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ABSTRACT. — We present a method of constructisngptimal controls
in the feedback form for state constraint problems.

Our method is as follows: We first find feedback laws directly from the
associated Hamilton—Jacobi—Bellman equation and an approximation of
the value function by the inf-convolution. We then construct piece-wise
constant controls so that corresponding cost functionals approximate the

value function of state constraint problems.
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RESUME — Nous présentons une méthode de construction de contréles
g-optimaux pour des problémes avec contraintes d’état.

Notre méthode est la suivant : Premiérement, nous trouvons des lois en
feedback directement a partir de I'’équation de Hamilton—Jacobi—Bellman
associée et d'une approximation de la fonction valuer par inf-convolution.
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Ensuite, nous construisons des contréles constants par morceaux dont le
co(t approche la fonction valuer du problémes avec contraintes d’état.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

Since the introduction, by Crandall and Lions in 1981, of the notion
of viscosity solution, a notion of weak solution of partial differential
equations, a matter of its importance has been the usefulness in justifying
that the value function of an optimal control probldem is a weak solution
of the associated Hamilton—Jacobi—Bellman (HJB for short) equations.

Although this characterization is important in itself and has many
applications, it is still desirable that the notion of viscosity solution could
be directly used to construct an optimal control like in the classical
heuristic arguments which we present below. Given an optimal control
problem, the classical heuristic arguments work rigorously only under
a strong regularity assumption on the value function which we cannot
usually expect. Indeed, as is well known, there are many optimal control
problems which do not have any optimal control. In this viewpoint, it
is natural and important to seek for aroptimal control for which, by
definition, the cost functional differs at most by> 0 from the value
function at the given point in the state space.

It was recent that Clarke, Ledyaev, Sontag and Subbotin [4] introduced
a method of building are-optimal control in the feedback form for
a given optimal control problem via the associated Hamilton—-Jacobi
equation in their study of feedback stabilization.

Our aim here is to extend the method due to Clarke, Ledyaev, Sontag
and Subbotin to state constraint (SC for short) problems and thus to
present a way of constructing aroptimal control in the feedback form
for a general optimal control problem with state-constraint.

One of technical difficulties in this work may be explained as follows.
The newly developed method by Clarke, Ledyaev, Sontag and Subbotin
depends on approximation arguments mostly based on the techniques
of inf-convolutions which give a convenient regularization of viscosity
supersolutions. On the other hand, by the nature of SC problems, in
order to design arm-optimal control for SC problem, the state space
should not be relaxed or replaced by a larger space. These are somewhat
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conflicting and, in order to solve this technical problem, our strategy
is to replace first the state space by a smaller one and then to make an
approximating argument, so that the state corresponding totipgimal
control obtained in our method is kept in the original state space.

We refer to [1] for a different method of findingtoptimal controls by
introducing the semidiscrete approximation. See [7] for the study of the
SC problem by this approach.

Before studying the SC problem, in order to illustrate our strategy, we
shall consider the problem in the whole sp&€ since it is easier than
the SC problem.

We are given functiong andg onR"Y x A which satisfy that

feCRY x A,R), geC(RY x A,RY),

My :=sUp,ca llf (- a)llorry < 00,

Mg =SUR,ca llg (-, a)”Wl’OO(RN) < 00,

SURcs 1 f (v @) = f(v. @) Swp(x =y (x,y €RY),

(A1)

wherew; : [0, 00) — [0, oo) is continuous withw £(0) = 0. Here, we let
A c R™ (for some integem) be a control set.

We denote byA the set of all measurable functions [0, o) — A.
For anya € A andx € RY, we denote byX (- ; x, @) the unique solution
of

dx o
{ SO =gX0,a) >0, W
X(0) =x,
which is called the state starting fromwith control«. Fora € A, we
alsowriteX (-; x,a) if a(t) =a forall t > 0.
Throughout this paper we deal with the following cost functional: for
ac A,

o0

J(x,0) = /e_’f(X(t; x,a),a(r))dr.
0
Although our argument in this paper works for more general discount fac-
tor exp(— fé c(X(s; x,a),a(s))ds), wherec: RY x A — Ris continuous
and positive, in place of &, for the sake of simplicity of the presentaion,
we shall only treat the case wher= 1 as above.
Next, we define the value function by

u(x) = Jg&](x, o).
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It is well known that the value function satisfies the following HIB
equations in the viscosity sense:

u(x) +sup{—(g(x,a), Du(x)) — f(x,a)} =0 inR". (1.2)

acA

We shall recall an argument to findoptimal piece-wise constant
controls for this unconstrained control problem assuming:tteatd Du
are uniformly continuous.

(Step 1) Fixe > 0. Forx € RY, we choosé(x) € A such that

—% <u(x) — (g(x, &(x)). Du@)) — f(x. a(x)).

(Step 2) Fixxg € RY. Choosingag = a(xg) € A, we let Xo(-) =
X (-3 x0, ag) for a short periodr > 0. If t is small enough, then we see
that

—& <u(Xo(t)) — (g(Xo(1), ao), Du(Xo(1))) — f(Xo(t), ao)
(r€(0,1)).

