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ABSTRACT. - It is known that solutions of the porous medium equa-
tion Ut = converge to solutions of the heat equation ut = uxx as m i 1
if the initial datum u(x, 0) is kept fixed. For porous medium flow u represents
a suitably scaled density and v = 1) represents the pressure.
We prove that v converges to a solution of the Hamilton-Jacobi equation
vt = (vx)2 as 1 if v(x, 0) is fixed. Moreover, if v(x, 0) has compact sup-
port the interface for the porous medium equation tends to the interface
for the latter equation. The limit m i 1 is also discussed. In this fast-diffusion
case no interfaces appear.
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204 D. G. ARONSON AND J. L. VAZQUEZ

RESUME. - On sait que les solutions de 1’equation des milieux poreux
(um)xx convergent quand m ! 1 vers des solutions de 1’equation de la

chaleur Ut = uxx si l’on fixe la donnee initiale u(x, 0). Comme modele
de 1’ecoulement d’un gaz dans un milieu poreux u represente la densite
et v = 1) est la pression. Nous demontrons que v converge
quand m ! 1 vers une solution de 1’equation de Hamilton-Jacobi Vt = (vx)2
si v(x, 0) reste fixée. Si en plus v(x, 0) est a support compact alors l’inter-
face de la solution de 1’equation des milieux poreux tend vers celle corres-
pondant a Vt = (vx)2. On discute aussi le cas de diffusion rapide m ~ 1
ou il n’y a pas d’interfaces.

INTRODUCTION AND RESULTS

The density u = u(x, t ) of an ideal gas flowing isentropically through
a one-dimensional porous medium obeys the equation

where m > 1 is a constant. It is known, [BC1 ], that the solutions u to (0.1)
depend continuously in the C(f~+ : on both the initial datum

u(., 0) = uo E and on m. In particular if uo is kept fixed and m ! 1,
then u = u(x, t ; m) converges to a solution of the heat conduction equation

with initial datum uo . Thus, for m near 1, the porous medium equation
can be regarded as a perturbation of the heat equation.

Despite the convergence of solutions of the nonlinear equation (0.1)
to solutions of the linear equation (0.2), there is a marked difference in
the behaviour of solutions of these equations stemming from the fact
that (0.1) is of degenerate parabolic type. Perhaps the most striking conse-
quence of that degeneracy is the finite speed of propagation of disturbances
from rest for the porous medium equation as opposed to the infinite speed
associated with the heat equation. Specifically, suppose that uo is a conti-
nuous, nonnegative and bounded real function such that uo = 0 on f~ +
and 0. Then there exists a unique continuous, nonnegative and
bounded function u(x, t) in Q which solves (0 .1) in a generalized sense
and is such that u( . , 0) = uo, cf. [OKC], [AB]. Moreover the support
of u( . , t ) is bounded away from x = oo for every t > 0 and the finite function

is continuous and nondecreasing in fF8 + . The curve x = ~(t ) is called the

(right-hand) interface of u. If the support of uo is not an interval of the
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205THE POROUS MEDIUM EQUATION AS A FINITE-SPEED APPROXIMATION

form ( - oo, a) other interfaces will exist, but their properties are essentially
the same as those of the right-hand interface. The interfaces have been
the object of intense study in recent years and their behaviour is now rea-
sonably well understood. Detailed results and references can be found
in [v3 ]. In particular the interface exists and has the properties described
above as long as the initial datum is a nonnegative function in which

grows at most like 0( ~ x I2/(m - 1 ~) as x ~ ] -~ oo, cf. [AC], [BCP], [DK].
The finite speed of propagation associated with the porous medium

equation is, of course, reminiscent of hyperbolic equations. Our purpose
in this paper is to investigate the precise nature of the relationship between
(0.1) and the Hamilton-Jacobi equation

sometimes called the nonstationary eikonal equation. To obtain (0.4)
as the limit of (0.1) we proceed as follows. In view of the application in
mind it is natural to restrict attention to nonnegative solutions of (0.1).
We can then replace the variable u by the corresponding scaled pressure

Formally v satisfies the equation

The local velocity of the flow at any point (x, t ) E Q is given by the func-
tion - vx (Darcy’s law) and the interface is characterized by the relationship

where vx(~(t ), t ) means lim vx(x, t ) as x i ~(t ) with t > 0, cf. [A2 ], [Kn ] ( 1 ).
Equations (0.4) and (0.6) share the property of finite propagation speed.

