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ABSTRACT. – We consider a nonlinear transport equation as a hyper-
bolic generalisation of the well-known reaction-diffusion equation. We
show the existence of strictly monotone travelling fronts for the three
main types of the nonlinearity: the positive source term, the combustion
law, and the bistable case.

In the first case there is a whole interval of possible speeds containing
its strictly positive minimum. For subtangential nonlinearities we give
an explicit expression for the minimal wave speed.

RÉSUMÉ. – Nous considérons une équation de transport nonlinéaire
comme étant une généralisation hyperbolique de l’équation de réaction-
diffusion bien connue. Nous montrons l’existence de fronts progressifs
strictement monotones pour les trois principaux types de la nonlinéarité :
le terme source positif, la loi de combustion et le cas «bistable». Dans le
premier cas il existe tout un interval de vitesses possibles comprenant
son minimum. Dans le cas de nonlinéarités «sous-tangentielles» nous
donnons une expression explicite de cette vitesse minimale.
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1. INTRODUCTION

The work of Fisher [7] and Kolmogorov, Petrovsky and Piskounov
[11] inspired the study of the asymptotic behaviour of spreading and
interacting particles on unbounded domains. Both articles modelled
spread and interaction by a reaction-diffusion equations. In particular it
was shown that suitable initial configurations converge asymptotically to
travelling front solutions. This observation lead Aronson and Weinberger
in a series of papers to introduce the concept of the asymptotic speed of
propagation, cf. [2,1,15,3]. These articles already include the treatment
of integral equations as well as discrete time and space models. The idea
and the computation of the asymptotic speed was then extended to more
general integral equations in [6,14,13,16].

The parabolic nature of the reaction-diffusion equation leads to the
unrealistic phenomenon of unbounded particle speeds. Motivated by the
theory of diffusive transport we shall therefore propose a hyperbolic
generalisation, which arises if one replaces Brownian motion by a
transport process. Since the state space is enlarged by the set of possible
velocities/directions, the implementation of the reaction terms may differ
from the reaction-diffusion case.

Our goal is to show the existence of travelling front solutions of
the following hyperbolic equation. For the densityU = U(t, x, v) of
particles, moving at(t, x) ∈ R+ ×Rn with normalised velocityv ∈ V ⊂
B1(0;Rn), we consider the nonlinear transport equation

(∂t + γ v · ∇ +µL)U = 1

|V |M
(
U
)+G(U )U in R+ ×Rn × V. (1)

Hereγ denotes the maximal particle speed,U(t, x) = ∫V U(t, x, v)dσv
is the local total density, weighted by a positive measureσ on V ,
having bounded volume|V | = ∫V dσv. We assume thatσ and V are
rotationally symmetric. Turning of particles is governed by a Poisson
process with parameterµ according to the operatorLU = U − 1

|V |U .
The operatorL describes the local deviation from the mean and provides
the diffusivity of the transport process. Physically speakingL defines
isotropic scattering. The reaction is modelled by a uniformly distributed
productionM > 0, depending on the total densityU , and a mass action
law with rateG, which acts on the individual densityU . Note that all
annihilation processes must be modelled by a rate to preserve positivity.
Hence they are contained inG. We call f (z) = M(z) + G(z)z the
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net reaction. It is this net effect, which has to be compared with the
nonlinearity used in reaction-diffusion equations. In our modell particles
react not according to their individual velocities, which is reasonable
in certain chemical reactions or in biological modelling, see also [12,
Section 3.1]. The prototypical organisms whose motion can be described
by a transport equation are flagellated bacteria, the best studied of
which is E. coli. More examples can be found in [12,10], including the
locomotion of mouse fibroblasts and crawling caterpillars.

The isotropic modelling of the reaction in (1) is in contrast to the
Boltzmann as well as to the neutron transport equation. In the former case
post- and pre-collision velocities obey deterministic relations, whereas
interactions are less relevant in the latter case.

Throughout the paper we make the following assumptions onf (i.e.,
onM andG):

(H1) The functionsM andG are defined and Lipschitz continuous on
[0,1], satisfyingM(0) = 0 andM(1) +G(1) = 0. Hence,f is
defined and Lipschitz continuous on[0,1] with f (0)= f (1) =
0. Furthermore we distinguish three main types:
(A) f > 0 on (0,1).
(B) There is aθ ∈ (0,1) such thatf ≡ 0 on [0, θ] andf > 0 on

(θ,1).
(C) There is aθ ∈ (0,1) such thatf < 0 on(0, θ) andf > 0 on

(θ,1).
Type A is the so-called positive source term reaction and includes the

famous nonlinearitiesz(1− z) and z(1− z)2 used by Fisher [7] and
Kolmogorov, Petrovsky and Piskounov [11], respectively. In the present
transport context we propose for the RHS of (1) the function(1−U)kU ,
i.e.M ≡ 0,G= (1− z)k, as a suitable implementation of the mass action
law. Type B can be found in many models of combustion theory, where
the burning reaction is triggered by an ignition temperature. Type C refers
to the bistable reaction law, sincef admits two stable equilibria.

We comment on the various reaction types. The classical results in
[3] for the reaction-diffusion equation show that for type A there are
fronts for all speeds greater or equal to a uniquely defined minimal speed.
On the other hand, for type C there is only a single front, unique up
to translation, which connects the equilibria 0 and 1. Berestycki and
Larrouturou [4] proved also for type B the uniqueness of the front.
Hadeler [9] considered fronts for an one-dimensional transport equation
where only the two velocities−γ (left) and+γ (right) are admitted.
The resulting two component system for the travelling front equation was
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shown to be equivalent (up to scaling) with the classical one in [3] coming
from the reaction-diffusion equation. For type A there is an interval of
positive speeds containing in particular all large speeds up to the maximal
particle speedγ , while type C leads again to a unique front. Note that the
hyperbolicity excludes any speed exceedingγ .

The travelling wave equation

We are concerned with the existence of travelling plane wave solutions
of (1), also called fronts, i.e., of solutions of the form

U(t, x, v)= u(τ, v), τ = x · η− ct,

where the unit vectorη stands for the direction along which the wave
is propagating with speedc ∈ (−γ, γ ). Furthermore, we requireu > 0,
u ∈ [0,1] and the asymptotic boundary conditions

u(−∞, v)≡ 1

|V | , u(+∞, v)≡ 0. (2)

This says, that the total density along the wave connects the two
distinguished equilibria off through the phase space regionu ∈ [0,1].
Note that the rotational symmetry of the problem allows one to fixη= e1.
Inserting this ansatz into (1) we are lead to the question whether or not
there is a solution(c, u) of the stationary problem

(
(γ v1− c)∂τ +µL)u= 1

|V |M(u)+G(u)u in R× V, (3)

which also satisfies (2). Settingc= γ κ we introduce a normalised speed
κ ∈ (−1,1). Provided thatµ >G on [0,1] we can rescaleτ ∈ R by the
positive factorγ /(µ − G(u)). Denoting the new variable byt and the
derivative with respect tot by a dot we arrive at theprincipal form of
(2),(3)

(v1− κ)u̇+ u= 1

|V |F(u) in R× V,

u(−∞, v)≡ 1

|V | , u(+∞, v)≡ 0, u> 0, u ∈ [0,1],
(4)
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now involving av-independent, also calledisotropic, source term

F(z)= z+ f (z)

µ−G(z). (5)

We remark that the speedκ together with the solutionu are considered
as unknowns. We refer tou as theshapefunction. In the following the
functionF will incorporate all relevant features of the reaction into our
wave problem. Therefore, we restate the various reaction types forF :
(A) F > Id on(0,1); (B) There isθ ∈ (0,1)with F = Id on[0, θ],F > Id
on (θ,1); (C) There isθ ∈ (0,1) with F < Id on (0, θ), F > Id on (θ,1).

