′ .
In particular, the decomposition ofRqy into a family of parallel

hyperplanes with normal vectorω corresponds to the choice:

Rqy 3 y = (y′, y′′)=
(
ιω,ω⊥

) ∈R1
y ′ ×Rq−1

y ′′ , ι ∈R. (0.1)
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We will use the space:

Hτ,τ̄
(
Rry ′ ×Rdy ′′

) := {u ∈ S ′(Rq); 〈ξ ′〉τr 〈ξ ′′〉τ̄d û(ξ ) ∈L2(Rq)}
with the Hilbert norm:

‖u‖Hτ,τ̄ (Rr
y′×Rdy′′ ) :=

(∫
Rq

〈ξ ′〉2τr 〈ξ ′′〉2τ̄d
∣∣û(ξ )∣∣2dmq)1/2

.

We will need the following semi-norms:

|u|Bk(Rq) :=
∑

{γ∈Nq ; |γ |=k}

∥∥∂γy u∥∥B(Rq),
|u|Bi,j (Rr

y′×Rdy′′ ) :=
∑

{(α,β)∈Nr×Nd ; |α|=i,|β|=j}

∥∥∂αy ′∂βy ′′u∥∥B(Rq),
with the corresponding norms:

‖u‖Bk(Rq) :=
∑

{k̄∈N; k̄6k}
|u|Bk̄ (Rq),

‖u‖Bi,j (Rr
y′×Rdy′′ ) :=

∑
{(ī,j̄ )∈N2; ī6i,j̄6j}

|u|Bī ,j̄ (Rr
y′×Rdy′′ )

.

According to the preceding conventions, we have for instance the
identification:(

L1)m(Rq)≡Wm,1(Rq), M1
b

(
Rq
)≡ BV (Rq), m ∈N.

The Radon transform ofu is defined as the functioñu onPq given by
the formula:

ũ(ω, z) :=
∫

Hω,z

u(y) dmω,z, (ω, z)∈ Sq−1×R.

The operator:

Ra :L1(Rq)→L1(Pq)
u 7→

{
Ra(u) :Pq→R,
(ω, z) 7→ ũ(ω, z),
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is a continuous linear map. An indexy as for:

Ray(u)(ω, z, a) :=
∫

{y; ω·y=z}
u(y, a) dmω,z, u ∈L∞(Rq̄a;L1(Rqy))

indicates that the integration concerns only they variable.
Let us now state without proof (we refer for the details to the book

of Helgason [13]) a few elementary properties related to the Radon
transform. It is closely connected with the Fourier Transform since:

û(sω)=
∫
R

e−iszũ(ω, z) dz, ∀(s,ω)∈R× Sq−1. (0.2)

We have:

Ra(∂yj u)(ω, z)= ωj(∂zũ)(ω, z). (0.3)

Moreover, the functionu can be recovered from its Radon transformũ
by means of an explicit inversion formula (see [13, p. 72]).

It will be convenient to introduce the velocity distributions (or profiles)
χα(v) which are parameterized byα ∈R and that are defined by:

χα(v) :=
1 if 0< v 6 α,
−1 if α 6 v < 0,
0 elsewhere.

Finally, we introduce a family of semi-norms which are indexed by the
unit vectors in the sphereSq−1:

|u|M1
b,ω
(R) :=

∥∥∂zũ(ω, ·)∥∥Mb(R) =
∣∣ũ(ω, ·)∣∣M1

b
(R)

= sup
{∣∣∣∣ ∫
Rq

ω · ∇yu(y)ϕ(ω · y) dmq
∣∣∣∣; ‖ϕ‖C0

c (R) 6 1
}
. (0.4)

1. MAIN RESULTS

We consider the initial value problem for a multidimensional scalar
conservation law:{

∂t%(t, x)+∑N
i=1 ∂xi (Ai ◦ %)(t, x)= 0, (t, x) ∈ R+ ×RN ,

%(0, x)= %0(x),
(LN0 )



418 C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413–472

where the fluxA(·) is assumed to be sufficiently regular:

A := (A1, . . . ,AN) ∈ C2+n(R;RN), n ∈ N∗. (H1)

The initial data%0(·) is chosen in the space(L∞ ∩L1)(RN). We set:

%∞0 := ‖%0‖L∞(RN) = sup
{|%0(x)|; x ∈RN}<∞. (H2)

As shown by Krŭzkov [14], under assumptions(H1) and(H2), there is
a unique entropy solution%(·) ∈ C0(R+∗ ;L1(RN)). The correspon- ding
solution operator does not increase theL1 norm. It satisfies the maximum
principle. For allt > 0:∥∥%(t, ·)∥∥

L1(RN) 6 ‖%0‖L1(RN),
∥∥%(t, ·)∥∥

L∞(R+×RN ) 6 %
∞
0 . (1.1)

Natural questions arise concerning the smoothness of the admissible
L∞ solutions exhibited by Krŭzkov [14]. Regularity is delimited on the
lower end byL∞ and on the upper end by the inherent smoothness of
generalBV functions, described in Vol’pert [29]. In fact, depending on
the features ofA(·), the solutions are sure to be better thanL∞(RN). They
can possibly be less thanBV (RN). The task is precisely to examine the
exact level of smoothness attained.

Now, without loss of generality, we can make some simplifications.
Since the values% with |%| > %∞0 are not solicited, the fluxA(·) can be
chosen to satisfy:

A ∈C2+n
c

(
R;RN): ∃η > 0; suppA⊂ B(0, %∞0 + η].

Moreover the speed of propagation is finite and limited by:

V := sup
{∥∥A′(v)∥∥

N
; |v|6 %∞0

}
.

Therefore, it would suffice to work locally in the space variable, with
a Cauchy data that has a compact support:

%0 ∈ L∞c
(
RN
)⇒ |supp%0|<∞.

The derivative of the fluxA(·) is the vector field denoted by:

C1+n
c

(
R;RN) 3 a(v)= (a1(v), . . . , aN(v)

) :=A′(v), ∀v ∈R.
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We will make use of the following polarized quantities:

Aω(v) := ω ·A(v), aω(v) := ω · a(v), ∀(v,ω)∈ R× SN−1.

When equation(LN0 ) has constant coefficients:

∃a0 ∈ RN; a(v)= a0, ∀v ∈R, (LD)N

the solution%(t, x) is equal to%0(x − ta0). It is simply a translated
function of %0(·). For all t > 0, it is still in the space(L∞ ∩ L1)(RN)
without any amelioration. Its regularity does not improve after resolution
of (LN0 ).

The situation is quite different when the speed of propagationa(·) does
depend on the statev:

∃v0 ∈R; a′(v0)= (A′′1(v0), . . . ,A
′′
N(v0)

) 6= 0. (NL)N

It is well known that the appearance of the solution%(·) is affected
by a number of dissipative mechanisms (entropy decrease, spreading
of ra- refaction waves, mutual cancellation of interacting shocks with
rarefaction waves. . .) mostly prominent in the presence of non linearity.
On account of these phenomena, the function%(·) recovers more
smoothness than the one mentioned in (1.1).

Intuitively regularizing effects are all the more marked as the ac-
celerationA′′(·) does not vanish a lot. In the one dimensional setting
(N = 1,A(·)≡A1(·)), it is easy to classify fluxes according to this crite-
rion. The two (distinct) following conditions which can be imposed to a
single conservation law will be of particular interest:

– The flux is strictly convex or strictly concave (the usual terminology
is referred as genuine non linearity):

A′′(v) 6= 0, ∀v ∈ [−%∞0 , %∞0 ]. (VNL)1

– The flux has just one inflection point. It means that there is a unique
point iA in [−%∞0 , %∞0 ] such as:

A′′(v) 6= 0, ∀v ∈ [−%∞0 , %∞0 ] \ {iA}; A′′(iA)= 0. (I)11

Subsequently, we will only consider non degenerate cases for which
the difference

R 3 v 7→ Ā(v) :=A(iA + v)−A(iA)−A′(iA), v ∈R,
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is subjected to (see Remarks 2.2.2 and 3.2.1):

∃νA > 1; ∣∣vĀ′(v)∣∣> νA∣∣Ā(v)∣∣, ∀v ∈ [%∞0 , %∞0 ]. (I)12

In the multidimensional framework, it becomes more difficult to
measure how the fluxA(·) vanishes. A natural way to proceed (in order
to recover the preceding discussion) consists in projecting the function
A(·) in each directionω. It leads to a well adapted notion:

DEFINITION. – We define the fluxA(·) as admissible if for all ω in
SN−1 the polarized applicationAω(·) is either subject to(LD)1 or to
(VNL)1 or to (I )1 := (I )11 ∪ (I )12 (with a constantνA which does not
depend on the directionsω in the sphereSN−1).

These preliminary ideas being introduced, we turn our attention to the
(free) transport equation:{

∂sg(s, x, v)+ a(v) · ∇xg(s, x, v)= 0, (s, x, v) ∈RN+2,
g(t, x, v)= gt (x, v)= χ%(t,x)(v), (T Nt )

whose solution is given by the explicit formula:

g(s, x, v)= gt(x − (s − t)a(v), v)= χ%(t,x−(s−t )a(v))(v). (1.2)

Define the scattering operator:

ΞN
t :L∞

(
RN
)→L∞

(
RN+1),

%0 7→
{
ΞN
t (%0) :RN+1→{−1,0,1},

(x, v) 7→ χ%(t,x+ta(v))(v).

Its mechanism can be understood on the following diagram(D):

L∞(RN) 3 %(t, x) χ%(t,x)(v) ∈L∞(RN+1)

(T Nt )

L∞(RN) 3 %0(x)

(LN0 )

ΞN
t

χ%(t,x+ta(v))(v) ∈L∞(RN+1).

Let us introduce the number:

Θ(t, %0) :=
∣∣ΞN

t (%0)
∣∣
M0,1

b
(RNx ×Rv)

= ∥∥∂vΞN
t (%0)

∥∥
Mb(RN+1)

∈R+ ∪ {∞}.
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At first glance, functionΞN
t (%0)(·) is only bounded. Since the three

top arrows of diagram(D) preserve or diminish theL1 norm, we easily
infer: ∥∥ΞN

t (%0)
∥∥
L1(RN+1)

= ∥∥%(t, ·)∥∥
L1(RN) 6 ‖%0‖L1(RN). (1.3)

It turns out that the situation is even better. The construction of the
operatorΞN

t is endowed with a special compatibility property (between
equations(LN0 ) and(T Nt )) that gives rise to a more subtle estimate. This
fact is borne out by studying the caseN = 1:

THEOREM 1.1 (Scattering in one space variable). –Assume that the
fluxA(·) is admissible. Then:

∃C(A) ∈R+; ∀%0 ∈ L∞c (R), ∀t ∈R+∗ ,
Θ(t, %0)6 C(A)|supp%0+ t|<∞. (1.4)

Thanks to (1.4), it is possible to recover the previous considerations of
[15–22] and to substantially improve (see Section 5.3) the results exposed
in [1–30].

We then present (see Section 3.3) a mild assumption(H) (defined
p. 41, it is fulfilled if for instance all the components ofA(·) are at most
quadratic) under which the majoration (1.4) extends to the general case:

THEOREM 1.2 (Multidimensional scattering). –Assume thatA(·) is
admissible and that(H) is true. Then:

∃C(A) ∈R+; ∀%0 ∈ L∞c
(
RN
)
, ∀t ∈R+∗ ,

Θ(t, %0)6C(A)|supp%0+ t|<∞. (1.5)

In Section 3.3, we explain why(H) should be systematically observed
as soon as the fluxA(·) is admissible. The demonstration of Theorem 1.2
is very significant.

Indeed, the proof shows that the bound onΘ(t, %0) is linked to a
smoothing effect concerning the divergence of the wave speed. This
aspect is established at the level of Lemma 3.3.1 and Proposition 3.3.1.
In particular, under the assumptions of Theorem 1.2, we have:

t
∥∥div(a ◦ %)(t, ·)∥∥Mb(RN) 6C

(|supp%(t, ·)|), ∀t ∈ R+∗ .
The scattering process connects the non linear evolution(LN0 ) with

the linear transport(T Nt ). It is worth noting that equation(T Nt ) is
reversible. Thereby, it can also be interpreted as the Cauchy problem
(T N0 ) whose initial data has a semi-normM0,1

b (RNx × Rv) bounded by
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Θ(t, %0). This new point of view allows to make a synthesis of the
previous lines of research relative to regularizing effects. It gives access
to optimal level for the time regularity of the underlying semi-group (see
Corollary 5.3.3), to Sobolev smoothness (see Corollary 5.3.4) and to two-
microlocal regularity (see below and Proposition 2.2.1).

In this summary, we point out some version of the last aspect
mentioned. LetCωA(R) be the subspace ofC2(R) consisting in all
functionsB(·) that can be written in the following integral form:

∃b ∈ Lip(R); B(%)=
%∫

−∞
b(v)a′ω(v) dv, ∀% ∈R. (1.6)

Now, there is a natural extension of the (classical) result due to [15–22]
stating that the solution%(·) of a convex scalar conservation law becomes
instantaneouslyBV (R). Indeed, in the multidimensional framework, for
t > 0, the averages with respect to some variables of well adjusted non
linear expressions of the trace%(t, ·) are suitably bounded inBV . To be
more precise:

THEOREM 1.3 (Multidimensional BV regularizing effect). –We have:

∀(A, t, %0,ω,B)∈ C2+n ×R+∗ ×L∞c × SN−1×CωA, ∃C(A,b) ∈R+;∣∣B ◦ %(t, ·)∣∣M1
b,ω
(R) 6

C(A,b)

t

(
Θ(t, %0)+‖%0‖L1(RN)

)
(1.7)

where functionsB(·) andb(·) are linked according to(1.6).

This paper is organized as follows.
Section 2 is a detailed introduction. Some complementary statements

are furnished. A few historic reminders and counter-examples give a good
insight into our position. Theorems 1.1 and 1.2 have to be combined.
Used together, they are able to unify the former contributions of Lax [15,
16] — Dafermos [7,8] and these of Lions, Perthame and Tadmor [18].