Multiplying the above inequality by @, we integrate the resulting
inequality over(0, 7) to get

—e(l—e) <ulro) — € u(Xo(r)) — / &' f (Xo(t)., ao) dr.
0

(Step 3) Settingc; = Xo(7), we chooser; = a(x;) € A. Again, solve
(1.1) with @ = a@; andx = x1, and denote it byX,(-). Inductively, we
Obtain(ak, Xp) = (&(Xk), X(7; x¢—1, &(xk—l)) (k = 2) such that

—e <u(Xi(1)) — (8(Xk (), ar), Du(X (1)) — f(Xk (1), ax)
(te[0, 7)), ((1.3))
whereX, (1) = X (¢; x¢, @(x;)). Multiplying ((1.3);) by e**~, and then

integrating the resulting inequality ove®, 7), we take the summation
overk=0,1,2,...toget

e <ulxo) — / & (X (t: x0, @), o (1))

0
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whereo, (1) = a; fort € [kr, (k + D7) (k=0,1,2,...). Therefore, we
have

|J (x0, 0te) — u(xo)| < e.

We will follow this argument but we will have to use delicate tools
which have been developed in the study of the viscosity solution theory
(see Section 2) since we can not expect fhatis uniformly continuous.

For instance, to make (1,3)igorous, we will need Proposition 2.3. We
also refer to [2] and [1] for the general theory of viscosity solutions for
HJB equations.

Moreover, since we deal with the SC problem, we will have to force
the state (i.e.X(-; xo, @.) in the above argument) in the domain. For this
purpose, we have to select suitabler) whenx is near the boundary of
the domain.

This paper is organized as follows:

In the next section, we give some basic properties of the inf-
convolution for the reader’s convenience. In Section 3, we discuss several
simple geometric properties, one of whose proofs is given in Appendix A.
We discuss the SC problem for subdomains in Section 4. We show the
main result and its proof in Section 5.

2. BASIC PROPERTIES OF INF-CONVOLUTIONS

We shall give various properties of the inf-convolution of functions.
For a compact subsét of R, and for a bounded function: F — R,
we define the inf-convolution af by

Y
u;t(x):}ivlglfp{u(y)-i- x 2ky| } (xeRN).

For a functionf : F — R, we shall denote by, f(x) (x € F) the set
of subdifferentials off relative toF;

Drfx)={peRY | f(y) = f(x)+(p.y —x)+0(ly —x])
asy € F — x}.
Also, the set of superdifferentials of is defined by D} f(x) :
—Dr(—f)(x)forx e F.

Wheneverx € int F, we shall simply writeD* f(x) for D% f(x).
Particularly, we will not write the subscri®” if F =R".
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We will also use the following notation: for a functioh: RY — R,

There arex, € RY andp, € Df(xk)}

D = RV .
F {pe such thatk liM(xg, pr) = (x, p).

We first give some well-known properties of the inf-convolution.

PROPOSITION 2.1. —(1) The mappingx — u,(x) — |x|?/(2)) is
concaveu, (-) is semiconcave.

(2 D*u;(x) #@forall x e RN and{x e RY | D~u,(x) # @} is dense
in RV,

We next show some elementary properties for the reader’'s conve-
nience.

PrROPOSITION 2.2. —Assume that : F — R is lower semicontinuous.
If x € RY andux; e F satisfy thatu, (x) = u(x;) + |x — x;|?/(24), then
we have
X — Xy
A

Furthermore, ifp € D u, (x) for x € R", then there is;; € F such that

€ Dyu(x,). (2.1)

|2

|x — xy X — X _
uk(x):u(xx)—i-T and p= € Dyu(x;).
Proof. —Since we have
Ix —x;12 lx — yI?
—F— < — €F),
u(x;) + o u(y) + o (yeF)

we easily see thatx — x;)/A € Dyu(x;).

For p € D u,(x), we choose (x;, px) € F x R such that
limy— 0o (Xx, px) = (x, p) @nd py € D™ u;(x;). We also choose} € F
so that

| — x}|?
u (xp) = M(xé) + T
From the definition, we see that
ly —z|? lxg — x|
u(z) + >ux(y>>u(x£)+T’<+<pk,y—xk>

+0(ly — xx) (2.2)
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foranyz € F andy e RV.

Takingz = x; andy = x; + s for anys € S¥ -t ands > 0in (2.2), we
have
Ixp + 85 — xp 2 — | — x| 0(8)

2 ) e
213 (Pr>s) + 5

Thus, sending — 0 in the above, we havg, = (x;, — x,ﬁ)//\. Hence, we
find x; € F such thatp = (x — x;)/A.

Moreover, takingy = x; in (2.2), we have

xe — x|

up (x) = u(x}) + %

Sendingk — oo, from the lower semicontinuity of, we conclude the
second assertion.O

We next present a monotonicity type estimate for superdifferentials of
the inf-convolution of functions.

PROPOSITION 2.3. —For any p € D*u; (x) andg € DV u;(y) (x,y €
R"), we have
lx =y
A

Proof. —Setting v, (x) = u;(x) — |x|?/(21), we note D*u, (x) —
(x/1) = D™ v, (x). The concavity ofy, implies that

(p—q,x—y) <

X y
vi(y) < vx(x)+<p— % y—x> and v, (x) < vx(y)+<q— % x—y>-

Combining these inequalities, we conclude the assertion.
We recall the following facts from [3].

LEMMA 2.4 ([3]). —Assume that € C(F, R).

(1)@ # D u;,(x) C Du,(x) forall x e RV.

