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ABSTRACT. — We establish the existence of solutions to a singular
non-quasimonotone system of equations. Such equations are a special
case of the Gierer—Meinhardt equations. In the one dimensional case,

the uniqueness result is also proved.
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RESUME. — Nous établissons ici I'existence des solutions d’un systéme
d’équations singuliéres non-quasimonotones. Ces équations forment un
cas spécial des équations de Gierer—Meinhardt. En dimension un, nous

demontrons aussi l'unicité des solutions.
© 2000 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. INTRODUCTION

Singular elliptic boundary value problems for a single equation have
been widely studied in the past several decades. While starting out as the

1 Research partially supported by NIH grant 1P41-RR13186-01.
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study of ordinary differential equations in [19,20], it rapidly progressed
to the study of elliptic nonlinear boundary value problems, see [5,9].
Presently, many of the earlier results are being generalized to different
operators, often quasilinear and anisotropic, as these are the type that
often occur in applications such as fluid dynamics [1,3,4,2]

Although there is a substantial literature on systems of elliptic partial
differential equations [17,6,18], to our knowledge, there has been no
similar study of results for systems of singular elliptic problems even
though they arise naturally in applications.

For example, the system

up
u; =di1Au —u + —
h (1.1)

u
v, =doAv— v+ —,
vS

usually with Neumann boundary conditions, often occurs in the study of
morphogenesis on experimentstoydra, an animal of a few millimeters
in length, where they are known as the Gierer—Meinhardt equations [13].

With similar interaction terms, these type also occur in certain models
of predator-prey interactions [21].

The steady states of (1.1) will be the object of this paper. Often the
case that is studied is when tligterm is small and thd, term is large.

In this case, the study of solutions of the system can be approximated by
a single elliptic equation [12,7].

Of course, with Neumann boundary conditions, one usually studies
situations in which the solutions remain positive, so that in some sense
the equations do not become singular.

In this paper, we begin the study of steady states of the system with
Dirichlet boundary conditions. This is the natural extension of the afore-
mentioned work on the single equation. Specifically, we shall prove two
theorems, one an existence theorem for the system for a special choice
of the exponent, ¢, r, s, and the other a uniqueness theorem under the
additional assumption that the number of spatial dimensions is one, i.e.,
we have a singular system of ordinary differential equations.

While there is a good deal of literature on nonlinear elliptic systems,
there seems to be little work on this type of singular system, especially if
the system is not quasimonotone.

First some preliminaries: our notation will be standard. The norms
lull,, lull denote the usual?” and L> norms on functioru on the
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regions2 in R", respectively. The Sobolev norfix|| 2, will denote its
W2P norm, andu| 51 = (|| Vul|3 + |u]|3)Y? is its H* norm.

2. MAIN RESULT

Let 22 c RY be a bounded domain witd?*” boundary, wheres e
(0, 1). We consider positive solutions to the singular system of elliptic
equations:

A —u+ % —0, (2.2a)
Av—av+%:0, (2.2b)

with zero Dirichlet boundary conditions:
ulye =vlse =0, (2.3)

where« is a given positive constant. We note that the systemois
guasi-monotone, making direct construction of comparison functions
impossible.

THEOREM 1. —Let 2 c R" be a bounded domain wiifi**” bound-
ary, wherey € (0, 1). There exist positive solutiong, v) in C2(£2) N
CY(22) to Egs.(2.2) with boundary condition§2.3). In the one dimen-
sional domain case, the solutions are unique. Moreover such unique so-
lutionsu andv are symmetric about the mid point of the one dimensional
domain.

Remark 1. — The equations
Au—u—+ i 0,
v
u
dAv—av+p— =0,
v

with positive constants/, @, and 8 can be reduced to our case. By
dividing the second equation k¥, we can, without loss of generality,
assumel = 1. Now with a new variablé/ = Su, we obtain Egs. (2.2) in
U andv.

Remark?2. — In the one dimensional case, we can by translation
assume the domain i—L, L] for some L > 0. Once we establish
the existence and the uniqueness of solutions, the symmetry claim in
the above theorem is automatic. Since if not, tliéfx) = u(—x) and
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V(x) = v(—x) will constitute another solutions. This contradicts the
uniqueness result.

