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ABSTRACT. — We consider a nonlinear transport equation as a hyper-
bolic generalisation of the well-known reaction-diffusion equation. We
show the existence of strictly monotone travelling fronts for the three
main types of the nonlinearity: the positive source term, the combustion
law, and the bistable case.

In the first case there is a whole interval of possible speeds containing
its strictly positive minimum. For subtangential nonlinearities we give

an explicit expression for the minimal wave speed.
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RESUME. — Nous considérons une équation de transport nonlinéaire
comme étant une généralisation hyperbolique de I'équation de réaction-
diffusion bien connue. Nous montrons I'existence de fronts progressifs
strictement monotones pour les trois principaux types de la nonlinéarité :
le terme source positif, la loi de combustion et le cas «bistable». Dans le
premier cas il existe tout un interval de vitesses possibles comprenant
son minimum. Dans le cas de nonlinéarités «sous-tangentielles» nous

donnons une expression explicite de cette vitesse minimale.
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1. INTRODUCTION

The work of Fisher [7] and Kolmogorov, Petrovsky and Piskounov
[11] inspired the study of the asymptotic behaviour of spreading and
interacting particles on unbounded domains. Both articles modelled
spread and interaction by a reaction-diffusion equations. In particular it
was shown that suitable initial configurations converge asymptotically to
travelling front solutions. This observation lead Aronson and Weinberger
in a series of papers to introduce the concept of the asymptotic speed of
propagation, cf. [2,1,15,3]. These articles already include the treatment
of integral equations as well as discrete time and space models. The idea
and the computation of the asymptotic speed was then extended to more
general integral equations in [6,14,13,16].

The parabolic nature of the reaction-diffusion equation leads to the
unrealistic phenomenon of unbounded particle speeds. Motivated by the
theory of diffusive transport we shall therefore propose a hyperbolic
generalisation, which arises if one replaces Brownian motion by a
transport process. Since the state space is enlarged by the set of possible
velocities/directions, the implementation of the reaction terms may differ
from the reaction-diffusion case.

Our goal is to show the existence of travelling front solutions of
the following hyperbolic equation. For the density = U (¢, x, v) of
particles, moving afz, x) € R, x R" with normalised velocity € V C
B1(0; R™), we consider the nonlinear transport equation

1 S
(8t+yv-V+uL)U:mM(U)+G(U)U inR, xR" x V. (1)

Herey denotes the maximal particle speééis, x) = [, U(z, x, v) do,

is the local total density, weighted by a positive measaren V,
having bounded volum¢V| = [, do,. We assume that and V are
rotationally symmetric. Turning of particles is governed by a Poisson
process with parametgr according to the operatadtU = U — ﬁﬁ.

The operatol. describes the local deviation from the mean and provides
the diffusivity of the transport process. Physically speakinglefines
isotropic scattering. The reaction is modelled by a uniformly distributed
productionM > 0, depending on the total density, and a mass action
law with rate G, which acts on the individual density. Note that all
annihilation processes must be modelled by a rate to preserve positivity.
Hence they are contained iG. We call f(z) = M(z) + G(2)z the
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net reaction. It is this net effect, which has to be compared with the
nonlinearity used in reaction-diffusion equations. In our modell particles
react not according to their individual velocities, which is reasonable
in certain chemical reactions or in biological modelling, see also [12,
Section 3.1]. The prototypical organisms whose motion can be described
by a transport equation are flagellated bacteria, the best studied of
which is E. coli. More examples can be found in [12,10], including the
locomotion of mouse fibroblasts and crawling caterpillars.

The isotropic modelling of the reaction in (1) is in contrast to the
Boltzmann as well as to the neutron transport equation. In the former case
post- and pre-collision velocities obey deterministic relations, whereas
interactions are less relevant in the latter case.

Throughout the paper we make the following assumptiong d¢ne.,
on M andG):

(H1) The functionsM andG are defined and Lipschitz continuous on
[0, 1], satisfyingM (0) = 0 andM (1) + G(1) = 0. Hence,f is
defined and Lipschitz continuous ¢®, 1] with f(0) = f(1) =
0. Furthermore we distinguish three main types:

(A) f>00n0,1).

(B) Thereis & € (0, 1) such thatf =0on[0,6] and f > 0 on
®,1).

(C) Thereis & < (0, 1) such thatf <0 on(0,0) andf > 0 on
6,1).

Type A is the so-called positive source term reaction and includes the
famous nonlinearitieg (1 — z) and z(1 — z)? used by Fisher [7] and
Kolmogorov, Petrovsky and Piskounov [11], respectively. In the present
transport context we propose for the RHS of (1) the functiba U)*U,
i.e.M =0,G = (1-2)*, as a suitable implementation of the mass action
law. Type B can be found in many models of combustion theory, where
the burning reaction is triggered by an ignition temperature. Type C refers
to the bistable reaction law, singeadmits two stable equilibria.

We comment on the various reaction types. The classical results in
[3] for the reaction-diffusion equation show that for type A there are
fronts for all speeds greater or equal to a uniquely defined minimal speed.
On the other hand, for type C there is only a single front, unique up
to translation, which connects the equilibria 0 and 1. Berestycki and
Larrouturou [4] proved also for type B the uniqueness of the front.
Hadeler [9] considered fronts for an one-dimensional transport equation
where only the two velocities-y (left) and +y (right) are admitted.
The resulting two component system for the travelling front equation was
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shown to be equivalent (up to scaling) with the classical one in [3] coming
from the reaction-diffusion equation. For type A there is an interval of
positive speeds containing in particular all large speeds up to the maximal
particle speed , while type C leads again to a unique front. Note that the
hyperbolicity excludes any speed exceeding

The travelling wave equation

We are concerned with the existence of travelling plane wave solutions
of (1), also called fronts, i.e., of solutions of the form

U(t,x,v)=u(t,v), t=x-1n—Cct,

where the unit vector; stands for the direction along which the wave
is propagating with speede (—y, y). Furthermore, we require > O,
u € [0, 1] and the asymptotic boundary conditions

u(—oo,v) =

—, u(+oo,v)=0. 2
v 2)
This says, that the total density along the wave connects the two
distinguished equilibria off through the phase space regio® [0, 1].
Note that the rotational symmetry of the problem allows one tg fixe;.