To construct solutions to (4) we consider the limit of solutions on
finite cylinders(−R,+R)× V . The method is inspired by the work of
Berestycki and Nirenberg [5] on travelling fronts of reaction diffusion
equations in cylinders. To prove uniqueness of solutions on finite
cylinders we use an adaption of thesliding domain method, originally
introduced in [5] for elliptic equations. This method crucially relies on a
maximum principle which is available in the elliptic case. We are able to
use the power of the sliding method also for stationary transport equations
of the form (4) if we require the following monotonicity assumption on
the nonlinearity.

(H2) µ>G and the functionF is strictly increasing on[0,1].
We include the inequalityµ>G because it is needed to derive (4) and

it ensures thatF is well-defined. Note thatµ>G is always satisfied ifG
contains no gain term. Also the second part of the hypothesis requires,
that the hyperbolic diffusion in (1), measured by the parameterµ, is
sufficiently strong. This can be seen by the fact that iff andG areC1

functions then (H2) is implied by the inequality

d

dz

f (z)

µ−G(z) >−1.

The existence of solutions follows classical steps, once we know
monotonicity and compactness properties of a solution operator related
to (4). We will establish suitable compactness properties by applying the
regularity results for velocity averages of Golse, Lions, Perthame and
Sentis [8]. Hence, we need to require the main assumption therein:

(H3) There are constantsC > 1, α ∈ (0,1), such that the measureσ
onV satisfies

1

|V |
∣∣{v ∈ V : |v1− κ|< ε}∣∣6 Cεα for all κ ∈ [−1,1].
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We remark that the uniform measure on the sphereSn−1 in Rn satisfies
(H3) for anyα ∈ (0,1/2] in casen= 2 andα ∈ (0,1) for all n> 3.

Results

THEOREM 1.1. – Assuming type A there exists a minimal wave speed
κ∗ ∈ (0,1), such that Eq.(4) has a solution(κ, u) if and only if κ ∈
[κ∗,1). For anyκ ∈ [κ∗,1) there is a solution with a strictly decreasing
shape function.

THEOREM 1.2. – Assume type B or C. There exists a speedκ∗ ∈
(−1,1), such that forκ = κ∗ Eq. (4) has a solution(κ, u). The shape
u is strictly decreasing int . There is a speedκ ∈ (0,1) such that(4) has
no solution(κ, u) for anyκ > κ.

Note that the arguments deriving (4) imply, that any solution(κ, u)
of (4) is equivalent with a travelling wave solution(c,U) of (1) having
speedc= γ κ and the desired asymptotic behaviour.

In Section 2 we show that (4) can be transformed into a scalar
integral equation for the total densityu alone. Using (H3) we obtain as a
preliminary result that the shape functionu(t, v) of any solution(κ, u) of
(4) is uniformly continuously differentiable int , providedv1 6= κ . Despite
this defect in the dependence onv the total densityu is still uniformly
continuously differentiable. Then Theorem 1.1 is proved by an adaption
of the methods developed by Weinberger [16] for the treatment of very
general integral problems of type A. However, Weinberger’s results do
not lead to an existence proof of fronts for the types B or C. Section 2
concludes with an explicit variational description of the minimal wave
speed for subtangential type-A-reactions.

Theorem 1.2 is proved in Section 3. We will construct a front by
considering (4) on a finite cylinder(−R,R) × V and then letR
go to infinity. This idea was used by Berestycki and Nirenberg [5]
to show the existence of front-like solutions of elliptic equations for
nonlinearities of type A, B or C. In [5] it is assumed thatf has Hölder
continuous derivatives at 0 and 1, in particularf ′(1) < 0, to prove
that the constructed solution obeys the asymptotic boundary condition.
Furthermore, the assumption is needed in the proof for type A to show
that one can indeed construct fronts of minimal speed. However, using
Weinberger’s approach we can prove Theorem 1.1, i.e. type A, without
any further assumptions onf . Subsequently, Theorem 1.1 is used in
the proof of Theorem 1.2 to treat also the types B or C without further
assumptions onf .
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No uniqueness of the speed or the shape of the front is proven for
the types B and C. This is subject to the author’s current research,
which includes the stability of these fronts. Furthermore, it is well-known
that for µ→∞ the transport process approximates brownian motion.
A natural question arising here is, if the fronts of the transport equation
converge to the fronts for the limiting reaction-diffusion problem.

2. TYPE A — THE POSITIVE SOURCE TERM

For the convenience of the reader we start with a brief exposition of
Weinberger’s results in [16]. LetW = C0(R; [0,1]) andQ :W →W an
operator satisfying

(1)Q[0] = 0,Q[1] = 1.

There is a θ∈ [0,1) such thatQ[θ] = θ andQ[z]> z for all
z ∈ (θ,1).

(HQ) (2)Q ◦ Sc = Sc ◦Q for all c ∈R.

(3) If w16w2 thenQ[w1]6Q[w2].
(4) Q[wn] → Q[w] pointwise if wn → w uniformly on
bounded sets (ubs.).

(5) {Q[wn]} has a ubs.-convergent subsequence for any
sequence{wn}.

Weinberger viewsQ as the time-1-evolution operator of a general dy-
namical system. The first condition on the flow operatorQ reflects the
assumptions in (H1) on the nonlinearityf : while θ = 0 corresponds to
type A, θ > 0 contains reactions of type B and C. The other conditions
state thatQ is translation invariant, monotone, continuous, and compact.

We callw ∈W a travelling wave solution ofQ with speedc ∈R, if

w =Q ◦ Sc[w],
w(−∞)= 1>w(t)> 0=w(∞),

(6)

whereSc :W→W denotes the shift operator, i.e.Sc[w](t) :=w(t + c).
Let φ ∈W nonincreasing and satisfy

φ(−∞) ∈ (θ,1), φ(t)= 0 for t > 0. (7)
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For anyc ∈R the sequence

wn+1(c, t)=max
{
φ(t),Q ◦ Sc[wn](t)}, w0(c, t)= φ(t) (8)

is nondecreasing and uniformly bounded inn, nonincreasing and con-
tinuous in c, t . Therefore,w(c, t) = limn wn(c, t) = supn wn(c, t) is
a uniquely defined function which is nonincreasing and lower semi-
continuous inc, t . Set

c∗ := sup
{
c: w(c, t)≡ 1

}
.