Thus we can view (0.6) as a finite-speed viscous approximation to (0.4).
In fact (0.4) and (0.6) formally agree on the interfaces. This agreement
has been rigorously established in [CF ] where it is shown that vr - (vx)2 - 0
as (x, t ) - (((to), to) with to > 0 and v(x, t ) > 0 (2).
On the other hand, equations (0.4) and (0.6) formally agree everywhere

when m -~ 1 and it is this limit which is our main concern here. Set

(~) If the time t* at which the interface starts to move (waiting time) is positive then (
may not be differentiable. In that case formula (0.7) holds at t = t* with ~’(t) replaced by
the right-hand derivative D + ~(t*), cf. [CF ], [ACK ], [ACV ].

(~) At to = t* we also need t ~ to.

Vol. 4, n° 3-1987.
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For every s > 0 let v~o be a continuous, nonnegative and bounded real
function and consider the initial-value problem

For i > 0 let Qt = { (x, t ) E Q : t > i ~. The following is our main conver-
gence result :

THEOREM 1. - A) Suppose that for every small E > 0, voE is a continuous
real function such that

for some constant N > 0 and ~ converges to a function vo uniformly
on compact subsets of R as ~ ~ 0. Let vE = t ) denote the solution to 
Then as E -~ 0, the family { converges uniformly on compact subsets of Q
to a function v E C(Q) such that

i) v E Lip (Qt) for every i > 0 and vt = (vx)2 a. e. in Q,
ii) v(x, 0) = vo(x) for all x 
iii) 1/2t in ~’(Q).

Moreover v£x --~ vx in for every 1  p  oo.

B) The limit function v = v(x, t) is uniquely characterized as a solution
in C(Q) of the initial-value problem

by the semiconvexity property iii).
The proof of Theorem 1 is given in section 2 after the required estimates

for Ve and its derivatives are derived in Section 1. Here we shall discuss
some relevant aspects of our result. First, note that the convergence of Ve
to v is compatible with the statement that Ue converges to a solution of
the heat equation. This is possible since (0.5) implies that u~ ~ 0 uniformly
in Q as G -~ 0 if Ve is bounded.
The semiconvexity property iii), which selects the « correct » solution of

problem (Po), is an immediate consequence of the estimate

valid for all nonnegative solutions of (0.1) ( [AB ]). A similar estimate,
k/t, also holds in several space dimensions, the equation being

then Ut = 0(um) in Q = IRd x f~ + with d > 1, and has played a key role
in the general theory of the porous medium equation, cf. [AC ], [BCP ].
Theorem 1(B) sheds a new light on its significance, but it would be interesting
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207THE POROUS MEDIUM EQUATION AS A FINITE-SPEED APPROXIMATION

to better understand its physical meaning (in this connection see (0.13)
below).

Crandall and P. L. Lions, [CL ] (see also [CEL ]) have recently introduced
the notion of viscosity solution to characterize the « good » solutions of
Hamilton-Jacobi equations. To be specific, if the equation is

with H : {R~ -~ tR continuous and Du = (uxl, ..., uxd), then a function
U E C(Q) is a viscosity solution of (0.10) if for we have

at all local maxima of cr - ~ and

at all local minima of u - ~. Our limit function v(x, t ) of Theorem 1 is a

viscosity solution of vt = (vx)2 because vX is locally bounded and vxx is

locally bounded below in Q. It then follows from Theorem 10 . 2 of [Li ].
It should also be noted that since our estimates break down at t = 0

the current uniqueness proofs for viscosity solutions do not apply. In fact
our uniqueness result, Theorem 1(B), is an improvement of Lemma 2.1
of [B ] to cover the case in which the bounds for the derivatives are not
uniform in x, t. As explicit examples show, the estimates which we derive
i. e. vx = 0(t -1 ~2), 0( 1 /t ), are actually attained for general initial data.
The idea that solutions of vt = (vx)2 must approximate to leading order

solutions of vt = ~vvxx + (vx)2 for very small s > 0 is used by Kath and
Cohen in [KC ] where they study shock formation at the waiting-time on
the interfaces of solutions of (0.6) for B small using singular perturbation
methods.

Since the equation vt = (vx)2 is invariant under translations, in particular
in v, the restriction to positive bounded solutions is equivalent to working
with just bounded solutions. However, setting the lower bound at u = v = 0
plays an important role in the convergence discussed above because of
the degeneracy of the diffusion term Evvxx when v vanishes.
We also prove convergence of the interfaces which appear when v£o

and vo vanish in some interval. To make things simple suppose that vEo = vo
and vo vanishes in f~ +, but 0. Let ~E(t ) denote the (right-hand) interface
for the solution Ve of(Pg) and let ’(t) denote the interface for the solution v
to (Po). Then ~~(t ) and ~(t ) are Lipschitz continuous, nondecreasing func-
tions of t for 0  t  ~r and we have the following convergence result.