Inserting this ansatz into (1) we are lead to the question whether or not
there is a solutioric, u) of the stationary problem

((yvi—¢)d; + uL)u = %M(ﬁ)—l—G(ﬁ)u inR x V, 3)

which also satisfies (2). Setting= y « we introduce a normalised speed
k € (—1,1). Provided thafx > G on [0, 1] we can rescale € R by the
positive factory /(u — G(w)). Denoting the new variable by and the
derivative with respect to by a dot we arrive at therincipal form of

(2).(3)

(vl—/c)b't—i—u:%F(ﬁ) inRxV,
(4)

1
M(—OO, U)EMa M(+OO, U)an M?O, EE[O’ 1]’



H.R. SCHWETLICK / Ann. Inst. Henri Poincaré 17 (2000) 523-550 527

now involving av-independent, also callégotropic, source term

f(@)
w—G(z)

We remark that the speedtogether with the solutiom are considered
as unknowns. We refer to as theshapefunction. In the following the
function F will incorporate all relevant features of the reaction into our
wave problem. Therefore, we restate the various reaction typeg':for
(A) F > 1don (0, 1); (B) Thereisv € (0, 1) with F =1Id on[0, 0], F > Id
on(0,1); (C) Thereish € (0,1) with F <Ildon (0,0), F > ldon (6, 1).

To construct solutions to (4) we consider the limit of solutions on
finite cylinders(—R, +R) x V. The method is inspired by the work of
Berestycki and Nirenberg [5] on travelling fronts of reaction diffusion
equations in cylinders. To prove uniqueness of solutions on finite
cylinders we use an adaption of teéding domain methqdoriginally
introduced in [5] for elliptic equations. This method crucially relies on a
maximum principle which is available in the elliptic case. We are able to
use the power of the sliding method also for stationary transport equations
of the form (4) if we require the following monotonicity assumption on
the nonlinearity.

(H2) > G and the functionF is strictly increasing offi0, 1].

We include the inequality > G because it is needed to derive (4) and
it ensures thar' is well-defined. Note that > G is always satisfied iz
contains no gain term. Also the second part of the hypothesis requires,
that the hyperbolic diffusion in (1), measured by the paramgteis
sufficiently strong. This can be seen by the fact that iind G are C*
functions then (H2) is implied by the inequality

d [

dz u — G(z)

The existence of solutions follows classical steps, once we know
monotonicity and compactness properties of a solution operator related
to (4). We will establish suitable compactness properties by applying the
regularity results for velocity averages of Golse, Lions, Perthame and
Sentis [8]. Hence, we need to require the main assumption therein:
(H3) There are constants > 1, « € (0, 1), such that the measure
onV satisfies

F(z)=z+ (5)

1
m’{v eV:ilvy—«k|<e}|<Ce® forallk e[-1,1].
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We remark that the uniform measure on the spisére in R” satisfies
(H3) for anyax € (0,1/2] in casen = 2 anda € (0,1) forall n > 3.

Results

THEOREM 1.1. — Assuming type A there exists a minimal wave speed
k* € (0,1), such that Eq(4) has a solution(x, u) if and only ifx €
[«*,1). For anyk € [«*, 1) there is a solution with a strictly decreasing
shape function.

THEOREM 1.2. — Assume type B or C. There exists a speécd:
(—1,1), such that forc = «* Eq. (4) has a solution(x, u). The shape
u is strictly decreasing in. There is a speed € (0, 1) such that(4) has
no solution(x, u) for anyx > «x.

Note that the arguments deriving (4) imply, that any solutienu)
of (4) is equivalent with a travelling wave solutian, U) of (1) having
speed = y« and the desired asymptotic behaviour.

In Section 2 we show that (4) can be transformed into a scalar
integral equation for the total densi@yalone. Using (H3) we obtain as a
preliminary result that the shape functiet, v) of any solution(k, u) of
(4) is uniformly continuously differentiable in providedv, # «. Despite
this defect in the dependence orthe total density is still uniformly
continuously differentiable. Then Theorem 1.1 is proved by an adaption
of the methods developed by Weinberger [16] for the treatment of very
general integral problems of type A. However, Weinberger’s results do
not lead to an existence proof of fronts for the types B or C. Section 2
concludes with an explicit variational description of the minimal wave
speed for subtangential type-A-reactions.

Theorem 1.2 is proved in Section 3. We will construct a front by
considering (4) on a finite cylindet—R, R) x V and then letR
go to infinity. This idea was used by Berestycki and Nirenberg [5]
to show the existence of front-like solutions of elliptic equations for
nonlinearities of type A, B or C. In [5] it is assumed thathas Holder
continuous derivatives at 0 and 1, in particulaf(1) < 0, to prove
that the constructed solution obeys the asymptotic boundary condition.
Furthermore, the assumption is needed in the proof for type A to show
that one can indeed construct fronts of minimal speed. However, using
Weinberger’'s approach we can prove Theorem 1.1, i.e. type A, without
any further assumptions oyi. Subsequently, Theorem 1.1 is used in
the proof of Theorem 1.2 to treat also the types B or C without further
assumptions orf.
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No uniqueness of the speed or the shape of the front is proven for
the types B and C. This is subject to the author’s current research,
which includes the stability of these fronts. Furthermore, it is well-known
that for u — oo the transport process approximates brownian motion.
A natural question arising here is, if the fronts of the transport equation
converge to the fronts for the limiting reaction-diffusion problem.

2. TYPEA —THE POSITIVE SOURCE TERM

For the convenience of the reader we start with a brief exposition of
Weinberger’s results in [16]. Le¥ = C°(R; [0,1]) andQ: W — W an
operator satisfying

(1) 0101 =0, Q[1] =1.

