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ABSTRACT. – We establish the existence of solutions to a singular
non-quasimonotone system of equations. Such equations are a special
case of the Gierer–Meinhardt equations. In the one dimensional case,
the uniqueness result is also proved.
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RÉSUMÉ. – Nous établissons içi l’existence des solutions d’un système
d’équations singulières non-quasimonotones. Ces équations forment un
cas spécial des équations de Gierer–Meinhardt. En dimension un, nous
demontrons aussi l’unicité des solutions.

1. INTRODUCTION

Singular elliptic boundary value problems for a single equation have
been widely studied in the past several decades. While starting out as the
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study of ordinary differential equations in [19,20], it rapidly progressed
to the study of elliptic nonlinear boundary value problems, see [5,9].
Presently, many of the earlier results are being generalized to different
operators, often quasilinear and anisotropic, as these are the type that
often occur in applications such as fluid dynamics [1,3,4,2]

Although there is a substantial literature on systems of elliptic partial
differential equations [17,6,18], to our knowledge, there has been no
similar study of results for systems of singular elliptic problems even
though they arise naturally in applications.

For example, the system

ut = d11u− u+ u
p

vq
,

vt = d21v− v + u
r

vs
,

(1.1)

usually with Neumann boundary conditions, often occurs in the study of
morphogenesis on experiments onhydra, an animal of a few millimeters
in length, where they are known as the Gierer–Meinhardt equations [13].

With similar interaction terms, these type also occur in certain models
of predator-prey interactions [21].

The steady states of (1.1) will be the object of this paper. Often the
case that is studied is when thed1 term is small and thed2 term is large.
In this case, the study of solutions of the system can be approximated by
a single elliptic equation [12,7].

Of course, with Neumann boundary conditions, one usually studies
situations in which the solutions remain positive, so that in some sense
the equations do not become singular.

In this paper, we begin the study of steady states of the system with
Dirichlet boundary conditions. This is the natural extension of the afore-
mentioned work on the single equation. Specifically, we shall prove two
theorems, one an existence theorem for the system for a special choice
of the exponentsp,q, r, s, and the other a uniqueness theorem under the
additional assumption that the number of spatial dimensions is one, i.e.,
we have a singular system of ordinary differential equations.

While there is a good deal of literature on nonlinear elliptic systems,
there seems to be little work on this type of singular system, especially if
the system is not quasimonotone.

First some preliminaries: our notation will be standard. The norms
‖u‖p,‖u‖∞ denote the usualLp andL∞ norms on functionu on the
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regionΩ in Rn, respectively. The Sobolev norm‖u‖W2,p will denote its
W 2,p norm, and‖u‖H1 ≡ (‖∇u‖22+‖u‖22)1/2 is itsH 1 norm.

2. MAIN RESULT

Let Ω ⊂ RN be a bounded domain withC2+γ boundary, whereγ ∈
(0,1). We consider positive solutions to the singular system of elliptic
equations:

1u− u+ u
v
= 0, (2.2a)

1v − αv+ u
v
= 0, (2.2b)

with zero Dirichlet boundary conditions:

u|∂Ω = v|∂Ω = 0, (2.3)

whereα is a given positive constant. We note that the system isnot
quasi-monotone, making direct construction of comparison functions
impossible.

THEOREM 1. –LetΩ ⊂RN be a bounded domain withC2+γ bound-
ary, whereγ ∈ (0,1). There exist positive solutions(u, v) in C2(Ω) ∩
C1(Ω) to Eqs.(2.2) with boundary conditions(2.3). In the one dimen-
sional domain case, the solutions are unique. Moreover such unique so-
lutionsu andv are symmetric about the mid point of the one dimensional
domain.

Remark1. – The equations

1u− u+ u
v
= 0,

d1v − αv+ β u
v
= 0,

with positive constantsd, α, and β can be reduced to our case. By
dividing the second equation byd, we can, without loss of generality,
assumed = 1. Now with a new variableU ≡ βu, we obtain Eqs. (2.2) in
U andv.

Remark2. – In the one dimensional case, we can by translation
assume the domain is[−L,L] for someL > 0. Once we establish
the existence and the uniqueness of solutions, the symmetry claim in
the above theorem is automatic. Since if not, thenU(x) = u(−x) and
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V (x) = v(−x) will constitute another solutions. This contradicts the
uniqueness result.

Remark3. – In the proof of this theorem, all the constructions involv-
ing functions inC2(Ω) (for example,w in Eq. (3.1)) can be replaced by
functions inC2(Ω)∩C1(Ω) only. WithC1,1 domain, such regularity can
be achieved by theLp theory. Hence the theorem is still valid forC1,1

domain.

To prove the existence of solutions, we have to divide into three cases:
α < 1, α = 1, andα > 1. First we start with the trivial caseα = 1. The
other two cases will be investigated in later sections.