THEOREM 2. - As B! 0 we have ~E(t ) - ’(t) uniformly on [0, T] for
every T > 0 and ~E(t) -~ ~’(t) a. e. and in L ~(Il~+) for every p E [1, oo).
Vol. 4, n° 3-1987.
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Further properties of the convergence of the interfaces, as well as proof
of these results are given in Section 3.
The convergence results of Theorems 1 and 2 cannot be substantially

improved because of the lack of regularity of the solution v to (0.4). In
fact vx is in general discontinuous and so is ~’(t ), cf. [D ] or [La ]. Stronger
convergence results are obtained in Section 4 under the further assumption
that the initial data vEo are concave on their support, cf. Theorem 3. The
result depends on the fact that, for concave data, v is a C~ function on the
set where it does not vanish and ( E C~ [0, 00 ). We also prove that if voE i vo
as s 1 0 then Ve also converges monotonically to v (Theorem 4).
As we noted above the local velocity of propagation of solutions of (0. 1)

is given by w = - vx. As a consequence of Theorem 1 it follows that the
family We = Vex, B > 0, converges in to a solution w of the conser-
vation law

and w satisfies the entropy condition

If in addition vox exists in a suitable sense then w is the unique dis-
tributional solution of (0.12) satisfying (0.13) and taking the ini-
tial value w(x, 0) = - vo(x), cf. [0], [LP].

It is also of some interest to consider what happens if we take the limit
m - 1 for m  1 in (0.6). For m E (0,1) the initial value problem for (0.1)
has a unique solution provided that u(x, 0) is nonnegative and locally
integrable ( [AB ], [HP ]). Moreover and is positive everywhere
in Q so that, in particular, there are no interfaces. The analog of Theorem 1
with m ~ 1 is proved in Section 5. Note that in this case v, which is still
defined by (0.5), is negative.

Before we turn to the proofs of our results we pause to describe an impor-
tant conection between equations (0.1) or (0.6) and (0.4). Let m > 1.
Recall that if u is a nonnegative solution of (0.1) then v satisfies

and

It follows that

Now define

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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where t and r are related by

With this change of variables (0.16) and (0.15) become

Thus if u is a solution of porous medium equation (0.1) then the change of
variables (0.5), (0.17) transforms it into a viscosity supersolution of the
equation (0.4) (3).
The equalities in (0.18) hold for the Barenblatt solutions

where ( . ) + means max (., 0). For each C > 0 this function is a solution
of (0.1) with initial data which is a multiple of the Dirac measure concen-
trated at x = 0. If v is defined through (0.5) from u then

whenever u > 0. The change of variables (0.17) gives

The functions (0.20) are the well-known bounded self-similar solutions to
Vt = (Vx)2. Note that the initial value if

This rather striking correspondence has some deep consequences. It is
known that as t - oo every solution of (0.1) with u(x, 0) E L1(R), u0  0
and 0, converges with the appropriate scaling to the Barenblatt

solution M with the same mass, M(x, t )dx = t )dx = M. Specifically

(cf. [K] and also [VI], [V2] ] for further details). The self-similar solutions

(~) We say that v is a viscosity supersolution of (0.10) if the condition (0.11 b) is satisfied.
For the proof that v satisfying (0.18) is a viscosity supersolution see [Li ], Theorem 10 . 2.

Vol. 4, n° 3-1987.
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(0. 20) play the same role for bounded solutions for (0.4). Thus we see that
the asymptotic behaviour of these classes of solutions for equations (o .1 )
and (o . 4) coincide under the transformation (o . 5), (o .17) . This asympto-
tic similarity was first observed in [V2] where, in particular, it was shown
that if m > 1 then the velocity w = - vx associated with the solutions
of (0 .1) behaves at t -~ oo like the finite N-waves that are the typical profiles
of solutions of first-order conservation laws if m > 1. Corresponding results
hold for m  1 as we show in Section 5.
The convergence results Theorem 1 and its analog for m  1, Theorem 6,

also hold for x E IRd for any d > 1. While our discussion of the case m  1
in Section 5 is valid in several space dimensions, the case m > 1 requires
new estimates and will be studied in [LSV ].