Remark 3. — In the proof of this theorem, all the constructions involv-
ing functions inC?(£2) (for examplew in Eq. (3.1)) can be replaced by
functions inC?(£2) N C1(£2) only. With C** domain, such regularity can
be achieved by thé” theory. Hence the theorem is still valid far'*
domain.

To prove the existence of solutions, we have to divide into three cases:
a <1,aa=1, anda > 1. First we start with the trivial case = 1. The
other two cases will be investigated in later sections.

THEOREM 2. —Let 22 be a bounded domain witl’>*” boundary,
wherey € (0,1). If @ =1, then there exists a unique solutigm, v) in
C2(2).

Proof. —Simple algebraic manipulation on Egs. (2.2) gives the unigue
solution ¥ = v = w, where w satisfiesAw — w + 1 = 0 with zero
Dirichlet boundary conditions. It is noted that the Schauder’s estimate
on linear elliptic equations ensures that C%(22). O

Throughout this paper, we &t > 0 andg > 0 be the first eigenvalue
and the corresponding eigenfunction satisfying

Ap+2r19=0, ¢lye=0, (2.4)

with the normalization mgx¢ = 1.

3. EXISTENCE OF SOLUTIONS WHEN o <1

In this section, we study the existence of solutions as stated in
Theorem 1 whenx < 1, by using Schauder’s fixed point theorem. We
can construct an upper bound function (hence a pointwise bound), but
to ensure that a positive solution exists, we need to construct a tricky
integral lower bound (see the definition of the Sdielow).

First, we definew to be the solution satisfying

Aw—w—+1=0, wl|ye=0. (31)

Hencew € C%7(£2). The maximum principle ensures that> 0 in £2.
With w well defined, letw be the solution of the linear equations:

A — i =—w, Blye=0. (3.2)
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Againw e C?*7(2), andw > 0 by the maximum principle.
Many apriori estimates for this type of linear equations exist. The
results that we will need are summarized as follows.

LEMMA 1.—LetB>0.If
AZ—Bi=—f, Zlsa=0,

then there exists a constaky > 0 such thatl|z| ¢ < kgl f [l -

Proof. —This is a consequence AP theory on linear elliptic equations
with p > N, followed by the Sobolev’s imbedding.O

Whena < 1, it is easier to study an equivalent system to (2.2). Let
z=v —u. Then Egs. (2.2) can be converted into:

Az —oaz = —(1—a)u,
u (3.3)
Au—u—+ =0,
U—+z

subject to zero Dirichlet boundary conditions for bathand z. We
note that this system is stitlot quasi-monotone if we look for positive
solutions foru andz.

THEOREM 3. —Let £2 be a bounded domain witfi%+” boundary. If
0 < « < 1, then there exist positive solutions, v) in C2(£2) N C1(2).

Proof. —It suffices to establish existence of positive solutigns) for
Egs. (3.3) with zero Dirichlet boundary conditions on batAndz. Then
v =u + z will also be positive.

Let k; and k, be the constants in Lemma 1, whehis 1 and
a, respectively. Defined = max(ky, k. } (1 + ||[w]eo), and M = (1 +
A (Jwlleo + 1W]l0)- LetS > 0, to be determined later, and

SE{(u,z)ecl(ﬁ) x CY(2): 0<u<w,0<z< W, ulyo =2z|se =0,

l-«
[uo=s. [20> —Fouler <A feles <A,
. . o+ )»1
2 2
Whené is small, S is non-empty. Moreovers is closed, bounded, and
COnvex.
Define the mag” such that for al(u, z) € S, (Tu, Tz) solve the linear
system of equations:
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ATz —aTz=—(1—a)u, (3.4a)

ATu —Tu + 0, (3.4b)

u—i—Tzz

with zero Dirichlet boundary conditions for bothiz and Tu. Using
Schauder’s estimate on Eq. (3.4a), we can concludeTthat C%+” (R2).
Sinceu € S, we haver < w. Hence taking the difference of the Egs. (3.2)
and (3.4a) givesA(w — Tz) — a(w — Tz) < 0 with zero boundary
condition for(w — T'z). Hence the maximum principle givés> Tz > 0

in £2. The strict inequality is a consequence of the strong maximum
principle sinceu = 0 in (3.4a). In addition, it follows from Lemma 1
that||7z]| 2 < A.