THEOREM 2. –Let Ω be a bounded domain withC2+γ boundary,
whereγ ∈ (0,1). If α = 1, then there exists a unique solution(u, v) in
C2(Ω).

Proof. –Simple algebraic manipulation on Eqs. (2.2) gives the unique
solution u = v = w, wherew satisfies1w − w + 1 = 0 with zero
Dirichlet boundary conditions. It is noted that the Schauder’s estimate
on linear elliptic equations ensures thatw ∈C2(Ω). 2

Throughout this paper, we letλ1> 0 andϕ > 0 be the first eigenvalue
and the corresponding eigenfunction satisfying

1ϕ + λ1ϕ = 0, ϕ|∂Ω = 0, (2.4)

with the normalization maxΩ ϕ = 1.

3. EXISTENCE OF SOLUTIONS WHEN α < 1

In this section, we study the existence of solutions as stated in
Theorem 1 whenα < 1, by using Schauder’s fixed point theorem. We
can construct an upper bound function (hence a pointwise bound), but
to ensure that a positive solution exists, we need to construct a tricky
integral lower bound (see the definition of the setS below).

First, we definew to be the solution satisfying

1w−w+ 1= 0, w|∂Ω = 0. (3.1)

Hencew ∈C2+γ (Ω). The maximum principle ensures thatw > 0 inΩ .
With w well defined, letw̃ be the solution of the linear equations:

1w̃− αw̃=−w, w̃|∂Ω = 0. (3.2)
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Again w̃ ∈C2+γ (Ω), andw̃ > 0 by the maximum principle.
Many apriori estimates for this type of linear equations exist. The

results that we will need are summarized as follows.

LEMMA 1. –Letβ > 0. If

1ẑ− βẑ=−f, ẑ|∂Ω = 0,

then there exists a constantkβ > 0 such that‖ẑ‖C1 6 kβ‖f ‖∞.

Proof. –This is a consequence ofLp theory on linear elliptic equations
with p >N , followed by the Sobolev’s imbedding.2

Whenα < 1, it is easier to study an equivalent system to (2.2). Let
z≡ v− u. Then Eqs. (2.2) can be converted into:

1z− αz = −(1− α)u,
1u− u+ u

u+ z = 0,
(3.3)

subject to zero Dirichlet boundary conditions for bothu and z. We
note that this system is stillnot quasi-monotone if we look for positive
solutions foru andz.

THEOREM 3. –LetΩ be a bounded domain withC2+γ boundary. If
0< α < 1, then there exist positive solutions(u, v) in C2(Ω)∩C1(Ω).

Proof. –It suffices to establish existence of positive solutions(u, z) for
Eqs. (3.3) with zero Dirichlet boundary conditions on bothu andz. Then
v = u+ z will also be positive.

Let k1 and kα be the constants in Lemma 1, whenβ is 1 and
α, respectively. DefineA ≡ max{k1, kα}(1 + ‖w‖∞), andM ≡ (1 +
λ1)(‖w‖∞ + ‖w̃‖∞). Let δ > 0, to be determined later, and

S≡
{
(u, z) ∈C1(Ω)×C1(Ω): 06 u6w,06 z6 w̃, u|∂Ω = z|∂Ω = 0,∫

Ω

uϕ > δ,
∫
Ω

zϕ > 1− α
α + λ1

δ,‖u‖C1 6A,‖z‖C1 6A
}
.

Whenδ is small,S is non-empty. Moreover,S is closed, bounded, and
convex.

Define the mapT such that for all(u, z) ∈ S, (T u,T z) solve the linear
system of equations:
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1T z− αT z=−(1− α)u, (3.4a)

1T u− T u+ u

u+ T z = 0, (3.4b)

with zero Dirichlet boundary conditions for bothT z and T u. Using
Schauder’s estimate on Eq. (3.4a), we can conclude thatT z ∈ C2+γ (Ω).
Sinceu ∈ S, we haveu6w. Hence taking the difference of the Eqs. (3.2)
and (3.4a) gives1(w̃ − T z) − α(w̃ − T z) 6 0 with zero boundary
condition for(w̃−T z). Hence the maximum principle gives̃w> T z > 0
in Ω . The strict inequality is a consequence of the strong maximum
principle sinceu 6≡ 0 in (3.4a). In addition, it follows from Lemma 1
that‖T z‖C1 6A.

With T z > 0 in Ω, u/(u + T z) 6 1. HenceLp theory guarantees a
solutionT u ∈W 2,p for Eq. (3.4b) with anyp > N . In fact, since both
u and T z are in C1(Ω), u/(u + T z) is in C1(Ω). We can conclude
that T u ∈ C2(Ω) by interior Schauder’s estimate, and can therefore
employ the classical maximum principle onT u. Taking the difference
of the Eqs. (3.1) and (3.4b) leads tow > T u > 0 by using the (classical)
maximum principle. In addition, lemma 1 gives‖T u‖C1 6A.