1 ESTIMATES

In this section we collect various results for the solutions of problem (PE)
that are needed in the sequel. In particular we obtain several estimates,
none of which is entirely new, but we shall give new proofs in some cases
in order to get the precise dependence on s.
We consider a family of measurable, nonnegative and bounded initial

functions { voE : E > 0 ~ defined on the real line. We further assume that
they are bounded uniformly in s, i. e., there exists a constant N > 0 such that

for a. e. x E R and every G > 0. We define the corresponding initial densities
by

For every s > 0 there exists a unique bounded continuous function Ue
defined in Q which satisfies

This follows from the known existence and uniqueness theory for the porous
mediurn equation, cf. [OKC] [AC] [BCP] [DK]. If we recover the pressure
Ve by inverting the change of variables, i. e.
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then Ve is a solution of (PE) :

in the sense that r is continuous, nonnegative and bounded in Q, and
satisfies

for every test cf. [A2 ]. Moreover Ue and Ve are C~
functions on the open subset of Q where they are positive.
The solutions satisfy the maximum principle: if and are two

solutions of with initial data and and v~o~l> > a. e.

then > everywhere in Q, cf. [OKC] ] [BCP] ] [DK]. From this
we obtain our first estimate.

LEMMA

The following remark also follows from the maximum principle. If

xo e R is such that ess lim inf voe(x) is positive as x - xo then for every
t > 0 t ) > 0. (To prove this compare with a small Barenblatt solu-
tion centered at x = xo). Using this remark we conclude that if veo(x) is C~
and positive everywhere then Ue is C~ in Q, cf. [OKC ]. Since the solu-
tions Ue depend continuously on the initial data ( [BC1 ] [BCP ] [DK ]),
every solution can be suitably approximated by C~ solutions.
Our next estimates are taken from [AB]:

LEMMA 1. 2. - i) For every t > 0, t) is a locally bounded measure
and

We remark that both estimates are sharp as can be seen by checking
them on the Barenblatt solutions.

It was proved in [AI] ] that the velocity - v~x is bounded in Q03C4 = {(x, t) E Q :
t > i ~ for every r > 0. We give a new and simple proof of this bound using
Vol. 4, n° 3-1987.
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Lemmas 1.1 and 1. 2, which exhibits the explicit dependence of the bound
onN,tandE:

LEMMA 1. 3. - For every t > 0 the function vE( . , t) is Lipschitz conti-
nuous and satisfies

a. e. in Q. 
’ ’ ’ ’

REMARK. - Again the bound is attained by the Barenblatt solution.

Proof. - The argument proceeds at fixed time t > 0 by applying the
estimates 0  v~  N and v~xx  - ((s + 2)t)-1 to the function x ~ v(x, t).

For t > 0 and y e [R we define _

Then § is continuous, nonnegative and convex 0 in ~’( f~)). Therefore
for every h > 0 we have

Assume that ~’(x) ~ 0. In the above inequality take the sign which gives
I ~’(~) ~ ~ in the right-hand member to get

Letting x = 0 and taking into account the definition of § this means that
for every y E R

The result now follows by choosing h so as to minimize the right-hand
member of the inequality, i. e.

In view of Lemma 1. 3 the family { is uniformly Lipschitz continuous
with respect to x in Q~ for T > 0 with Lipschitz constant Lt = (2N/(~ + 2)~) 1 ~2
uniform in 8. Using the results of [G] ] the solutions are then Holder-
continuous in Q03C4 with respect to the variable t with exponent 1/2. We give
a simple direct proof of this fact that shows the dependence on s.

LEMMA 1.4. - The family {v~} is uniformly Hölder-continuous with

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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respect to t in Q~, i > 0, with exponent 1/2. More precisely, for every x E (~
and t1  to > T > 0 we have

for some constants A, B > 0 independent of E, N, Lz .

Proof 2014 We may assume that Ve E C~(Q). For convenience we temporarily
drop the subscript to and r are as above, it follows from L~
in Qt that for every y e R such that ~y 2014 x  ~, we have

where L = Lt . We want to estimate h = v(x, t 1 ) - v(x, to) in terms of 6 = t 1- to ~
Suppose, for example, that h > 0. Then take £  h/(2L) and set 1= [x - ~,,
x+~] ] and S=I x [to, t1 ]. Integrating the equation 
in S we obtain

In view of (1.8) we have

Therefore, using Lemmas 1 and 2, we find

~ h
Now if we set £ = - we get

4L

from which it follows that

and the assertion is proved. #
In Lemma 1 . 3 we derived a bound for v~x which does not depend on

smoothness of the initial data but which is only useful for t bounded away
from zero. We shall also need a bound which is valid down to t = 0. For
this we employ the Bernstein method as in reference [Al ].

LEMMA 1 . 5. - Suppose that v§o is bounded in some interval (a, b) e R.