Section 3 describes how works the operatorΞN
t . It is divided in three

paragraphs. We first consider a flux which is strictly convex or strictly
concave. In this particular case, the mechanism underlying diagram(D)
is simple and speaking so that Theorem 1.1 is rather easy to demonstrate.
Then, we focus our attention to the other restriction on the flux (with just
one non degenerate inflection point). Follows a demonstration of (1.4)
which explains in concrete terms how the intricacies of the shock set are
managed by the scattering process. This overcomes the main difficulty
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encountered at this stage: the possible occurrence of right contact shocks.
Finally, we show (in the multidimensional setting and for admissible
fluxes) that (1.5) is equivalent to some convenient bound inMb(RNx ) for
the distribution div(a ◦ %)(t, ·). Using the condition(H), we can deduce
(1.5). Thus, we dispose of two different (and complementary) arguments
that indicate the relevance of (1.4) and (1.5).

Section 4 deals with the transport equation(T 1
0 ). We consider a special

class of initial datag0(·) that are calledwell prepared. The solution
g(s, ·) is integrated with respect tov and we seek the regularity in the
resulting variablex ∈ R. This averaging technique and the restriction
imposed to the Cauchy datag0(·) allow a transfer of derivatives. It
follows that the application which tox associates

∫
R g(s, x, v) dv has

more regularity than expected.
The remainder of the article is concerned with applications. The

approach of Section 4 extends to the multidimensional framework
(T N0 ) provided that one appeals to the Radon transform. It leads to
Theorem 1.3. Next, by following the method of P. Gérard [11], we deduce
(see Propositions 2.2.1 and 5.2.1) a two-microlocal smoothing effect
expressed in the classHτ,τ̄ of Hörmander. Finally, we point out other
consequences. We take up the case of periodic initial data with zero mean
and show sharp decay rates (Corollaries 5.3.1 and 5.3.2). In the spirit
of [1] and [23], we study (see Corollary 5.3.3) the smoothness of%(·)
evaluated in the space Liploc(R+∗ ;L1(RN)). Following [18], we also seek
the exact level of Sobolev regularity obtained for the solution.

2. DETAILED INTRODUCTION

2.1. Historical reminders

The non linearity of the flux does induce smoothing effects and
decreasing large time behavior. These two aspects have been an on-
going preoccupation which dates back to Oleinik [22] and Lax [15].
Besides its intrinsic interest, this topic is connected to a fundamental
issue in conservation laws such as existence theory and convergence of
approximate solutions to exact solutions.

This subject has been tackled by different ways: method of character-
istics [6,7,15,17,25,30]; compensated compactness [10,21]; semi-group
point of view [1,23]; kinetic formulation and ave- raging lemma [18,28].
We will first draw a rapid picture of the matter. Then, we will attempt to
unify all these approaches.
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In one space variable(N = 1 and A(v) = A1(v)), the things are
relatively well understood. We observe that the result does not share the
same nature when the type of non linearity is changed.
7→ (1∼ i) The flux is strictly convex or strictly concave— (VNL)1:
In such a case, solutions undergo instantaneous cancellation:

∃C(A) ∈ R+; TV[x,y[
(
%(t, ·))6C(A)(y − x)/t,

∀(t, x, y) ∈R+∗ ×R2, 0< t 6 y − x. (2.1)

The bound (2.1) is mentioned for the first time in Oleinik [22]. Then,
Lax [15,16] considered a more specific version:

THEOREM (Lax [15, p. 23]). –Each periodic solution:

L∞(R+ ×T) 3 %(t, x + P)= %(t, x), ∀(t, x) ∈ R+ ×R,
of (L1

0) satisfies sharp rates of decay in the variation of the wave speed:

TV[x,x+P [
(
a ◦ %(t, ·))6 2 P/t, ∀(t, x) ∈R+∗ ×R. (2.2)

Inequality (2.1) taken with the particular choices:

x = x, y = x + P, C(A)= 2/
(
min
v∈R /|A

′′(v)|)
can be deduced from (2.2).

A rigorous demonstration of (2.1) in the absence of periodicity
is recorded in Lax [16], Schaeffer [25] and Dafermos [7] (see also
Lucier [19] who suggested another approach). Estimate (2.1) insures that
the solution operator corresponding to(L1

0) is compact. This particularity
partly explains the interest devoted to (2.1).
7→ (1∼ ii ) The flux has one (non degenerate) inflection point— (I)1:
This situation was already studied in the 1980’s by Benilan and

Crandall [1], Dafermos [8] and Liu and Pierre [17]. These authors planed
to describe the way in which the non linearity of the fluxA(·) influences
the large time behavior of solutions to(L1

0). With other techniques and
other purposes in mind, K. Zumbrun [30] and F. Otto [23] have recently
reconsidered this question.

We refer here to the analysis of Dafermos [8] and its method of
generalized characteristics that is sufficiently sharp to produce precise
results. The dissipative mechanisms that affect the solution become
weaker the more so as the inflection point is flatter.
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Some approximate contact discontinuity may propagate (with zero
speed) in the vicinity of{(t, x) ∈ R+ ×R; %(t, x)= 0}. The occurrence
of such singularities prevents the application%(·) from instantaneously
getting a bounded variation:

Counter-example2.1 (The single law(L1
0) with A(%) = %3/3). – Let

us consider the cubic law(L1
0) associated with initial data:

%0(x) :=


0 if x < 0,
0 if 1/(n+ 1)6 x < 1/n, n ∈ 2N+ 1,
1/n if 1/(n+ 1)6 x < 1/n, n ∈ 2N∗,
1 if 16 x.

Before timet = 1/6, the admissible solution%(t, ·) is composed with
a sequence of shocks and rarefactions that don’t touch each other:

0 if x < 0,√
ξ if x = 1/n+ tξ, 06 ξ < 1/(n− 1)2, n ∈ 2N+ 1,

1/n if 1/(n+ 1)+ t/n26 x < 1/n+ t/3n2, n ∈ 2N∗,
0 if 1/n+ t/3n26 x < 1/(n− 1), n ∈ 2N∗,
1 if t/36 x.

Due to the presence of the inflection point, the total variation of%(t, ·)
remains infinite:

TVR
(
%(t, ·))= 1+

∞∑
n=1

1

n
=+∞, ∀t ∈ [0,1/6[ . (2.3)

The total variation of higher moments that is bounded att = 0 is not
changed. For allk > 2, one has:

TVR
(
%(t, ·)k)= 1+ 1

2k−1

∞∑
n=1

1

nk
<+∞, ∀t ∈ [0,1/6[ . (2.4)

Condition(I)11 isolates the pointiA in the state space. Elsewhere, we
find again the genuine non linearity restriction(VNL)1 and the corre-
sponding smoothing effect. Thereby, it is logical to recover the analogue
of (2.1) on condition that one erases what occurs in a neighborhood of
the set{(t, x) ∈ R+ × R; %(t, x) = 0}. This point of view is implicitly
exploited in a statement of Dafermos [8]. For the sake of completeness,
we record it:
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THEOREM (Dafermos [8, p. 232]). –The expressionD ◦ %(·) where
D(·) is the conjugate function ofA(·) that is:

D(%) := %A′(%)−A(%)+A(0)=
%∫

0

va′(v) dv, ∀% ∈R, (2.5)

gains theBV (R) regularity. More precisely:

TVR
(
D ◦ %(t, ·))6 2‖%0‖L1(R)/t, ∀t ∈R+∗ . (2.6)

Remark2.1. – For the cubic law, we get:D(%) = 2%3/3. In general,
on combining definition (2.5) and property(I)1, we deduce:

lim sup
06=%→0

∣∣D(%)/%3∣∣<∞. (2.7)

We observe that a behavior similar to (2.7) does not take into account
what happens in the state space near the origin. Let%− and%+ be two
states (whose values approach zero) connected by a shock. According to
(2.7), the jump%−/%+ contributes to (2.6) in accordance with an amount
that is equivalent to:

∼max
(|%−|; |%+|)2|%+ − %−|� |%+ − %−|. (2.8)

This comparison implies:

6 ∃C ∈R+∗ ; TVR(D ◦ %)> CTVR(%), ∀% ∈ BV (R).
It is in agreement with Counter-example 2.1. It shows that estimate

(2.1) is inaccessible under the single knowledge of (2.6).

7→ (1∼ iii ) Any non linear flux(NL)1: This situation is (forN = 1)
the most general. For example, it includes the case of a flux functionA(·)
whose second derivative is identically equal to zero on an open interval
of R or the case of an applicationA(·) that has many inflection points.
It combines some aspects that are regularizing and others that are not.
The compensated compactness (developed by Tartar [27] and Murat [21])
brings here qualitative indications. The Young measureνt,x(λ) associated
to some extracted sequence(%j (t, x))j∈N of uniformly bounded solutions
of (L1

0) reduces to a Dirac mass at each point where the fluxA(·)
is genuinely non linear. It implies that the sequence(a ◦ %j (t, x))j∈N
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converges strongly inL1(RN). Beyond that, it does not produce any
quantitative information. Some estimates generalizing (2.6) are needed
here. The purpose of Theorem 1.3 is precisely to remedy to this gap.

In the multidimensional setting(N > 2), the information on regularity
recorded in the literature are far from definitive. Let us refer to progresses
in this field.
7→ (2 ∼ i) A rather negative sign:An easy computation due to

Conway [6] indicates that the solution%(t, ·) can not becomeBV (RN)
for an acceleration vector even if it is submitted to:

a′(v) 6= 0, ∀v ∈R. (VNL)N

More exactly, in the context faced by Conway [6], there is one direction
ω0 in SN−1 adjusted in such a way that (the flux is called linearly
degenerate in the directionω0):

a′ω0
(v)= ω0 · a′(v)= 0, ∀v ∈R. (LD)Nω0

It follows that for all t > 0, the application

R 3 s 7→ %(t, x + sω0) ∈R
is for almost everyx in RN in L∞(R) and not better. It means that
both the loss of convexity and the addition of space variables (these two
occurrences being linked together) reduce the regularizing effects.
7→ (2∼ i) A rather positive sign: Let us now refer to:

THEOREM (Lions, Perthame and Tadmor [18, p. 179]). –Under the
non stationary constraint

∃C ∈ R+, ∃α ∈]0,1]; ∀δ ∈]0,1], ∀(τ,ω) ∈ SN,
m1
({
v; |v|6 %∞0 ,

∣∣τ + aω(v)∣∣6 δ})6 Cδα, (NS)N

the solution%(t, ·) has the Sobolev regularity:

%(t, ·) ∈Wτ,1(RN), ∀τ ∈ [0, α/(α+ 2)
[
, ∀t ∈R+∗ . (2.9)

We present below an outline of the analysis of Lions, Perthame and
Tadmor [18]. Their method relies essentially on two notions:

(1): The kinetic formulation of equation(LN0 ) introduced by Perthame
and Tadmor [24]. It substitutes for(LN0 ) a transport equation with a
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source term{
∂tf + a(v) · ∇xf = ∂vm in S ′

(
R+∗ ×RN+1

)
,

f (0, x, v)= χ%0(x)(v),
(CN0 )

that must be completed by the two following constraints:

f (t, x, v)= χ%(t,x)(v) for some% ∈L∞(R+∗ ×RN). (2.10)

06m(t, x, v) ∈Mb

(
R+∗ ×RN+1) has compact support. (2.11)

(2): The velocity averaging principle in the version presented by
DiPerna, Lions and Meyer [9].

Please note that the method following the steps (1) and (2) leads to a
regularity levelα/(α+ 2) which is definitely not optimal with respect to
the order of Besov space:

Example2.1. – ForN = 1, the condition(NS)1 taken withα = 1 is
equivalent to(VNL)1. The numberτ given by (2.9) is less than 1/3 (i.e.,
far from the foreseen value 1 obtained in (2.1)).

The step (2.9) is important since it is sufficient to guarantee the
compacity inL1(RN) of the operator solution and thereby it allows to
pass to the limit in non linear terms. According to this standpoint, it
is decisive. However there are still things lacking. First, the condition
(NS)N is rather restrictive. Anyway, it is not sufficiently precise to take
separately into account what occurs in each directionω of RNx . Moreover,
according to Example 2.1, the conclusion (2.9) applied withN = 1 and
(VNL)1 does not recover fully the classical result of Oleinik [22].

The solutionf (·) of (CN0 ) can be decomposed intofC(·) plus fS(·).
Here,fC(·) is the solution of(CN0 ) without the source term∂vm(·) but
with the initial conditionχ%0(·)(·) whereasfS(·) is the solution of(CN0 )
solved globally in space-time with the second member∂vm(·) but without
the Cauchy dataχ%0(·)(·). The functionf (·) owns at least the minimal
regularity offC(·) andfS(·). The term∂vm(·) is apparently the worst. For
this reason, the attention in [18] is turned towardsfS(·). Now, the source
term ∂vm(·) is removed by applying the scattering operator. Therefore,
the componentfC(·) is the one that becomes determinant regarding the
regularity. In fact, the problem is pushed elsewhere. The question is
now to identify constraints ong0(·) in order to recover at the timet
quantitative informations on%(t, ·). Such a program is described in the
next paragraph. In the frame of mind of [18], it gives access to a better
level of Sobolev regularity (see Corollary 5.3.4). This leads also to a new
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interpretation (that is quite sharp) of questions relative to regularity in
hyperbolic conservation laws.

2.2. An interesting case

We observe that the conditions previously imposed on the flux allow
the scalar producta′ω(v) to vanish. For instance, it is systematic under
(LD)Nω and it is taken into account by(NS)N . In fact, whenN > 2, it is
guaranteed to happen:

∀v ∈R, ∃ω ∈ SN−1; a′ω(v)= 0
(
ω ∈ a′(v)⊥). (2.12)

Hence, forN > 2, parametersα andτ involved in (NS)N and (2.9)
are necessarily limited by:

α 6 1/2, τ < 1/5. (2.13)

We pick ω̄ in such a way that:∃ v ∈ R; ω̄ · a′(v) = 0. The search
for solutions of the form%(t, x) = ρ(t, ω̄ · x) where ρ ∈ L∞(R+ ×
R) gives rise to the non linear evolution problem(L1

0) built with the
polarized applicationAω̄(·). Therefore, we necessarily have to deal with
the situation (1∼ii) or (1 ∼ iii). On account of Counter-example 2.1,
this remark means that, under hypothesis(H2) and for any fluxA(·), the
spaceBV (RN) is certainly not available for the trace%(t, ·).