Now for any(u, z) ∈ S, we have a uniformL∞ bound on(1−α)u and
u/(u + T z). This leads to a uniformW 2,p norm bound onT z andT u
for anyp >N . SinceW 2,p is compactly contained inC1, T is a compact
map if we can showT mapsS into S.

To showT :S→ S, it suffices to check the two integral inequalities in
the definition ofS. Everything else has been shown already. From (3.4a),
multiply by ϕ and integrate overΩ ,

(λ1+ α)
∫
Ω

ϕT z= (1− α)
∫
Ω

uϕ > (1− α)δ.

This ensures thatT z satisfies the second integral inequality in the
definition ofS.

Finally, we wish to verify
∫
Ω ϕT u > δ, dividing its proof into two

cases. DefineΩε ≡ {x ∈ Ω: dist(x, ∂Ω) > ε}. We will take ε = √δ in
the following, withδ > 0 sufficiently small, to be determined in the proof.

CaseI: δ 6
∫
uϕ 6 (1+M)δ.

In the following, all positive constantsmi are independent ofδ.
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Sincew ∈ C1(Ω), for x ∈ Ω \Ω√δ , we haveu(x) 6 w(x) 6 m1

√
δ

for some constantm1> 0. Hence∫
Ω\Ω√

δ

u6m1

√
δ|Ω \Ω√δ|6m1

√
δ|Ω|.

Since the first eigenfunctionϕ has non-zero slope at the boundary, there
exists a positive constantm2 such that∫

Ω√
δ

u6
(∫
Ω

uϕ

)/(
min
Ω√

δ

ϕ
)
6 (1+M)δ

m2

√
δ
= (1+M)

m2

√
δ.

Adding the above two inequalities,‖u‖1 6 m3(1 + M)
√
δ for some

constantm3> 0, which is independent ofδ.
Since we have a uniform bound on theC1 norm onu ∈ S, Nirenberg–

Gagliardo’s inequality (statement (3) in Theorem 2.2, [10]) ensures that
there exists aθ ∈ (0,1), and positive constantsm4 andm5 such that for
all u ∈ S,

‖u‖∞ 6m4‖u‖1−θ1 6m5(1+M)1−θ δ(1−θ)/26m5(1+M)δ(1−θ)/2.
Now from Eq. (3.4a), Lemma 1 gives‖T z‖∞ 6 kαm5(1+M)δ(1−θ)/2.

Hence by choosingδ > 0 sufficiently small,

1/(u+ T z)> 1/
[
m5(1+M)(1+ kα)δ(1−θ)/2]> 2(1+ λ1).

Now, multiplying Eq. (3.4b) byϕ and integrating overΩ , we have

(1+ λ1)

∫
ϕT u=

∫
u

u+ T zϕ > 2(1+ λ1)

∫
uϕ > 2(1+ λ1)δ.

Therefore
∫
ϕT u> 2δ. HenceT :S→ S in this case.

Case II:
∫
uϕ > (1+M)δ.

From Eq. (3.4b),∫
ϕT u= 1

1+ λ1

∫
u

u+ T zϕ >
1

(1+ λ1)(‖w‖∞ + ‖w̃‖∞)
∫
uϕ

> 1+M
M

δ > δ.

HenceT mapsS into S in both cases. By the Schauder’s fixed point
theorem,T has a fixed point(u, z), which satisfies Eqs. (3.3) with zero
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boundary conditions. Sinceu 6≡ 0 in Ω, we havez > 0 inΩ by using the
strong maximum principle on Eq. (3.3a). This in turn impliesu > 0 using
Eq. (3.3b). Moreover, interior Schauder’s estimate ensures that they are
in C2(Ω)∩C1(Ω). 2

4. EXISTENCE OF SOLUTIONS WHEN α > 1

Defineg ∈C2(Ω) to be the solution of

1g − αg+ 1= 0, g|∂Ω = 0. (4.1)

First we need an existence result for a scalar singular equation.

LEMMA 2. –Let Ω be a bounded domain withC2+γ boundary.
Assumep ∈ C1(Ω), p > 0, and p|∂Ω = 0. Then there exists a unique
positive solutionu ∈C2(Ω)∩C1(Ω) to the singular equation

1u− αu+ p(x)
u
+ 1= 0, u|∂Ω = 0. (4.2)

Moreover,u> g.

Proof. –We follow the proof in [9]. Essentially, although the equation
is singular at the boundary, if we can construct a positive upper solution
and positive lower solution with the upper solution larger than the lower
solution, and both vanish at the boundary, then a classical solution in
C2(Ω)∩C(Ω) exists.

Defineu≡A√ϕ for some constantA> 0. Then

1u− αu+ p(x)
u
+ 1

=−λ1

2
A
√
ϕ − A

4
ϕ−3/2|∇ϕ|2− αA√ϕ + p(x)

A
√
ϕ
+ 1.