There is a 6 [0, 1) such thatQ[#] =0 andQ[z] > z for all
z€(0,1).

(HQ) (2)QoS.=S.0QforallceR.
(3) If w1 < wzthenQ[w;] < Q[ws].

(4) O[w,] — Q[w] pointwise if w, — w uniformly on
bounded sets (ubs.).

(5) {Q[w,]} has a ubs.-convergent subsequence for any
sequencéw,}.
Weinberger views) as the time-1-evolution operator of a general dy-
namical system. The first condition on the flow operafbreflects the
assumptions in (H1) on the nonlinearif: while 6 = 0 corresponds to
type A, 6 > 0 contains reactions of type B and C. The other conditions
state thatQ is translation invariant, monotone, continuous, and compact.
We callw € W a travelling wave solution of) with speed € R, if

w= Qo Sc[w], ©)

w(—00) =12 w(t) = 0=w(c0),

whereS, : W — W denotes the shift operator, i.&.[w](?) := w(z + ¢).
Let ¢ € W nonincreasing and satisfy

¢p(—o0) e (6,1, ¢()=0 forr>0. ©)
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For anyc € R the sequence

Wata(e, 1) =max{e 1), Q o S[w, ()},  wolc,t) =)  (8)

is nondecreasing and uniformly boundedrinnonincreasing and con-
tinuous in c,t. Therefore,w(c,t) = lim, w,(c,t) = sup, w,(c, ) IS

a uniquely defined function which is nonincreasing and lower semi-
continuous irc, ¢. Set

c*:=sup{c: w(c, 1) =1}.

THEOREM 2.1 ([16, Theorem 6.6]). The number* is independent
of the choice of the initial functiop.
(a) Forall ¢ < ¢* there is no travelling front solution with speed
(b) If 6 =0 then there exists a nonincreasing travelling front for any
speed, ¢ > ¢*.

Let us remark that in case A, i.?,= 0, the number* is indeed
the minimal speed of fronts fo@. Note that nothing is said about the
existence of fronts fof > O.

Actually, Weinberger did not show (a) but it is an immediate conse-
guence from the following result which he used to prove ttids inde-
pendent ofp.

PROPOSITION 2.2 ([16, Lemma 5.3, Proposition 5.1]). ket c € R,
¢ € W a nonincreasing function satisfyir{@), andw, (c, t) the sequence
(8). Then the following are equivalent

(i) c<c*;
(i) wy(c, 1) — 1,
(iii) There exista € N such thatw, (¢, 0) > ¢ (—o0).

Proof of Theorem 2.1(a). Assume that forc < ¢* a frontw,. e W
exists satisfying (6). Sinca.(—oo) = 1 we can assume thai,.(0) €
#,1) andw.(¢r) > w.(0) for all r < 0. Consider the sequencee,(c, )
constructed from @& satisfying¢ (—oo) = w.(0). Clearly

wo(c, 1) = ¢(1) < we(r)

and from (HQ3) we inferw,(c, 1) < w.(r). But Proposition 2.2 states
that there must be a numbee N such thatw, (¢, 0) > ¢ (—00) = w.(0),
which is impossible. O
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Weinberger calculates also bounds foifor certain operatorg).

THEOREM 2.3 ([16, Theorems 6.3, 6.4]). —
(i) If Q satisfiesQ[w](7) < [ K(s —t)w(s)ds, then

. 1 .
< mfboxlog/e*“K(s) ds.
R

(i) Ifthere is a kerneL with [, L(s)ds > 1 and a positives such that

Olwl(t) > /L(s —Hw(s) foranywe WwithO< w<e,
R

then
c*>inf 1 IOg/e_“L(s) ds
>0 A )
R
Note that for [ L(s)ds < 1 the lower bound would be ftrivial, i.e.,
equal to—oo.
2.1. The integral equation

We return to our travelling front equation (4). To apply Weinberger’s
results we will derive an integral formulation of (4) which is in fact an
integral equation for the total densityalone. To this aim consider for
any¢ € W the linear, inhomogeneous problem to (4)

(vl—/c)it—i—u:%F((p), inR x V.

We have an explicit description of the solutian= 7, o F[¢]. Here
Flol(t) := F(¢(t)) denotes the Nemytskij operator &, whereas

Te: L¥(R) — L®(V; L®(R)),

0
1
T [¥]1(t,v) = m / €Y (r+ (v1 —«)s) ds

is the solution operator for the linear problem on unbounded domains
with an isotropic inhomogeneitgy, — « )i + u = ﬁa//(t) iNR x V.
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Now, integration ovel/ gives the solution operator for the total density
u=Q¢pl:=Tc o Flp] =T, o Flo],

where

T L*(R) - L¥(R), T [¥1(0) Z=/KK(S — DY (s)ds
R

is a convolution with positive probability kernel

1 e~
Koo = / do,,

veV,

-k =

i.e., it satisfiesk, > 0 and [ K, (s)ds = 1.

In contrast to the integral equation coming from the dynamical prob-
lem (1), Q. enjoys a good compactness property: Bix L and de-
fine u := T, . Recalling the definition off, we obtain|u| ~®rxy) <
ﬁlWle(R)- Furthermore,|(v1 — K)l/.l|Loo(R><V) < %lWle(R) holds.
Hence, [8, Lemma 7] yields the following

LEMMA 2.4.— The hypothesi§H3) implies
T lcom < Col L),

whereCy only depends o, «. Furthermore, T, respects the upper and
lower bounds, i.e.

infy <inf Ty < supT v < supy.

As usual, the Holder norm is defined by

1) —o
|lce@) == @lr~m + SUDM'
[;é[/ |t _t |

From (H2) we know thatF mapsW into itself, also continuously by
(H1). Therefore the above lemma implies th@t is a continuous and
compact mapping of into itself.

We show now, that any solution of (4) is equivalent to a fixed poiat
W of the corresponding integral equation for the total density satisfying
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in addition the asymptotic boundary condition, i.e.,

u=Q.lu],

#(—00) = 1> (1) = 0=1(c0).