THEOREM 2.1 ([16, Theorem 6.6]). –The numberc∗ is independent
of the choice of the initial functionφ.

(a) For all c < c∗ there is no travelling front solution with speedc.
(b) If θ = 0 then there exists a nonincreasing travelling front for any

speedc, c> c∗.

Let us remark that in case A, i.e.,θ = 0, the numberc∗ is indeed
the minimal speed of fronts forQ. Note that nothing is said about the
existence of fronts forθ > 0.

Actually, Weinberger did not show (a) but it is an immediate conse-
quence from the following result which he used to prove thatc∗ is inde-
pendent ofφ.

PROPOSITION 2.2 ([16, Lemma 5.3, Proposition 5.1]). –Let c ∈ R,
φ ∈W a nonincreasing function satisfying(7), andwn(c, t) the sequence
(8). Then the following are equivalent:

(i) c < c∗;
(ii) wn(c, t)→ 1;

(iii) There existsn ∈N such thatwn(c,0) > φ(−∞).
Proof of Theorem 2.1(a). –Assume that forc < c∗ a front wc ∈ W

exists satisfying (6). Sincewc(−∞) = 1 we can assume thatwc(0) ∈
(θ,1) andwc(t) > wc(0) for all t < 0. Consider the sequencewn(c, t)
constructed from aφ satisfyingφ(−∞)=wc(0). Clearly

w0(c, t)= φ(t)6wc(t)

and from (HQ3) we inferwn(c, t) 6 wc(t). But Proposition 2.2 states
that there must be a numbern ∈ N such thatwn(c,0) > φ(−∞)=wc(0),
which is impossible. 2
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Weinberger calculates also bounds forc∗ for certain operatorsQ.

THEOREM 2.3 ([16, Theorems 6.3, 6.4]). –
(i) If Q satisfiesQ[w](t)6 ∫RK(s − t)w(s)ds, then

c∗ 6 infλ>0
1

λ
log
∫
R

e−λsK(s)ds.

(ii) If there is a kernelL with
∫
RL(s)ds > 1 and a positiveε such that

Q[w](t)>
∫
R

L(s − t)w(s) for anyw ∈W with 06w6 ε,

then

c∗ > inf
λ>0

1

λ
log
∫
R

e−λsL(s)ds.

Note that for
∫
RL(s)ds < 1 the lower bound would be trivial, i.e.,

equal to−∞.

2.1. The integral equation

We return to our travelling front equation (4). To apply Weinberger’s
results we will derive an integral formulation of (4) which is in fact an
integral equation for the total densityu alone. To this aim consider for
anyφ ∈W the linear, inhomogeneous problem to (4)

(v1− κ)u̇+ u= 1

|V |F(φ), in R× V.

We have an explicit description of the solutionu = Tκ ◦ F[φ]. Here
F[φ](t) := F(φ(t)) denotes the Nemytskij operator onW , whereas

Tκ :L∞(R)→ L∞
(
V ;L∞(R)),

Tκ[ψ](t, v) := 1

|V |
0∫

−∞
esψ

(
t + (v1− κ)s)ds

is the solution operator for the linear problem on unbounded domains
with an isotropic inhomogeneity(v1− κ)u̇+ u= 1

|V |ψ(t) in R× V .



532 H.R. SCHWETLICK / Ann. Inst. Henri Poincaré 17 (2000) 523–550

Now, integration overV gives the solution operator for the total density

u=Qκ[φ] := Tκ ◦F[φ] = T κ ◦F[φ],
where

T κ :L∞(R)→ L∞(R), T κ[ψ](t) :=
∫
R

Kκ(s − t)ψ(s)ds

is a convolution with positive probability kernel

Kκ(s)= 1

|V |
∫

v∈V, s
v1−κ <0

e
s

v1−κ

|v1− κ| dσv,

i.e., it satisfiesKκ > 0 and
∫
RKκ(s)ds = 1.

In contrast to the integral equation coming from the dynamical prob-
lem (1),Qκ enjoys a good compactness property: Fixψ ∈ L∞ and de-
fine u := Tκψ . Recalling the definition ofTκ we obtain|u|L∞(R×V ) 6

1
|V | |ψ |L∞(R). Furthermore, |(v1 − κ)u̇|L∞(R×V ) 6 2

|V | |ψ |L∞(R) holds.
Hence, [8, Lemma 7] yields the following

LEMMA 2.4. – The hypothesis(H3) implies

|T κψ |Cα
b
(R) 6 C0|ψ |L∞(R),

whereC0 only depends onC,α. Furthermore,T κ respects the upper and
lower bounds, i.e.

infψ 6 inf T κψ 6 supT κψ 6 supψ.

As usual, the Hölder norm is defined by

|φ|Cα
b
(R) := |φ|L∞(R) + sup

t 6=t ′
|φ(t)− φ(t ′)|
|t − t ′|α .

From (H2) we know thatF mapsW into itself, also continuously by
(H1). Therefore the above lemma implies thatQκ is a continuous and
compact mapping ofW into itself.

We show now, that any solution of (4) is equivalent to a fixed pointu ∈
W of the corresponding integral equation for the total density satisfying
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in addition the asymptotic boundary condition, i.e.,

u=Qκ[u],
u(−∞)= 1> u(t)> 0= u(∞).

(9)

Clearly, if u is a solution of (4) thenu satisfies (9). Sinceu ∈ Cαb (R)
by Lemma 2.4, we haveu ∈ W . For the opposite direction recall that
for a given solutionu of (9) the functionu = Tκ ◦ F[u] obeys the
differential equation in (4). We need to verify the correct asymptotics.
Sinceu ∈ W and u(∞) = 0 we find for anyε > 0 a numberM ∈ R
such thatF[u](s) < ε for s > M . Futhermore, 06 F[u] 6 1 by the
monotonicity ofF . LetN := logε−1. For t >M + (1− κ)N we obtain

06 Tκ ◦F[u](t, v)= 1

|V |
0∫

−∞
esF

(
u
(
t + (v1− κ)s))ds

6 1

|V |
0∫

−N
esεds + 1

|V |
−N∫
−∞

es ds

<
1

|V |
(
ε+ e−N

)= 2

|V |ε.

A similar proof is used fort→−∞.
We will use the following simple observation:Any solution of(9) is

equivalent to a speed 0 front ofQκ . Let us remark thatQκ is the solution
operator of the stationary problem for a fixed nonlinear inhomogeneity
andNOT the time-1-evolution operator of the dynamical problem (1) in
the moving coordinate system(t, x+κt). Hence, fronts forQκ with non-
zero speed have no particular physical meaning.

In the remainder of this paragraph we will verify the assumtions (HQ)
for Qκ .