The picture is even more disadvantageous since it cannot be directly
restored by non linear composition:

Counter-example2.2. –

LEMMA 2.2.1. – LetB(·) be some non vanishing function inC1(R).
Then:

∀t ∈R+∗ , ∃%0 ∈L∞c
(
RN
); ∥∥B ◦ %(t, ·)∥∥

BV (RN) =+∞. (2.14)

Proof of Lemma 2.2.1. –Define:

♦ := {v;B ′(v) 6= 0
}∩ {v;A′′(v) 6= 0

}
.

We distinguish two cases:
– (1)♦ = ∅: Let [c, d] with c < d some closed interval contained in

the interior of the support ofB ′(·). There is always a function%0(·) with:

%0(x) ∈ [c, d], ∀x ∈RN, ‖B ◦ %0‖BV (RN) =+∞.
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As the functiona(·) is constant on[c, d], the transport is linear

B ◦ %(t, x)= B ◦ %0
(
x − ta(c)), ∀x ∈ RN.

Hence we easily get (2.14).
– (2)♦ 6= ∅ : Let us fix t in R+∗ . Let [c, d] with c < d be some closed

interval included in the open set♦. We choose a point̄v in ]c, d[ and
a directionω̄ orthogonal to the vectorA′′(v̄). We can now sketch the
proof. By reproducing for the flux̄ω · A(·) in the neighborhood of̄v in
the state space the construction made at the level of Counter-example 2.1,
we produce some (one dimensional) solution%(·) such that:

%(t, x)= ρ(t,ω · x) ∈ [c, d], ∀x ∈RN, ∥∥ρ(t, ·)∥∥
BV (R) =+∞.

It implies (since the derivativeB ′(·) does not vanish on[c, d]):∥∥B ◦ %(t, ·)∥∥
BV (RN) ∼

∥∥ρ(t, ·)∥∥
BV (R) =+∞. 2

In view of (2.14), an inequality analogous to this of Dafermos (withR
replaced byRN ) is certainly not accessible. Since, in another connection,
Lions, Perthame and Tadmor [18] observe a little smoothing effect, the
problem is to know what is the regularity exactly reached and how
it expresses itself. We will bring a few details relative to these two
questions.

The notion of scattering is essential in various contexts (non linear
wave equation, Schrödinger’s equation, diffusion. . .). At first sight, its
relevance to our theme can be surprising.

Now, it was already present at the beginning. In his pioneering work, in
order to get (2.2), Lax [15] returned to timet = 0 by following backward
characteristics. Modern regularizing theory has partially left behind this
old method using characteristics. However, the short advance of Lax [15]
admits a more abstract formulation intending to absorb the most general
situations. It consists in passing through the diagram(D). This transfers
the problem towards the search of the uniform bound (1.5). We will
establish (1.5) for a large class of fluxes (Theorems 1.1 and 1.2). One is
tempted to conjecture that (1.5) is true without any assumption onA(·).

When equation(LN0 ) has constant coefficients or when the solution
of (LN0 ) is smooth up to timet , we find thatΞN

t (%0)(·) coincides with
χ%0(·)(·). As a result:

Θ(t, %0)= ‖δ%0 − δ0‖Mb(RNx ×Rv) = 2|supp%0|. (2.15)
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Thus, we observe that, under the condition(LD)N or for regular
solutions, inequality (1.5) is satisfied withC(A) = 2. The bound
(1.5) expresses a compatibility property between(LN0 ) and (T Nt ). The
equation(LN0 ) can be interpreted in view of(CN0 ). The constraint (2.10)
comes from the so-called “transport-collapse operator” introduced by
Brenier [4]. It prevents the solutionf (·) of the transport equation(CN0 )
from becoming multivalued. In particular, it implies:∣∣f (t, ·)∣∣M0,1

b
(RNx ×Rv) = 2

∣∣supp%(t, ·)∣∣<∞. (2.16)

Theorems 1.1 and 1.2 state that the return to the initial time thanks
to (T Nt ) does not change the boundedness noted line (2.16) precisely
because the tracef (t, ·) has conveniently been prepared by the non linear
evolution(LN0 ). This last hypothesis is very important. Under(NL)N , the
bound (1.5) is unstable. When the trace%(t, ·) is replaced by any bounded
function which does not descend from the resolution of(LN0 ), the bound
(1.5) is violated:

∀C ∈R+∗ , ∀s ∈ R\{t}, ∃% ∈ L∞c
(
RN
);∣∣χ%(x−(s−t )a(v))(v)∣∣M0,1

b
(RNx ×Rv) >C.

Inequality (1.4) is true under(VNL)1. In this particular case, this
result is a trivial consequence of a property given at Proposition 3.1.1. It
is satisfied under(I)1. Under(H), this is also guaranteed for a large class
of multidimensional fluxes (see Remark 3.2.2). Thus, it is now clear that
the operatorΞN

t is a key to the understanding of the smoothing effects
induced by non linearity. Using this operator allows to transcribe all the
non linear informations(LN0 ) towards the linear model(T Nt ) and thereby
to simplify notably the analysis.

The point is now to understand at the right of diagram(D) how
some control onΘ(t, %0) leads to a gain of regularity after averaging
in v. With respect to the two-microlocal point of view, such a progress
is not systematic. It only appears when the initial conditiong0(·)
is well adjusted. The manipulation preparing the Cauchy datag0(·)
gives rise, after integration with respect tov, to the advent of the
non linear expressionsB ◦ %(·) with B(·) chosen in the spaceCωA(R).
These considerations underline the importance of two complementary
ingredients which are interdependent in view of Counter-example 2.2,
the averaging procedure and the non linear composition. In Theorem
1.3, the geometry is quite rigid in so far as the averages are taken along
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a fixed family of hyperplanes (the same result can be expressed more
intrinsically by integrating along the leaves of a regular foliation). Once
such decomposition of the space variableRNx is fixed, we can adapt
to it the non linear compositions by choosing appropriately the diverse
functionsB(·). We can clarify the link between notions of averaging
and composition. The relevant applicationsB(·) are collected in the set
CωA(R). What is important here is the flatness ofB(·) in the vicinity of
zero. Following this idea, the equivalent definition:

CωA(R)≡ C1
Aω
(R)= {B;B ′ ∈ a′ω × Lip(R)

}⊂ C2(R)

is perhaps more suggestive since it brings out the singularity ofAω(·). Let
us now describe more carefully the elementsB(·) allowed when different
behaviors of the fluxv 7→A(v) are taken into account.

–CωA(R) reduces to{0} in case of(LD)Nω . Thus, under(LD)N , one has
CωA(R) equal to{0} for all anglesω in the sphereSN−1.

– It is always a non trivial subspace(CωA(R) 6= {0}) when:

∃v ∈R; a′ω(v) 6= 0. (NL)Nω

– When the polarized fluxAω(·) is subject to(I)1, the setCωA(R)
contains the conjugate function of Dafermos [8] (chooseb(·) defined by
b(v) = v if v > 0 and b(v)= 0 if v 6 0; plug thisb(·) into (1.6) and
then compare with (2.5)) but also a number of other expressions. Some
of them inherit a behavior at the origin less flat than the one observed
with D(·). For example, the polarized speedaω(·) corresponding to the
choiceb(·)≡ 1 does satisfy a better estimation than (2.7) since:

lim sup
%→0

∣∣aω(%)∣∣/%2<∞. (2.17)

– Let us assume that:

a′ω(v) 6= 0, ∀v ∈R. (VNL)Nω

Then, the restrictionCωA(R) → W 2,∞([−%∞0 ;%∞0 ]) is surjective. It
means that all non linear compositions (and in particular the linear
onev 7→ v) are allowed. However, note that condition(VNL)Nω never
happens for all the directions in the sphereSN−1 (see (2.12)). The lack of
BV regularity occurs at this particular level.

The control onΘ(t, %0) does depend on the measure of the support
of %0(·) but not on the regularity of%0(·) (beyondL1(RN)). In order
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to establish (1.7), it is sufficient to get a bound that is uniformly valid
for a dense subset (for instanceBV (RN)) of (L1 ∩L∞)(RN). This way,
the regularizing effects are evaluated at the level of “smooth” functions
yet. It is much more practical and more precise to work withBV (RN)
solutions than directly withL∞(RN) solutions. This explains partly why
the method is powerful and leads to the quantitative estimates (1.7). These
last ones are sharper than the informations obtained by compensated
compactness.

The reader should also note that functiong0(·) (in case of weak
solutions) is completely different fromχ%0(·). This change of initial
data can be surprising. When you come to think of it, it is coherent
with our purpose (and with the observation (2.1) of Lax [15]) since the
controls (1.4), (1.5) and therefore (1.7) do not depend on the features of
%0(·) (besides itsL1-norm that after all is preserved by the scattering
procedure: see (1.3)). Thus, it is justified to concentrate on the right
of diagram(D). Theorem 1.3 is established under this perspective and
captures the essential features of the regularity of solutions. Its strength
is illustrated below by a succession of remarks.

Remark2.2.1. – Let us interpret (1.7) whenN = 1. We have:

S0= {−1,1}, %̃(−1, z)= %(−z), %̃(1, z)= %(z).
Hence, Statement 1.3 says that:

TVR
(
Rax(B ◦ %)(t,1, ·))=TVR

(
Rax(B ◦ %)(t,−1, ·))

=TVR
(
B ◦ %(t, ·))

6C(B)
(
Θ(t, %0)+‖%0‖L1(R)

)
/t, (2.18)

for all functionsB(·) satisfying:

∃b ∈ Lip(R), B(%)=
%∫

−∞
b(v)a′(v) dv, ∀% ∈R.

Under(VNL)1, according to (1.4), bound (2.18) is the same as (2.1).
In this very particular case, our method rediscovers in an elegant way the
results of Oleinik [22] and Lax [15,16].

Under(I)1, the control (2.18) extends (2.6) and gives access to sharper
informations. To be convinced of this fact, just compare the limits (2.7)
and (2.17). The progress can be illustrated easily in view of Counter-
example 2.1. Dafermos [8] allows the powersk > 3 whereas Theorem 1.1
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combined with (2.18) givesk > 2. For further results in this direction, see
the Corollaries 5.3.2 and 5.3.3.

Under the general hypothesis(NL)1, the bound (2.18) puts in concrete
form the program drawn in (1∼ iii ).

The contents of Theorems 1.1, 1.2 and 1.3 in the multidimensional
framework(N > 2) is more difficult to understand. Their novelty and
their interest can be founded by the following considerations:

Remark2.2.2. – For homogeneous fluxesA(v) = cvm+1 with m > 2,
we find:

v A′(v)/A(v)=m+ 1= νA > 3, ∀v ∈ [−%∞0 , %∞0 ].
Now, an inflection point is generically not flat. In general, it is adjusted

so that:

∃mω ∈ [2,1+ n]; A(mω+1)
ω (iAω) 6= 0, (2.19)

wheremω is related to the order of annulation ofAω(·) at positioniAω :

A(j)ω (iAω)= 0, ∀j ∈ {0, . . . ,mω}.
Condition (2.19) implies(I)1 (see the Remark 3.2.1). Thus, the

constraint imposed on the flux in Theorems 1.1 and 1.2 is not at all
restrictive. It is globally verified for all polynomial (vector valued) fluxes
A(·) of degree less than three. Form = 0, we have only to consider
(LD)1. Form= 1, we have to deal both with(LD)1 and with(VNL)1.
Form= 2, the three possibilities(LD)1, (I)1 and(VNL)1 can occur.

The admissibility criterion is locally (near each fixed%̄ in the state
space) satisfied by the fluxA(·) as long as:

– there is no accumulation of inflection points:∃ε ∈R+∗ such that∀ω ∈
SN−1, either we have(LD)1 either there exists at most one inflection
point iAω ∈ [%̄− ε, %̄+ ε];

– there is noC∞ flatness:∀ω ∈ SN−1, if (I)1 is true on the interval
[%̄− ε, %̄+ ε] then∃mω ∈N such thatA(mω+1)

ω (iAω) 6= 0.
Please note also that if (2.19) is correct for all directionsω in SN−1,

the indiceα involved by(NS)N is exactly(infω∈SN−1 1/mω).

Remark2.2.3. – The estimate (1.7) is optimal in its formulation. It
means that the regularity inz of the applicationRax(B ◦ %)(t,ω, z)
cannot go beyond what is announced in (1.7). It is clear when compared
with the one dimensional solutionsρ(t,ω · x). Indeed, we find again the
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case(L1
0). We then know that theBV (R) regularity cannot be improved

(because of the formation of shocks).

Remark2.2.4. – Let us suppose to simplify the discussion that the
first componentA1(·) is strictly convex (or strictly concave) and let
us fix the directionω1 := (1,0, . . . ,0). The polarized fluxAω1(·) then
coincides withA1(·) and the spaceCω1

A (R) can (locally) be identified
withW 2,∞(R). The Radon transform evaluated for the angleω1 is simply
the integration with respect to theN − 1 last variables

x′′ = (x2, . . . , xN), dx′′ = dx2 . . . dxN .

It gives rise to the action:

〈%〉 :R+∗ ×R→R,

(t, z) 7→Rax(%)(t,ω1, z)=
∫
RN−1

%(t, z, x′′) dx′′.

Theorem 1.2 asserts aBV (R) control over 〈%〉(t, ·). We observe
that such an information is certainly not easily accessible since the
expression〈%〉(·) is visibly the solution of no (non linear) partial or
integral differential equation. For example, taking the average of(LN0 )
with respect to the last variables, we only get:

∂t〈%〉(t, z)+ ∂z
{ ∫
RN−1

A1 ◦ %(t, z, x′′) dx′′
}
= 0,

where the integration and the composition cannot be interchanged. This
difficulty is inevitable when we restrict our attention to the space-time
variables. On the other hand, it is removed by the kinetic interpretation:

E
(
%(t, z)

)=E(0)+ ∫
R

E′(v)χ%(t,z)(v) dv, ∀E ∈ C1(R). (2.20)

Indeed, it is now possible to pass under the integral sign:

Ra

(∫
R

E′(v)χ%(·)(v) dv
)
(ω, z)

=
∫
R

E′(v)Rax
(
χ%(·)(·))(ω, z, v) dv. (2.21)
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From our perspective, property (2.21) is crucial in so far as improve-
ment (1.7) stems from (2.21) exploited on the right of diagram(D).