For any and 6 e 0, b-a 2) let R=(a, b) x (0, T] and R* =(a+6,

Vol. 4, n° 3-1987.
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b - ~) x (0, T ]. There exists a constant C > 0 independent of a, b, E, ~, T
and v~0 such that

for all (x, t) E ~*.

Proof We may assume that vo is positive and smooth in R. Set

where M = ~~ and define w by vE = ~(w). Note that w E [o, 1 ].
Let p = w~ and z = ,2p2, where ( = ~(x) is a C~( [a, b ]) function with values
in [o, 1 ] which vanishes in a neighborhood of x = a and x = b. Then, as
in [Al ], at points of R where z has a relative maximum we have

Now let 03B6 _ 03B6(x) be a function with 03B6(o) = 1 and 03B6 = 0 for all |x|  1
such that 03B6 ~ [o,1 ], | 03B6’|  2, and |03B6"|  4 in R. For an arbitrary fixed

x E [a+03B4, b-03B4 set 03B6(x)=03B6( x x . Then substituting in (1.11) and taking[ + ~ ] ~( ) B ~ / 
g ( )

, 
2M 

 ~ 4M ~~ 
- 
2M ~ ~ 1 andinto account the estimates 

3 03C6’, 03C6"=-, 03C6’|  1 and

 0 we obtain
.

where the constants C and C2 are independent of a, b, B, 5, M and T. Since
2C2(~- l~p  (2 p2 + C2~-2 we conclude that

Suppose now that

Let ( x, t ) E R* be a point where the maximum value of is achieved.

Clearly t > 0. Moreover, since vEx = we have
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Therefore if (x, t) E R* is a point at which attains its maximum value
then t > 0. Set 

, ,

where ~ is the function described in the last paragraph. Since

it follows that for any point (x, t) E R where z achieves its maximum we
must have t > 0. Thus we can apply (1.12) to conclude that

Therefore

~ 
4 

and (1.10) holds with C = 3 C3.

REMARK. - In case (a, b) = [R, the maximum principle holds for ~
and we have

This can be proved by a slight alteration of the above argument. A proof
for more general equations of the form Ut = with ~ a continuous
increasing real function, can be found in [V2] along with a discussion of
the appropriate concept of velocity and its behaviour.
By essentially the same argument used to prove Lemma 1. 4 we can derive

the following consequences of Lemma 1.5.

COROLLARY 1.1. - Under the hypothesis of Lemma 5, vE is Holder
continuous with respect to t in ~* with exponent 1 /2 and Holder constant
independent of E.

2. PROOF OF THEOREM 1

2.1. Passage to the limit s 1 0.

In view of Lemma 1 the family { of solutions in Theorem 1 is uni-
formly bounded in Q. Moreover, by Lemmas 1. 3 and 1.4, ~ vE ~ is equi-
continuous in Q~ for any r > 0. Therefore there exists a sequence 0
such that vn == Ven - v E C(Q) uniformly on Q~ for every T > 0. It is clear
from Lemmas 1 and ? that

Vol. 4, n° 3-1987.



216 D. G. ARONSON AND J. L. VAZQUEZ

and

By Lemma 3, v is uniformly Lipschitz continuous with respect to x in Q~
for any r > 0. Letting B - 0 in estimate (1.7) it follows that v is also uni-
formly Lipschitz continuous with respect to t in Q, for any r > 0. Moreover,
the sequence ( is relatively compact in This is a consequence
of the following compactness result, which is a variation of Lemma 10.1
of [Li] ]

LEMMA 2 .1. - Let { V" ~ ~ 1 be a sequence in C(Q) such that on every
compact subset Q’ c c Q we have

i) ~ Vn ~ converges uniformly,
ii) bounded in L°°(Q’),
iii) There exists a constant C = C(Q’) > 0 such that for every n > 1

Then is relatively compact in for every p E [l, oo).
The main idea of the proof is that an estimate of the type (2.3) implies

a bound for Vnxx in the space of bounded measures on Q’, cf. also
[Li ], Lemma 3.1.