A slight modification of the proof for [8, Lemma 7] gives

LEMMA 2.5. – Assume(H3). There is a constantC1= C1(C,α) such
that

|T κψ |Cβ+α(1−β)
b

(R) 6 C1|ψ |Cβ
b
(R) for all β ∈ (0,1).

Proof. –Set u := Tκψ , ψ ∈ Cβb (R). From |(v1 − κ)u̇|L∞(R×V ) 6
2
|V | |ψ |L∞(R) follows
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|v1−κ|<δ

∣∣u(t, v)− u(t ′, v)∣∣dσv
+

∫
|v1−κ|>δ

∣∣∣∣∣
t∫

t ′
(v1− κ)u̇(s, v)ds

∣∣∣∣∣ dσv
|v1− κ|

6 |ψ |
C
β

b
(R)

[
|t − t ′|β 1

|V |
∫

|v1−κ|<δ
dσv

+ 2|t − t ′| 1

|V |
∫

|v1−κ|>δ

dσv
|v1− κ|

]
.

From (H3) we infer 1
|V |
∫
|v1−κ|<δ dσv 6 Cδα. As in the proof of [8,

Lemma 7] we find

1

|V |
∫

δ<|v1−κ|

dσv
|v1− κ| 6

2C

1− α δ
α−1. (10)

Finally, we setδ = 4C
1−α |t − t ′|1−β .

THEOREM 2.6. – Any fixed pointu = Qκu, u ∈ [0,1], satisfiesu ∈
C

1,α
b (R).

Proof. –Providedα + β > 1 there is a similar argument as for (10) to
show

1

|V |
∫
V

dσv
|v1− κ|1−β 6

4αC

α + β − 1
.

Any fixed point u, u ∈ [0,1] is contained inCαb (R) by Lemma 2.4.
Hence, a bootstrap argument using the last lemma impliesu ∈ Cβb (R)
for anyβ ∈ (0,1). In particular, we can assumeβ > 1− α/2. Note, that
u= Tκ ◦F[U ] is differentiable forv1 6= κ with

|u̇(t, v)|6 1

|V | |v1− κ|−1

0∫
−∞

es
∣∣F (u(t))− F (u(t + (v1− κ)s))∣∣ds

6 1

|V | |v1− κ|β−1 · 2LipF |u|
C
β

b
(R).

We obtain by integration thatu is uniformly Lipschitz continuous with
Lipschitz constant bounded by 16CLip F |u|

C
β

b
(R). Therefore,F[u] is
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Lipschitz. Sinceu̇ = T κ ◦ (F[u])̇ one final application of Lemma 2.4
givesu ∈C1,α

b (R). 2
The theorem implies that any weak solutionu of (4), which is a priori

only bounded, is a classical solution.

LEMMA 2.7. – Any fixed pointu =Qκu, u ∈ [0,1], which is nonin-
creasing, is either strictly decreasing or constant.

Proof. –Let there be two pointst1 < t2 such thatu(t1) = u(t2). Then
Eq. (29) reads

u(ti)=
∫
R

Kκ∗(s − ti)F (u(s))ds =
∫
R

Kκ∗(s)F
(
u(ti + s))ds.

Thereforeu(t1)− u(t2)= 0 implies∫
R

Kκ∗(s)
(
F
(
u(t1+ s))− F (u(t2+ s)))ds = 0.

Recall thatu is nonincreasing and continuous by Lemma 2.6. Form the
positivity of Kκ∗(s) and the strict monotonicity ofF follows thatu is a
constant. 2

LEMMA 2.8. – The operatorT κ :L∞(R)→ L∞(R), and henceQκ ,
is continuous inκ , as well as nonincreasing, if restricted to nonincreasing
functions.

Proof. –Step 1 (Continuous dependence): Fixψ ∈ L∞(R) and let
−1< κ1 < κ2 < 1. Defineκ0= 1

2(κ1+ κ2), ε := 1
2(κ2− κ1) ∈ (0,1) and

δ := ε+ 3
√
ε. Then

∣∣T κ1[ψ] − T κ2[ψ]
∣∣
L∞(R) 6 |ψ |L∞(R)

∫
R

∣∣Kκ1(s)−Kκ2(s)
∣∣ds.

For s < 0 we obtain from the kernel representation

|V |∣∣Kκ1(s)−Kκ2(s)
∣∣6 I1(s)+ I2(s)+ I3(s),

where

Ii,i=1,2(s) :=
∫

κi<v1<κ0+δ

e
s

v1−κi

v1− κi dσv,
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I3 :=
∫

v1>κ0+δ

∣∣∣∣ e
s

v1−κ1

v1− κ1
− e

s
v1−κ2

v1− κ2

∣∣∣∣dσv.
We estimate the integralsIi,i=1,2(s), i = 1,2, by

0∫
−∞

Ii(s)ds =
∫

κi<v1<κ0+δ
e

s
v1−κi dσv 6

∣∣{κi < v1< κ0+ δ}
∣∣.

For the last integral observe that∣∣∣∣ e
s

v1−κ1

v1− κ1
− e

s
v1−κ2

v1− κ2

∣∣∣∣6
κ2∫
κ1

(
e

s
v1−κ

(v1− κ)3 +
e

s
v1−κ

(v1− κ)2
)

dκ

6 2ε−2/3

κ2∫
κ1

e
s

v1−κ

(v1− κ) dκ,

sinceκ ∈ (κ1, κ2) andv1> κ0+δ impliesv1−κ > δ−ε = 3
√
ε. Therefore

we obtain

0∫
−∞

I3(s)ds 6
(
ε−2/3+ ε−1/3) κ2∫

κ1

∫
v1>κ0+δ

e
s

v1−κ dσv dκ 6 2ε1/3|V |.

Similar expressions are valid fors > 0. Using (H3) we get∫
R

∣∣Kκ1(s)−Kκ2(s)
∣∣ds 6 2

|V |
∣∣{|v1− κ0|< δ}

∣∣+ 4ε1/3

6 2C2αεα/3+ 4ε1/3.

Step 2 (Monotonicity): We show for anyκ1 < κ2, that Tκ1 > Tκ2 on
the subset of decreasing functions inL∞(R). Let ψ ∈ L∞(R) satisfy
ψ(s)> ψ(s′) for all s < s′. Since

Tκi [ψ](t, v)=
1

|V |
0∫

−∞
esψ

(
t + (v1− κi)s)ds,

we obtain for the difference1 := Tκ1[ψ] − Tκ2[ψ]

1(t, v)= 1

|V |
0∫

−∞
es
(
ψ(t + (v1− κ1)s

)−ψ(t + (v1− κ2)s)
)

ds,
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which is nonnegative sinceκ1< κ2. 2
2.2. The proof for type A

For all κ ∈ (−1,1) we definec∗(κ) as the speedc∗ corresponding to
the operatorQκ following the method of Weinberger. Lemma 2.8 implies
thatc∗(κ) is lower semi-continuous and nonincreasing inκ .

LEMMA 2.9. – Type A impliesc∗(0) > 0.