RecallΩε ≡ {x ∈Ω: dist(x, ∂Ω) > ε}. If ε > 0 is sufficiently small, then
there exists a constantm> 0 such that|∇ϕ|2>m for all x ∈Ω \Ωε. It
is clear then

A

4
ϕ−3/2|∇ϕ|2> p(x)

A
√
ϕ
+ 1,

if we chooseA to be sufficiently large.
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Forx ∈Ωε, since there exists aδ > 0 such that minΩε ϕ > δ. By further
increasingA if necessary,(

λ1

2
+ α

)
A
√
ϕ > p(x)

A
√
ϕ
+ 1.

Thus1u − αu + p(x)

u
+ 16 0 for all x ∈ Ω . Henceu is an an upper

solution for Eq. (4.2) whenA is sufficiently large.
Next we defineu ≡ ε0ϕ. By taking ε0 > 0 sufficiently small,u > u.

Reducingε0 further if necessary, we have

1u− αu+ p(x)
u
+ 1=−λ1εϕ − αε0ϕ + p(x)

ε0ϕ
+ 1> 0.

Henceu is a lower solution, and there exists a classical solutionu ∈
C2(Ω)∩C(Ω) for Eqs. (4.2). Uniqueness of such solution follows easily
by using the maximum principle.

Now sincep ∈ C1(Ω) and p|∂Ω = 0, we havep 6 Mϕ for some
constantM > 0. Therefore,

p(x)

u
6 Mϕ
ε0ϕ
6 M
ε0
.

ThisL∞ norm bound ensures thatu ∈ C1(Ω) by Lemma 1. Finally the
claimu> g is a consequence of the maximum principle. This completes
the proof of this lemma. 2

Analogous to the case whenα < 1, we will study an equivalent system
to Eqs. (2.2) whenα > 1. This time we definez≡ u− v, and study

1z− z = −(α− 1)v,

1v− αv+ 1+ z
v
= 0,

(4.3)

with zero boundary conditions for bothz andv. Again we will employ
Schauder’s fixed point theorem in proving the following theorem.

THEOREM 4. –LetΩ be a bounded domain withC2+γ boundary. If
α > 1, then there exist positive solutions(u, v) in C2(Ω)∩C1(Ω).

Proof. –It suffices to establish the existence of positive solutions(v, z)

for Eqs. (4.3) with zero Dirichlet boundary conditions on bothv andz.
Thenu= v + z will also be positive.
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Let k1 be the constant in Lemma 1 whenβ = 1, andB ≡ 2
√|Ω| ×

max{α − 1,1}. LetA> 1, to be determined later, andA1≡ k1(α − 1)A.
Now define

S ≡ {(v, z) ∈C1(Ω)×C1(Ω): v > g > 0, z> 0, v|∂Ω = z|∂Ω = 0,

‖v‖H1 6 B,‖v‖C1 6A,‖z‖C1 6A1
}
.

For largeA, S is non-empty. Moreover,S is closed, bounded, and convex.
Define the mapT such that for all(v, z) ∈ S, (T v, T z) solve the system

of equations:

1T z− T z=−(α− 1)v, (4.4a)

1T v− αT v + 1+ T z
T v
= 0, (4.4b)

with zero Dirichlet boundary conditions for bothT z andT v. Note that
the first equation is linear. Using Schauder’s estimate on Eq. (4.4a), we
can conclude thatT z ∈ C2+γ (Ω). The maximum principle also gives
T z > 0. Moreover, it follows from Lemma 1 that

‖T z‖C1 6 k1
∥∥(α− 1)v

∥∥∞ 6 k1(α− 1)A=A1.

The second Eq. (4.4b) is a singular equation as in Lemma 2, and has a
solutionT v ∈C2(Ω)∩C1(Ω), andT v > g.

If we can show‖T v‖H1 6 B, and‖T v‖C1 6 A, thenT :S→ S. To
prove the first inequality, multiplying Eq. (4.4a) byT z, and integrating
overΩ , we get‖T z‖H1 6 (α−1)‖v‖2 after using the Cauchy–Schwarz’s
inequality. Then from Eq. (4.4b), we have∫

Ω

(|∇(T v)|2+ α|T v|2)= ∫
Ω

(T z+ T v)6√|Ω|(‖T z‖2+ ‖T v‖2)
6
√|Ω|[(α − 1)‖v‖2+ ‖T v‖2].

Hence,

‖T v‖2H1 6
B

2

(‖v‖2+‖T v‖2)6 B
2

(
B + ‖T v‖2).