(2) Let X :[0, T) — RY be a Lipschitz continuous function. Then, we
see that for almost all € [0, T')

dl/t)L

dax .
E(X(t)) = <E(t), p> providedp € D u; (X (1)).
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3. SIMPLE GEOMETRIC PROPERTIES

Let 2 c RN be an open, bounded set.
We shall suppose the uniform exterior sphere conditiorsZor

For anyz € 952, there isx € RN for which B(x, R) N 2 = {z}.
(A2)
Here and laterB(x, r) denotes the standard closed ball with radius0
and center € RV,
Our assumption on the vector fielfis(-, @) | a € A} is as follows:

{ There isR > 0 satisfying the following:

For eachy € 952, there isa € A such thatg(x,a)| > 8, and
B(x +1tg(x,a)/|g(x,a)|,8t) c2for0<t <8, x e B(z,8) N R2.
(A3)
We denote byA(z) for z € 52 the set of all controls satisfying (A3).
Fory > 0, we shall define an open subset®f

{ There is§ > 0 satisfying the following:

2, ={x e 2|dist(x, 2°) > y }.

Notice that2o = £2.

Under these assumptions, we will referRo> 0 (in (A2)) andé > 0
(in (A3)) without mentioning where these come. We will also use the
constant > 0 defined by

.{8 82 }
ro:=min{ =, — ¢,
3’ 4M,

whereM, is a constant from (Al).
We introduce the set of generalized normal vectors atds2, for
y €10, rol:

N,(2)={peR" | (p,x —z) <o(|x —z|) asR, >x — z}.

We define the following set-valued mapping$: 2 \ 2, — 3£ and
T,:2\ 2, — 082, :fory €[0,ro] andx € 2\ £2,,

T% ={z €3 ||z — x| =dist(x, 2°)},
Tyx = {z = 39;/ | |Z —x| = diSt(x, .Qy)}
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With these notations, we will write
A(T%) = |J A@.
zeT0x
3.1. Geometric properties ofs2,

We begin with the observation that (A3) together with (A1) implies the
uniform interior cone property o2, for smally > 0.

PrROPOSITION 3.1. —Assume thafAl) and (A3) hold. LetO< y < rg
andz € 982,.. Then, we have

B(x+1g(x,a)/|g(x,a)|,18/2) C 2, (0<t<6, xe€B(z,8/3NR,).

Proof. —Fix x € B(z,8/3) N 2, and ¢ € B(0,y). Let y € T%.
Observe thatt + ¢ =y + (x —z2) + (z — y) + ¢ € B(y,d), and that
x+¢€fR,+ B0, y)C 2. Thatis,

x+¢eB(y,8)NL.
Fixa € A(y) and sety)(x) = g(x,a)/|g(x, a)|. Hence, by (A3), we have
x+e+tnx+0)+E) e (0<t<8, ¢€BO,y), £€B(0,9)).

Set
n=nx+¢) —nx).

Noting that|n| < 2M,y/§ < §/2, we have)+ B(0, 5/2) C B(0, 8). Thus,
we have

x+¢+t(nx)+&) e (0<t<8, ¢€B(0,y), £ €B(0,3§/2).
T_herefore,B(x +1n(x),t8/2) C §2, for t € (0,8] andx € B(z,8/3) N
2,. O

In the proof of Lemma 3.6, we will need the following estimate:

COROLLARY 3.2. —Under the same assumptions as in Proposif8dn
we have

2
(g(x,a),v) < —% (x € B(z,8/3)N 382, ve N,(x)NS" ).
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Proof. —Letn(x) = g(x,a)/|g(x,a)|. Sincex +t(n(x) +&) € £2, for
& € B(0,45/2) for smallt > 0, we have

1(n(x) +&,v) <o().

Dividing the above inequality by > 0, we send — 0 to get

(n(x),v) < —(&,v).

Therefore, taking = §v/2, by (A3), we conclude the assertion

To prove Lemma 3.6, we will also need the fact that, under assumptions
(A1)—(A3), we can take a special sphere outside saf (y > 0),
which touchesi$2,. For the reader’s convenience, we give its proof in
Appendix A. As will be seen in Lemma 6.3, to verify that the uniform
exterior shpere condition holds f&z,, we only need to suppose (A2).

PropPoOsSITION 3.3. —Assume thafl), (A2) and (A3) hold. Let0 <
y <ro,x €982, andv € N, (x) N SV~1. Then, we have
B(x + Rév/2,R8/2) C (£2,)°.
To estimate the distance frome £2 \ 2, to £2,, we give the next
proposition:

PROPOSITION 3.4. —Assume thatA3) holds. Let0 < y < §°. Then,
we have

dist(x, £2,) < <1+ %)y (x e\ 2,).

Remark— We note that (A3) impose the Lipschitz continuity a2
(see, e.g., [5]). We also note that the above assertion fails for general
domains. For instance, 2 has a cusp, then the above estimate might
fail.

Proof. —Fix x € £2 \ £2,. Let z € T%. Notice that|z — x| < y. Let
n(z) € SN~ from (A3) for thisz € 352. Then, we have

B(z+1tn(2),8t) c 2 (0<1<9).
Choosingr € (0, §] so thaty = §t, we have

B(z+1tn(z),y) C £2.
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This implies that: + t7(z) € £2,. Hence,
dist(x, 2,) < |z + (@) — x| <|z — x|+

1
<y+r:<1+g»A O

3.2. Estimates on the subdifferentials ofi,

In this subsection, we use the notation: kot 0, let u :ﬁy — R
be continuous with a modulus of continuity,. For A > 0, we define
u; . RY - R by

o2
(0= inf (u(y) 4 > | )

Forx € £2, we choose; € 2, such that

lx — x; |2

uy (x) = u(xy) + o

Also, we fixe € (0, 1].