Proof. –Considerκ = 0, i.e.,Q=Q0 in the previous paragraph. For
c = 0 we consider the sequence (8) corresponding to a suitably chosen
initial function φ. Choose ab ∈ (0,1). Defineε := F(b)/b− 1> 0 and

φ(t) := b ·
1, t <−ε−1,
−εs, t ∈ [−ε−1,0],
0, t > 0.

SinceF [φ] = b(1+ ε) on (−∞,−ε−1] we obtain for anyt ∈ [−ε−1,0]
T0 ◦F[φ](t, v)

> 1

|V |b(−εs + εv1)+ 1

|V |bε ·


(1− v1)exp

(−ε−1− t
v1

)
, v1> 0,

(−v1)exp
(−t
v1

)
, v1< 0.

Note
∫
V v1 dσv = 0 such that integration overV yields

Q0[φ] = T 0 ◦F[φ]> φ for t ∈ [−ε−1,0].
Note thatφ is constant outside[−ε−1,0]. Let us recall thatQ0[φ] is
nonincreasing and positive. Hence the inequality extends to allt ∈ R.
Furthermore, there exists aδ > 0 such thatQ0 ◦ Sδ[φ] > φ. Hence, the
sequence (8) satisfies

w0(0, t)= φ, wn+1(0, t)=Q0wn > S−nδφ.

If nδ > ε−1 we can apply Proposition 2.2 to obtainc= 0< c∗(0). 2
In the next paragraph we show thatc∗(κ)6 0 for speedsκ close to 1,

see Lemma 2.11 below. Hence, the speed

κ∗ := sup
{
κ ∈ (−1,1): c∗(κ) > 0

}
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is well-defined. The lower semi-continuity ofc∗(κ) implies c∗(κ∗) 6 0
andκ∗ ∈ (0,1).

Now Theorem 2.1 finishes the proof of Theorem 1.1, since we can
conclude:

For all κ < κ∗ we havec∗(κ) > 0 such that there isNO speed 0 front
of Qκ .

For anyκ > κ∗ we havec∗(κ)6 0, i.e. there is a nonincreasing speed
0 front ofQκ . Recall that a speed 0 front is equivalent to a solution of (9),
which in turn is equivalent to a solution of (4). Furthermore, Lemma 2.7
provides the strict monotonicity.

2.3. Minimal wave speed for subtangential source terms

THEOREM 2.10. – Let f be differentiable at0 with f ′(0) > 0. Then
F is differentiable at0 with F ′(0) > 1. If F satisfies thesubtangential
propertyF(z)6 F ′(0)z then the minimal wave speed is given by

κ∗ = k(F ′(0)) := inf
ξ∈(0,1)

1

ξ

(
1− 1

A(ξ)F ′(0)

)
, (11)

where

A(ξ)= 1

|V |
∫
V

dσv
1− ξv1

. (12)

The speed functionk(·) is continuous and strictly increasing withk(1)=
0 andk(∞)= 1.

Note thatA(ξ) is smooth for|ξ |< 1.

Proof. –We can find for everyδ > 0 an ε > 0 such thatF(z) >
(1− δ)F ′(0)z for all 06 z6 ε. We conclude from Theorem 2.3

c∗(κ)= inf
λ>0

1

λ
log
∫
R

F ′(0)e−λsKκ(s)ds. (13)

In the following we show

Λ(κ,λ) :=
∫
R

eλsKκ(s)ds

=


1

|V |
∫
V

dσv
1+ λ(v1− κ), λ ∈

[
− 1

1− κ ,
1

1+ κ
]
,

∞, otherwise.

(14)
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First observe thatΛ(κ,λ) = T κ[eλ·](0). For anyλ ∈ (− 1
1−κ ,

1
1+κ ) the

operatorT κ exhibits an eigenfunctionuλ = eλt corresponding to the
eigenvalue

Λ(κ,λ)= 1

|V |
∫
V

dσv
1+ λ(v1− κ) .

This proves the claim for suchλ. If the integral is finite forλ = ± 1
1±κ

it serves at least as an upper bound. We approximate eλt monotonically
by min{K,eλt} for increasingK and obtain the reversed inequality. The
latter idea also allows to prove the claim forλ /∈ [− 1

1−κ ,
1

1+κ ]. In this case
the lower boundT κ[min{K,eλ·}](0) diverges forK→∞.

Using (14) we conclude for allκ > 0 that

c∗(κ) > 0 if and only if F ′(0) inf
λ>0
Λ(κ,−λ) > 1.

Settingλ(ξ) := − ξ

1−κξ , ξ ∈ (0,1), we obtain

Λ

(
κ,− ξ

1− κξ
)
= (1− κξ)A(ξ).

This yields

c∗(κ) > 0⇔ F ′(0) inf
ξ∈(0,1)(1− κξ)A(ξ) > 1. (15)

Solving for the minimalκ gives (11).
To get some information about the functionk(a), a > 1, we need to

examineA(ξ) on (0,1) first. Using the symmetry ofσ in Eq. (12) we
obtain

16A(ξ)= 1

|V |
∫
V

dσv
1− ξ2v2

1
6 1

1− ξ2
. (16)

Hence,

inf
ξ∈(0,1)

1

ξ

(
1− 1

a

)
= a − 1

a
6 k(a)6 inf

ξ∈(0,1)
1

ξ

(
1− 1− ξ2

a

)
.

The lower bound impliesk > 0 and lim infa→∞ k(a)> 1. We remark that
the upper bound is the infimum over a convex function inξ . Calculus
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yields

k(a)6
{

2
√
a − 1/a, a < 2,

1, a > 2.

Hence,k(1) = 0, k 6 1, and, in particular, lima→∞ k(a) = 1. Further-
more,k is continuous at 1. Now, leta2 > a1 > a0 > 1. The definition of
k(a) implies

k(a2)>
a1

a2
k(a1)+ inf

ξ∈(0,1)
1

ξ

a2− a1

a2

= k(a1)+ a2− a1

a2

(
1− k(a1)

)
. (17)

From (16) it follows that fori = 1,2

k(ai)= inf
1−a−1

0 6ξ<1

1

ξ

(
1− 1

aiA(ξ)

)
.

Hence,

k(a2)6
a1

a2
k(a1)+ sup

1−a−1
0 6ξ<1

1

ξ

a2− a1

a2

= k(a1)+ a2− a1

a2

((
1− a−1

0

)−1− k(a1)
)

6 k(a1)+ a2− a1

a0− 1
.

Together we obtain thatk is monotone and Lipschitz continues fora > 1.
For the strict monotonicity it suffices by (17) to showk < 1. To this

end we derive an improved upper bound forA(ξ), ξ close to 1. With
δ := 1− ξ we defineVβ := {v ∈ V : v1 > 1− δβ}, whereβ ∈ (0,1) will
be chosen later. We estimate

1

1− ξv1
6


1

1− (1− δ)(1− δβ) 6 δ
−β, for all v /∈ Vβ ;

1

1− (1− δ) = δ
−1, for all v ∈ Vβ .