With Tz > 0in 2, u/(u + Tz) < 1. HenceL? theory guarantees a
solution Tu € W2? for Eq. (3.4b) with anyp > N. In fact, since both
uand Tz are inCY(2), u/(u + Tz) is in C*(£2). We can conclude
that Tu € C%(2) by interior Schauder’s estimate, and can therefore
employ the classical maximum principle @h. Taking the difference
of the Egs. (3.1) and (3.4b) leadsi#o> Tu > 0 by using the (classical)
maximum principle. In addition, lemma 1 givé& u||-1 < A.

Now for any(u, z) € S, we have a uniforni.* bound on(1 — «)u and
u/(u + Tz). This leads to a unifornW?? norm bound onT'z and Tu
for any p > N. SinceW?2? is compactly contained i6'!, T is a compact
map if we can show" mapsS into S.

To showT : S — S, it suffices to check the two integral inequalities in
the definition ofS. Everything else has been shown already. From (3.4a),
multiply by ¢ and integrate ovef2,

Mt+a) [pTz=1—a) [ up > (1—a)d.
[ermome]

This ensures thaflz satisfies the second integral inequality in the
definition of S.

Finally, we wish to verify [, ¢Tu > 8, dividing its proof into two
cases. Defing2, = {x € 2: dist(x, 3£2) > ¢}. We will takee = /3 in
the following, withé > 0 sufficiently small, to be determined in the proof.

Casel: § < [up < (1+ M)s.

In the following, all positive constants; are independent @
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Sincew € C1(£2), for x € 2 \ 2 5, we haveu(x) < w(x) < mv/8§
for some constaniz; > 0. Hence

u <mivV8|2\ 2 /51 <miv8|82).
2\2 5

Since the first eigenfunctiop has non-zero slope at the boundary, there
exists a positive constant, such that

[ ) <t 0

g 27 mz«/g ma
NS

Adding the above two inequalitiegju|, < ms(1 + M)~/ for some
constantngz > 0, which is independent of

Since we have a uniform bound on tfé norm onu € S, Nirenberg—
Gagliardo’s inequality (statement (3) in Theorem 2.2, [10]) ensures that
there exists @ < (0, 1), and positive constaniga, andms such that for
allu e S,

lulloo < mallull}™ < ms(L+ M)*08ED2 Cmg(L+ M)ST/2,

Now from Eq. (3.4a), Lemma 1 giveld z || o < kgms(1+ M)§L=9/2,
Hence by choosing > 0 sufficiently small,

1/ (u+Tz) =1/ [ms(L+ M)(L+ k)82 > 2(1 + Ay).

Now, multiplying Eq. (3.4b) byy and integrating ovef2, we have

u
1x/r:/
A+2ry) [ @Tu I

¢>2u+xﬂ/p¢>2u+xoa

Therefore[ ¢Tu > 25. HenceT : S — S in this case.
Casell: [fup > (1+ M)s.
From Eq. (3.4b),

1 u 1
Tu= / = ~ /u
/¢ 1+ Wt Tz A+ 2D (wlleo + lwlloo) v

HenceT mapssS into S in both cases. By the Schauder’s fixed point
theorem,T has a fixed pointu, z), which satisfies Egs. (3.3) with zero
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boundary conditions. Sinae= 0 in 2, we havez > 0 in §2 by using the
strong maximum principle on Eq. (3.3a). This in turn implies 0 using

Eqg. (3.3b). Moreover, interior Schauder’s estimate ensures that they are
inC%(2)NCYR). O

4. EXISTENCE OF SOLUTIONS WHEN « > 1

Defineg € C?(£2) to be the solution of
Ag—ag+1=0, gle=0. (4.1)

First we need an existence result for a scalar singular equation.

LEMMA 2.—Let £2 be a bounded domain witlC?*” boundary.
Assumep € C1(2), p > 0, and p|;o = 0. Then there exists a unique
positive solution: € C2(£2) N C1(£2) to the singular equation

AM—O(M—F&—F]. 0, ulye=0. 4.2)

Moreoveru > g.

Proof. —We follow the proof in [9]. Essentially, although the equation
is singular at the boundary, if we can construct a positive upper solution
and positive lower solution with the upper solution larger than the lower
solution, and both vanish at the boundary, then a classical solution in
C?(£2) N C(R) exists.