In view of the relative compactness of { we have, after passing to
subsequence if necessary,

Since the vn satisfy

for all functions ~ E letting n - oo we obtain

Thus v satisfies (0.4) Vt = (vx)2 in D’(Q) and almost everywhere. Since it
also satisfies (2 . 2), it is a viscosity solution of (0 . 4), cf. [Li ], Theorem 10 . 2.
We now consider the convergence at t = 0. Assume to begin with that

voE = vo E C1(1R) = L. By Lemmas 1. 4 and 1. 5 and the subse-
quent Remark, for any 6 > 0 we can find a r = r (N, L) such that ifee (0,1)
we have

for 0  t  T and x E I~. Letting s -~ 0 we get

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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hence t ) - v(x, t ) ~  b and the convergence is uniform in x near
t = 0. Thus in this case v E 
For general voE we use a barrier argument, taking advantage of the above

result. Given I = (a, b), take 6 > 0 and construct functions C1(1R)
with bounded derivative such that for a certain Bo

if xel and 0  s  GO. Denote by t ), t ) the solutions to (PE)
with initial data uo, vo resp. and by t ), v(x, t) their limits as E - 0.
Using (2 . 6), (2. 7) on Vo and vo, there exists a time r > 0 such that if x E I
and 0  t  T then

and

Therefore t)- v(x, 25. In a similar way we obtain vE(x, t)- v(x, t)> 25.
It follows that v£ - v uniformly on compact subsets of Q. We conclude
that v E C(Q) and v(x, 0) = vo(x).

2.2. Uniqueness.

We have just shown the existence of a sequence { from the family { vE ~
which converges to a function v E C(Q) with the properties i ), ii), iii ) of
Theorem 1(A). We shall now show that the whole family { converges
to v as E ~, 0 by showing the uniqueness of the solution of problem (Po)
in that class of functions. In fact, part (B) of Theorem 1 follows from the
following result which extends a result of Benton [B ].

PROPOSITION 2.1. - For i = 1, 2 let v; e C(V) be solutions of vt = (vx)2
in ~’(Q) which satisfy in the sense ofdistributions in Q

i)
and

ii)
for some constants A, B > 0. For arbitrary a, b E R with a  b, let

where T = ~ (b - a)/8B ~2 and let Dt = ~ x E (x, t) Then for every
,u > 0 the function

Vol. 4, n° 3-1987.
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is nonincreasing on [0, T ]. Moreover for every t E l 0, T ]

Remarks. 1) As we have shown in the proof of Lemma 3, condition ii )
is a consequence of i ) and bound for the vi. Indeed if 0  vi  N then
B ~ Thus the essential assumption is the semiconvexity assump-
tion i ).

2) The conditions i ) and ii ) need only hold in D c [a, b ] x [0, T].
Proof We begin by showing that if 03A6  is nonincreasing for every ,u ~ R +

then (2 . 9) holds. For any t and r with 0  r  t  T, 03A6 (t)  03A6 (03C4) implies

lhus, letting  ~ ~ we obtain

and (2. 9) follows by letting i ,~ 0.
For arbitrary field set W = { (V2 - V1)+ ~"~. Then

where d = v 1 x + V2x satisfies

Assume temporarily that the vi E C2(Q) and write (2.10) in the form

For ~-, i E (0, T) with ~  i integrate over D~ - ~ (x, t ) ED: o~  t  i ~
to obtain
n .. _ _

where g = g(t) = 4Bt1~2. The third and fourth integrals on the right hand
side are nonpositive since 2 Bt -1 ~2 = g’. On the other hand, by
the semiconvexity condition i ), - 2A/t. Therefore if we set

then
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We conclude that

so that = t - 2A f (t ) is nonincreasing on (0, T). By continuity, the same
holds on [o, T ].

If the vi ~ C2(Q) we approximate A = vlx + v2x by a sequence of C2(Q)-
functions dn such that 2Bt-1/2, Anx  - 2At-1 and An ~ A
in L,~(Q). Write (2.10) in the form

Since

arguing as above we find

from which we derive (2.12) by letting n - oo.

3. CONVERGENCE OF THE INTERFACE

In this section we consider problem with a fixed initial datum vo
which we assume to be bounded, nonnegative and continuous. In addition,
we assume that vo vanishes Without loss of generality, we may
assume that 0 = sup { x : vo(x) > 0 ~. The right-hand interface of Ve is
then x = (E(t), where

It is known that 03B6~ is a continuous, nondecreasing function in [0, oo).
We shall prove that as E ~, 0, ’e(t) converges to the right-hand interface ’(t)
of the solution v of (0.4) obtained as a limit of i. e., to

Before stating our main result we summarize the relevant properties of
03B6~(t) and 03B6(t). For every 8 > 0 and r > 0, 03B6~ E C [0, n Lip [i, ~) and
there exists a waiting time z* E [o, oo) such that ~E(t) = 0 for 0 ~ 
and 03B6~ E oo) with 03B6’~(t) > 0 if t > It is shown in [V3] that
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where

and /1e is a constant such that ~ > 1, ~ ~ 1 as ~ ~ 0. Note that BE  00

is, the necessary and sufficient condition to have positive The equa-
tion (0.7), ~E(t) - - is satisfied on the interface if t ~ t*,
[CF ]. Moreover we have ( [V 1 ])