Hence,

A(ξ)= 1

|V |
∫
V

dσv
1− ξv1

= 1

|V |
∫

V \Vβ

dσv
1− ξv1

+ 1

|V |
∫
Vβ

dσv
1− ξv1
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6 1

|V |
∫

V \Vβ
δ−β dσv + 1

|V |
∫
Vβ

δ−1 dσv

6 δ−β + δ−1Cδαβ by (H3).

Settingβ := 1
1+α we obtain

A(ξ)6 (1+C)(1− ξ)− 1
1+α .

Recalling the definition of the minimal wave speed function we get

k(a) = inf
ξ∈(0,1)

1

ξ

(
1− 1

aA(ξ)

)
6 inf

ξ∈(0,1)
1

ξ

(
1− (1− ξ)

1
1+α

a(1+C)
)

6 1− 2δa
1− δa < 1− δa, δa := (2a(1+C))− 1+α

α ∈ (0,1).
(18)

This shows thatk(a) < 1 for all a > 1. 2
The formulae of the minimal wave speed of subtangential nonlineari-

ties is used to prove the following result for general nonlinearities.

LEMMA 2.11. – There is aκ ∈ (0,1) such thatc∗(κ) 6 0 for all
κ ∈ [κ,1).

Proof. –Step 1: DefineM := supz∈(0,1) F (z)/z. From (H1) follows
1 < M <∞. We use the minimal wave speed functionk(·), defined
above, and setκ := k(M). Note that κ ∈ (0,1) by Theorem 2.10.
From the definition ofk(M) we know that there exists aλ < 0 such
that MΛ(κ,λ) = 1. SinceT κ eλt = Λ(κ,λ)eλt we deduce thatφλ :=
min{1,eλt} is a super solution forQκ .

Step 2: Letκ > κ. Lemma 2.8 implies thatφλ is also a super solution
for Qκ . Consider an arbitraryφ satisfying (7). Define forc = 0 the
sequence{wn} from (8). SinceQκ is monotone we obtain fromφ 6 φλ
thatwn 6 φλ for anyn ∈N. Hence,w6 φλ 6 eλt and thusc= 0> c∗(κ)
by Proposition 2.2. 2
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3. THE TYPES B AND C

3.1. The finite problem

Let us consider a Lipschitz nonlinearityF satisfying (H2) andF(0)=
0,F (1) = 1. For |κ| < 1 andR > 0 we seek a solutionu(t, v) to the
boundary value problem

(v1− κ)u̇+ u= 1

|V |F(u), |t|<R, (19)

u(−R,v)= 1

|V | , v1> κ, (20)

u(+R,v)= 0, v1< κ, (21)

0< u < 1, |t|<R. (22)

Let us defineWR := L∞([−R,R]; [0,1]). For any ψ ∈ WR we
consider the linear problem to (19)–(21)

(v1− κ)u̇+ u= 1

|V |F(ψ), |t|<R,

u(−R,v)= 1

|V | , v1> κ,

u(+R,v)= 0, v1< κ.

Including the contribution from the boundary data we get from Sec-
tion 2.1 the integral equation for finite domains

u=QR
κ ψ, QR

κ :=BR ◦Qκ ◦ER.
Here

ER :WR→ L∞(R), ER[ψ](t) :=


1, t <−R,
ψ(t), |t|6 R,
0, t > R

denotes an extension operator, andBR is the restriction onto the interval
[−R,R]. Again,QR

κ :WR → YR := Cα([−R,R]; [0,1]) is a monotone
and continuous mapping, the estimates being uniform inκ .

A solutionu of (19)–(21) is equivalent to a fixed pointu ofQR
κ :WR→

YR. Onceu is known, we can recoveru by u = BR ◦ Tκ ◦ F ◦ ERu. In
the following a functionφ satisfyingφ 6QR

κ φ (respectivelyφ >QR
κ φ)

is called sub (respectively super) solution ofQR
κ .
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THEOREM 3.1. – There exists a unique solutionu= uRκ of (19)–(22)
satisfying

u ∈ YR, (v1− κ)u̇, u ∈ L∞([−R,R] × V ).
In addition, u (and henceu) is strictly decreasing int . Finally, if u0 is
any sub(respectively super)solution ofQR

κ with u0 ∈ [0,1] thenu06 u
(respectivelyu0> u).

Proof. –Step 1 (Existence): Since 0 and 1 are both fixed points ofF ,
the constant functionsu∗ ≡ 0 andu∗ ≡ 1 are sub and super solutions
of QR

κ , respectively. Using the compactness and monotonicity ofQR
κ we

construct a solutionu ∈ YR by monotone approximation, starting with
u∗ or u∗, respectively. Sinceu∗ 6 u6 u∗ is necessarily satisfied, we get
u ∈ [0,1].

Step 2 (Uniqueness): We use the sliding method.
Consider two solutionsui, i = 1,2, of (19)–(21). Equivalently, we can

sayui =QR
κ ui . Instead of (22) we only requireui ∈ [0,1]. We extendui

naturally onR by just not restricting it, i.e. settingui = T κ ◦ F ◦ ERui
for all |t| > R. Noteui ∈ Cαb (R) by Lemma 2.4. Letφ0 = T κ[H(−·)],
H being the Heaviside function. The positivity of the kernelKκ ensures
φ0 ∈ (0,1). From (22) and (H2) we obtain

φ0(· +R)= T κ ◦F ◦ER06 ui 6 T κ ◦F ◦ER1= φ0(· −R). (23)

Henceui must satisfy (22). Sinceui is continuous, the difference1 :=
u1−u2 is continuous. We can assume that there exists a pointt1, |t1|6R
such that1(t1) > 0. Otherwise interchange the index or1|[−R,R] ≡ 0 and
we are ready.

The shift operator is continuous onCαb (R) such that1s(t) = u1(t +
s) − u2(t) is again continuous for alls ∈ R. We assumed10(t1) > 0
and get from (23)12R 6 0. Restricting our attention to thefinite interval
[−R,+R] we obtain, that there must exist a shifts0 ∈ (0,2R] such
that 1s0|[−R,R] 6 0 with equality for somet0, |t0| 6 R. SinceT κ is a
convolution we obtain

ui(t + s)= T κΨi,s(t),

Ψi,s (t) :=


1, t <−R− s,
F(ui(t + s)), −R− s 6 t 6 R− s,
0, t > R− s,
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such that1s = T κ(Ψ1,s − Ψ2,0). From (22), (H2) and1s0|[−R,R] 6 0
follows Ψ1,s0 − Ψ2,0 6 0. SinceT κ is a positive operator1s0(t0) = 0
impliesΨ1,s0 −Ψ2,0≡ 0. In particular it holds fort ∈ (R− s0,R)

0= Ψ1,s0(t)−Ψ2,0(t)= 0−F (u2(t)
)
,

hence,u2 ≡ 0 on (R − s0,R). Since this contradicts (22) we proved
uniqueness.