Now there is still an objection since in general the Radon transform and
the kinetic action cannot be interchanged:Ra(χ%)(ω, z, v) is not equal
to χRa%(ω,z)(v). This lack of commutation explains why the following
statement:

∀ω ∈ SN−1, ∀E ∈ C2(R), ∃C(E) ∈R+; ∀t ∈R+∗ ,∣∣E ◦ %(t, ·)∣∣M1
b,ω
(R) 6 C(E)

∣∣E ◦ %0(·)
∣∣
M1

b,ω
(R)

is not directly available.
Such inequalities have not been demonstrated. Their validity (in

particular when the fluxE(·) is not convex) is not at all sure (even for
the special choiceE ≡ I). These inequalities are typical of a propagation
theorem where we have to estimate%(t, ·) knowing some information
on %0(·). This link between the trace%(t, ·) and the Cauchy data%0(·)
compels to work on the left of diagram(D). Our scattering process allows
precisely to remove this obligation.

The information (1.7) is distinct from (2.9). On the one hand, the
condition(NS)N is not required. It means that the gap between(LD)N
and (NS)N is now filled. We see that the informations delivered are
all the less precise as we approach the linear degenerate case (in
particular, inequality (1.7) is empty under(LD)N–(2 ∼ i)) . On the
other hand, the regularities given in (1.7) and (2.9) don’t share the
same nature. They cannot be compared (see Remark 5.1.1). In fact,
the smoothing effect (1.7) can with difficulty lead to some Sobolev
Wτ,p(RN) interpretation. However, it is easily expressed in the class
Hτ,τ̄ (R×RN−1) of Hörmander. In other words, it is possible to derivate
a little in each directionω certain well adjusted non linear expressions of
%(·) (that depend on the selected angleω) on condition that we accept to
lose some derivatives perpendicular toω:

PROPOSITION 2.2.1 (Two-microlocal smoothing effect). –Fix any
decomposition ofRNx in a family of parallel hyperplanes with normal
unit vectorω (see(0.1) for notations). We have:

∀A ∈C2+n(R;RN), ∀B ∈ CωA(R), ∃C(A,B) ∈ R+;
∀τ ∈ ]−∞, 1

2

[
, ∀τ̄ ∈ ]−∞,−N+1

2

[
, ∀t ∈R+∗ ,
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Hτ,τ̄ (R1

y′×RN−1
y′′ )

6C(A,B)(1+ t)
t

(
Θ(t, %0)+ ‖%0‖L1(RN)

)
. (2.22)

Remark2.2.5. – This last statement is interesting only whenN > 2. It
thus cannot be deduced from (2.9) (or from Corollary 5.3.4). Indeed the
parameterτ involved in inequality (2.9) is according to (2.12) far from
the limit 1/2 given at (2.22).

3. THE SCATTERING OPERATOR

3.1. The strictly convex case(N = 1)

We point by this terminology the context(1∼ i) out. This situation is
particularly favourable:

PROPOSITION 3.1.1. –Assume(VNL)1. Then:

∀%0 ∈L∞c (R), ∀(t, s) ∈R+ × [0, t], ∃%̃(t, s, ·) ∈L∞c (R);
supp%̃(t, s, ·)⊂ supp%0+ tV ,
χ%(t,x−(s−t )a(v))(v)= χ%̃(t,s,x)(v). (3.1)

Furthermore, constraint(3.1) characterizes the physical solution%(·)
among all possible weak solutions of equation(L1

0).

The contents of this statement is first illustrated by an example.

Example3.1.1. – We consider the Bürger’s law associated with initial
data:

%0(x) :=
{−1 if x < 0,

1 if x > 0.

Two weak solutions%1(·) and%2(·) will be examined:

%1(t, x)= %0(x), %2(t, x) :=

−1 if x 6−t,
ξ if x = ξ t, −1< ξ < 1,
1 if t 6 x.

We draw in stippled line the corresponding backward characteristics (see
Fig. 1).

On the left picture, the stippled straight lines are crossing each other
at each intermediate times ∈ [0, t]. It means that coming back with the
operatorΞ1

t leads to the formation of a fold. In Brenier [4] and Perthame
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Fig. 1.

and Tadmor [24], this fold is corrected (and forbidden!) by the source
term∂vm(·) of (C1

0). In the absence of∂vm(·), when looking at(T 1
t ) with

gt(·) that coincides withχ%1(t,·)(·), a fold appears. Thus, we reject the
function%1(·) since it fails to satisfy criterion (3.1).

On the right picture, the backward characteristics collide only at time
t = 0. It thus creates a centered compression wave, placed at(0,0) which
gives rise to a shock for negative times. But it does not matter since the
process stops att = 0. As a result, the function%2(·) is acceptable with
regard to criterion (3.1).

The solution sorted out by the condition (3.1) is the physical one.

It is well known that the evolution(L1
0) is not reversible. With the help

of the trace%(t, ·), it is not possible to recover the values of the solution
%(·) inside the cones of determination descended from the discontinuities.
The scattering process completes these gaps by smoothing%(·) in the
places where the information is lost.

The non linear evolution which governs the formation of shocks is
excluded to be replaced by a linear model. The graph ofg(·) that is
{(s, x, v) = (s, x, %̃(t, s, x)); (s, x) ∈ [0, t] × R} is hence formed by
straight lines whose projections in(s, x) coordinates get settled in a
succession of fans (Fig. 2)

We now leave these formal considerations in order to present a rigorous
demonstration:

Proof of Proposition 3.1.1. –Applied to initial data%0(·) in BV (R),
the criterion of reduction (3.1) is issued from two reasons. On the one
hand, the well-known deterministic principle (evoked in Lax [15]) im-
poses that every point can be connected by a backward drawn character-
istic to a point on the initial axis (for a convex law, characteristics may
enter but may never emerge from a shock curve). On the other hand, the
wave speed is monotone between the left and right values of%(t, ·) on
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Fig. 2.

a shock which prevents the solutiong(s, ·) of being multivalued when
coming back by the free transport equation.

In particular, the different characteristics passing through the ex-
tremal points of supp%(t, ·) have null speed. It leads to inclusions
supp%̃(t, s, ·)⊂ supp%(t, ·)⊂ supp%0+ tV which justify (3.1).

We just have explained why the assertion of Proposition 3.1.1 holds
for %0(·) in the spaceBV (R). To cover the case%0(·) in L∞(R), the
reasoning rests on a smoothing argument. Let(%n(·))n∈N be a sequence
of Cauchy data subjected to:

lim
n→∞‖%n − %0‖L1(R) = 0, %n ∈ BV (R), ∀n ∈N. (3.2)

Let (%̄n(·))n∈N with %̄n(0, ·) ≡ %n be the sequence of corresponding
solutions. By virtue of Proposition 3.1.1, for eachn ∈N, we have:

∃%̃n(t, s, ·) ∈L∞c (R); χ%̄n(t,x−(s−t )a(v))(v)= χ%̃n(t,s,x)(v). (3.3)

Moreover, a straightforward computation yields:

‖χu − χū‖L1(R2) = ‖u− ū‖L1(R), ∀(u, ū) ∈L∞c (R)2. (3.4)

Since the solution operator is a contraction in the spaceL1(R) (see
Kruz̆kov [14]), we get from (3.2):

lim
n−→∞

∥∥(%̄n− %)(t, ·)∥∥L1(R) 6 lim
n−→∞‖%n − %0‖L1(R) = 0, ∀t ∈ R+.

TheL1 norms of solutions to(T Nt ) are unchanged. Hence:

lim
n−→∞

∥∥χ%̄n(t,·−(s−t )a(·))(·)− χ%(t,·−(s−t )a(·))(·)∥∥L1(R2)
= 0. (3.5)
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Combining (3.3), (3.4) and (3.5), we deduce that, for all(t, s), the
sequence(%̃n(t, s, ·))n∈N is of Cauchy type. Therefore it converges in
L1(R) to a function%̃(t, s, ·) which is necessarily subjected to (3.1).

The entropy condition (in its geometrical formulation) requires that the
different characteristics starting on either side of a discontinuity curve
when continued in the direction of increasingt intersect the line of
discontinuity. By reversing the picture (see Example 3.1.1), we exactly
recover (3.1). This observation shows that (3.1) characterizes physical
solutions, as asserted.2

As a direct consequence of Proposition 3.1.1, we infer Theorem 1.1
with C(A)= 2. Applying Theorem 1.3, we then deduce (2.1).

Remark3.1.1. – Inequality (1.4) can be refined. Letx0 andy0 be the
endpoints determined by condition conv supp%0 = [x0, y0]. It is well
known (see Lax [15, p. 19]) that:

conv supp%(t, ·)⊂ {x;x − a(0)t ∈ [x0, y0] +C(A)
√
t
}
. (3.6)

It follows that:

Θ(t, %0)6 2min
(|supp%0+ tV |;y0− x0+ 2C(A)

√
t
)
.

Remark3.1.2. – According to identities (3.1) and (1.2), we have (in
the weak sense) for all positive timet :

ta′(v)∂xg(t, x, v)=−δ%̃(t,0,x−ta(v))(v)+ δ%(t,x)(v)6 δ%(t,x)(v).
After integration with respect tov, this inequation yields the one-sided-

Lipshitz condition of Oleinik [22]:

∂x(a ◦ %)(t, x)6 1/t, ∀x ∈R, ∀t ∈R+∗ .
Since(T 1

t ) is reversible, we notice by the way that%̃(t,0, ·) is also in
BV (R) with a bound similar to (2.1). Observe also that control (1.4) is
no more verified if the trace%(t, ·) is replaced by some application%t (·)
that only satisfies at the timet the compatibility condition on the jumps.
Indeed, inequality (1.4) is a manifestation of the fact that the function
%(·) is an admissible solution on all the interval[0, t] and not only on
some subinterval of[0, t].

The beautiful property (3.1) fails in the context(1∼ ii ). There is no
reason forg(s, ·) to remain a graph for every values ofs in [0, t]. This
point is clear in view of the following counter-example:
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Fig. 3.

Counter-example3.1. – Let us pick the mesh:

xN̄,εn := 1+ nε− 4−n, n ∈ {0, . . . , N̄}, (ε, N̄) ∈R+∗ ×N∗.
Now, consider the cubic law(L1

0) associated to the initial data (that is
suitably truncated for large values ofx):

%
N̄,ε
0 (x) :=


1 if x < 0,
(−1)n2−n if xN̄,εn−1 < x < x

N̄,ε
n , n ∈ {1, . . . , N̄},

(−1)N2−N if xN̄,ε
N̄
6 x.

The corresponding solution%N̄,ε(·) is composed of a succession ofN̄
shocks that, forn taken in{0, . . . , N̄ − 1}, issue from abscissaxN̄,εn with
slope 4−n and reach at time 1 the position 1+ nε. Letting parameterε
tends to zero yields a compression wave placed in position(t, x)= (1,1).
Moreover:

lim
ε→0

∥∥(%N̄,ε − %N̄,0)(1, ·)∥∥
L1(R) = 0,

with:

%N̄,0(1, x) :=
{

1 if x < 1,
(−1)N̄2−N̄ if 1 < x.

The graph of functionu(·) is completed at the discontinuity points by
a vertical segment:

us(x) := (1− s)u(x−)+ su(x+), s ∈ [0,1]. (3.7)

The coming back by the transport equation(T 1
0 ) of the curve

C1
u :=

{
R2 3 (x, v)= (x,us(x)); x ∈R, s ∈ [0,1]}
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is the path:

C0
u :=

{
R2 3 (x, v)= (x − us(x)2, us(x)); x ∈R, s ∈ [0,1]}.

The jumpsu(x−)/u(x+) that involve states with the same sign (i.e.:
the productu(x−)u(x+) is positive) are replaced by a fan according to
Example 3.1.1.

The mixed jumpsu(x−)/u(x+) with switching sign (i.e.: the product
u(x−)u(x+) is negative) lead to the formation of a fold (double-valued
solution) that at initial time is confined inside the interval of extremities
x −min(u(x−)2, u(x+)2) andx.

Thus, the curveC0
%N̄,ε(t,·) is composed withN̄ folds that come together

and accumulate as parameterε tends to zero in the vicinity of abscissa
x = 1. Therefore:

∃ε ∈R+∗ ;
∥∥∂vΞ1

1

(
%
N̄,ε
0

)
(1, ·)∥∥Mb(R) = 4N̄ . (3.8)

The criterion (3.1) is clearly in contradiction with (3.8). It is not stable
after passing to the limit since:∥∥∂v(χ%N̄,0(1,1+v2)(v)

)∥∥
Mb(R) 6 4 6= 4N̄ , ∀N̄ ∈N \ {0,1}.

Identity (3.8) shows that an uniform estimate of the type:

∃C ∈R+; sup
x∈RN

∥∥∂vΞN
t (%0)(x, ·)

∥∥
Mb(R) 6C, ∀%0 ∈L∞c

(
RN
)

is not true. On the other hand, it does not contradict (1.4) since:

sup
N̄∈N

∣∣Ξ1
1

(
%
N̄,ε
0

)∣∣
M0,1

b
(R1
x×Rv) 6 2 sup

N̄∈N

∣∣supp%N̄,ε0

∣∣+ N̄∑
n=1

2

4n+1
<∞. (3.9)

Equality (3.1) implies (1.4) withC(A) = 2. It is sufficient in order to
deduce (1.4) but not necessary. Fortunately, in so far as it is violated by
Counter-example 3.1.1 and, with greater reason, it is false in the extended
situations (1∼ iii), (2 ∼ ii ) . . . . There, it has to be replaced by a more
flexible constraint which incorporates the possibility for the acceleration
a′(·) to be equal to zero. In this direction, the bound (1.4) is adequate. Its
relevance is borne out by the next paragraph.
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3.2. The case with an inflection point(N = 1)

Our next project is to prove theorem 1.1 in the context(1∼ ii) . For
definiteness, we can suppose thatiA = 0 and we can normalize the flux
so that: 

A(0)=A′(0)=A′′(0)= 0,

vA′′(v) > 0, ∀|v| ∈ ]0, %∞0 ],
νA := inf{vA′(v)/A(v); |v| ∈ ]0, %∞0 ]}> 1.