9)

Clearly, if u is a solution of (4) thenr satisfies (9). Sinca < Cj(R)

by Lemma 2.4, we have € W. For the opposite direction recall that
for a given solutionz of (9) the functionu = T, o F[u] obeys the
differential equation in (4). We need to verify the correct asymptotics.
Sinceu € W andu(oo) = 0 we find for anye > 0 a numberM € R
such thatF[u](s) < ¢ for s > M. Futhermore, G F[u] < 1 by the
monotonicity of F. Let N :=loge~1. Fort > M + (1 — k)N we obtain

0
0< T, o Flul(t,v) = %_Zo e F(u(t+ (v —«)s))ds

A similar proof is used for — —oo.

We will use the following simple observationy solution of(9) is
equivalent to a speed 0 front ¢f,. Let us remark tha, is the solution
operator of the stationary problem for a fixed nonlinear inhomogeneity
andNoOT the time-1-evolution operator of the dynamical problem (1) in
the moving coordinate syste(n x + «¢). Hence, fronts folQ, with non-
zero speed have no particular physical meaning.

In the remainder of this paragraph we will verify the assumtions (HQ)

for Q..
A slight maodification of the proof for [8, Lemma 7] gives

LEMMA 2.5.— AssumdH3). There is a constarf, = C1(C, «) such
that

|TK‘//|C£3+&(1*/3>(R) <Cil¥lep, forall pe(0 1)

Proof. —Set u := T, ¥ € CL(R). From |(vy — «)ii| ~@xy) <
%th@) follows
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lu@t) —u()| < / lu(t,v) —u(t’, v)|do,
lvr—K|<8

t
do,

+

lvy—K|>8

’ 1 '
< |W|C5(R) [lt —t |'Bm / dav

|lv1—K| <8

do,
+2|t—t|— / .
VI lvg — «|

lvy—K|[>8

/(vl —i)u(s,v)ds
J vy — k|

From (H3) we mferlw Jivy—c)<s oy < C3%. As in the proof of [8,
Lemma 7] we find

se L, (10)

1 / do, 2C

— <
V] lvi—k|  l-a

s<|vi—«|
Finally, we setf = %p — 1|18,
THEOREM 2.6. — Any fixed pointz = Q,u, u € [0, 1], satisfiesu
Cy*(R).

Proof. —Provideda + 8 > 1 there is a similar argument as for (10) to
show
doaC

- < .
VIS o=« S at+p-1

Any fixed pointu, u € [0,1] is contained inCj; (R) by Lemma 2.4.
Hence, a bootstrap argument using the last lemma imﬁliesC,’f(R)
forany 8 € (0, 1). In particular, we can assunmte> 1 — «/2. Note, that
u =T, o F[U] is differentiable forv; # « with

0

(1, v)] < mu—m t [ e|F@n) - F@+ @1 cs))|ds

1 1

|V| — v — kP~ 2L|pF|u|C,s

We obtain by integration that is uniformly Lipschitz continuous with

Lipschitz constant bounded by d6ip F [u] . Therefore, Flu] is
b

R)’

®)”
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Lipschitz. Sinceir = T, o (F[u]) one final application of Lemma 2.4
gives € Cy“(R). O

The theorem implies that any weak solutiomf (4), which is a priori
only bounded, is a classical solution.

LEMMA 2.7.— Any fixed pointi = Q.u, w € [0, 1], which is nonin-
creasing, is either strictly decreasing or constant.

Proof. —Let there be two points, < , such thati(s1) = u(z;). Then
Eq. (29) reads

u(t;) = /K,(*(s —4)F(u(s))ds = /KK*(S)F(ﬁ(ti +5)) ds.
R R

Thereforeu(t,) — u(t;) = 0 implies

/ Kee () (F (@it + 5)) — F(ii(t2 +5))) ds = O.
4

Recall thati is nonincreasing and continuous by Lemma 2.6. Form the
positivity of K.« (s) and the strict monotonicity of follows thatz is a
constant. O

LEMMA 2.8.— The operatorT, : L*°(R) — L*(R), and henceQ,,
is continuous irx, as well as nonincreasing, if restricted to nonincreasing
functions.

Proof. —Step 1 (Continuous dependence): Rixe L*°(R) and let
—1 <« < ky < 1. Definexg = %(Kl + Kkp), & 1= %(Kz — k1) €(0,1) and
§:=¢+ Je. Then

Tal¥] = Tl ey < Wl [1K®) = Ko
R
Fors < 0 we obtain from the kernel representation

[VI|Kiy (8) = Ky ()] < Ta(5) + La(s) + I3(s),

where

N
eV
Iii=12(s) := / do,,
V1 — K

Ki <v1<ko+§
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=

v1>ko+4

We estimate the integrals;_; »2(s), i =1, 2, by

S S
evi—r1 evi—k2
— do,.
V1 — K1 V1 — K2

0
/ I;(s)ds = / e do, < |{k; < v1 <Ko+ 8}].
—00 Ki <v1<kQ+§8

For the last integral observe that

K2 5 5

/( evi—« ev1—« ) d
< + K
TSNk (m - w02

K1

K2 s
evi—x

§28_2/3/7d/<,

(v1—«)

N R —
e evi—<2

V1 — K1 V1 — k2

K1

sincex € (k1, k2) andvy > ko+ 8 impliesv; —k > § —e = Je. Therefore
we obtain

0 K2
/ I3(s) ds < (8—2/3+ 8—1/3>/ / giF do, dic < 263V,
% K1 v1>ko+6

Similar expressions are valid fer> 0. Using (H3) we get

" 2
/!Kn(s) = Koo)]dr < oy — ol < 8] + 462
R
< 202% /3 1 4173,

Step 2 (Monotonicity): We show for amy < «», that7,, > T,, on
the subset of decreasing functions ifi°(R). Let ¥ € L*°(R) satisfy
Y(s) =y (s) forall s < s'. Since

0
T [y, v)=%/eylﬁ(f+(vl—lq)s) ds,

we obtain for the difference := T, [¢/] — T[]

0

1
At = / & (Yt + (o1 — k1)s) — ¥ (¢ + (v — x2)s)) s,
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which is nonnegative sincg < k,. 0O
2.2. The proof for type A

For all x € (—1, 1) we definec*(x) as the speed* corresponding to
the operatoiQ, following the method of Weinberger. Lemma 2.8 implies
thatc* (k) is lower semi-continuous and nonincreasing in

LEMMA 2.9. - Type A implieg*(0) > 0.