This quadratic inequality leads to:

‖T v‖H1 6 B. (4.5)
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ThisH 1 norm bound will help us to obtain theC1 norm bound.
Let mi be some generic positive constants. Take anyx ∈Ω . We have

g(x) > m1dist(x, ∂Ω) for somem1 > 0, andT z(x) = |∇T z(ξ)|dist(x,
∂Ω) by the mean value theorem for someξ ∈Ω , which lies in the straight
line connectingx and its closest point to∂Ω . Hence fix somep >N ,

T z

T v
6 T z

g
6 1

m1

∥∥∇(T z)∥∥∞ 6 m2

m1
‖T z‖W2,p 6m3‖v‖p,

by using the Sobolev’s imbedding andLp estimate on Eq. (4.4a). Define
θ ≡ (p − 2)/p. Hence 0< θ < 1. We have‖v‖p 6 ‖v‖θ∞‖v‖1−θ2 .
Combining with the inequality that we just obtained, we get

T z

T v
6m3B

1−θAθ . (4.6)

Employing Lemma 1 on Eq. (4.4b) now with (4.6), andA > 1, it
follows that

‖T v‖C1 6 kα
∥∥∥∥1+ T zT v

∥∥∥∥∞ 6 kα max
{
1,m3B

1−θ}2Aθ 6A,

if we takeA sufficiently large in the last inequality. HenceT :S→ S.
Takep > N . For all (v, z) ∈ S, because of the bound (4.6), we have a

W 2,p norm bound on bothv andz. SinceW 2,p is compactly contained in
C1(Ω), T is a compact map.

By the Schauder’s fixed point theorem, we have a fixed point(v, z)

in S which satisfies Eqs. (4.3). The solutionv andz are positive, and in
C2(Ω)∩C1(Ω) by similar arguments as in the proof of Theorem 3.2

Theorems 2 to 4 establish the existence of solution as summarized in
Theorem 1. We now move on to study uniqueness of solution for one
dimensional domains in the next section.

5. UNIQUENESS OF THE SOLUTION IN ONE DIMENSION

Without loss of generality, we let the domainΩ be(0,1), and study the
uniqueness of positive solutions(u, v) in C2(0,1) ∩ C1[0,1] satisfying
Eqs. (2.2). There is no distinction between theα < 1 case and theα > 1
case.

Becauseu/v > 0 in Ω , then from Eq. (2.2a), we haveu′′ − u < 0 in
(0,1). Application of the Hopf’s lemma (p. 5, Theorem 2, [14]) gives
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u′(0) > 0. Similarly, Eq. (2.2b) yieldsv′(0) > 0. Similar analysis can be
made atx = 1. Now asx→ 0, we have

u

v
→ u′(0)

v′(0)
.

Thus all solutions(u, v) in C2(0,1) ∩ C1[0,1] are in factC2[0,1]. We
need an extension of the result in Lemma 2.

LEMMA 3. –Let the same assumptions in Lemma2 hold. Letui be
the positive solution of Eqs.(4.2) with zero boundary conditions when
p(x) is pi(x), i = 1,2. Assumep2(x) > p1(x) in [0,1] and p2 6≡ p1,
thenu2>u1 in [0,1].

Proof. –Define û ≡ u2 − u1. Then from Eq. (4.2) fori = 1,2, we
obtain

û′′ − αû− p2(x)

u1u2
û=−p2(x)− p1(x)

u1
6 0.

Sincep2|∂Ω = 0, andu′i (0) > 0 for i = 1,2, hence the positive coefficient
p2(x)/(u1u2) behaves like 1/x as x → 0. Now an improved version
of the maximum principle (p. 6, Theorem 3, [14]) allows for such
unbounded coefficient (so long as we have a sign restriction), we can
therefore concludêu > 0 in [0,1] unlessû is identically zero. Since
p2 6≡ p1 in [0,1], we can exclude this case. The proof of this lemma
is now complete. 2

LEMMA 4. –Let (ui, vi) ∈ C2[0,1] be positive solutions of(2.2)with
zero boundary conditions,i = 1,2. Assume(u2, v2) 6≡ (u1, v1) in [0,1].
Thenu2 6≡ u1 andv2 6≡ v1.

Proof. –Note that if u2 ≡ u1, then v2 ≡ v1 from the governing
Eq. (2.2a). Similarly whenv2 ≡ v1, thenu2 ≡ u1 by using Eq. (2.2b).
Since(u2, v2) 6≡ (u1, v1) in [0,1], we haveu2 6≡ u1 andv2 6≡ v1. 2

THEOREM 5. –Let (ui, vi) ∈ C2[0,1] be positive solutions of(2.2)
with zero boundary conditions,i = 1,2. Assume(u2, v2) 6≡ (u1, v1) in
[0,1]. Thenu2 6> u1 andv2 6> v1, i.e., neither component of each solution
can be ordered.

Proof. –We will assumev2> v1 in [0,1], and arrive at a contradiction.
First we note that

u′′i +
(

1

vi
− 1

)
ui = 0, i = 1,2. (5.1)
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Multiplying the first equation byu2, the second equation byu1, and
subtracting one equation from another, we have

1∫
0

(
1

v2
− 1

v1

)
u1u2= 0.