To show thatu; is a viscosity supersolution of an approximate HJB
equation in Lemma 4.1 provided thatis a viscosity supersolution of a
HJB equation, we will use the following observation. We note that the
same idea can be found in Section 3 of [4].

LEMMA 3.5. —Assume thatA3) holds. Lety < +/Ae. Then, there are
A= A(wy, &, 8, sup,, lu]) > 0and C1 = C1(8) > 0 such that

lx — x; |2

2% <C18 (0<)\<)\1).

Proof. —Letz € T, x C 92,. From the definition ofi,, we have

=2 _ x—zf?

2. 2

+wu(|xk _Z|) (31)

By Proposition 3.4, we have

2 1 2 2
lx —x; |7 < 1+5 Ye+AM,
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whereM :=4sup, |u|. Hence,
Y
2
2 1
[x —x;,]° < [e(l—l— E) —|—M}k,

and so,

1 2
6, — 212 < 2(|n, — x P+ x — z°) < 2{2<1+ 5) +M]A.

Thus, setting” = 1/2[2(1+ )2+ M], by (3.1), we have
8

=l x =z ( 1)28
< W(CVA) < |14+ < ) 2 W(CVAL). (3.2
o o Tou(CVA) < (1+5) S+a(CVh). B2)

Chooser; > 0 such that
0, (CVAR)<e (0<r<h),

to conclude that

2

— |2 1
M<C18:: {(14-5) +1}8 O<a<hy. -

2

The following lemma gives an essential estimate on superdifferentials
of the inf-convolutionu; .

_ LEMMA 3.6. —Assume thafAl), (A2) and (A3) hold. Letx € €2\

2,2, 2€Tyx C982,,and0 < 6 < 1. Then, there isi, = Ao(wy, €, 6,
sup,, |ul, ) € (O, r2] such that

<X_Z x_“>>9 (0<y2 <A< ). (3.3)

|X—Z|’ |x — ;]

Moreover, lety? = gi. For any M; > 0, there is i3 = Az(w,, ¢, 8,
sup,, lul, M1, M,) € (O, A2] such that

X — Xy,
A

—<g(x,a), > > M, (aEA(TOx), 0<x<Ag). (3.4)
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Proof. —Recall that, from Proposition 3.4,

1
<u-q¢<<1+g)% (3.5)

N =

By (3.2), we have

Ifc—xxlz< Ix —z/?
2r 2

1 2
C= \l 2[2(1+ —) +4sup|u|].
8 2,
Setr = |x — z|. We may assume by choosing small enough that
r<p:=R3§/2.

Settingv = (x — z)/r, we observe that € N, (z) N SV~1. Thus, in
view of Proposition 3.3, we have

+wu(C\/X),

where

B(z+ pv, p) C (£2,)".

Hence, setting = z + pv, we have
PP<Im —EP =l —xPP + x —EP 4+ 2(x — &, x5, — x)
<r? +2Awu(Cﬁ) +(p=r)24+2(0—r)v,x —x;).

Thus, we have

2
— 1% — dw, (CV/A
<v,x—xA>>rp : Oul [).
p—r

Then, we observe that
< X —x > (p —r)r — 1w, (C/1)
v, >
(o —1r)lx —x;

(/0 - r)r - )\C()L,(C«/X)
T (p—r(+ Zw,(CVn)2

(;0 —I”) - %CUU(C\/X)
T (0 =N+ FZoCViny?
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Sincer/r = y?/(re) andr/r? = y?/(r’), by (3.5),1/r andx/r? are
bounded. Therefore, we can chodse> 0 so that if 0< A < A,, then the
right hand side of the above is greater than the géven
We assume henceforth thasatisfies the condition described above.
According to (3.3), we have

2
X —x X —x

* —<v, * >v‘ <1—02.
lx — x| lx — x|

Fix a € A(T ). By Corollary 3.2, we see that

2
<——.
(g(x,a),v) < 5
Writing

gx,a)=av+v and —

=Bv+w,
lx — x|

wherea = (g(x,a),v) andpB = ((x — x;)/|x — x,], v), we have

(v,v) =(w,v) =0,

82
a<—Z, B0, PISM,  wf=1-p7
X — Xy 8%B o\ 1/2
- g(xsa)s :_aﬂ_<v’w>>—_Mg(l_ﬂ) .
|x — ;.| 2

If we suppose thab is close enough to 1 such thag/2 — M,(1 —
B2)Y? > §2/4, then we observe that

X — Xy 82|x — x;|
_ > .
<g(x, a), . > Y
Hence, we have
X — X, 8%y 8% e
_ > =,/
<g(x, a), Iy > s~ 8Vl

Therefore, there i35 > 0 such that

X — Xy,

A

—<g(x,a>, >>Ml O<i<is. O
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3.3. A property on behavior of states

In this subsection, we observe that the stéte; x, a) for a € A(T°)
does not move closer to the boundary for a short period.

PROPOSITION 3.7. —Assume tha(Al), (A2) and (A3) hold. Then,
there isfg > 0 such that

X(t;x,a) €82, (0<y <rog, x€d82,, aeA(Tox), t €0, 10]).