Note that the method of monotone approximation from step 1 implies
that the uniqueu is sandwiched between any pair of sub and super
solutions ofQR

κ with values in[0,1].
Step 3 (Monotonicity): SinceT κ is a convolution with positive kernel,

it leaves invariant the space of pointwise nonincreasing/nondecreasing
functions onR. By (H2), recall also the precise form of boundary
condition, it follows thatQR

κ leaves invariant the space of nonincreasing
functions inWR . Recall that in step 1 the solutionu is constructed by
a monotone approximation starting with the constant function 0 or 1.
Hence,u must be nonincreasing int . The strict monotonicity is proven
by another application of the sliding method similar to step 2.2

THEOREM 3.2. – The solutionu= uRκ of (19)–(22)is strictly decreas-
ing in κ . Furthermore,uRκ is continuous inκ .

For the continuity statement it is important to consideru instead of
u itself, because it enjoys better regularity properties, described above.
However, noC0 estimate foru can be expected, since the hyperbolic
boundary conditions generate a jump in the dependence ofu on v if the
value ofv1 crossesκ .

Proof. –Step 1 (Continuous dependence): Note that the compactness
propertyQR

κ :WR → YR holds uniformly in κ . Since we established
already the uniqueness of solutionsu ∈ (0,1) for all κ , the continuous
dependence follows classical steps: To a given sequenceκi→ κ consider
the unique solutionsui := uRκi . Going over to a subsequence if needed, the
ui converge uniformly to a functionu ∈ YR. But thisu solvesu=QR

κ u,
i.e., represents a solution to the speedκ . Uniqueness ensuresu= uRκ .

Step 2: In step 2 of the proof of Lemma 2.8 we showed thatTκψ is a
nonincreasing function ofκ , providedψ ∈ L∞(R) is nonincreasing. By
(H2) follows

1(t, v) :=BR ◦ Tκ1 ◦F ◦ERψ −BR ◦ Tκ2 ◦F ◦ERψ > 0.
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Integrating overV gives only the non-strict version of the claim. To
obtain the strict inequality we observe that for anys > R we have
F ◦ ER[ψ](−s) = 1> 0 = F ◦ ER[ψ](s). This allows us to improve
the inequality above forv ∈ I := [κ1+ δ, κ2− δ], δ := κ2−κ1

4 > 0. For all

|t|<R we haveM := supv∈I max
{

R+t
|v1−κ1| ,

R−t
|v1−κ2|

}
< 2R

δ
, such that

1(t, v)= 1

|V |
0∫

−∞
es
(
F
(
ERψ(t − |(v1− κ1)s|))

−F (ERψ(t + |(v1− κ2)s|))ds

> 1

|V |
−M∫
−∞

es ds = 1

|V |e
−M > 0.

Sinceσv is a positive measure we obtain1> 0.
Step 3: SinceuRκ1

is the fixed point ofQR
κ1

, we know from Theorem 3.1
that it is decreasing int . Applying the results of steps 2 and 3 we find

uRκ1
=QR

κ1
uRκ1

>QR
κ2
uRκ1
,

implying uRκ2
< uRκ1

by Theorem 3.1. SinceuRκi = Tκ ◦F ◦ERuRκi depends
monotonically onuRκi , we finally getuRκ2

< uRκ1
. 2

COROLLARY 3.3. – Let θ0 ∈ [θ,1). There exist constantsR0(θ) > 0,
−1< κ(θ0) < 0< κ < 1, such that for anyR > R0 there is a unique
speedκR ∈ (κ, κ) such thatuRκR(0)= θ0.

Proof. –Step 1 (Lower bound forκ): Let R > 0 and φκ0 := Tκ ◦
H(−·), whereH denotes the Heaviside function. Choosez ∈ (θ0,1) and
defineν := z/F (z) ∈ (0,1). The functionu0 ≡ z satisfiesQR

κ u0(t) >
F(z)φ

κ

0(t −R). Thereforeu06QR
κ u0 is implied by the inequality

φ
κ

0(t)> ν for all t < 0.

For t < 0 we haveφκ0(t, v1> κ)≡ 1/|V | andφκ0 (t, v1< κ)> 0, such that
by (H3)

φ
κ

0(t)> 1− 1

|V |
∣∣{v ∈ V : v1< κ}

∣∣> 1−C(1+ κ)α.
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Hence, for allκ < κ := ((1− ν)/C)1/α − 1< 0, recallC > 1, we obtain

uRκ (0)> u0(0)= z > θ0.

Step 2 (Upper bound forκ): We take the speedκ := k(supz∈(0,1) F (z)/
z) from Lemma 2.11. There we showed that there is aλ < 0 such that
min{1,eλt} is a super solution for allQκ , κ > κ . SinceER[eλ(·+R)](t)6
eλ(t+R) we deduce that eλ(t+R) is a super solution forQR

κ , κ > κ . This
implies

uRκ (0)6 eλR.

Hence,uRκ (0) < θ0 for all κ > κ andR >R0 := |λ|−1 ln θ−1
0 .

Step 3: Using Theorem 3.2 and the previous two steps we can apply
the intermediate value theorem on the continuous functionκ 7→ uRκ (0).
This yields the existence of the unique speedκR ∈ (κ, κ). 2
3.2. Constructing the front

We use the solutionsuRκR constructed in Theorem 3.1 for increasing
values ofR and corresponding speedsκR ∈ (κ, κ) given by Corollary 3.3
choosingθ0 = θ . Extract a subsequenceRi →∞ such thatκRi → κ∗ ∈
[κ, κ]. The total densities satisfy

uRiκRi
∈Cα([−R,R]; [0,1]) and strictly decreasing int, (24)

uRiκRi
(0)= θ, (25)

uRiκRi
=QRi

κRi

[
uRiκRi

]
. (26)

Choosing again a subsequence if necessary,uRiκRi
converge uniformly on

bounded sets to a functionu, which satisfies

u ∈Cα(R; [0,1]) and nonincreasing int , (27)

u(0)= θ, (28)

u=Qκ∗[u]. (29)

Theorem 2.6 impliesu ∈ C1,α
b (R). We show in the remainder of this

paragraph that the functionu, constructed above, is indeed a solution
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of (9). This amounts to prove thatu attains the asymptotic boundary
conditions. Recall thatκ∗ ∈ [κ, κ]. At the end of this paragraph we will
even show that there cannot beanysolution of (9) withκ > κ .

Lemma 2.7 implies thatu is either strictly decreasing or equal to
a constant, which must beθ by (28). From (27) follows thatu has
asymptotic limits

Ψ± := lim
t→±∞u(t) satisfying 06 Ψ+ < θ < Ψ− 6 1

orΨ+ = θ = Ψ−.
Furthermore,Ψ− andΨ+ have to be fixed points of the mappingF . The
proof is given by contradiction. AssumeΨ− = b ∈ (θ,1). There exist
b′ ∈ (θ, b) and t ′ ∈ R such thatF(b′) > b and u(t) > b′H(t ′ − t), H
being the Heaviside function. It follows from (29)

u(t)>Qκ∗
[
b′H(t ′ − t)]= F(b′)Tκ∗[H(t ′ − t)]

>F(b′)
(

1− exp
(
− t
′ − t

1+ κ∗
))
.