(I)1

Proof of Theorem 1.1. –It is sufficient to obtain the uniform control
(1.4) for all BV solutions%(·) corresponding to smooth initial data%0(·).
Then, passing to the limit, we easily recover (1.4) if%0(·) is in L∞c (R).

When the fluxA(·) has an inflection point, the extremal backward char-
acteristics are no longer necessarily straight lines. Nevertheless, Dafer-
mos [8] established that these characteristics are endowed with a spe-
cial geometric structure. Under assumption(I)1, the maximal backward
characteristicζ±(·) through(t, x±) is a convex Lipschitzian curve along
which the speeda ◦ %(s, ζ(s)+) is continuous and decreasing. As a con-
sequence, it is not sure that the value%(t, x) can be connected to some
%0(x̃) (see Serre [26] — Chapter 2.5). This particularity makes the com-
putations relative to the variation of%(·)more complicated. This problem
is faced in Zumbrun [30]. We present here another point of view that fi-
nally leads to more precise information.

Fix at the timet > 0 some position(t, x) where a discontinuity (of
order zero) occurs. We denote byζ−(·) andζ+(·) the maximal backward
characteristics issued respectively from the positions(t, x−) and(t, x+).
According to this definition, we have:

ζ±(t)= x, ζ−(s) < ζ+(s), ∀s ∈ [0, t[ .

v+(t) := dζ+
ds

(t)= a ◦ %(t, x+) < v−(t) := dζ−
ds

(t)= a ◦ %(t, x−).

06 v±(s) := dζ±
ds

(s)= a ◦ %(s, ζ±(s)+), ∀s ∈ [0, t[ . (3.10)

Let |A| be the area of the regionA delimited byζ−(·), ζ+(·) and the
initial axis:

|A| :=
t∫

0

∣∣ζ+(s)− ζ−(s)∣∣ds.
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Fig. 4.

When bothζ−(·) and ζ+(·) are classical characteristics (it means:
straight lines), we have:

a ◦ %(s, ζ±(s)+)= v±(t), ∀s ∈ [0, t].
It follows that:

|A| = t2(v−(t)− v+(t))/2. (3.11)

When ζ−(·) (or ζ+(·)) is incurved, identity (3.11) is no more valid.
Nevertheless, we can substitute for (3.11) a convenient lower bound:

LEMMA 3.2.1. –In all cases:

|A|> µ
3
A t

2

432

(
v−(t)− v+(t)), 0<µA := 1− 1

νA
< 1. (3.12)

Proof of Lemma 3.2.1. –The key point is a good understanding of what
happens when two states%− and%+ are separated by a mixed shock (that
is a shock with%− and%+ on both sides of the inflection point; it means
here:%−%+ < 0) (Fig. 5).

Oleinik’s condition is satisfied for a discontinuity%−/%+ satisfying
%+ − %− > 0 (or< 0) when the chord that joins the points(%−,A(%−))
and(%+,A(%+)) lies below (or above) the graph ofA(·) between%− and
%+. To simplify the discussion, we will only treat the case%− > 0. The
other situation%− < 0 is completely similar.

Oleinik’s condition means that the right state%+ involved when
constructing a mixed shock must be strictly confined inside%l+ and 0
where the endpoint%l+ (which corresponds to a right contact shock) is
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determined by the implicit relation:

A
(
%l+
)−A(%−)− (%l+ − %−)a(%l+)= 0. (3.13)

Given%− > 0, Eq. (3.13) admits a unique negative solution. We define
the transfer functionsT andT̄ by the relations:

a(%−)= T (a(%l+)), %− = T̄ (%l+), ∀%− > 0.

In view of the preceding figure, we have for all admissible states%+ in
the interval[%l+,0[ :

06 a(%+)6 a
(
%l+
)
<
A(%−)
%−

< a(%−), ∀%− ∈ ]0, %∞0 ]. (3.14)

Remark3.2.1. – For example, for the cubic law, we find:

T̄ (v)=−2v, ∀|v| ∈ ]0, %∞0 ] and T (v)= 4v, ∀|v| ∈ ]0, (%∞0 )2].
The constraint(I)1 is not at all restrictive since an inflection point is

generically adjusted so that(I)12 is true. Indeed, in general the property
(2.19) is satisfied. It yields immediately:

lim
%→0

%A′(%)
A(%)

= lim
%→0

(m+ 1)!A(m+1)(0)%m+1

m!A(m+1)(0)%m+1
=m+ 1> 3. (3.15)

Now, the application% 7→ %A′(%)/A(%) is clearly continuous on
[−%∞0 ,0[∪ ]0, %∞0 ]. In view of (3.14), it is strictly above 1 on this set.
Combined with (3.15), it shows that numberνA is strictly above 1.

Condition (I)1 also extends to certain fluxes whose derivatives up to
any order are equal to zero at the origin (for instance consider the function
that to % associates the expression sgn(%)e−1/%2

). However, there still
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exists some fluxes that have a degenerate inflection point (in the sense
that lim inf%→0%A

′(%)/A(%) = 1). It does not mean that the associated
estimate (1.4) is inexact. We will indeed not exploit all the margins that
are available.

Combining (3.14) and(I)1, we find:

a(%−)> a(%−)− a(%+)> a(%−)
(

1− A(%−)
%−a(%−)

)
>µAa(%−)> µA a(%+), ∀%+ ∈ [%l+,0[ . (3.16)

Inequality (3.16) is important. It means that the difference between
a(%−) anda(%+) cannot be fixed arbitrarily. This property distinguishes
mixed shocks from usual shocks (with%−%+ > 0) for which the number
a(%−)− a(%+) can be taken as small as wanted. As a consequence, we
can refine (3.12):

LEMMA 3.2.2. –Suppose that(t, x) is the position of a right contact
shock. Then the corresponding areaA is bounded above by:

|A|> µ3
At

2v−(t)/216. (3.17)

Proof of Lemma 3.2.2. –By hypothesis:

v−(t)= a ◦ %(t, x−)= T (v+(t))= T (a ◦ %(t, x+)).
For s ∈ [τ, t], the straight line issued from the position(s, ζ+(s) with

slopeT (v+(s)) intersects the curveζ−(·) at the point(ϕ0(s), ζ− ◦ ϕ0(s))

(see Fig. 4). It is necessarily tangent to the curveζ−(·). For s ∈ [0, τ ],
it reaches the initial axis. Ifζ−(·) is a straight segment, we haveτ = t .
Otherwise, we get 0< τ < t and by conventionϕ0(τ )= 0.

The pathζ−(·) can obviously be recovered by the family of its tangent
lines: {

(r, x); x = rT (v+(s))+ ζ+(s)− s T (v+(s)}s∈[τ,t ]. (3.18)

The biggerT , the more these lines are inclined. This fact implies that
the areaA is increasing withT :

T1(v)> T2(v), ∀v ∈ ]0, %∞0 ]⇒ |AT1|> |AT2|.
Since by(I)1 and (3.14) the authorized transfer functions are subject

toT (v)> νAv, we only have to work with the special choiceT (v)= νAv.
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This remark will notably simplify the analysis. An easy computation
leads to an explicit formula for the gap:

1(s) := s − ϕ0(s)=−µA v+(s)/v′+(s) > 0, v′+(s) < 0, ∀s ∈]τ, t].
Let us fixα ∈ [0,1] and setϕα(s) := ϕ0(s)+ α1(s). At this stage, we

need some intermediate result:

LEMMA 3.2.3. –

ζ+ ◦ ϕα(s)− ζ+(s)+ (1− α)νA1(s)v+(s)
> α(1− α)(νA− 1)1(s)v+(s),
∀(α, s) ∈ [0,1] × [τ, t]. (3.19)

Proof of Lemma 3.2.3. –Let us consider the domainAs delimited on
the left by the inclined segment{(ϕα(s), ζ+(s)− νA(1− α)1(s)v+(s));
α ∈ [0,1]}, on the right by the piece of curve{ζ+(r); r ∈ [ϕ0(s), s]} and
below by the horizontal line{(ϕ0(s), x); ζ−(s)6 x 6 ζ+(s)}. We clearly
have the inclusions:As ⊂A, ∀s ∈ [τ, t] (Fig. 6).

Now, the formation of a right contact shock comes necessarily from
the presence of a rarefaction wave on the left side (that possibly radiates
out of some other contact discontinuity). Exploiting this particularity, we
can forget the exact history of the formation of the curveζ+(·).

We can replace insideAs the exact solution by a function (still denoted
by %(·)) that is constant along segments. The slope of a segment issued
from a point (s, ζ+(s)) on ζ+(·) must coincide withνAv+(s) and the
function%(·) is there taken to be constant equal toT̄ (%(s, ζ+(s)+). The
entropy condition implies that these segments cannot cross one other.
This manipulation allows to deal with backward characteristics which
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are partly right contact shocks and partly (straight line) characteristics.
In fact, it induces a modification only between regions delimited by
backward characteristics issued from endpoints of straight segments
included inζ+(·) (where the true characteristics are replaced by a family
of straight parallel lines; see the preceding picture).

We perform the analysis at the level of the aforesaid model, withs

fixed. We introduce the position:

xα(r) := ζ+(r)− νA(r − ϕα(s))v+(r), r ∈ [ϕα(s), s], (3.20)

and the width:

lα(r) := ζ+ ◦ ϕα(s)− xα(r), r ∈ [ϕα(s), s]. (3.21)

The curveζ+(·) is completely determined by the speeds of propagation
of the incoming rarefaction wave. We introduce the family of functions(
Hα(·))α∈[0,1] defined by the relation:

Hα
(
xα(r)

)= T̄ (%(r, ζ+(r)+)), r ∈ [ϕα(s), s]. (3.22)

With this convention, the applicationHα(·) is increasing on the interval
[ζ− ◦ ϕα(s), ζ+ ◦ ϕα(s)]. In fact, whenα ∈]0,1], we recover a more
subtle estimate that expresses the regularizing effect due to spreading of
rarefaction waves. To see this point, just consider the positions:

z(y) := y + α1(s) a ◦H0(y), y = x0(r), r ∈ [ϕ0(s), s],
and observe that we have by construction:

Hα
(
z(y)

)=H0(y), H ′α(z)> 0. (3.23)

The derivation of (3.23) with respect toy ensures that:

06 α1(s)H ′α
(
z(y)

)
a′ ◦H0(y)= 1− [H ′α(z)/H ′0(y)]6 1.

Using (3.23) again, we deduce:

06 a′ ◦Hα(z) H ′α(z)6 1/
[
α1(s)

]
. (3.24)

We plug (3.22) inside (3.20) and use definition (3.10) to find:

lα(r)= ζ+ ◦ ϕα(s)− ζ+(r)+ (r − ϕα(s))a ◦Hα ◦ xα(r).
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After derivation with respect tor , it yields:

l′α(r)= (νA − 1) v+(r)/
[
1+ (r − ϕα(s))a′ ◦Hα ◦ xα(r)H ′α ◦ xα(r)].

By virtue of (3.24) and the decreasing ofv+(·), we infer that:

l′α(r)> α(νA− 1)v+(s), ∀r ∈ [ϕα(s), s].

Hence, after integration fromr = ϕα(s) to r = s:

lα(s)> (νA− 1)α (1− α)1(s)v+(s), ∀α ∈ [0,1],

which is exactly (3.19). 2
As a direct consequence of (3.19), we find:

|As| =1(s)
1∫

0

lα(s) dα > (νA− 1)v+(s)1(s)2/6. (3.25)

To obtain Lemma 3.2.2, we argue by contradiction. We suppose that:

(νA − 1)v+(s)1(s)26 µ3
At

2v−(t)/36, ∀s ∈ [τ, t], (3.26)

and show that it is impossible. Therefore:

∃s̄ ∈ [τ, t]; (νA− 1)v+(s̄)1(s̄)2>µ3
At

2v−(t)/36, (3.27)

which guarantees (3.17) since by (3.25) and (3.27):

|A|> |As̄ |> (νA − 1)v+(s̄)1(s̄)2/6>µ3
At

2v−(t)/216.

We then interpret (3.26) as a differential inequality

d

ds

{
v+(s)−1/2}> 3

t
√
v+(t)

, ∀s ∈ [τ, t],

which requires after integration:

06 3(t − s)
t
√
v+(t)

6 1√
v+(t)

− 1√
v+(s)

6 1√
v+(t)

, ∀s ∈ [τ, t]. (3.28)
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Fig. 7.

Assumption (3.26) written withs = τ gives:

1(τ)6 µA t
6

(
µA v−(t)

(νA − 1) v+(τ )

)1/2

= µA t
6

(
v−(t)
v−(τ )

)1/2

6 µAt
6
.

(3.29)
Inequality (3.28) is consistent only ift − τ 6 t/3. Combined with

(3.29), it yields:

0< t = t − τ +1(τ)6 t

3
+ µA t

6
6 t

2
,

which is the expected contradiction.2
Finally, we turn to the proof of Lemma 3.2.1. According to inequa-

lities (3.11) and (3.17), cases consisting in a classical shock and in a right
contact shock are already gained. Thus, we can restrict our attention to
the other situations. Now, fors ∈ [τ±, t] with 0< τ− < t or 0< τ+ < t ,
the backward characteristicζ±(·) is a straight line segment whereas it
becomes strictly convex at timeτ±.

We cut up the surfaceA in three partsA1,A2 andA3 defined on Fig. 7.
Clearly:

|A| = |A1| + |A2| + |A3|. (3.30)

|A1|> (t − τ+)2(v−(t)− v+(t))/2. (3.31)

Since it appears a right contact shock at the position(τ+, ζ+(τ+)), we
can apply lemma 3.2.2 to the areaA3 to get:

|A3|> µ3
A τ

2
+ T

(
v+(τ+)

)
/216> µ3

A τ
2
+ v−(t)/216. (3.32)

Combining (3.30), (3.31) and (3.32), we find (3.12). The proof of
Lemma 3.2.1 is complete.2
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Fig. 8.