Proof. —Considerx =0, i.e., Q = Qg in the previous paragraph. For
¢ = 0 we consider the sequence (8) corresponding to a suitably chosen
initial function ¢. Choose & € (0, 1). Defines := F(b)/b— 1> 0 and

1, t<—e 1
¢p@):=b-$ —es, te[—e10],
0, t>0.
SinceF[¢] = b(1+ &) on (—oo, —e 1] we obtain for any e [—&~2, 0]

Too Flol(t, v)

-1

—e 1t
1 (1-vy) eXp<€7>, vy >0,
> —Db(—es +evy) + —be - vl

~ v V| —t
(—vy) expl — |, v1 < 0.
U1

Note [, v1 do, = 0 such that integration ovéf yields
Qol¢l=Too Flp]l > ¢ forze[—s*, 0]

Note that¢ is constant outsid¢—e 1, 0]. Let us recall thatQq[¢] is
nonincreasing and positive. Hence the inequality extends to alR.
Furthermore, there existséa> 0 such thatQg o S;[¢] > ¢. Hence, the
sequence (8) satisfies

wo(0, 1) = ¢, wn41(0, 1) = Qowy, > S_ps¢b.

If ns > ¢! we can apply Proposition 2.2 to obtair=0 < ¢*(0). O

In the next paragraph we show thédix) < O for speeds close to 1,
see Lemma 2.11 below. Hence, the speed

k*:=sup{x € (-1,1): ¢*(k) > 0}
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is well-defined. The lower semi-continuity of («) implies ¢*(k*) < 0
and«* € (0, 1).

Now Theorem 2.1 finishes the proof of Theorem 1.1, since we can
conclude:

For all « < k* we havec*(x) > 0 such that there is0 speed 0 front
of Q..

For anyx > «* we havec* (k) < 0, i.e. there is a nonincreasing speed
0 front of Q... Recall that a speed 0 front is equivalent to a solution of (9),
which in turn is equivalent to a solution of (4). Furthermore, Lemma 2.7
provides the strict monotonicity.

2.3. Minimal wave speed for subtangential source terms

THEOREM 2.10. — Let f be differentiable ab with f'(0) > 0. Then
F is differentiable atO with F’(0) > 1. If F satisfies thesubtangential
property F (z) < F’(0)z then the minimal wave speed is given by

* ! [ E _71
K* =k(F'(0)) '_gel%fl)g<l A(g)F'(O))’ (11)
where
1 [ do,
A@):mv T (12)

The speed functiok(-) is continuous and strictly increasing wik{1) =
Oandk(oco) = 1.

Note thatA (&) is smooth forl&| < 1.

Proof. —-We can find for everyd > 0 an ¢ > 0 such thatF(z) >
(1—8)F'(0)z for all 0 < z < &. We conclude from Theorem 2.3

1

() = inf ~log / F/(0)e ™ K, (s) ds. (13)
- R
In the following we show
Ak, L) = / €K, (s)ds
R
i/ do, { 1 1 }

=3 Vi 1+ A(vr—k)’ 1-« 1+« (14)

00, otherwise.
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First observe thatA(x, 1) = T,[€](0). For anyx e (—ﬁ, 1+K) the
operator T, exhibits an eigenfunction, = € corresponding to the
eigenvalue

1
A<K’“=mvfm-

This proves the claim for such. If the integral is finite fora = £

1+«
it serves at least as an upper bound. We approxintatsmenotonically
by min{K, €'} for increasingk and obtain the reversed inequality. The
latter idea also allows to prove the claim fog [— =, 1+ ]. In this case
the lower bound’.[min{K, € }](0) diverges fork — oo.

Using (14) we conclude for al > 0 that

c*(k) >0 ifandonlyif F'(0) im;A(/c, -2 > 1

Settingr(§) := & €(0,1), we obtain

lKE’

A(K —1_575) =1 -«x&AE).

This yields

() >0 F'(0)_inf (1-k&AE) > 1 (15)

Solving for the minimak gives (11).

To get some information about the functiéu), a« > 1, we need to
examineA(¢) on (0, 1) first. Using the symmetry of in Eq. (12) we
obtain

1 do, 1
1§A(§)=mv/l_§2v%<1_gz' (16)

Hence,

1 1 -1 .1 1-¢&?
inf —<1——)=a <k(a) < inf —<1— 5).
£e(0D) & a a £€(0,1) & a

The lower bound implies > 0 and liminf,_, ., k(a) > 1. We remark that
the upper bound is the infimum over a convex functiorg irCalculus
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yields
k(a) < {2«/a—1/a, a<?2,
g, a>=2.

Hence,k(1) = 0, k < 1, and, in particular, lim., . k(a) = 1. Further-
more, k is continuous at 1. Now, let, > a1 > ag > 1. The definition of
k(a) implies

a . la,—a;
k > —k nf —
(az) o (al)+;:el(o,1)g o
=k(ay) + 2= (1~ k(ay)). (17)

From (16) it follows that fori =1, 2

. 1 1
k(a)= inf - (1 — )
1-ay'<e<1§ a; A(§)

Hence,

a la,—a
k) < Lk + sup RN
az 1-ayt<e<1 § a

ay, — d _
—k(ay) + 2a2 L(1=—agt) ™ = k(ay)
<hk(ay) + 279

ao—-l

Together we obtain thatis monotone and Lipschitz continues for- 1.