1

(3 . 3) means that the function ~’(t ) tE + 2 is nondecreasing in [0, 00). It follows
from (0.7) and (1.6) that

As for ((t) it is well-known that ( e C [0, oo) n Lip [~, oo) for every T > 0,
that (0.7) holds, and that (’ is continuous except for an at most countable
number of times ti at which the one-sided derivatives D+ and D - 
exist and satisfy D + ~(t~ ) > D - ~(ti ), ( [D ]). These properties of ( also follow
from our results below.
The following is an expanded version of Theorem 2.

THEOREM 2’. - A) 0 the converges uniformly on
compact subsets of [0, oo) to the interface ~(t ) of the function v = lim vE.

B) Moreover for every 1  p  oo and ~ satisfies

C) The waiting time t* of 03B6~ converges to the waiting time t* of 03B6 given by

where

Proof - A) Let N = ~~ vo We claim that
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To prove this we compare Ve with the function

Observe that Vt = (vx)2 in Q with initial values

Moreover, in the support Q of v we have

and in { (x, t) E Q : 0  x  2Nt} we have precisely

Therefore in Q, v satisfies

while for every s > 0

in Q. Since 0) ~ vo(x) in R it follows from the maximum principle
that v  v~ in Q and this implies (3. 5).

Since the solutions are not smooth at the interfaces the maximum prin-
ciple cannot be applied directly and an auxiliary argument is necessary.
Fix s > 0 and let w(x, t ) = V(x - ~, t ) with 6 > 0. We shall prove that for
every t ~E(t)  ~(t) + ~ and v  w in Q. Let tl = inf ~ t > 0: ~£(t) > (t)+ a ~.
Clearly 0 ~. We consider now the region S = {(x, t)~03A9~: 0 t  t1 }.
Since S it follows from the standard maximum principle that w

in S. Therefore if t 1  oo we have v(., t 1 )  w(., in ( - and
hence in (~. On the other hand at the point (xi, with xi = ~(t 1 ) + ~
we have

and

From i ), ii ), iii ) it follows that vE( . , tl) > w(., tl) for 0  x  xl, in contra-
diction to the above result. Therefore t1 = ~ and w in Q. Finally,
let 03B4 ~ 0 to obtain v~  v.

In view of (3. 5), (0.7) and Lemma 1. 3 the is uniformly
bounded and equicontinuous on any compact subset on R +. Thus there
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exists a function and a sequence {~n} such that and
- Z locally uniformly in It is easily seen that Z satisfies (3 . 3’)

and is locally Lipschitz continuous and nondecreasing. Moreover, (3.5)
implies that Z(0) = 0 and Z is Holder continuous with exponent 1/2 at
t = 0. Therefore the convergence of ’n to Z is uniform on [0, T ] for every
T > 0. We shall now show that Z is the right hand interface for v so that,
in particular, the whole family converges to ~.

Suppose that (x, t) E Q is such that Z(t )  x. Then ’n(t)  x for all suffi-

ciently large n. It follows that vn(x, t) = 0 for all sufficiently large n. Therefore
v(x, t ) = lim t ) = 0 so that

Since ~£ > 0, it follows that Z ~ 0. If for some t > 0 we have Z( t ) = 0
then Z = 0 on [o, t ] and Z is the interface for v on [0, t ]. Suppose now
Z(t ) > 0 and consider an x such that

For sufficiently large n,

E+ 1

because of the nondecreasing nature of ~;,(t)t£+ 2. Therefore, in view of (0.7),

By Taylor’s theorem and Lemma 1. 2 we have, with ’n = ~n(t ),

Thus, if x satisfies (3. 8) we let n -~ oo to obtain,

We conclude that ~(t ). 

~ 

’

B) In view of (0.7) and Lemma 3, the family { ~E ~ is uniformly bounded
in [r, oo) for any r > 0. Moreover, according to (3.4),
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in [r, ~) if ~  1. It follows from Lemma 3.1 of [Li ] that { 03B6’~} is relatively
compact in for every p E [ 1, oo ). Thus, in particular, -~ ~’
in for every p E [1, oo ) and for almost every time t > 0.