Defineu = A /g for some constant > 0. Then

p()

p(x)

f

Recall2, = {x € £2: dist(x, 082) > ¢}. If ¢ > 0 is sufficiently small, then
there exists a constant > 0 such thaiVe|?> > m for all x € 2\ £2,. It
is clear then

A A _

A 5 (x)
—o v
74 IVol|? >

if we chooseA to be sufficiently large.



Y.S. CHOI, P.J. McKENNA / Ann. Inst. Henri Poincaré 17 (2000) 503-522 511

Forx € £2,, since there exists&> 0 such that mig-¢ > 4. By further
increasingA if necessary,

(2 a)aves 22 11

Thus Aw — au + %") + 1< 0 for all x € £2. Hencew is an an upper
solution for Eq. (4.2) wher is sufficiently large.

Next we defineu = gop. By taking eg > 0 sufficiently smallu > u
Reducingeg further if necessary, we have

p(x) p(x)

+1=—-Xeop
u o9

Au —ou +

Henceu is a lower solution, and there exists a classical solution
C%(£2)NC () for Egs. (4.2). Uniqueness of such solution follows easily
by using the maximum principle.
Now since p € C1(£2) and plse = 0, we havep < My for some
constantM > 0. Therefore,
p(x) M

_<_
u o €o

This L* norm bound ensures thate C1(£2) by Lemma 1. Finally the
claimu > g is a consequence of the maximum principle. This completes
the proof of this lemma. O

Analogous to the case when< 1, we will study an equivalent system
to Egs. (2.2) whew > 1. This time we define = u — v, and study

Az —7 = —(a— D,

z (4.3)

Av—av+1+—- =0,
v

with zero boundary conditions for bothand v. Again we will employ
Schauder’s fixed point theorem in proving the following theorem.

THEOREM 4. —Let £2 be a bounded domain witti>*” boundary. If
a > 1, then there exist positive solutions, v) in C2(£2) N C1(2).

Proof. —It suffices to establish the existence of positive solutians)
for Egs. (4.3) with zero Dirichlet boundary conditions on bothndz.
Thenu = v + z will also be positive.
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Let k; be the constant in Lemma 1 whe¢n= 1, andB = 2,/]$2] x
max{a — 1, 1}. Let A > 1, to be determined later, anth = k(o — 1) A.
Now define

S={(v,2) e C* () x C*(2): v=g>0,7>0v]50=2ls0=0,

Ivllg: < B, [vller < A, llzller < Ag}

For largeA, S is non-empty. Moreovef is closed, bounded, and convex.
Define the maf such that for allv, z) € S, (Tv, Tz) solve the system
of equations:

ATz —Tz=—(a — D, (4.4a)
T
ATv—aTv+l+T—Z=O, (4.4b)
v

with zero Dirichlet boundary conditions for boffi; and 7v. Note that

the first equation is linear. Using Schauder’s estimate on Eq. (4.4a), we
can conclude thaf'z € C?7(£2). The maximum principle also gives

Tz > 0. Moreover, it follows from Lemma 1 that

ITzller < kal(@ = D, < kale — DA = Ay,

The second Eq. (4.4b) is a singular equation as in Lemma 2, and has a
solutionTv e C%(2) N CY(2), andTv > g.

If we can show|Tv||z: < B, and||Tv|c1 < A, thenT:S — S. To
prove the first inequality, multiplying Eq. (4.4a) #z, and integrating
over$2, we get|| Tz| ;1 < (¢ — 1) |Jv ]|, after using the Cauchy—Schwarz’s
inequality. Then from Eq. (4.4b), we have

/(|V<Tv)|2+a|Tv|2) =/(Tz +T0) < VIRT(ITzll2 + 1 Toll2)
22

2
<VIR1[(@ = Dlvlz+ ITvl].
Hence,

B
”Tv”i[lgi(

N | &

lvllz+1Tvll2) < 5 (B +1Tvll2).
This quadratic inequality leads to:

ITv| g < B. (4.5)
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This H* norm bound will help us to obtain th&' norm bound.