For the strict monotonicity it suffices by (17) to shaw< 1. To this
end we derive an improved upper bound #¢¢), & close to 1. With
§:=1—¢& we defineVy :={v e V: v; > 1— 87}, wherep € (0, 1) will
be chosen later. We estimate

1 <8P, forallvé¢ Vg;
~X ’ v 1
1 _)1-a-8a-s ’
1—gv ) Y 4 forallv eV,
1-1-s ° vE e
Hence,
1 " dUU l " dav 1 ' dav
A@) =

- +—
VIJ 1—=8vi V| 1-8vy |VIJ 1-8&n
Vv VA\Vg Vg
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1 ' 1
<— / §Pdo, + — /Sfldav
VI V1.
VAVg Ve
<8P +871Cs* by (H3).
Setting := 1~ we obtain
A() < (14 C)(1—§) T,

Recalling the definition of the minimal wave speed function we get

e = g (- ) (o)
e\t aae) Sl e a(l+C) (18)
< 11—258 <1-6, B,=(2a(1+0C) " €(0,1).

This shows thak(a) <1foralla>1. O

The formulae of the minimal wave speed of subtangential nonlineari-
ties is used to prove the following result for general nonlinearities.

LEMMA 2.11. - There is ax € (0,1) such thatc*(x) < 0 for all
K €Kk, 1).

Proof. —Step 1: DefineM := sup 1 F(z)/z. From (H1) follows
1< M < oo. We use the minimal wave speed functiéf), defined
above, and sek := k(M). Note thatx € (0,1) by Theorem 2.10.
From the definition ofk(M) we know that there exists & < 0 such
that MA(x, ») = 1. SinceTz€e" = A(x, A)e" we deduce thatp, :=
min{1, €} is a super solution foQx.

Step 2: Letk > x. Lemma 2.8 implies thap, is also a super solution
for Q.. Consider an arbitrary satisfying (7). Define forc = 0 the
sequencdw,} from (8). SinceQ, is monotone we obtain from < ¢,
thatw, < ¢, for anyn € N. Hencew < ¢, < €' and thusc =0 > ¢*(«)
by Proposition 2.2. O
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3. THETYPESB ANDC
3.1. The finite problem

Let us consider a Lipschitz nonlinearify satisfying (H2) andf'(0) =
0,F(1) =1. For|xk| <1 andR > 0 we seek a solutiom(z, v) to the
boundary value problem

1
(vi—Ku+u= mF(ﬁ), lt] < R, (19)
(—R,0)=— (20)
— _— >
u , U |V|a V1 > K,
u(+R,v)=0, v <k, (21)
O<u<1 |tf|<R. (22)

Let us defineWy := L*([—R, R];[0,1]). For any v € Wx we
consider the linear problem to (19)—(21)

(vl—K)it-i-M:%F(lﬁ), lrl <R,

1
u(—R,v) = m, V1> K,

u(+R,v)=0, vy <«k.

Including the contribution from the boundary data we get from Sec-
tion 2.1 the integral equation for finite domains

u=0%,  0f:=BroQ.o0Eg.

Here
1, t < —R,
Er:Wg — L(R), Erly]() :=q ¥ (@), [tI<R,
0, t>R

denotes an extension operator, aydis the restriction onto the interval
[—R, R]. Again, Q% : W — Yg := C*([—R, R]; [0, 1]) is a monotone
and continuous mapping, the estimates being uniform in

A solutionu of (19)—(21) is equivalent to a fixed poimtof OF : Wz —
Y. Onceu is known, we can recover by u = Br o T, o F o Egu. In
the following a functiong satisfyingg < QX¢ (respectivelyp > QR )
is called sub (respectively super) solution@f.
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THEOREM 3.1. — There exists a unique solution= u* of (19)-(22)
satisfying

ueYg, (vi—i)u, ue L°([—R,RIx V).

In addition, » (and hencex) is strictly decreasing irtr. Finally, if g is
any sub(respectively superolution of OX with g € [0, 1] theniio < u
(respectivelyiig > u).

Proof. —Step 1 (Existence): Since 0 and 1 are both fixed pointg ,of
the constant functiong, = 0 andz* = 1 are sub and super solutions
of OF, respectively. Using the compactness and monotonicit@ bfve
construct a solutions € Yx by monotone approximation, starting with
u, or u*, respectively. Sinca, <u < u* is necessarily satisfied, we get
u e|0,1].

Step 2 (Unigueness): We use the sliding method.

Consider two solutions;, i = 1, 2, of (19)—(21). Equivalently, we can
sayu; = QXu;. Instead of (22) we only requii@ < [0, 1]. We extendz;
naturally onR by just not restricting it, i.e. setting; = T, o F o Exu;
for all |t| > R. Noteu; € C¥(R) by Lemma 2.4. Letpg = T, [H(—-)],

H being the Heaviside function. The positivity of the kerd&&l ensures
¢o € (0,1). From (22) and (H2) we obtain

o+ R) =T, 0oF o ERO<u; <TyoFoEgl=¢o(- —R). (23)

Henceu; must satisfy (22). Since; is continuous, the differenca :=
11 — up is continuous. We can assume that there exists a poimt| < R
such thatA(71) > 0. Otherwise interchange the index®j;_z z; = 0 and
we are ready.

The shift operator is continuous af (R) such thatA,(r) = u1(t +
s) — up(¢) is again continuous for alf € R. We assumed\q(7;) > 0
and get from (23\,z < 0. Restricting our attention to tHaite interval
[—R,+R] we obtain, that there must exist a shiff € (0, 2R] such
that Ay |_r.z < O with equality for somey, || < R. SinceT, is a
convolution we obtain

ﬁi(t +S) =quji,s(t)a

1, t<—R-—sy,
Uis(@) =< Fu(t+s), —R—-s<t<R-s,
0, t>R—s,
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such thatA; = T, (W1, — W20). From (22), (H2) andA,|—r.z <0
follows ¥, — ¥, < 0. SinceT, is a positive operaton\,,(fp) = 0
implies ¥y ,, — ¥, 0= 0. In particular it holds for € (R — so, R)

0=, (1) — Wou(t) =0— F (1)),

hence,u, = 0 on (R — so, R). Since this contradicts (22) we proved
uniqueness.