We now study the passage between two successive discontinuities. The
notations are as before. We just add a prime′ when dealing with the shock
on the right (and not to mark a derivation) (Fig. 8).

We introduce the straight line segment:

L+ := {(s, y); τ ′− 6 s 6 t, y = ζ+(τ ′−)+ v+(τ ′−)(s − τ ′−)}.
We denote byB the surface delimited above by the horizontal line

s = t , on the left by the curveζ+(·) and on the right byL+. We designate
by C the surface bordered bys = t , s = 0, L+ and ζ ′−(·). With this
convention, the domainC is absent ifτ ′− > 0.

LEMMA 3.2.4. –

max
(|B|; |A|)>µ3

At
2v+(τ ′−)/2000, |C|> t(ζ ′−(0)− ζ+(0))/2.

Proof of Lemma 3.2.4. –Let us consider the intermediate time:

τ̄ :=min
{
s ∈ [τ ′−, t]; 2v+(s)> v+(τ ′−)

}
.

If τ̄ 6 t/2, we estimate|B|:

|B|> (t − τ̄ )2 (v+(τ ′−)− v+(τ̄ ))/2> t2 v+(τ ′−)/16.

If τ̄ > t/2, we refer to Lemma 3.2.2 applied to the position(τ̄ , ζ+(τ̄ )).
Since the corresponding area is obviously less than|A|, it yields:

|A|> µ3
Aτ̄

2T
(
v+(τ̄ )

)
/216> µ3

A t
2 v+(τ ′−)/2000.
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If ζ ′−(0) > ζ+(0), the maximal backward characteristicζ ′−(·) is neces-
sarily a straight line that does not crossL+. Therefore, the minoration
given for |C| is immediate. 2

Finally, we implement the preceding lemmas in order to get (1.4). By
approximation, it suffices to obtain (1.4) for a solution%(·) that has a
finite number of discontinuities. We mark their positions at timet :

−∞< c0(t)6 c1(t) < · · ·< cJ (t)6 cJ+1(t) <+∞.

In this interpretation,c0(t) and cJ+1(t) denote the endpoints of the
convex hull of supp%(t, ·). By convention, a symbol is indexed byj when
dealing with the discontinuitycj (t). The strip[0, t]×R is partitioned into
J + 1 regionsR1, . . . ,RJ+1 bordered according to:

Rj := {(s, x); 06 s 6 t, ζ j−(s)6 x 6 ζ j+1
− (s)

}
, 06 j 6 J.

The complete graph (see (3.7)) of the restriction%̄j (t, ·) of the trace
%j (t, ·) on the interval[cj (t), cj+1(t)[ brings a contributionΘj(t, %0).
More precisely:

Θj(t, %0) :=
∥∥∂v{χ%̄j (t,x+ta(v))(v)}∥∥Mb(R2)

.

Our aim is to control eachΘj(t, %0). From this perspective, we classify
the domainsRj according to the nature of the shock involved at the
position(t, cj (t)).

a) Usual shock (%−%+ > 0). In the convex framework, it is the only
situation that occurs. A short computation yields:

Θj(t, %0)/2= t(vj−(t)− vj+(t))+ ζ j+1
− (0)− ζ j+(0)

+ cj(t)− tvj+(t)− ζ j+
(
τ
j+1
−
)+ τ j+1

− v
j
+
(
τ
j+1
−
)

6 t
(
v
j
−(t)− vj+(t)

)+ tvj+(τ j+1
−
)+ ζ j+1

− (0)− ζ j+(0).
b) Mixed shock (%−%+ < 0). Discontinuities with switching sign lead

to the formation of a fold (see the picture of Counter-example 3.1.1)
whose width evaluated ats = 0 is equal totvj+(t). We have to incorporate
this new contribution in the preceding expression:

Θj(t, %0)/26 tvj−(t)+ tvj+
(
τ
j+1
−
)+ ζ j+1

− (0)− ζ j+(0).
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Combining Lemmas 3.2.1, 3.2.4 and (3.16), we find:

tΘj (t, %0)6 8000
(∣∣Aj ∣∣+ ∣∣Bj ∣∣+ ∣∣Cj ∣∣)/µ4

A, ∀j ∈ {0, . . . , J }.

We only need to sum the contributionsΘj(t, %0) to get:

tΘ(t, %0)= t
J∑
j=0

Θj(t, %0)6
8000

µ4
A

t∫
0

∣∣supp%(s, ·)∣∣ds.
Thereby, the bound (1.4) becomes an easy consequence of the finite

speed of propagation.2
Remark3.2.2. – When the fluxA(·) has several inflection points, it

becomes more difficult to unravel the intricacies of the shock set (see
Dafermos [8]). Inequalities (3.16) are no more true. In particular, a
discontinuity could be simultaneously a right and left contact shock. At
present, we are not able to take into account these non local effects.
However, since locally the situation is acquired, the bound (1.4) is
probably true whatever the number of inflection points is.

3.3. The multidimensional case(N > 2)

We use in this paragraph the notations of Vol’pert [29]:Γ (%) is
the set of points of jump for%(·); ν denotes a unit vector normal to
Γ (%); 4%(t, x)= (lν%− l−ν%)(t, x) is the jump of%(·) at (t, x) . . . . We
introduce the distribution:

D(t, ·) := div(a ◦ %)(t, ·)=
N∑
i=1

∂xi (ai ◦ %)(t, ·) ∈ S ′
(
RNx
)
,

and the expressions:

Bi(x, v) :=
v∫

−∞
a′i (r)b(x, r) dr, ∀(x, v) ∈RNx ×Rv, i ∈ [1,N].

LEMMA 3.3.1. –The mass of the divergence of the wave speed is
controlled byΘ(t, %0) whatever the fluxA(·) is:

t
∥∥D(t, ·)∥∥Mb(RN) 6Θ(t, %0), ∀(t, %0) ∈R+∗ ×L∞c

(
RN
)
. (3.33)
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Assume thatA(·) is admissible. Then, the converse is true. There exists
some positive constantC(A) such that:

Θ(t, %0)6 2|supp%(t, ·)| +C(A)t∥∥D(t, ·)∥∥Mb(RN). (3.34)

Proof of Lemma 3.3.1. –By definition, numberΘ(t, %0) is the same
as:

Θ(t, %0)= sup
{∣∣∣∣ ∫
RN

∫
R

g0(x, v)∂v
[
b
(
x + ta(v), v)]dx dv∣∣∣∣;

b ∈ C1
c (R

N
x ×Rv), ‖b‖C0(RNx ×Rv) 6 1

}
.

The different integral terms which occur in this supremum are
interpreted by adding a well adjusted null contribution:∫ ∫

g0(x, v)∂v
[
b
(
x + ta(v), v)]dx dv

=
∫ ∫

g(t, x, v)∂vb(x, v) dx dv

+ t
∫ ∫

g(t, x, v)a′(v) · ∇xb(x, v) dx dv

− t
∫

div
(∫

g(t, x, v)b(x, v)a′(v) dv
)
dx

=
∫
b
(
x,%(t, x)

)
dx −

∫
b(x,0) dx

+ t
N∑
i=1

∫ {
(∂xiBi)

(
x,%(t, x)

)− ∂xi[Bi(x,%(t, x))]}dx
=
∫
b
(
x,%(t, x)

)
dx −

∫
b(x,0) dx

− t
∫

RN\Γ (%)
b
(
x,%(t, x)

)
D(t, x) dx

− t
∫
Γ (%)

eν(t, x)4%(t, x)HN−1(dx), (3.35)

where we have used the functional superposition:

eν(t, x) := ˆba′ν
(
x,%(t, x)

)= 1∫
0

(ba′ν)
(
x, l−ν%(t, x)+ r4%(t, x)) dr.



C. CHEVERRY / Ann. Inst. Henri Poincaré 17 (2000) 413–472 455

Identity (3.35) written withb(·) independent ofv yields:∫ ∫
g0(x, v) ∂v

[
b
(
x + ta(v))]dx dv =−t ∫ D(t, x)b(x) dx. (3.36)

Taking the supremum onb(·) in (3.36), we obtain the first part (3.33)
of Lemma 3.3.1. Then, we deduce from (3.35) that:∣∣∣∣ ∫

RN

∫
R

g0(x, v)∂v
[
b
(
x + ta(v), v)]dx dv∣∣∣∣

6 2
∣∣supp%(t, ·)∣∣+ t ∫

RN\Γ (%)

∣∣D(t, x)∣∣dx
+ t

∫
Γ (%)

∣∣eν(t, x)4%(t, x)∣∣HN−1(dx).

The functional calculus of Vol’pert [29] gives:∥∥D(t, ·)∥∥Mb(RN) =
∫

RN\Γ (%)

∣∣D(t, x)∣∣dx
+
∫
Γ (%)

∣∣4(aν ◦ %)(t, x)∣∣HN−1(dx).

Thereby, to get (3.34), we only have to show that:∣∣eν(t, x)4%(t, x)∣∣6 C(A)∣∣4(aν ◦ %)(t, x)∣∣, (t, x) ∈ Γ (%). (3.37)

Let us consider any jump%−/%+ placed at a position(t, x) on the set
Γ (%). If the polarized fluxAν(·) do satisfy(LD)1, inequality (3.37) is
trivial since both terms are null. IfAν(·) is genuine non linear(VNL)1 or
if %− and%+ are in the same side of the inflection point, the functiona′ν(·)
keeps a constant sign on the interval separating%− and%+. It follows that:∣∣eν(t, x)4%(t, x)∣∣6 ∣∣4(aν ◦ %)(t, x)∣∣, (t, x) ∈ Γ (%).

Suppose now that the discontinuity%−/%+ is a mixed shock. By
condition(I)11, we have:∣∣eν(t, x)4%(t, x)∣∣6 ∣∣aν(lν%(t, x))− aν(iAν )∣∣

+ ∣∣aν(l−ν%(t, x))− aν(iAν )∣∣.
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Combining (3.14) and (3.16), we deduce the majoration:∣∣eν(t, x)4%(t, x)∣∣ 6 2
∣∣4(aν ◦ %)(t, x)∣∣/µA,

which completes the proof of (3.37).2
At this stage, Theorem 1.2 becomes a corollary of the following result:

PROPOSITION 3.3.1. – Assume that the fluxA(·) is admissible and
that the hypothesis(H) (given p.41) is true. Then, the divergenceD(t, ·)
belongs to the spaceMb(RN). More precisely:

t
∥∥D(t, ·)∥∥Mb(RN) 6 C

(∣∣supp%(t, ·)∣∣), ∀t ∈R+∗ . (3.38)

Proof of Proposition 3.3.1. –The demonstration is decomposed in
three steps (1), (2) and (3). It is first given in a sketchy (but very
significant) way. Technical details are then furnished.

It is sufficient to get an uniform control on quantitiesD(t, ·) which
correspond to solutions issued fromC∞ initial data. Now, such solutions
are generically smooth (sayC2) outside a set of jumpsΓ (%) which is
a countable union of surfaces of discontinuities. The distributionD(t, ·)
can always be split into:

Mb

(
RN
) 3D(t, ·)=D+(t, ·)−D−(t, ·), D±(t, ·)> 0. (3.39)

7→ (1): SinceD(t, ·) has zero mean, we have:∥∥D(t, ·)∥∥Mb(RN) = 2
∥∥D+(t, ·)∥∥Mb(RN). (3.40)

Therefore, to get (3.38), we can concentrate onD+(t, ·).
7→ (2): Oleinik’s condition implies that4(aν ◦ %)(t, x) is negative on

the set of jumpΓ (%). It follows that for all subsetΓ ⊂ Γ (%), we have:∫
Γ

D(t, x)HN−1(dx)=
∫
Γ

4(aν ◦ %)(t, x)HN−1(dx)6 0.

It means that the singularities (of order zero) of the solution%(·)
contribute only toD−(t, ·). They are not seen at the level ofD+(t, ·). This
fact has an important consequence. When carrying out the ana- lysis at
the level ofD+(·), we work in the domainRN \Γ (%) where the function
D+(·) is sufficiently regular to use differential calculus.
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7→ (3): It follows thatD+(·) does satisfy the constraint:

∂tD
+(t, x)+

N∑
i=1

ai ◦ %(t, x)∂xiD+(t, x)+D+(t, x)2= 0 (3.41)

which is valid in each connected component of the set:

Υ := {(t, x); D+(t, x) > 0
}⊂ (RN \ Γ (%)).

The identity (3.41) indicates thatD+(t, x) is controlled by 1/t once the
backward characteristic issued from(t, x) is well defined and included in
Υ on the whole interval[0, t]. Such an estimate is in agreement with
(3.38).

The rigorous implementation of steps (1), (2) and (3) comes up against
technical difficulties. On the one hand, the relevant information (3.38)
does not involve anL∞-norm but anL1-norm. This first objection is
overcome by introducing a convenient functionalfµ(·) (defined next
page). On the other hand, the separation betweenΓ (%) and Υ may
be thin. It can reduce to zero. Moreover, near a point(t, x) placed
on a contact surface, the expressionD+(t, y) tends to+∞ when the
position(t, y) converges towards(t, x) on one side ofΓ (%). This second
disadvantage is compensated by condition(I)12 which implies the (strict
and crucial !) inequality4(aν ◦ %)(t, x) < 0 onΓ (%). It means that the
jump is the dominant singularity at(t, x). It follows that the setsΓ (%)
andΥ are effectively separated after regularizing the solution%(·). We
propose now a (not exclusive) way to tackle these two difficulties. Let
%µ(·) be the parabolic approximation of%(·) defined by:

∂t%µ(t, x)+
N∑
i=1

∂xi (Ai ◦ %µ)(t, x)=µ1%µ(t, x)

=µ
N∑
i=1

∂2
xi
%µ(t, x).

Let us consider the divergence of the corresponding wave speed:

Dµ(t, ·) := div(a ◦ %µ)(t, ·)=
N∑
i=1

∂xi (ai ◦ %µ)(t, ·) ∈C∞c
(
RNx
)
.