Let m; be some generic positive constants. Take arys2. We have
g(x) = mydist(x, 082) for somem, > 0, andTz(x) = |VTz(&)|dist(x,
9£2) by the mean value theorem for sofne 2, which lies in the straight
line connectingr and its closest point td$2. Hence fix some > N,

Tz Tz 1 mo

To < ? < m—lHV(TZ)HOO < m—l||TZ||W2,p <masl|vllp,
by using the Sobolev’s imbedding aiid estimate on Eq. (4.4a). Define
6 = (p — 2)/p. Hence 0< 6 < 1. We have|uv|, < [vl%lvl3~".
Combining with the inequality that we just obtained, we get

Tz
22 < maBY A, (4.6)
Tv

Employing Lemma 1 on Eq. (4.4b) now with (4.6), add> 1, it
follows that

ITvllcr < ko

T
1+ —ZH < ke max{1, mgB*?124% <A,
Tv |

if we take A sufficiently large in the last inequality. Hen&e S — S.
Takep > N. For all (v, z) € S, because of the bound (4.6), we have a
W?2? norm bound on both andz. SinceW?? is compactly contained in
CY(£), T is a compact map.
By the Schauder’s fixed point theorem, we have a fixed p@int)
in S which satisfies Egs. (4.3). The solutiorandz are positive, and in
C2(£2) N CY(£2) by similar arguments as in the proof of Theorem 81

Theorems 2 to 4 establish the existence of solution as summarized in
Theorem 1. We now move on to study uniqueness of solution for one
dimensional domains in the next section.

5. UNIQUENESS OF THE SOLUTION IN ONE DIMENSION

Without loss of generality, we let the domaihbe (0, 1), and study the
uniqueness of positive solutioris, v) in C2(0, 1) N C[0, 1] satisfying
Egs. (2.2). There is no distinction between the: 1 case and the > 1
case.

Because:/v > 0 in £2, then from Eqg. (2.2a), we havé’ — u < 0 in
(0, 1). Application of the Hopf’'s lemma (p. 5, Theorem 2, [14]) gives
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u'(0) > 0. Similarly, Eqg. (2.2b) yield®’(0) > 0. Similar analysis can be
made att = 1. Now asx — 0, we have

u u'(0)

— .
v v’ (0)

Thus all solutions(u, v) in C%(0,1) N CY[0, 1] are in factC?[0, 1]. We
need an extension of the result in Lemma 2.

LEMMA 3.-—Let the same assumptions in Lemghold. Letu; be
the positive solution of Eq$4.2) with zero boundary conditions when
p(x)is pi(x), i =1,2. Assumep,(x) > p1(x) in [0, 1] and p, # p1,
thenu, > uq in [0, 1].

Proof. —Define it = u, — u;. Then from Eq. (4.2) fori = 1,2, we
obtain

A p2x) . p2(x) — p1(x)
U —au———u=———"-—"-—"5x
A% ui

Sincep;|ye =0, andu}(0) > 0 fori =1, 2, hence the positive coefficient
p2(x)/(uiup) behaves like 1x asx — 0. Now an improved version
of the maximum principle (p. 6, Theorem 3, [14]) allows for such
unbounded coefficient (so long as we have a sign restriction), we can
therefore concludé: > 0 in [0, 1] unlessu is identically zero. Since
p2 # p1 in [0, 1], we can exclude this case. The proof of this lemma
is now complete. O

0.

LEMMA 4. —Let (u;, v;) € C?[0, 1] be positive solutions qR.2) with
zero boundary conditionsg,= 1, 2. Assumdu,, vo) # (11, v1) in [0, 1].
Thenu; #£ u; and vy # vy,

Proof. —Note that if u, = u;, then v, = vy from the governing
Eqg. (2.2a). Similarly when, = vy, thenu, = u; by using Eq. (2.2b).
Since(uy, vo) # (11, v1) in [0, 1], we haveu, #£ 1y andvy Z vy, O

THEOREM 5. —Let (u;, v;) € C?[0, 1] be positive solutions of2.2)
with zero boundary conditions,= 1, 2. Assume&uy, v) # (11, v1) in
[0, 1]. Thenu, # u; andv, 2 vy, i.e., neither component of each solution
can be ordered.