Hence,Ψ− > F(b′) > b, which is impossible. Type C admits a similar
argument forΨ+.

We summarise:

Type B: Eitheru≡ θ orΨ− = 1,Ψ+ ∈ [0, θ).
Type C: Eitheru≡ θ orΨ− = 1,Ψ+ = 0.

(30)

LEMMA 3.4. – If u≡ θ then there exists a travelling front, not faster
thanκ∗, connecting1 andθ . Hence, type A impliesκ∗ > 0.

Proof. –Recall the method of construction leading to a solution on the
whole line, which was prescribed in the beginning of this section. But
now we chooseθ0 ∈ (θ,1). For anyi ∈N there is a unique solution of

u
Ri
κ ′
Ri

=QRi
κ ′
Ri

[
u
Ri
κ ′
Ri

]
, u

Ri
κ ′
Ri

(0)= θ0.

From Theorem 3.2 and Corollary 3.3 we knowκ(θ0) < κ
′
Ri
< κRi and

u
Ri
κ ′
Ri

> uRiκRi
. For a subsequence the speedsκ ′Ri will converge to a speed

κ ′ 6 κ∗ while the total densities converge uniformly on bounded sets to a
functionu′ > u≡ θ satisfying

u′ ∈Cα(R; [θ,1]) and nonincreasing int ,
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u′(0)= θ0,

u′ =Qκ ′ [u′].
Recall thatF has no fixed points in(θ,1). Hence,u′ is a travelling front
with asymptotic values 1 andθ at−∞ and+∞, respectively. Hence,u′
is even strictly decreasing by Lemma 2.7. The nonlinearity restricted to
[θ,1] is of type A, such that Theorem 1.1 implies 0< κ ′ 6 κ∗. 2

LEMMA 3.5. – Consider type B. ThenΨ− = 1 impliesκ∗ > 0.

Proof. –Assumeκ∗ 6 0. We apply the sliding method in order to
compareu and the test functionφ from the proof of Lemma 2.9.
Choosing ab ∈ (θ,1) the proof will also apply for nonlinearities of type
B. Thus,φ is a sub solution toQ0, and hence forQκ∗ by Lemma 2.8.
Recall thatu solvesu=Qκ∗ [u]. Furthermore, sinceΨ− = 1 Lemma 2.7
shows thatu is strictly decreasing. Sinceφ(t) = b for t < −ε−1 and
φ(t) = 0 for t > 0 we haveu(t) > φ(t) for large values of|t|. This
remains true for any finite shift of the functionφ. If we shift φ to the left
we will achieveSMφ < u for some largeM > 0. Fromu(0)= θ < b we
know thatS−ε−1φ(0) > u(0). Hence there is a shiftSs0 such thatSs0φ 6 u
with equality at some finite pointt1. Sinceφ is a subsolution we obtain

0>Qκ∗[u](t1)−Qκ∗ [Ss0φ](t1)
=
∫
R

Kκ∗(s − t1)(F (u(s))− F (Ss0φ(s)))ds.

FromSs0φ 6 u follows by (H2) that the integrand is nonnegative, hence
vanishes. Thus,Kκ∗ > 0 impliesSs0φ = u, contradictingΨ− = 1. 2

LEMMA 3.6. – Assume type B or C. Ifκ∗ > 0 thenΨ+ = 0.

Proof. –Consider the following linear problem

(v − κ)u̇+ u= 1

|V |u, t ∈ (0,R),

u(0, v)= 1

|V | , v > κ,

u(+R,v)= 0, v < κ.

A solution is equivalent to a fixed point of̃QR
κ := B̃R ◦T κ ◦ẼR , whereB̃R

restricts functions onto[0,R], andẼR extends functions by 1 on(−∞,0)
and by 0 on(R,∞). Forκ = κRi andR =Ri the functionB̃RuRiκRi is a sub
solution. This follows immediately fromF(z) 6 z, z ∈ [0, θ] if F is of
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type B or C. On the other hand, for any positiveκ andR we can choose
φλ(t) := min{1,eλt} as a super solution, provided thatΛ(κ,λ) 6 1 and
λ ∈ (− 1

1−κ ,0), see also Section 2.3. To allow for negative values ofλ the
positivity of κ∗ comes into play. Sinceκ∗ > 0, there is ani0 such that

κRi > κ0 := 1

2
κ∗ > 0 for all i > i0.

From the proof of Theorem 2.10 in Section 2.3 we know for allξ ∈ (0,1)

Λ

(
κ,− ξ

1− κξ
)
= (1− κξ)A(ξ) with A(ξ)6 (1− ξ2)−1.

Settingλ0 := −κ0 we obtain for allκ > κ0

Λ(κ,λ0)6
1+ κκ0

(1+ κκ0)2− κ2
0
6 1+ κκ0

1+ κκ0+ (κ − κ0)κ0
6 1,

showing thatφλ0 is a super solution. Hence, for anyi > i0 Theorem 3.1
yields the existence of a solution with dataκ = κRi and R = Ri .
Furthermore, we obtain the uniform inequality

uRiκRi
(t) < φλ0(t)6 eλ0t for all t ∈ [0,Ri].

This impliesu6 eλ0t for all t ∈ R+, provingΨ+ = 0. 2
Now we conclude the proof of Theorem 1.2.
Type B: For all possible values ofΨ± we conclude from Lemmas 3.4

and 3.5 thatκ∗ > 0. Hence,Ψ+ = 0 by Lemma 3.6 and thusΨ− = 1 by
(30).

Type C: By (30) it suffices to exclude the caseu≡ θ . Here Lemma 3.4
impliesκ∗ > 0. But thenΨ+ = 0 by Lemma 3.6, contradictingu≡ θ .

It remains to show that there is no solution(κ, u) of (9) for any
κ > κ . Recall from Lemma 2.11 the definitionκ := k(M), whereM =
supz∈(0,1) F (z)/z > 1. For anyκ ∈ (κ,1) we can find by Theorem 2.10 a
slopeM ′ >M such thatk(M ′)= κ . SinceM ′ >M there is aθ1 ∈ (0, θ)
such thatF(z) 6 θ1 + M ′(z − θ1) for all z ∈ [θ1,1]. As in the proof
of Lemma 2.11 we can find aλ′ < 0 such thatM ′Λ(κ,λ′) 6 1. Hence,
φ :=min{1, θ1+ eλ

′t} is a super solution forQκ . Assuming the existence
of a solution(κ, u) of (9) we can apply the sliding method in order to
compareu andφ. Arguing similar to the proof of Lemma 3.5 we deduce
thatu must be a finite shift ofφ. Hence,u cannot be a solution of (9).
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