We denote byD+µ (t, ·) andD−µ (t, ·) respectively the positive part and
the negative part of functionDµ(t, ·). An easy computation shows that
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the quantityDµ(t, ·) is subjected to:

∂tDµ(t, x)+
N∑
i=1

∂xi [ai ◦ %µ Dµ](t, x)= µ Erµ(t, x), (3.42)

with:

Erµ(t, x) :=
N∑
i=1

∂xi [a′i ◦ %µ 1%µ](t, x)

= 1Dµ(t, x)−
N∑
i=1

∂xi
[
a′′i ◦ %µ|∇%µ|2

]
(t, x). (3.43)

We introduce the (unique) positive scalarCµ(t) that realizes:∫
Dµ(t)

Dµ(t, x) dx =Cµ(t), Dµ(t) := {x ∈RN ; Dµ(t, x)> Cµ(t)
}
.

With this convention, we have necessarily:

Dµ(t, x)=Cµ(t), ∀x ∈ ∂Dµ(t), (3.44)

06D+µ (t, x)6 Cµ(t), ∀x ∈RN \Dµ(t), (3.45)

∥∥D+µ (t, ·)∥∥L1(RN) =
∫
Dµ(t)

D+µ (t, x) dx +
∫

RN\Dµ(t)
D+µ (t, x) dx. (3.46)

We deduce from (3.40), (3.45) and (3.46) the following majorations:

2Cµ(t)6
∥∥Dµ(t, ·)

∥∥
L1(RN) 6 2

(
1+ ∣∣supp%µ(t, ·)

∣∣)Cµ(t). (3.47)

We setfµ(t) := e−|Dµ(t)|Cµ(t) and compute its derivative with respect
to time t . We use (3.42), (3.44) and Stoke’s formula to find:

e|Dµ(t)|
d

dt
fµ(t)

=
∫
Dµ(t)

∂tDµ(t, x) dx

=−
N∑
i=1

∫
Dµ(t)

∂xi [ai ◦ %µ Dµ](t, x) dx +µ
∫
Dµ(t)

Erµ(t, x) dx
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=−
∫

∂Dµ(t)

[Dµ aν ◦ %µ](t, x)HN−1(dx)+
∮
µ

(t)

=−Cµ(t)
∫
Dµ(t)

Dµ(t, x) dx +
∮
µ

(t)=−Cµ(t)2+
∮
µ

(t)

6−e2 |Dµ(t)| fµ(t)2+
∮
µ

(t). (3.48)

In (3.48), the undefined term is computed by using the two forms of
definition (3.43). We find:∮

µ

(t) :=µ
∫

∂Dµ(t)

[a′ν ◦ %µ 1%µ](t, x)HN−1(dx)

= µ
∫

∂Dµ(t)

[
∂νDµ− a′′ν ◦ %µ|∇%µ|2

]
(t, x)HN−1(dx),

∂ν :=
N∑
i=1

νi∂xi .

Since the sequence{Dµ(t, ·)}µ>0 converges weakly inL1(RN) towards
D(t, ·), the majoration (3.38) becomes a consequence of:

‖D(t, ·)‖Mb(RN)6 lim sup
µ→0

∥∥Dµ(t, ·)
∥∥
L1(RN)

6C
(|supp%(t, ·)|)<∞. (3.49)

To verify the uniform control (3.49) by applying (3.47) and Gronvall’s
lemma to the differential inequality (3.48), it clearly suffices to suppose
that the following hypothesis(H) is valid for all(t, %0) inR+∗ ×C∞c (RN):

lim
µ→0

µ

t∫
0

∮
µ

(s) ds 6 C
(∣∣supp%(t, ·)∣∣)(1+ fµ(t)). (H)

First notice that∂νDµ(t, ·) is negative on the boundary∂Dµ(t). Indeed,
functionDµ(t, ·) is by construction decreasing from the interior to the ex-
terior of the domainDµ(t). Thereby, for a quadratic (multidimensional)
law, we are sure that

∮
µ(t)6 0. In this simple case,(H) is obvious.

Finally, we explain why assumption(H) should be true in the general
situation. In fact we need an additional argument to compensate the
(possibly positive) quadratic contribution−a′′ν ◦ %µ(t, ·)|∇%µ(t, ·)|2 by
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the negative term∂νDµ(t, ·). At this stage the argument is formal (for
N = 1, it corresponds to the hard core of the demonstration given in
Section 3.2). By condition(I)12, it is natural to expect that:

lim
µ→0

Dµ(t, x)=−∞, ∀(t, x) ∈ Γ (%). (3.50)

In other words, the contribution due to points onΓ (%) should be
asymptotically negligible:⋂

µ>0

(
Dµ(t)∩ Γ (%))= ∅.

Now, out of Γ (%) + ε with ε > 0 fixed, the scalar|∇%µ(t, ·)| is
uniformly bounded whereas the productµ|∇%µ(t, ·)| should be well
controlled or less(in the sense of inequality(H)) than−µ∂νDµ(t, ·) in
the remainder set(Γ (%)+ ε) \Γ (%). These observations and Section 3.2
indicate why hypothesis(H) is grounded. 2

4. TRANSFER OF REGULARITY BY AVERAGING

We have to deal with a basic principle that can be observed on equation
(T 1

0 ). The solution of(T 1
0 ) with initial condition g0(·) is given by an

explicit formula which leaves theL1(Rx ×Rv)-norm unchanged:

g(s, x, v)= g0
(
x − sa(v), v), ∥∥g(s, ·)∥∥

L1(R2)
= ‖g0‖L1(R2). (4.1)

We focus our attention on some special class of Cauchy data that
inherit suitable features with respect to our purpose:

DEFINITION 4.1. –We say that a functiong0(·) in L∞(R2) is well
prepared up to the order(m,n) ∈ N2 for the fluxA(·) if it decomposes
according to a product

g0(x, v)=
{
b0(v)ḡ0(x, v), if n= 0,
bn(v) a

′(v)2n−1 ḡn(x, v), if n > 0,
(4.2)

whose constituents are subjected to:

bn ∈Cnc (R), ḡn ∈Mm,n
b (Rx ×Rv). (4.3)

Remark4.1. – Of course, if functiong0(·) is well prepared up to the
order(m,n), it is so also for the other pairs(m̄, n̄) satisfying 06 m̄6m
and 06 n̄6 n.
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The next proposition reveals the property that we have in mind:

PROPOSITION 4.1. – We suppose that the initial datag0(·) has
support contained in the stripR×[−%∞0 , %∞0 ] and that it is well prepared
up to the order(m,n) for the fluxA(·). At each positive times, we then
have the bound:∣∣∣∣ ∫

R

g(s, ·, v) dv
∣∣∣∣
Mm+n

b
(R)
6 C(n, a, bn)

sn
‖ḡn‖Mm,n

b
(Rx×Rv). (4.4)

Remark4.2. – The constant involved in (4.4) can be computed:

C(n, a, bn)6C(n)
(‖a‖Cn([−%∞0 ,%∞0 ]) +‖bn‖Cn([−%∞0 ,%∞0 ])). (4.5)

C(k, a, bk)= ‖bk‖Ck([−%∞0 ,%∞0 ]), k ∈ {0,1}. (4.6)

Proof of Proposition 4.1. –By density, we just have to prove all the
assertions with the symbolMb replaced byL1. By virtue of (4.1) and
(4.2), we have:

g(s, x, v)= bn(v)a′(v)2n−1ḡn
(
x − sa(v), v). (4.7)

We mention now some formula that will be used repeatedly in the
sequel. By expanding the derivative inside the brackets in the following
integral:

0=
∫
R

∂v
{
bn(v)a

′(v)l−1(∂l̄xḡn)(x − sa(v), v)}dv, (l, l̄) ∈N∗ ×N,

we obtain the identity:

s

∫
R

bn(v)a
′(v)l

(
∂l̄+1
x ḡn

)(
x − sa(v), v)dv

=
∫
R

(∂vbn)(v)a
′(v)l−1(∂l̄x ḡn)(x − sa(v), v)dv

+
∫
R

bn(v)∂v
[
a′(·)l−1](v)(∂l̄xḡn)(x − sa(v), v)dv

+
∫
R

bn(v)a
′(v)l−1(∂l̄x∂vḡn)(x − sa(v), v)dv. (4.8)
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The left part of inequality (4.4) can be written:∫
R

∣∣∣∣∂m+nx

{∫
R

g(s, x, v) dv

}∣∣∣∣dx
=
∫
R

∣∣∣∣∂nx{∫
R

bn(v)a
′(v)2n−1(∂mx ḡn)(x − sa(v), v) dv}∣∣∣∣dx. (4.9)

It is therefore enough to consider the pairs{(0, n)}n∈N. We first discuss
the casen= 0 andn= 1 apart. Whenn= 0, we have to deal with:

∫
R

∣∣∣∣ ∫
R

b0(v)ḡ0
(
x − sa(v), v)dv|dx.

We pass the absolute value| · | under the sign sum and then proceed to
the change of variablesΨ : (x, v) 7→ (x − sa(v), v) to obtain (4.4) with
the constant given in (4.6).

Whenn= 1, we exploit (4.8) with the choice(l, l̄)= (1,0). Interpret-
ing the first integral in terms of our solutiong(·), we obtain:

s∂x

{∫
R

g(s, z, v) dv

}
=
∫
R

(∂vb1)(v)ḡ1
(
x − sa(v), v) dv

+
∫
R

b1(v)(∂vḡ1)
(
x − sa(v), v)dv. (4.10)

The integrands on the right hand side of (4.10) are evaluated as before,
by making use ofΨ . This yields again (4.4) with the constant indicated
at (4.6). The key point here is the special structure ofg0(·) which allows
to transfer the derivative inx towards a derivative inv.

Following the same principle, we now proceed by induction on the
indexn.

The first stepn= 1 has already been achieved. We assume now that the
result (4.4) is true up to the ordern− 1 with n− 1> 0. We are looking
at what occurs at leveln. Using again (4.8) but this time with the choice
(l, l̄)= (2n− 1, n− 1), we find:

s∂nx

{∫
R

g(s, x, v) dv

}
=

3∑
k=1

∂n−1
x

{∫
R

gk(s, x, v) dv

}
. (4.11)
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Above, functionsgk correspond to the resolution of(T 1
0 ) where the

initial data are decomposed according to:

gk(x, v) := bkn−1(v) a
′(v)2(n−1)−1 ḡkn−1(x, v), k ∈ {1,2,3},

with:

b1
n−1(v) := (∂vbn)(v) a′(v), ḡ1

n−1(z, v)= ḡn(z, v).

b2
n−1(v) := (2n− 2) bn(v) a

′′(v), ḡ2
n−1(z, v)= ḡn(z, v).

b3
n−1(v) := bn(v) a′(v), ḡ3

n−1(z, v) := (∂vḡn)(z, v).
We see that:

bkn−1 ∈Cn−1
c (R), ∀k ∈ {1,2,3}.∥∥ḡkn−1

∥∥
(L1)0,n−1(R2)

6 ‖ḡn‖(L1)0,n(R2), ∀k ∈ {1,2,3}.
Obviously, the three functionsgk(·) are well prepared up to the order

(0, n− 1) for the fluxA(·). According to the induction hypothesis, each
term on the right hand of identity (4.11) can be analyzed. This is how we
obtain inequality (4.4). 2

Remark4.3. – Equation(T 1
0 ) does not involve any source term. There

is an extended literature on the case with second member. Mostly [9,11,
12], the regularity is evaluated in terms of botht andx variables. There
is also an optimal version due to Bouchut and Desvilettes [2] wheret is
fixed. Our approach differs from these previous standpoints in that we
exploit special features on the initial data. This is the reason why we can
go further.

5. APPLICATIONS

The previous general considerations are now applied in order to obtain
concrete results.

5.1. Proof of Theorem 1.3

Proof. –The results obtained in Section 4 incorporate the caseN > 2
by appealing to the Radon transform. Indeed the function

g̃(s,ω, z, v)= T̃ N0,ω(s, g0)(z, v) := (Rax g)(s,ω, z, v)
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issued from the solutiong(·) of (T N0 ) is subjected to the following one
dimensional transport equation:

(
T̃ N0,ω

) := { ∂sg̃(s,ω, z, v)+ ω · a(v)∂zg̃(s,ω, z, v)= 0,
g̃(0,ω, z, v)= g̃0(ω, z, v),

whereω ∈ SN−1 is simply a parameter.
An easy computation shows that:

sup
ω∈SN−1

∣∣g̃0(ω, ·)
∣∣
M0,1

b
(Rz×Rv) 6

∣∣g(0, ·)∣∣M0,1
b
(RNx ×Rv) =Θ(t, %0).

In order to get rid of the assumptions required in Definition 4.1, we
fix someb(·) in C1

c (R)
(
with associatedB(·) according to formula (1.6)

)
and multiplyg̃0(·) by b(v)ω · a′(v). The resulting expression:

b(v)ω · a′(v)g̃0(ω, z, v), b ∈C1(R), ω ∈ SN−1

is then well prepared up to the order(0,1). From Proposition 4.1, follows:∣∣∣∣ ∫
R

b(v)ω · a′(v)g̃(t,ω, ·, v) dv
∣∣∣∣
M1

b
(R)

=
∣∣∣∣Rax(∫

R

b(v)ω · a′(v) χ%(t,·)(v) dv
)
(ω, ·)

∣∣∣∣
M1

b
(R)

= ∣∣B ◦ %(t, ·)∣∣M1
b,ω
(R) 6 ‖b‖C1([−%∞0 ,%∞0 ])

(
Θ(t, %0)+ ‖%0‖L1(RN)

)/
t.