Proof. —We will assumev, > v in [0, 1], and arrive at a contradiction.
First we note that

1
W+ <_ - 1>ul. —0, i=12 (5.1)

v;
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Multiplying the first equation byu,, the second equation by, and
subtracting one equation from another, we have

1
1 1
— — — Juquo =0.
U2 V1

0

Sincev, # v, by Lemma 4, this gives a contradiction. Henge# v;.

Next we assumea, > u1. From Lemmas 3 and 4, we obtain > v;.
We have just proved that this is impossible. Hence this contradiction
enables usto conclude 2 u;. O

Suppose there are two distinct positive solutidas, v;), i = 1, 2.
Defineit = up, — u; andv = v, — vy. In the above theorem, we have just
established that neithé@rnor v can be single-signed. We now proceed to
exclude the sign changing cases ficando.

We will need the following lemma, the proof of which we postpone till
the next section.

LEMMA 5. —-Bothz andv have finite number of zeros i, 1], unless
they are identically zero.

We now prove the uniqueness of solution under this additional
assumption. Define

(5.2)

o>
—~
—
+
~

@

Fig. 1. Definition of/..
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Because of the Lemma 5; consists of finitely many disjoint closed
intervals, say(Z,);, i =1,...,my, i.e., I, = J;(1,);. It is noted that in
each(/,);, there can be at most finitely many points at whick 0. To
simplify our notation, we employ, to denote any intervdll, );. Similar
remarks apply forf_, J,, andJ_ (see Fig. 1).

LEMMA 6. —The following four cases hold:
(@) 1+ ¢ Jy,
(b) I-¢ J_,
(©) J-¢ 14,
d) J.Z 1.

Proof. —Examine case (a) first. Assunig C J., and letl, = [a, b]
for some 0< a < b < 1. From both Egs. (5.1) for = 1,2, simple
algebraic manipulation yields

b
1 1
(uqusy — uzu/l)lizz + / (— — —)uluz =0.
U2 U1

Sinceuy(a) = uy(a) anduq(b) = uy(b), the above equation is simplified
to

{u1(b) (u5(b) — uy (b)) — us(a) (us(a) — ui(a))}

b
11
n / <_ _ _>ulu2:o. (5.3)
. V2 U1

Sinceus(b) < uy(b) andul(a) > us(a), the first two terms on the left
hand side are non-positive. The integral term is strictly negative, since
[a,b] C Jy, and? is zero only on finitely many points ofa, ). Hence
we arrive at a contradiction. The proof of case (a) is complete. The proof
of case (b) is similar by studying the same Egs. (5.1).

Next we look at case (c). Assumke C I, and letJ_ = [a, b] for
some 0K a < b < 1. ltis clear thatt; /v, > 1y /vy On (a, b). Hence from
Egs. (2.2) fori =1, 2, we get

with the boundary conditiong(a) = v(b) = 0. The maximum principle
givest > 0 on (a, b). This contradicts the intervdd, b] = J_. The proof
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of case (c) is complete. The proof of case (d) is similar to that for case
(c). O

THEOREM 6. —Let £2 be a bounded interval in the one dimensional
case. Then positive solutioiig, v) in C2(0, 1) N C1[0, 1] are unique.

Proof. —Without loss of generality, by picking which solution we
assign as = 1, we can assumé > 0 in a neighborhood aof = 0. Let
u>00n[0,ail, [az, azl, ..., [az, az,+1], andia < 0 on[ay, as], [as, as],
.... Thusay, ;1 =1, oray,;» = 1, depending on whether the last interval
thatz does not vanish is positive or negative.

We divide into two cases in studying the inter{y@l a,].

Case l:0 > 0 nearx = 0.

On the interval0, a1), v has to change sign exactly once. Fob does
not change sign, then it contradicts case (a) in Lemma 6.dfianges
sign more than once, then it contradicts case (c) in Lemma 6.

Case ll:v < 0 nearx =0.

On the interval(0, a;), v cannot change sign. For if changes sign,
then it contradicts case (c¢) in Lemma 6.

Hence in both cases$,is (strictly) negative at = a;. It has to change
sign exactly once inside the interval,, ay). For if v does not change
sign in (a1, ap), it contradicts case (b) in Lemma 6. #f changes sign
more than once, then it contradicts case (d) in Lemma 6. Thu$ at
X =dpy.