Sincev2 6≡ v1 by Lemma 4, this gives a contradiction. Hencev2 6> v1.
Next we assumeu2 > u1. From Lemmas 3 and 4, we obtainv2 > v1.

We have just proved that this is impossible. Hence this contradiction
enables us to concludeu2 6> u1. 2

Suppose there are two distinct positive solutions(ui, vi), i = 1,2.
Defineû≡ u2− u1 andv̂ ≡ v2− v1. In the above theorem, we have just
established that neitherû nor v̂ can be single-signed. We now proceed to
exclude the sign changing cases forû andv̂.

We will need the following lemma, the proof of which we postpone till
the next section.

LEMMA 5. –Bothû andv̂ have finite number of zeros in[0,1], unless
they are identically zero.

We now prove the uniqueness of solution under this additional
assumption. Define

Î+ ≡ {x ∈ [0,1]: û> 0
}
,

Î− ≡ {x ∈ [0,1]: û6 0
}
,

Ĵ+ ≡ {x ∈ [0,1]: v̂ > 0
}
,

Ĵ− ≡ {x ∈ [0,1]: v̂ 6 0
}
.

(5.2)

Fig. 1. Definition ofI+.



516 Y.S. CHOI, P.J. McKENNA / Ann. Inst. Henri Poincaré 17 (2000) 503–522

Because of the Lemma 5,̂I+ consists of finitely many disjoint closed
intervals, say(I+)i , i = 1, . . . ,m1, i.e., Î+ = ⋃i (I+)i . It is noted that in
each(I+)i , there can be at most finitely many points at whichû= 0. To
simplify our notation, we employI+ to denote any interval(I+)i . Similar
remarks apply forI−, J+, andJ− (see Fig. 1).

LEMMA 6. –The following four cases hold:
(a) I+ 6⊂ J+,
(b) I− 6⊂ J−,
(c) J− 6⊂ I+,
(d) J+ 6⊂ I−.

Proof. –Examine case (a) first. AssumeI+ ⊂ J+, and letI+ = [a, b]
for some 06 a < b 6 1. From both Eqs. (5.1) fori = 1,2, simple
algebraic manipulation yields

(
u1u
′
2− u2u

′
1

)|x=bx=a +
b∫
a

(
1

v2
− 1

v1

)
u1u2= 0.

Sinceu1(a)= u2(a) andu1(b)= u2(b), the above equation is simplified
to {

u1(b)
(
u′2(b)− u′1(b)

)− u1(a)
(
u′2(a)− u′1(a)

)}
+

b∫
a

(
1

v2
− 1

v1

)
u1u2= 0. (5.3)

Sinceu′2(b) 6 u′1(b) andu′2(a) > u′2(a), the first two terms on the left
hand side are non-positive. The integral term is strictly negative, since
[a, b] ⊂ J+, andv̂ is zero only on finitely many points on(a, b). Hence
we arrive at a contradiction. The proof of case (a) is complete. The proof
of case (b) is similar by studying the same Eqs. (5.1).

Next we look at case (c). AssumeJ− ⊂ I+ and letJ− = [a, b] for
some 06 a < b6 1. It is clear thatu2/v2> u1/v1 on (a, b). Hence from
Eqs. (2.2) fori = 1,2, we get

v̂′′ − αv̂ =−
(
u2

v2
− u1

v1

)
< 0 ,

with the boundary conditionŝv(a) = v̂(b)= 0. The maximum principle
givesv̂ > 0 on (a, b). This contradicts the interval[a, b] = J−. The proof
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of case (c) is complete. The proof of case (d) is similar to that for case
(c). 2

THEOREM 6. –LetΩ be a bounded interval in the one dimensional
case. Then positive solutions(u, v) in C2(0,1)∩C1[0,1] are unique.

Proof. –Without loss of generality, by picking which solution we
assign asi = 1, we can assumêu > 0 in a neighborhood ofx = 0. Let
û > 0 on[0, a1], [a2, a3], . . . ,[a2n, a2n+1], andû < 0 on[a1, a2], [a3, a4],
. . . . Thusa2n+1= 1, ora2n+2= 1, depending on whether the last interval
that û does not vanish is positive or negative.

We divide into two cases in studying the interval[0, a1].
Case I:v̂ > 0 nearx = 0.
On the interval(0, a1), v̂ has to change sign exactly once. For ifv̂ does

not change sign, then it contradicts case (a) in Lemma 6. Ifv̂ changes
sign more than once, then it contradicts case (c) in Lemma 6.