Proof. —Fix x € 382, and a € A(T%). Write X(-) = X(-; x,q)
simply.

In view of Proposition 3.1, it suffices to show that thereyis- 0 such
that

X e |J Bx+rnx),r8/2) (te(0 1), (3.6)
0<r<s

wheren(x) = g(x,a)/|g(x, a)l.
We note that

X(1) —x —rp()| < /]g(xm,a) - ;nm d.
0

For anyr > 0, choosing = t|g(x, a)|, we have
t

X(1) —x — r()] </'yg<x<s),a) ~g(x.a)|ds
0
M§t2= Mgt .
2~ 25 a)

Settingzo = min{s?/MZ2, 5/ M}, we see that = r|g(x,a)| <& for 7 €
(0, 10]. Moreover, since the right-hand side of (3.7) is estimated from
above bysr/2, (3.6) is valid. O

3.7)

4. SC PROBLEMS FOR SUBDOMAINS

In this section, we always suppose that (AB2) and (A3) hold, and
that 0< y < ro.

We shall introduce the value function of the SC problemsy. For
this purpose, we define

A, x)={aec Al X(t;x,a)e2,fort >0} (xe£2,).
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We introduce the notation: fare 052,,

A, (2) = {a cA There iss > 0 such thatX (z; x,a) € EV}
fort € [0, s] andx € B(z,s) N £2,,.
We note that Proposition 3.7 implies th@t£ A(T%) C A, (x) for
x € £2,, providedy € [0, ro]. Thus, we see thatl,, (x) # ¢ for y € [0, ro]
andx € £2,.
We shall consider the HIB equation:

u(x) + SUE{—<g(x, a), Du(x)) — f(x,a)} =0. (4.1)

In order to study the SC problem fa2,, we adapt the following
definition of viscosity solutions of (4.1) if2, as in [5]:

DEFINITION. —We callu:£2, — R a viscosity subsolutiofrespec-
tively, supersolutionof (4.1) in £2,, if
w*(x) + sup {—(g(x,a), p) — f(x,a)} <O

acAy (x)
foralxeR,,pe D% u*(x)
Y
(respectively,
up(x) + SuAp{—<g(x, a),p)— f(x,a)} =0
ae

forallxe2,,pe Déyu*(x)).

We callu:$2, — R a viscosity solution of4.1) in &2, if it is both a
viscosity sub- and supersolution @1) in £2,.

Here, the superscript and subscriptrespectively, denote the upper
and lower semicontinuous envelopes of the function. See [1] or [2] for
these definitions.

We now denote by : 2, — R the value function of the SC problem
for 2,

u’(x) = inf /e_[f(X(t; x,a),a(r))dr.
acAy(x),

It is known in [5] for example that the DPP holds fey (y > 0): for
s >0,
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S

u’(x)=inf (/e“f(X(t;x,a),a(t))dt
0

acAy, (x)

+eu’ (X (s;x, oz))). (4.2)

It is also known in [5] that” is a viscosity solution of (4.1) if2, in
the above sense. Furthermore, the comparison principle in [5] implies the
continuity ofu” on £2,,.

We begin with the following observation which will be needed in
Section 5:

LEMMA 4.1.—For ¢ € (0,1] and » > 0, we sety? = ¢A. Letu e
C(£2,,R) be a viscosity supersolution @f.1) in 2,. Setu;(x) =
influ(y) + [x — y|?/(2») | y € £2,}. Then, there are constants, =
ra(wy, wy, 6, €, sup,, |u]) > 0and C, = C2(8, M,) > 0 such that

—Cae <uy(x) + SUAP{—<g(x, a),p)— f(x,a)}

O<Ai<As,x€R,peD u;(x)).

Proof. -We note that it is enough to show the assertion foe
D_M)»(.X).

Choosingx, € £2, such thatu, (x) = u(x;) + |x — x;1%/(2%), by
Proposition 2.2, we see that= (x — x;)/1 € Déyu(x,\). Thus, from
the definition, we have

0<u(x;) +sup{—(g(x:,a), p) — f(x1,a)}.

acA

Hence, we have

0 < u; (x) +sup{—(g(x,a), p) — f(x,a@)} + MA|p|?

acA

+ws(lx —x1). 4.3)

In view of Lemma 3.5, there arke, = A1(w,, &, §, sup,, lu]) > 0 and
C1 = C1(8) > 0 such that

_ 2
Mpl2= % <2Cie (0<i<h).
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Choosels = As(A1, C1, wy) € (0, A1] SO that

wf(lx—xﬂ)gwf(\/ZClk)gs (0<)\.§)\.4)

Then, fixing
Cr= ZC]_Mg +1,
for 0 < A < A4, by (4.3), we have

—Coe <uy(x) +sup{—(g(x,a), p) — f(x,a)}. O

acA

We shall present a convergence resuliofo 1° asy — 0.
For this purpose, we first extend on 2, into 22 by

7 () u’(x) forxeg,,
u (x)= —
—o0  forxe)\ £2,.

We denote the relaxed limit supremumisf atx € 2 by
v(x) = Tim @ (x)
y—0
= Iimosup{ﬁ’(y) lyeB(x,y)N2, 0<r<y}.
Y=
Notige thatv is upper semicontinuous if2, and that/v(x)| < M, for

x € f2.