We thus have verified the assertion of Theorem 1.3.2
Remark5.1.1. – Let us interpret more carefully the information:

∃ω ∈ SN−1; |u|M1
b,ω
(R) <∞. (5.1)

In view of identity (0.4), this clearly measures some features of the
smoothness of the functionu(·). In fact, it combines regularity and
geometrical aspects. For instance, the expressionũ(ω, ·) associated with
an applicationu(·) whose leaves are transversal toω:

u= ū ◦ ϕ; (ū, ϕ) ∈ L∞(R)×C1(RN;R);
0 6= ∇ϕ(x) 6 ‖ω, ∀x ∈RN,

is subjected to (5.1).
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5.2. A two-microlocal interpretation

We now proceed to interpret inequality (4.4) in the multidimensional
setting from the point of view of the initial variables:

PROPOSITION 5.2.1. –
We consider the transport equation(T N0 ) associated with some initial

data g0(·) chosen in the spaceMm,n
b (RNx × Rv) with compact support

included in the stripR×[−%∞0 , %∞0 ]. Then, for any decomposition ofRNx
into a family of parallel hyperplanes with normal vectorω, we get an
inequality:∥∥∥∥∫

R

(
ω · a′(v))2n−1

g0
(· − sa(v), v)dv∥∥∥∥

Hτ,τ̄ (R1
y′×RN−1

y′′ )

6 C(m,n, a, bn)
(
1+ sn)‖g0‖Mm,n

b
(RNx ×Rv)/s

n, ∀s ∈R+∗ , (5.2)

which is true for all indexesτ and τ̄ limited by:

τ < m+ n− 1

2
, τ̄ <−n+ 1−N

2
. (5.3)

Proof of Proposition 5.2.1. –For definiteness, we will work with
vector:

ω= ω1= (1,0, . . . ,0)
and the corresponding decomposition

RNx 3 x =
(
x1, (x2, . . . , xN)

)= (z, x′′) ∈R1
z ×RN−1

x ′′

with dual variables

T ∗
(
RNx
) 3 ξ = (ξ ′, ξ ′′) ∈R1

ξ ′ ×RN−1
ξ ′′ .

We shall designatëa(v) := (a2(v), . . . , aN(v)) theN − 1 last compo-
nents of the speed. We have the relation:

Fq
(∫
R

a1(v)
2n−1g0

(· − sa(v), v) dv)(ξ)
=F1

(∫
R

ks,ξ
′′(· − sa1(v), v

)
dv

)
(ξ ′). (5.4)
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Now, the proof is imbued from the one given in P. Gérard [11]. The
expressionks,ξ

′′
(·) introduced in (5.4) has parameterss andξ ′′. After a

short calculation, we obtain:

ks,ξ
′′
(z, v)= bn(v)a1(v)

2n−1k̄s,ξ
′′

n (z, v),

where:

bn ∈Cnc (R), bn(v)= 1, ∀v ∈ [%∞0 , %∞0 ].
k̄s,ξ

′′
n (z, v) :=

∫
RN−1

e−ix
′′·ξ ′′ e−isä(v)·ξ

′′
g0(z, x

′′, v) dx′′.

We select(i, j) in [0,m] × [0, n] and exploit the identity

∂iz∂
j
v k̄

s,ξ ′′
n (z, v)=

∫
RN−1

e−ix
′′·ξ ′′∂jv

{
e−isä(v)·ξ

′′
∂izg0(z, x

′′, v)
}
dx′′,

to get:∣∣k̄s,ξ ′′n

∣∣
Mi,j

b
(Rz×Rv) 6C(A)

(
1+ sj )〈ξ ′′〉jN−1‖g0‖Mm,n

b
(RNx ×Rv).

It follows that the Cauchy dataks,ξ
′′
(·) is well prepared up to the order

(m,n) for the fluxA1(·). Therefore we can apply Proposition 4.1 which
implies: ∥∥∥∥∫

R

ks,ξ
′′(· − sa1(v), v

)
dv

∥∥∥∥
Mm+n

b
(R)

6 C(m,n, a, bn)
1+ sn
sn
〈ξ ′′〉nN−1‖g0‖Mm,n

b
(RNx ×Rv). (5.5)

A classical Sobolev inclusion says that:

‖u‖Hτ (R) 6C‖u‖Mm+n
b

(R), ∀τ <m+ n−
1

2
. (5.6)

Upon combining informations (5.4), (5.5) and (5.6), we conclude that
for every parameterτ selected according to (5.6) we have:∥∥∥∥〈ξ ′〉τ1Fq(∫

R

a1(v)
2n−1g0

(· − sa(v), v)dv)(ξ ′, ξ ′′)∥∥∥∥
L2(Rξ ′ )

6C(m,n, a, bn)
1+ sn
sn
〈ξ ′′〉nN−1‖g0‖Mm,n

b
(RNx ×Rv).
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Finally, we multiply the left hand side by a power〈ξ ′′〉τ̄ where the real
numberτ̄ is adjusted in such a way to win theL2(RN−1

ξ ′′ ) integrability
with respect todξ ′′. This criterion determines the bound̄τ imposed in
(5.2). 2

By applying to functionΞN
t (%0)(·) Proposition 5.3.1 with the partic-

ular choice(m,n) = (0,1), we obtain inequality (2.22). The proof of
Proposition 2.2.1 is complete.

5.3. Miscellaneous results

As an aside, we first consider the large time behavior of periodic solu-
tions. This subject has been studied in Dafermos [8], Lyberopoulos [20]
and Engquist-W. E [10]. The question is to know if the solution%(t, ·)
tends to some constant state.

It turns out that the demonstrations of Theorems 1.1 and 1.2 yield a
numberΘ(t, %0) which does not depend ont . This particularity gives
a powerful tool regarding the preceding preoccupation. It suffices to
exploit Theorems 1.1, 1.2, 1.3 and the inversion formula (given p. 72
in Helgason [13]).

We can assert:

COROLLARY 5.3.1 (Large time periodic behavior). –Let %(·) be an
admissible periodic solution of(LN0 ) with A(·) satisfying the hypothesis
of Theorem1.1 (if N = 1) or the hypothesis of Theorem1.2 (if N > 2).
Then:

∃C(A,b) ∈R+; ∀(ω,B,%0) ∈ SN−1×CωA(R)×L∞
(
TN
)
,

∀t ∈R+∗ ,
∥∥B ◦ %(t, ·)∥∥M1

b,ω
(T) 6 C(A,b)

(
1+ ‖%0‖L1(TN)

)
/t. (5.7)

As noted by Zumbrun (see (2.5) in Theorem 2.1 of [30], the most
natural way to tackle the non convex case is in deriving estimates in terms
of the total variation of the wave speed. This (already mentioned) fact can
be recovered in our approach since functiona(·) belongs systematically
to the allowed spaceC1

A(R). Combining Theorems 1.1 and 1.3, we can
improve the result of Zumbrun [30]:

COROLLARY 5.3.2 (smoothing of the wave speed). –Assume(I)1.
Then:

∀t ∈R+∗ , ∀%0 ∈L∞c (R),∥∥a ◦ %(t, ·)∥∥
BV (R) 6C(A)

(|supp%0+ tV | + ‖%0‖L1(R)
)
/t. (5.8)
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Other non linear expressions have an interest. Let us introduce:

b̄ ∈C0(R∗), b̄(%) := a(%)/a′(%), ∀% ∈R∗.
Under the more restrictive assumption (2.19), functionb̄(·) can be

extended to all the%-axis in such a way that̄b(·) ∈ Lipc(R). Therefore,
we can apply Theorem 1.3. We deduce:

COROLLARY 5.3.3 (time smoothing effect). –Assume(2.19). Then,
%(·) belongs to the spaceLiploc(R+∗ ;L1(R)).

Proof of Corollary 5.3.3. –The expression̄B(·) corresponding tōb(·)
is exactly the flux functionA(·) since:

B̄(%) :=
%∫

−∞
b̄(v)a′(v) dv =

%∫
−∞

a(v) dv =A(%).

Using Theorem 1.3, keeping in mind equation(L1
0), we obtain:

∥∥u(t2, ·)− u(t1, ·)∥∥L1(R)6
t2∫
t1

(∫
R

∣∣∂x[A(%)](s, x)∣∣dx) ds
6C(t1, t2,A,%0) |t2− t1|<∞,
∀(t1, t2) ∈ (R+∗ )2. 2

Remark5.1. – The topics of time regularizing effects has already been
treated. Using an elegant scaling argument Benilan and Crandall [1] show
that in the homogeneous case(A(λ%)= λm+1A(%)) solutions of(L1

0) do
satisfy:

lim
h−→0

1

h

∥∥%(t + h, ·)− %(t, ·)∥∥
L1(R) 6

2

mt
‖%0‖L1(R), ∀t ∈R+∗ .

In the absence of homogeneity, the strongest result of this type is due to
F. Otto [23]. This author considers the situation (2.19) and exhibits some
Hölder exponent:

% ∈Cα(R∗;L1(RN)), α := 1/m6 1/3< 1.

His method is based on theL1 contraction principle. Therefore, the
smoothing effect is controlled by theL1 norm of%0(·) and nothing else.
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This restriction is at the origin of the bound given forα. In Dafermos [8],
this was the reason of the occurrence of the conjugate functionD(·).
Indeed, Dafermos comes back to zero with the help of its formula (2.9)–
[8] that produces theL1 norm of %0(·) but also , as a consequence, the
expressionD(·). We adopt a slightly different point of view: we have
more freedom forα and for the allowed non linear compositions on
condition that we incorporate in the right hand of the estimations the
measure of the support of%0(·).

We investigate now the level of Sobolev regularity recovered at time
t > 0 by the average solution of(T N0 ) :

%(t, ·) :=
∫
R

g(t, ·, v) dv ∈Wτ,1(RN), ∀τ ∈ [0, τ̄ [ ,
when working under(NS)N and data subjected to:

g(t, x, v)= χ%(t,x)(v),
∥∥g(s, ·)∥∥M0,1

b
(RNx ×Rv) <∞, ∀s ∈ [0, t],

(5.9)
which is guaranteed once we haveΘ(t, %0) <∞.

COROLLARY 5.3.4 (Sobolev regularity). –Assume the hypothesis of
Theorems1.1 or 1.2 and compute the indexα involved in (NS)N
according to Remark2.2.2.Then:

%(t, ·) ∈Wτ,2(RNx ), ∀τ < α/2, ∀t ∈R+∗ .
%(t, ·) ∈Wτ,1(RNx ), ∀τ < 2α/3, ∀t ∈R+∗ .

Proof of Corollary 5.3.4. –The demonstration relies on the work of
[18] and on a remark due to F. Bouchut (see [2] and [3]). We first multiply
g(·) by a cutoff functionχ(·) ∈ C∞c (Rs) with χ ≡ 1 in a neighborhood
of t . It yields (χg)(·) in L∞c (Rt ×RNx ×Rv).

Letψ(·) satisfy:

ψ(·) ∈C∞c (Rv), 06 ψ(v)6 1, ∀v ∈R,
∫
R

ψ(v) dv = 1

and set forε > 0: ψε(v) :=ψ(v/ε)/ε. We can decomposeg(·) into:

g(s, x, v)= (g ∗v ψε)(s, x, v)+ (g− g ∗v ψε)(s, x, v), (5.10)
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where the convolution∗v concerns only the variablev. The idea is to
evaluate the first part(g ∗v ψε)(·) thanks to the averaging lemma (in a
version given by Bouchut [3]) and the second part(g − g ∗v ψε)(·) by
using the a priori estimate (5.9).

By applying the Proposition 5.1 line (5.24) of [3] to the equation:

∂s(χ g)(s, x, v)+ a(v) · ∇x(χg)(s, x, v)= χ ′(s)g(s, x, v), (5.11)

we obtain:

‖χ g ∗v ψε‖L2(Rt×Rv;Ẇα/2,2(RNx ))

6 C
(‖χ g‖L2(Rt×RNx ×Rv) + ‖χ ′ g‖L2(Rt×RNx ×Rv)

)
/
√
ε. (5.12)

Sinceχ ′(·) is null on some open interval containing{t}, the evolution
equation reduces near the time{t} to the free transport(T N0 ) which (by
interpolation) preserves theL2(Rv; Ẇα/2,2(RNx ))-norm. This argument
allows to extract from (5.12) an information for the trace at timet :∥∥g ∗v ψε(t, ·)∥∥L2(Rv;Ẇα/2,2(RNx )) 6 C/

√
ε. (5.13)

Combining (5.6) and (5.9), we find:∥∥(g− g ∗v ψε)(t, ·)∥∥L2(RNx ×Rv) 6 ε
β, ∀β < 1/2. (5.14)

Let τh be the translation operator in space variable:

(τhg)(t, x, v) := g(t, x + h, v), h ∈RNx .

We applyτh − I to the line (5.10) and use the informations (5.13) and
(5.14) to get:∥∥(τhg− g)(t, ·)∥∥L2(RNx ×Rv) 6C

(|h|α/2/√ε+ 2εβ
)
, ∀β < 1/2.

We adjust parameterε in an optimal way to find:

g(t, ·) ∈L2(Rv; Ẇ s0,2
(
RNx
))
, ∀s0<α/4.

We apply again the averaging lemma with〈Dx〉s0g(·) in place ofg(·)
to find: ∥∥〈Dx〉s0g ∗v ψε(t, ·)

∥∥
L2(Rv;Ẇα/2,2(RNx )) 6 C/

√
ε.
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Reiterating the preceding argument, we deduce thatg(t, ·) belongs to
the space:

g(t, ·) ∈L2(Rv; Ẇ s1,2
(
RNx
))
, ∀s1< s0/2+ α/4.

Sinceα/2 is the unique fixed point of the relations 7→ s/2+ α/4, we
have:

g(t, ·) ∈L2(Rv; Ẇ s,2(RNx )), ∀s < α/2,
which yields the first part of Corollary 5.3.4.

Following the same principle, we also have (for allᾱ < α):∥∥(τhg − g)(s, ·)∥∥L1(RNx ×Rv)
6
∥∥Dᾱ

x g ∗ψε
∥∥
L1(RNx ×Rv)|h|ᾱ + 2‖g − g ∗ψε‖L1(RNx ×Rv)

6
∥∥Dᾱ/2

x (Dᾱ/2
x g) ∗ψε

∥∥
L2(RNx ×Rv)|h|ᾱ + 2ε

∥∥∂vg(s, ·)∥∥Mb(RNx ×Rv)
6 C|h|ᾱ/√ε+ 2εΘ(s, %0).

We just have to setε = |h|2ᾱ/3 to conclude.
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