Case II:v̂ < 0 nearx = 0.
On the interval(0, a1), v̂ cannot change sign. For if̂v changes sign,

then it contradicts case (c) in Lemma 6.
Hence in both cases,v̂ is (strictly) negative atx = a1. It has to change

sign exactly once inside the interval(a1, a2). For if v̂ does not change
sign in (a1, a2), it contradicts case (b) in Lemma 6. Ifv̂ changes sign
more than once, then it contradicts case (d) in Lemma 6. Thusv̂ > 0 at
x = a2.

A repetition of such arguments givesv̂ < 0 atx = a3, v̂ > 0 atx = a4,
and so on. If the last interval is[a2n,1], then we knowv̂ > 0 atx = a2n.
Because of case (a) in Lemma 6,v̂ has to change sign at some interior
point in (a2n, a2n+1). But thenv̂ has to become zero at or beforex = 1
because of its boundary condition. It will contradict case (c) in Lemma 6.

The case that the last interval is[a2n+1,1] whereû < 0 can be treated
similarly. This complete the uniqueness proof if Lemma 5 holds.2

The proof of Lemma 5 is the contents of the next section.

6. PROOF OF LEMMA 5

In this section, we will establish Lemma 5. This will finish the proof
of Theorem 1 as well.
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LEMMA 7. –Let w ≡ (w1,w2) ∈ C2[a, b] be a nontrivial solution of
a linear system of two equations on the interval[a, b]:

w′′ +A(x)w= 0, (6.1)

whereA ∈ C[a, b]. If A12(x) 6= 0 andA21(x) 6= 0 for all x ∈ [a, b], then
neitherw1 norw2 can have infinite number of zeros in[a, b].

Proof. –First we assume that there are infinite number of zeros{xn},
n = 1,2, . . . , for w1 in [a, b]. Take a subsequence of{xn} if necessary,
we can assumexn→ x0 for somex0 ∈ [a, b]. Without loss of generality,
assume that{xn} is a monotone decreasing sequence. (The other case that
it is a monotone increasing sequence can be treated in the same way.)

By Rolle’s theorem, we can readily conclude thatw1(x0)= 0,w′1(x0)

= 0, andw′′1(x0)= 0. Evaluate Eq. (6.1a) atx = x0, we haveA12(x0)w2

(x0) = 0. Since by assumptionA12(x0) 6= 0, we obtainw2(x0) = 0. If
w′2(x0)= 0, then uniqueness of initial value problem for Eqs. (6.1) forces
w1≡ 0 and w2≡ 0 for all x ∈ [a, b]. Sincew is not a trivial solution, we
can assume thatw′2(x0) 6= 0.

Let δ > 0 be sufficiently small andx ∈ (x0, x0+ δ]. Then∣∣A12(x)w2(x)
∣∣> ∣∣A11(x)w1(x)

∣∣,
becausew1(x) behaves like o((x − x0)

2), |w2(x)|>m(x − x0) for some
m> 0, and|A12(x)| has a positive minimum on the interval[a, b]. Hence
Eq. (6.1a) givesw′′1 is non-zero and is single-signed forx ∈ (x0, x0+ δ].
This contradicts that there are infinite zeros ofw1 on (x0, x0+ δ]. Hence
w1 has to have finite number of zeros in[a, b].

The proof ofw2 having finite number of zeros in[a, b] is similar. It
invokes the assumptionA21 is nonzero for allx ∈ [a, b]. 2

From Eqs. (2.2), a simple calculation shows that ifw≡ (û, v̂), thenw
satisfies Eqs. (6.1) with matrix

A=


1

v2
− 1 − u1

v1v2
1

v2
− u1

v1v2
− α

 . (6.2)

This matrixA is singular near the boundaryx = 0 andx = 1. However
for any subinterval[a, b] ⊂ (0,1), Lemma 7 allows us to conclude that
there are finite number of zeros in[a, b] for û andv̂. It remains to show
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that there are no infinite number of zeros ofû andv̂ nearx = 0 andx = 1.
First we recall the following simple theorem.

THEOREM 7. – If f ∈ C[0,1], and u ∈ C2[0,1] satisfiesu′′ = f (x)
with u(0)= u′(0)= 0, then for anyx ∈ [0,1],

u(x)=
x∫

0

(x − t)f (t)dt. (6.3)

We need this formula to establish the uniqueness theorem of initial
value problem for a singular, linear system of equations below.

LEMMA 8. –Let Eqs. (6.1) hold with w ∈ C2[0,1/2]. Moreover
w(0)= 0, w′(0)= 0, andA ∈ C(0,1/2]. Furthermore, letlimx→0xA(x)

exist. Thenw≡ 0 on [0,1/2].
Proof. –Define the matrixB(x) ≡ xA(x). HenceB ∈ C[0,1/2] due

to the assumption on the existence of the above limit. LetM ≡
max06x61/2‖B(x)‖∞ (where the infinity norm here is the infinity matrix
norm on a 2× 2 matrix), andk ≡ max06x61/2‖ 1

x
w(x)‖∞ (where the

infinity norm here is the infinity vector norm on a 2× 1 vector). It is
noted thatk is well defined becausew(0)= 0, andw is inC1[0,1/2].