LEMMA 4.2.—For x € 2 and p € D*v(x), we have

U()C) + sup {_<g(x’a)’ p> - f(x’a)} < 0.

acA(x)

Remark — This assertion is slightly weaker than that of the definition
of viscosity subsolutions of (4.1) if® since the supremum in the above
is taken overd (x) in place ofAg(x).

Proof. —Because of stability of viscosity subsolutions, it suffices to
prove that if¢ € C* satisfies that (x) = ¢ (x) for x € 982 and thatw < ¢
in 2, then we have

0> ¢(x)+ sup {—(g(x,a), Dp(x)) — f(x,a)}.

acA(x)
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Suppose that this inequality fails; there &re 0 anda € A(x) such that

0 <p(x) —(g(x,a), DY(x)) — f(x,a).

We selecty, € (0, ro] andx; € 2, such that

_ 1
Jim (i) = (6,0, o) — o ()] < 7

1
v(x) <u(x) + o

Let y, = dist(x;, £29) > y. We note thaty, — 0 ask — oo. Thus,
we may suppose thati(x) C A(T%y). Set X (-) = X(-; x4, a) for
simplicity. By Proposition 3.7, we can fing > 0 (independent af) such
that

Xi(1) €2y (t€l0,10]). 4.4)

For largek, we may also suppose

< @) — (g(x, a), DP(xi)) — f(x, a).

N D

Furthermore, we can take smallgr= 0 if necessary to get

0
2 <P(Xi (1) — (g(Xi(0),a), D(Xi (1)) — f(Xi (1), a)

(t €10, 1o]). (4.5)
Multiplying (4.5) by €, we take the integration ove0, 1) to get

fo

0
L(1— &) <P — P (Xir0) - / & f(Xi(t), a) dr
0

2 n
< S () — $(Xa(r0) - / &' f(Xe(1). a) .

0

Hence, for a fixed, we have

>

(1-e") <w' ) - $(Xiw) — [ F(Xu(0).a)
0
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By the DPP (4.2) fou"* with s = 1o, we have

0
3 (1—e7) <u™(Xi(t0)) — ¢ (X (10)).

Since we may suppose thaj (1g) converges to a poir € 2 ask — oo
(by taking a subsequence if necessary), taking the lim sup{aso) in
the above, we have

0 B . _
g(l_ e ") <v(@) -9,

which is a contradiction. O
Now we state our convergence result.

THEOREM 4.3. —For anye > 0, there isy (¢) > Osuch that if0 < r <
y (¢), then

lu" (x) —ul(x)| <& (xe€82,). (4.6)
Proof. —In view of Lemma 4.2, by the comparison result in [5] (or [6]),
we obtain that
v(x) <ul(x) (x €). 4.7)

We remark that although we used a slightly differdrit) (for x € 9£2)
from that of Lemma 4.2 to construct “test functions” in [5], we can
construct test functions having the same properties as in [5] by using
A(x) in Lemma4.2.

Since 0< u” — u® holds in 2, for any r > 0, (4.7) implies (4.6).
Indeed, otherwise, there exists > 0, r;, > 0 with lim;_, . rx =0, and
xi € 2, with lim;_, ., x; = z for somez € 2 such that

u' () = u®(xy) + eo.

Taking the relaxed limit supremum in the abovekas> co, we get a
contradiction to (4.7). O

5. MAIN RESULT

We shall writex for the value function:® of the SC problem for2:
u(x)= inf / e f(X(t;x,a),a(t))dt.

acAg(x)
0
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DEFINITION. —For ¢ > 0, we calla € A an ¢-optimal control of the
SC problem fos2 atx € 2 if « € Ag(x) and

0< /e_tf(X(t;x,oz),a(t)) df —u(x) <e.
0

We notice that the first inequality always holdsxit Aq(x).
Our main result is as follows:

THEOREM 5.1. —Assume thaiAl), (A2) and (A3) hold. Letu €
C(£2, R) be the value function of the SC problem forande > 0. Then,
there exist a constarit e (0, 7], and a mappingy, :x € 2 — &, (x) € A
such that if for anyx € 2 we set

o, (t) =a.(x;) forre[kt,(k+17) (k=0,1,2...),
where
X0 =X,
{Xk+1=X(f;Xk,5le(Xk)),

thene, is ane-optimal control of the SC problem fa? at x.

Proof of Theorem 5.1. —
Step 1: Construction af, and choice of.
First of all, by Theorem 4.2, we can choggee (0, o] so that

0<u”(x)—u(x)<;r (xe2,. ye©mnl). (5.1)
In what follows, we always fix. = A(y) := y?/s.