Note that the method of monotone approximation from step 1 implies
that the uniquer is sandwiched between any pair of sub and super
solutions of X with values in[0, 1].

Step 3 (Monotonicity): Sinc&, is a convolution with positive kernel,
it leaves invariant the space of pointwise nonincreasing/nondecreasing
functions onR. By (H2), recall also the precise form of boundary
condition, it follows thatQ® leaves invariant the space of nonincreasing
functions in Wi. Recall that in step 1 the solutianis constructed by
a monotone approximation starting with the constant function 0 or 1.
Hence,# must be nonincreasing in The strict monotonicity is proven
by another application of the sliding method similar to step 2.

THEOREM 3.2. — The solution: = u® of (19)—(22)is strictly decreas-
ingin«k. Furthermore,ﬁf is continuous irk.

For the continuity statement it is important to consideinstead of
u itself, because it enjoys better regularity properties, described above.
However, noC? estimate foru can be expected, since the hyperbolic
boundary conditions generate a jump in the dependenaeoafv if the
value ofv; crosse.

Proof. —Step 1 (Continuous dependence): Note that the compactness
property QF: Wz — Yg holds uniformly inx. Since we established
already the uniqueness of solutioms (0, 1) for all «, the continuous
dependence follows classical steps: To a given sequeneex consider
the unique solutionsg; := ﬁs_ . Going over to a subsequence if needed, the
u; converge uniformly to a functiom € Y. But thisu solvesu = Oz,

i.e., represents a solution to the speedUniqueness ensuras=u~.

Step 2: In step 2 of the proof of Lemma 2.8 we showed fait is a
nonincreasing function of, providedys € L>(R) is nonincreasing. By
(H2) follows

A(t,v):=BroT,, 0o FoEgryy —BroT,,0oF o Egyy > 0.
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Integrating overV gives only the non-strict version of the claim. To
obtain the strict inequality we observe that for any- R we have
F o ER[¥](—s) = 1> 0= F o Eg[¥](s). This allows us to improve
the inequality above fov € I := [k1 + 6, k2 — 8], § := 27"+ > 0. For all

|t < R we haveM :=sup,, max{ Rit Rt } < 28 such that

[vi—k1|’ lvi—«2|

0

1
A= / & (F(Exy(t — |(v1 — k1)s]))

—00

— F(E V(1 + |(v1 — k2)s])) ds

/e‘ds——e -0
|V| V]

Sinceo, is a positive measure we obtain> 0.
Step 3: Since&! is the fixed point ofQ , we know from Theorem 3.1
that it is decreasing in. Applying the results of steps 2 and 3 we find

—R R —R
MK]_ = QK]_MK]_ > QKZ K1°?

implying 2} < by Theorem 3.1. Sincef = T, o 7 o Ezu,} depends
monotonlcally ozt , we finally getut < u,’fl 0

COROLLARY 3.3.— Let#g € [0, 1). There exist constant®y(6) > 0,
—1 < k(fp) <0< ¥x <1, such that for anyR > Rq there is a unique
speedc; € («, %) such thatz! (0) = 6.

Proof. —Step 1 (Lower bound fok): Let R > 0 and ¢§ := T o
H(—-), whereH denotes the Heaviside function. Choase (6y, 1) and
definev := z/F(z) € (0,1). The functionzy = z satisfiesQXuo (1) >
F(z)¢0(t — R). Thereforeiy < QRuy is implied by the inequality

$o(t) >v forallz <O0.

Fort < 0we havep(r, v1 > k) = 1/| V| andgg (¢, v1 < k) > 0, such that
by (H3)

1
{veVivi<k}>21-CA+k)"

Fo) > 1=
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Hence, for alk <« := ((1—v)/C)Y* —1 <0, recallC > 1, we obtain
u*(0) > o(0) = z > bo.

Step 2 (Upper bound far): We take the speed:= k(Sup 1) ' (2)/
z) from Lemma 2.11. There we showed that there is @ 0 such that
min{1, €'} is a super solution for alD,, k > &. SinceEx[e*+R](r) <
et *+® we deduce that’¢® is a super solution foQX, ¥ > x. This
implies

u®(0) < ek,

Hencei®(0) < 6 for all « > andR > Ry := |A| tIngy ™.

Step 3: Using Theorem 3.2 and the previous two steps we can apply
the intermediate value theorem on the continuous functien zX(0).
This yields the existence of the unique spegd («,x). O

3.2. Constructing the front

We use the solutions constructed in Theorem 3.1 for increasing
values ofR and corresponding speedg € (x, ¥) given by Corollary 3.3
choosingfy = 6. Extract a subsequend® — oo such thatcg, — «* €
[k, ¥]. The total densities satisfy

uli e C%([—R, R1;[0,1]) and strictly decreasing in ~ (24)

KR;
g (0) =6, (25)

g, = Qg @] (26)

Choosing again a subsequence if necess_ffr}'?y,converge uniformly on
bounded sets to a functian which satisfies

u € C*(R; [0, 1]) and nonincreasing in 27)
#(0) =6, (28)

Theorem 2.6 implies: C}}‘“(R). We show in the remainder of this
paragraph that the functiom, constructed above, is indeed a solution
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of (9). This amounts to prove that attains the asymptotic boundary
conditions. Recall that* e [«, x]. At the end of this paragraph we will
even show that there cannot &gy solution of (9) withk > .

Lemma 2.7 implies thak is either strictly decreasing or equal to
a constant, which must be by (28). From (27) follows thaw has
asymptotic limits

lI/i:=[|iT u(r) satisfying 0KV, <0 <¥_ <1
—£o00
Orlp+:0:l1/_

Furthermore¥_ and¥, have to be fixed points of the mappiiigy The
proof is given by contradiction. Assumg&_ = b € (6,1). There exist
b € (0,b) and?t € R such thatF(b') > b andu(t) > VH{ — 1), H

being the Heaviside function. It follows from (29)

()2 Qu[VH({' — 1) = F(b) T [H(t' —1)]

> F®) <1 — exp<— f;:* ) > .