Now formula (6.3) can be applied to yield

w(x)=
x∫

0

(x − t)B(t)w
t

dt,

which in turns lead to:

‖w‖∞ 6
x∫

0

(x − t)∥∥B(t)∥∥∞∥∥∥∥w
t

∥∥∥∥∞dt. (6.4)

Hence,

‖w‖∞ 6Mk
x∫

0

(x − t) dt = Mk
2
t2. (6.5)

Putting Eq. (6.5) back into Eq. (6.4), we obtain an improved estimate:

‖w‖∞ 6 Mk
2

12
t36 Mk

2

3! t
3.
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Using induction, it is easy to check that for any positive integern,

‖w‖∞ 6 Mkn

(n+ 1)! t
n+1. (6.6)

Hence‖w‖∞ 6Mkn/(2n+1(n+ 1)!). Taken→∞, ‖w‖∞ 6 0. Hence
w≡ 0 on [0,1/2]. 2

We now finish the proof of Lemma 5 by showing that no infinite
number of zeros of̂u and v̂ nearx = 0 andx = 1. We focus onx = 0.
The other endx = 1 is similar. We first consider three cases.

CaseI: û has infinite zeros in a neighborhood ofx = 0, andv̂′(0) 6= 0.
Because of the existence of infinite zeros ofû nearx = 0, we have

û′(0)= 0. Thusu′1(0)= u′2(0). With v̂′(0) 6= 0, we knowv′1(0) 6= v′2(0).
(Recall that bothv′1(0) andv′2(0) are positive.)

Now from Eq. (2.2a) fori = 1,2, we can derive:

û′′ = û−
(
u2

v2
− u1

v1

)
. (6.7)

Since
ui

vi
→ u′i (0)

v′i (0)
for i = 1,2,

hence|u2/v2− u1/v1| is bounded away from zero in a sufficiently small
neighborhood[0, δ] for some δ > 0. Reduceδ further if necessary,
the right-hand side of Eq. (6.7) is single-signed and non-zero in[0, δ],
becausêu(0)= 0. Sinceû(0)= 0 andû′(0)= 0, this will contradict that
û has infinite number of zero in[0, δ]. Hence case I cannot exist.

CaseII: û has infinite zeros in a neighborhood ofx = 0, andv̂′(0)= 0.
In this case,̂u(0)= û′(0) = 0 andv̂(0)= v̂′(0)= 0. Sincew≡ (û, v̂)

satisfies Eqs. (6.1) with the matrixA given by (6.2), Lemma 8 giveŝu≡ 0
andv̂ ≡ 0 on the interval[0,1/2]. Now we can use Lemma 7 to conclude
that they are identically zero on[0,1]. Hence case II is equivalent to
identically zeroû andv̂.

CaseIII: v̂ has infinite zeros in a neighborhood ofx = 0, andû′(0) 6= 0.
Using similar proof as in case I on Eq. (2.2b), we have

v̂′′ = αv̂−
(
u2

v2
− u1

v1

)
. (6.8)

The same argument shows that this case does not exist.
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When there are infinite number of zeros forû nearx = 0, and only
finite number of zeros for̂v, this is either case I or case II. But case I does
not exist. Thus from the conclusion of case II,û≡ 0 andv̂ ≡ 0 on [0,1].

Similar remark applies when there are infinite number of zeros forv̂

nearx = 0 and only finite number zeros for̂u. Since case III does not
exist, we end up with case II again.

When there are infinite number of zeros for bothû and v̂ nearx = 0,
this is case II. Hence we draw the same conclusion that bothû andv̂ are
identically zero on[0,1]. The proof of Lemma 5 is now complete.

7. CONCLUDING REMARKS . . . WHAT’S LEFT

We conclude this paper with a short outline of the main open questions
left by this paper.

To some extent, in taking all the exponents in the coupling terms
of (1.1) to be one, we have made the equation less singular than it
otherwise would be. The most obvious open question is what happens
for different exponents. Presumably, for existence, we need a critical
exponent limitation on thep andr , and (if the single-equation literature
is any guide) no restriction on theq ands. To our knowledge, there are
no additional results even in the one-dimensional case or when radial
symmetry is imposed.

In addition, we have no information on whether the solutions we find
are radially symmetry if the region is a ball. It is natural to ask if all
positive solutions of (2.2) are radially symmetric or if some symmetry-
breaking can result.

A stronger version of this question is whether the positive-positive
solution is always unique. Note that uniqueness is still open even in one
dimension for the more general exponent case. For other values ofp, q,
r , s, formal arguments on Eqs. (1.1) leads to a single elliptic equation,
which has multiple solutions for Neumann boundary conditions.

And finally, one can wonder whether these methods can be generalized
to a wider class of nonlinearities than the pure exponents.
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