A repetition of such arguments givés< 0 atx = az, v > 0 atx = ay,
and so on. If the last interval {g»,, 1], then we knowp > 0 atx = ay,.
Because of case (a) in Lemma®has to change sign at some interior
point in (az,, as,+1). But thent has to become zero at or before= 1
because of its boundary condition. It will contradict case (c) in Lemma 6.

The case that the last interval[is, 1, 1] wherei < 0 can be treated
similarly. This complete the uniqueness proof if Lemma 5 holds.

The proof of Lemma 5 is the contents of the next section.

6. PROOF OF LEMMA 5

In this section, we will establish Lemma 5. This will finish the proof
of Theorem 1 as well.
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LEMMA 7.—-Letw = (w1, wy) € C?[a, b] be a nontrivial solution of
a linear system of two equations on the interialb]:

w4+ A(x)w =0, (6.1)

whereA € Cla, b]. If A12(x) #0and Ay;(x) # O for all x € [a, b], then
neitherw; nor w, can have infinite number of zeros[in, 4].

Proof. —First we assume that there are infinite number of z¢xpk
n=12 ..., forwyin [a, b]. Take a subsequence pf,} if necessary,
we can assume, — xq for somexg € [a, b]. Without loss of generality,
assume thafx, } is a monotone decreasing sequence. (The other case that
it is @ monotone increasing sequence can be treated in the same way.)

By Rolle’s theorem, we can readily conclude that(xo) = 0, w](xo)
=0, andwj (xo) = 0. Evaluate Eq. (6.1a) at= xo, we haveAix(xg)w>
(x0) = 0. Since by assumptiod,(xg) # 0, we obtainw,(xg) = 0. If
w5(xg) = 0, then uniqueness of initial value problem for Egs. (6.1) forces
w1 = 0and w =0 for all x € [a, b]. Sincew is not a trivial solution, we
can assume that)(xg) # O.

Let s > 0 be sufficiently small and € (xq, xg + 8]. Then

9

|Ar2(X)wa(x)| > [A2(x) w1 (x)

becausav;(x) behaves like Gx — xg)?), |wa(x)| = m(x — xo) for some
m > 0, and|A12(x)| has a positive minimum on the interval, »]. Hence
Eq. (6.1a) givesv! is non-zero and is single-signed foke (xg, xo + 1.
This contradicts that there are infinite zerosugfon (xg, xg + §]. Hence
w1 has to have finite number of zeros[in b].

The proof ofw, having finite number of zeros ifu, b] is similar. It
invokes the assumptioA,, is nonzero for allk € [a, b]. O

From Egs. (2.2), a simple calculation shows that i& (i, v), thenw
satisfies Egs. (6.1) with matrix

1 1 ui
A=| "2, Mlljlvz . (6.2)
— el 04
U2 V1V2

This matrix A is singular near the boundaxy= 0 andx = 1. However
for any subintervala, b] C (0, 1), Lemma 7 allows us to conclude that
there are finite number of zeros|im, ] for z andv. It remains to show
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that there are no infinite number of zerosiaindv nearx = 0 andx = 1.
First we recall the following simple theorem.

THEOREM 7. —If f € C[0, 1], andu € C?[0, 1] satisfiesu” = f(x)
with u(0) = ' (0) = 0, then for anyx € [0, 1],

u(x) = /(x — 1) f(t)de. (6.3)
0

We need this formula to establish the uniqueness theorem of initial
value problem for a singular, linear system of equations below.

LEMMA 8.—Let Egs. (6.1) hold with w € C?[0,1/2]. Moreover
w(0) =0, w'(0) =0, andA € C(0, 1/2]. Furthermore, letim,_qoxA(x)
exist. Thew =00n[0, 1/2].

Proof. —Define the matrixB(x) = xA(x). HenceB € C[0, 1/2] due
to the assumption on the existence of the above limit. Met=
MaX<.<1/2 | B(x) |l (Where the infinity norm here is the infinity matrix
norm on a 2x 2 matrix), andk = ma)()gxgl/z”le(x)Hoo (where the
infinity norm here is the infinity vector norm on ax21 vector). It is
noted thatk is well defined becauss(0) = 0, andw is in C*[0, 1/2].