Hence,w_ > F(b') > b, which is impossible. Type C admits a similar
argument forz, .
We summarise:

Type B: Eitheru =0 orw_ =1,¥, €0, 0).
(30)
Type C: Eithem =6 orv_=1,¥, =0.

LEMMA 3.4. - If w = 0 then there exists a travelling front, not faster
thank*, connectingl and6. Hence, type A implies* > 0.

Proof. —Recall the method of construction leading to a solution on the
whole line, which was prescribed in the beginning of this section. But
now we choosé € (0, 1). For anyi € N there is a unique solution of

—R; R; [—R; —R;
MK;;I_ = QK;:,I_ [MK;;I_ ]’ MK;;I_ (O) = 90'

From Theorem 3.2 and Corollary 3.3 we knawbp) < «p < kg, and

—R; —R. .

”K&e,- > ”5;?,-' For a subsequence the speedswill converge to a speed

k" < «* while the total densities converge uniformly on bounded sets to a
functionu’ > u = 6 satisfying

ueC” (R; [0, 1]) and nonincreasing in
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' (0) = 6o,

u = QK/[E/]‘
Recall thatF has no fixed points ifi9, 1). Henceu’ is a travelling front
with asymptotic values 1 anglat —oo and-+oo, respectively. Hencey’
is even strictly decreasing by Lemma 2.7. The nonlinearity restricted to
[0, 1] is of type A, such that Theorem 1.1 impliesQ¢’ < «*. O

LEMMA 3.5.— Consider type B. Thewr_ =1 implies«* > 0.

Proof. —Assumex* < 0. We apply the sliding method in order to
comparew and the test functionp from the proof of Lemma 2.9.
Choosing & € (9, 1) the proof will also apply for nonlinearities of type
B. Thus,¢ is a sub solution ta)o, and hence foQ,+ by Lemma 2.8.
Recall thatiz solvesu = Q,«[u]. Furthermore, sinc&_ =1 Lemma 2.7
shows thatz is strictly decreasing. Since(r) = b for t < —¢~* and
¢ (@) =0 for + > 0 we haveu(r) > ¢(¢) for large values ofi¢z|. This
remains true for any finite shift of the functign If we shift ¢ to the left
we will achieveSy¢ < u for some largeM > 0. Fromuz(0) =60 < b we
know thatS_,-1¢(0) > u(0). Hence there is a shifi,, such thatS;,¢ <u
with equality at some finite point. Since¢ is a subsolution we obtain

03 Qe [7](t1) — Qu[Ssy01(21)
_ / Ke- (s — 1) (F(@(s)) — F(Suyb(s))) ds.
4

From S,,¢ < u follows by (H2) that the integrand is nonnegative, hence
vanishes. ThusK,- > 0 implies S,,¢ =u, contradictingg_=1. O

LEMMA 3.6.— Assume type B or C. i* > O theny, =0.
Proof. —Consider the following linear problem

1
w—r)u+u=—u, te(0,R),
VI

u(0,v) =

[— V>K
|V|’ ’

u(+R,v)=0, v<ck.
A solution is equivalent to a fixed point @i¥ := Bz o T, o Eg, whereBg
restricts functions ontf0, R], andE extends functions by 1 of-o0, 0)
and by 0 on(R, 00). Fork = kg, andR = R; the functionBRﬁf}g_ isasub
solution. This follows immediately fron¥(z) < z, z € [0,0] if F is of
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type B or C. On the other hand, for any positivand R we can choose
¢, (1) ;== min{1, €} as a super solution, provided thaix, 1) <1 and
AE (—ﬁ, 0), see also Section 2.3. To allow for negative values tife
positivity of k* comes into play. Since* > 0, there is arip such that

KR, > Ko := EK* >0 foralli > ip.

From the proof of Theorem 2.10 in Section 2.3 we know fogadl (0, 1)

A(K, —L) — (1 kE)AE) With AE) < (1—£)%
1-—«é&
Settingrg := —ko We obtain for allk > «q
1+ kKo 1+ kKo

AK,)\. § X I
(i, 20) (1+/</<0)2—K§ 1+ kKo + (k — ko)ko

showing thatp,, is a super solution. Hence, for any- ip Theorem 3.1
yields the existence of a solution with data= kg, and R = R;.
Furthermore, we obtain the uniform inequality

i (1) < ¢io(1) <€ forallr € [0, R].

This impliesu < €' for all t € R, proving¥, =0. O

Now we conclude the proof of Theorem 1.2.

Type B: For all possible values @, we conclude from Lemmas 3.4
and 3.5 thak* > 0. Hence@, = 0 by Lemma 3.6 and thug_ =1 by
(30).

Type C: By (30) it suffices to exclude the case= 0. Here Lemma 3.4
implies«* > 0. But then¥, =0 by Lemma 3.6, contradicting = 6.

It remains to show that there is no solutigk, u) of (9) for any
k > k. Recall from Lemma 2.11 the definitioh:= k(M), whereM =
SURc(0.1) F'(2)/z > 1. For anyk € (k, 1) we can find by Theorem 2.10 a
slopeM’ > M such thatk(M') = k. SinceM’ > M there is &1 € (0, 0)
such thatF(z) < 6, + M'(z — 6,) for all z € [01,1]. As in the proof
of Lemma 2.11 we can find & < 0 such thatM’ A(«x, ') < 1. Hence,
¢ :=min{1, 6; + €} is a super solution foQ, . Assuming the existence
of a solution(x, ) of (9) we can apply the sliding method in order to
comparez and¢. Arguing similar to the proof of Lemma 3.5 we deduce
thatw must be a finite shift op. Hencez cannot be a solution of (9).
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