Fori =y?/e € (0, y/¢], we define

: Ix —y|?
u! =ul, (x)= inf <uV —1—7)
A My)( ) e, ) 2.
For any x € £2, we choosex; € £, so thatu] (x) = u”(x;) + |x —
x12/(2%). Then, by Lemma 3.5, there ig € (0, yZ/¢] such that

lx — x; |2
= 4 <

- Z (0<A<Ap). (5.2)
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Taking smallen., > 0, the choice of which depends only on the modulus
of continuity ofu, we may suppose that

wu(1x = x2) <% (0 <2< Ay). (5.3)

From the definition, it is easy to see that

suplu” ()| <M, (y =0).
xef2,
Thus, settingM, := 2M;, by Lemma 3.6 together with Proposition 2.2,

we findz € (0, A1] such that ifx € (0, 23], x € 2\ 2,2, p€ D u} (x)
anda € A(T%), then we have

Ogux(x)—<g(x,a),p>—f(x,a). (54)

Furthermore, by Lemma 4.1, we find € (0, 23] such that ifx € (0, A4],
xeRandp e D ul(x), then

&

16 < uK(x) +Su/f){—<g(x, a), p> — f(x, a)}. (5.5)

In what follows, we fixt := y3 = (e1)¥? =ery.
We claim that if

—g <ul(x) = (g(x.a). p) — f(x.a)

forac A, xe Q2 andp e D ul(x), and if X(¢) := X (¢; x,a) € 2 for
0<t <1, then we have
—%(1 —e ) <ul (x) — e ul (X (9))
—/e"f(X(t),&g(x)) dr. (5.6)
0
To prove this claim, we first observe that

| X (1) — x| <tM,.
Thus, we may easily have

Z‘Mgdo

uy (x) <up (X(@) + >

, (5.7)
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wheredp ;= sug|x — y| | x, y € 2}.
Taking smaller if necessary, we may suppose that

o (1X(1) —x]) < % (r € [0, o]). (5.8)

Moreover, we have
‘ X(t)—x

; —g(X(®),a)

1 1M?
<;'0/’g(X(s),a) —g(X(t),a)‘dséT. (5.9)

For the sake of simplicity, we shall use the symbglto denote various
positive constants depending only dfy, M, anddp.

Since A|p| < Co and A|p(t)| < Co for p € D ul(x) and p(¢) €
D ul (X (1)) by (2.1), (5.9) implies that
—(g(x,a), p) + (g(X (1), a), p(1))
C X)) —
o (RO 0 -p),

Hence, by noting Lemma 2.4(1), Proposition 2.3 together with (5.6)
yields that

<

C
—(g(x,a),p) < —(g(X(@),a), p@))+ t)\_O.

By the above inequality with (5.7) and (5.8), we see that

Cot 3
—T"f - 1—‘; <ul (X(1)—(g(X(t).a). p1)) — f(X(0). a)

(r €10, 7]).

Since we may suppose that0y < min{t2’3, 1/(16Cy)}, recalling? =
eAy, multiplying the above inequality by € and then, integrating the
resulting inequality ove(O, 7), in view of Lemma 2.4(2), we get (5.6).

Next, because of the choice df we may suppose that

X(t;x,a) e 2 (xeﬁ%, acA, tel0,1]). (5.10)

We now fixx = As. Thus,y = /Ase and? = (rge)¥2.
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We shall define the mapping, : 2 — A in the following manner:

a e A(T%), providedx € 2\ 2,2,

acA, for which —e/8 < ul (x) — (g(x,a), p)
—f(x,a), holds forp € D u? (x),
providedx € 2, 5.

&a(x) =

Step 2: Verification.
In view of (5.4) and (5.5), we observe thatit 2 andp € D u} (x),
then we have

& A A
—g < uy (x) — (g(x, @e(x)), p) — f(x, & (x)). (5.11)
Furthermore, (5.10) and Proposition 3.7 yield that
X(t;x,8:(x)) €2 (xe,1e[0,7]). (5.12)

Now we shall verify thatr, € A defined in Theorem 5.1 satisfies our
assertions.

Recall thatcg = x, 10 = 0, x; 11 = X (T; X, & (x1)), anda, (1) = @, (xr)
forr e[k, (k+ D7) (k=0,1,2,...). Dueto (5.12), it is obvious to see
thata, € Ag(x).

By (5.11) withx, for k > 0, our claim in Step 1 yields that

_Za_e4)guﬂm>_e*@xxﬁm%&4m»)

—/gvum%mm»@m»m
0

Multiplying the above inequality by &® and then, taking the summation
overk=0,1,2,..., from the definition ofx,, we have

_Z <ul (xo) — / e f(X(t; x0, ), e (1)) dt. (5.13)
0

Let x; € £2, satisfiy thatu] (xo) = u”(x;) + |x0 — x;/%/(2)). Then,
by (5.2), we have

€
uK (x0) < u”(x) + —.

4
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Hence, by (5.1) and (5.3), we have

v <
u; (xo) < u(xo) + T

This together with (5.13) yields that

o]

—e < u(xg) — / e f(X(; x0, ), e (2)) dt <O. O
0

APPENDIX A

In order to prove Proposition 3.3, we will need the following lemmas:
Let P c S¥~1 and define

K =coP.

Letp e K.
LEMMA A.1. —-We have

B(p,Ipl) c J B(g, D.
qgeP

Proof. —For p € K, we setp =37, A;q;, where
)"i>0’ Z)"i=1’ QzEP
i=1

Fix y € B(0, |p|). We want to show that there isc {1, ...,n} such
that|p + y — ¢;| < 1, which implies that

p+yeB.Dc | BqD.
qeP

We may assume that

lp+y—qil<lp+y—ql<---<[p+y—qul

We shall prove thatp + y — ¢1] < 1. From this chain of inequalities we
get

(gr.p+y) =g p+y) = ={q., p+Y).
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Note that

(1 —qi,p) 2 (g —q1,y) (=2,....,n),
and that

P—q1= (1—Zki>q1+/\zqz+---+/\nqn—q1
i=2

=22(q2 —q1) + - + Au(gn — q)-
We compute that
lp+y—aqlP=Ip— a1l +2(y, p — qu) + Iy
<Ip— @1l + 2220y, 42 — q1) + 2h3(y, 43 — q1)
+oo A 200 (Y, g0 — q1) + |l
<Ip— @1l = 22(p. g2 — q1) — 223(p. g3 — q1)
— = 20 (p,gn — q1) + | pI?
<lp—qilP = 2p. p—q1) +Ipl?
<lp—q1—pP=lgl*=1,
and finish the proof. O
Lety > 0 andz € 0£2,. For simplicity, we set
N@) =Ny(z):={peR"|({p,x—z)<o(]x —z|)
asf2, sx — z}.
We remark thaiV (z) is closed.
We also define
Nr(z)={tp|t >0, peS"*suchthat +rp e d}.