Now formula (6.3) can be applied to yield

w(x) = /(x — t)B(t)%dt,
0

which in turns lead to:

7 W
Wi < [ _”“B(”’|°°H7H . (6.4)
0 o
Hence,
T Mk
W]l < Mk /(x —ndr= 7#. (6.5)
0

Putting Eqg. (6.5) back into Eg. (6.4), we obtain an improved estimate:

Wi < Mk2t3 - Mk? 4
= 120 T3
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Using induction, it is easy to check that for any positive integer

Mk
Wlloo < " (6.6)
n :

Hence W], < Mk"/ (2" (n + 1)!). Taken — oo, |W|l» < 0. Hence
w=0o0n[0,1/2]. O

We now finish the proof of Lemma 5 by showing that no infinite
number of zeros ofi andv nearx = 0 andx = 1. We focus omx = 0.
The other end: = 1 is similar. We first consider three cases.

Casel: u has infinite zeros in a neighborhood.of 0, andd’(0) # 0.

Because of the existence of infinite zerosiohearx = 0, we have
1’ (0) = 0. Thusu7(0) = u5(0). With v/(0) # 0, we knowwv;(0) # v5(0).
(Recall that both] (0) andv,(0) are positive.)

Now from Eq. (2.2a) foi = 1, 2, we can derive:

0 =i — (E - ﬂ). (6.7)
U2 U1
Since
ﬁ—) u’—(o) fori=1,2,
v v;(0)

hence|u, /v, — u1/vq| is bounded away from zero in a sufficiently small
neighborhoodl0, §] for some§ > 0. Reduces further if necessary,
the right-hand side of Eq. (6.7) is single-signed and non-zef@,if,
becausei(0) = 0. Sincex (0) = 0 andu’(0) = 0, this will contradict that

u has infinite number of zero ifD, §]. Hence case | cannot exist.

Casell: 4 has infinite zeros in a neighborhoodxof 0, andv’(0) = 0.

In this caseji(0) = #'(0) = 0 andv(0) = v'(0) = 0. Sincew = (i1, V)
satisfies Egs. (6.1) with the matrikgiven by (6.2), Lemma 8 givas= 0
andv = 0 on the interval 0, 1/2]. Now we can use Lemma 7 to conclude
that they are identically zero of®, 1]. Hence case Il is equivalent to
identically zeroi ando.

Casdlll: v has infinite zeros in a neighborhoodxo& 0, andi’ (0) # 0.

Using similar proof as in case | on Eq. (2.2b), we have

uz u

b = ab— <— _ —). (6.8)

v2 V1

The same argument shows that this case does not exist.
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When there are infinite number of zeros fomearx = 0, and only
finite number of zeros fo#, this is either case | or case Il. But case | does
not exist. Thus from the conclusion of caseik= 0 andy =0 on [0, 1].

Similar remark applies when there are infinite number of zero$ for
nearx = 0 and only finite number zeros far. Since case Il does not
exist, we end up with case Il again.

When there are infinite number of zeros for batandv nearx =0,
this is case Il. Hence we draw the same conclusion thatbaiidv are
identically zero or0, 1]. The proof of Lemma 5 is now complete.

7. CONCLUDING REMARKS ... WHAT'S LEFT

We conclude this paper with a short outline of the main open questions
left by this paper.

To some extent, in taking all the exponents in the coupling terms
of (1.1) to be one, we have made the equation less singular than it
otherwise would be. The most obvious open question is what happens
for different exponents. Presumably, for existence, we need a critical
exponent limitation on the andr, and (if the single-equation literature
is any guide) no restriction on theands. To our knowledge, there are
no additional results even in the one-dimensional case or when radial
symmetry is imposed.

In addition, we have no information on whether the solutions we find
are radially symmetry if the region is a ball. It is natural to ask if all
positive solutions of (2.2) are radially symmetric or if some symmetry-
breaking can result.

A stronger version of this question is whether the positive-positive
solution is always unique. Note that uniqueness is still open even in one
dimension for the more general exponent case. For other valygsgof
r, s, formal arguments on Egs. (1.1) leads to a single elliptic equation,
which has multiple solutions for Neumann boundary conditions.

And finally, one can wonder whether these methods can be generalized
to a wider class of nonlinearities than the pure exponents.
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