LEMMA A.2. —N(z) =CTON7(2).

Proof. —We first prove that
CON7(z) C N(2).

Note thatN (z) is a convex set.
Let p € Nr(z) N S¥~1. By the definition of$2,, we have

intB(z+yp,y) C 2.
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Namely,
2, c (intB(z+yp, y))c.
Thus, ify € £2,,, then
2
vi<ly—G+yp)| =ly—zP-2y(p.y —2)+ 7%
and hence,
1 2
(p,y—2) < Z—Iy—ZI .
Y

Thus we see thagt € N(z) and moreover that c¥; (z) C N(z).
Next we prove that

N(z) CTON7(2).

We argue by contradiction. We assume for notational simplicity that
z = 0. Suppose that there were a pointe S¥~* N N(0) such that
p ¢ CONr(0). o
Choose a convex conic neighborhodf TON(0) so thatp ¢ V. By
the Hahn—Banach theorem, there is a vestarS"¥ ! such that

(n, p) >0, (n,q) <0 (qeV).
According to the definition o7 (0), we see that
BO,y)N2°={yp|peNr (O NS" 1}
Therefore, by continuity, there is> 0 such that
BO,y +n) NV NR=07.
We want to prove that for < 7,
B(tn,y) C £2. (A1)
To see this, ley € B(tn, ). If g ¢ V, then we have € £2 since
qeBO,y +nNnVve.

It remains to consider the case wheg V. Since(n, ¢) < 0, we have

v2>lq —tnl* = 1q)? = 2t(n, q) +t* > |q|* + 1%
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Hence,
2 2 2 2
lg|* <y -1t <y~

Since Oc 952, andg € int B(0, y), we see thay € £2 and that (A.1)
holds.
In view of (A.1), we see that if & r <, then

tmes2,.
Hence, since € N(0), we have
t{n, p) <o(t) ast— 0.

This yields that(n, p) < 0, which contradicts our choice af O
We next show that the uniform exterior shpere condition hlodsXpr
LEMMA A.3.—Assume thatA2) holds. Let: € 9£2, andp € Nr(z)N
SN-1 Then, we have

B(z+(R+y)p,R+y)NQ2, ={z}.

Proof. —Fix z € 882, and p € Nr(z) N S¥~1. We havey :=z+ yp €
082. By assumption (A2) there is € R" such that

B(x,R)N 2 ={y}.

We claim that
x=z+R+y)p,
and
B(x,R+y)N$, ={z}.

Indeed, since
lz—yl=vy, ly —x| =R, B(z,y)N B(x, R) ={y},

we see that = z+ (R+y)p. Itisimmediate to see thate B(x, R+ y).
Suppose for a moment that there were a pgiatB(x, R +y) N2, such
thaté # z. ThenB(&,y) C £2. In particular,n :=& + y(x —£)/(R +
y) € 2. It follows thatn = x + R(§ — x)/(R + y) € B(x, R). Hence,
n € B(x, R) N 2. Therefore, we have = y. This is a contradiction. O
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Now we shall present a proof of Proposition 3.3.

Proof of Proposition 3.3. Fix any O< y <rpandx € 982, .
According to Lemma A.3 we have

B(x+(R+y)p.R+y)N2,={x} (peNr(x)ns"1),

which implies that

U B +Rp.R) € (£2,)".
peP

Here and henceforth we write = N7 (x) N S¥~1. We writeK = coP as
well. Using Lemma A.1, for any € K, we see that

B(x+Rp,RIpl)=x+RB(p,|pl)cx+R|JB(q. D
qgeP

— U B(x + Rq, R) C (£2,)".
qgeP

It is well known that

JtKk =coNr(x) (CNW)).
t>0

Leta € A(T°). By Proposition 3.1, we have
B(x +1tn,6t/2) C 2, (O<t<d),
wheren = g(x, a)/|g(x, a)|. By the definition ofN (x), we have
tin+é& p)<o@) ast—0 (peN(x), & €B(0,3/2),
from which we get
(n.p) <=8lpl/2 (peNw).
This yields that

lpl=8/2 (p€K). (A.2)

Indeed, forp = >"7_; A;q; with A; > 0, ¢; € P satisfying>_;_; A; =1, we
have

—Ipl < Zk n.qi) < Z/\Iqll———
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and hence,
Ipl=>48/2,

which ensures that (A.2) holds. Thus we see that & N(x) N SV—1,
thenv = ¢p for somep € K andt > 0 satisfying|p| > §/2, and

B(x+ Rév/2, R§/2) C B(x + Rp, R|p|) C (£2,)".

This completes the proof. O
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