C) By definition

If

then

Therefore

On the other hand, for each Bi e(0,B) there exist xi =  0 and
~ 1 = a 1 (B 1 ) E (o, -Xl) such that

For 6 E (0,~i] ] set Ið= [xl - b, ] c [xl - b, 0). then

Hence

which implies

Now let 03B4 ~ 0 and B1 i B to obtain

As a consequence of Theorem 2 we know that ~’(t)t 1 ~2 is nondecreasing and

almost everywhere in (~ + . We shall conclude this section by giving a more
Vol. 4, n° 3-1987..
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precise statement of (3.9). Note that it follows from the monotonicity of
~’(t)t1~2, that ~’(t) has at most jumping discontinuities with positive jumps.
THEOREM 3. - For all t > 0 and every sequence 0 such that ~£m(t)

converges we have

In particular 03B6’~ ~ 03B6’ at every point where 03B6’ exists.

Proof Fix to E and let P = + ). We claim first that

Suppose for contradiction that

for some h > 0. It follows from (3 . 3) that

Let { be a sequence such that - P + 2~,. Then for all sufficiently
large m and t > to

On the other hand, by the definition of P, there is a 6 > 0 such that

P + .) for all t such that 0  t - to  ~. Therefore we have

for all t > t o such that 2(P + ~, ) t1~2 o > P + ~’ ( tl/2 + to 1/2 ). Since this contra-
dicts the uniform convergence of ~Em - ( we conclude that (3.11) holds.
A similar argument with t  to shows that

lim inf ~£(to) > ~’(to-) .
EjO

4. CONCAVE SOLUTIONS

If the initial data vEo are concave in their support then the limit function vo
also has this property. Moreover, by the results of [GJ ] and [BV ] the cor-

Annales de l’Institut Henri Poincaré - Analyse non linéaire



225THE POROUS MEDIUM EQUATION AS A FINITE-SPEED APPROXIMATION

responding solutions v~ of an v of (Po) are concave in their supports
as functions of x for each fixed t > 0. In particular we have

and

for t > 0. The presence of upper estimates allows us to obtain the following
convergence result :

THEOREM 4. - A) Let vEo, vo, vE, v be as in Theorem 1 and assume in
addition that vEo is concave on its support for each E > 0. Then v£, vEt
converge uniforml y to v, vx, vt resp. on compact subsets of the closure of

B) The interfaces ~E(t) and ~(t) corresponding to vE and v respectively are C1
concave functions of t for 0  t  oo and ~~(t ) ~ ~’(t ) uniforml y in (i, T)
for every i, T > 0 with i  T.

Proof A) To fix the ideas let us assume that each vEo vanishes outside
a finite interval IE = (aE, Then the subset SZ£ of Q where vE is positive
has the form

where x = ~E (t ) is the left-hand interface for !;,.
By Theorem 2 we know that ~~(t ) - ’(t) uniformly in [0, T ] for any T > 0.

In the same way ~£ (t ) converges to the left-interface ~ - (t ) of the limit
function v. It is clear that v is positive in the set

In view of Lemma 1. 3, ~ vEx ~ is bounded uniformly in Q, for r > 0.
It follows from (4.1 a) that the family { is Lipschitz continuous with
respect to the x-variable locally in Q and uniformly in s. Since We 
satisfies the equation

in it follows from [G ] that the family { w~ ~ is Holder continuous in t
with exponent 1/2 and the Holder constant is locally bounded in Q inde-
pendent of s. Therefore we conclude that

uniformly on compact sets of Q. Finally the convergence of vEt follows
from vEt - ~v~v~xx since

Vol. 4, n° 3-1987.



226 D. G. ARONSON AND J. L. VAZQUEZ

B) The uniform convergence of (§ to (’ follows from the estimate ( [BV ])

A second result that can be obtained with concave initial data concerns
monotone convergence.

THEOREM 5. - Let vEo and vo be as in T heorem 4 and assume, in addition,
that i vo(x) for every x E f~ as s i 0. Then vE i v.

Proof - We want to prove that, given E’ > ~ > 0, we have 
everywhere in Q. The idea of the argument is the following. Consider the
equation

vE is a smooth solution of LEw = 0 in Qe, whereas v~. is a subsolution in S2E.
because (e’ - 0. Since we can use the maxi-
mum principle to conclude that Ve,o.

Since the domains Qg and Qe’ of Ve, vE. are not necessarily the same
there is a difficulty in applying the classical maximum principle which can
be overcome as follows. Assume that the support of is bounded
and that we replace Ve by the solution v~ of L~w = 0 with initial data
w(x, 0) = v~o + ~ for some 6 > 0. Now since Ve is positive and C~ every-
where in Q and t ) = 0 for large we easily conclude that 
in Q. The stated result follows by approximation since solutions of the
porous medium equation depend continuously on the initial data. #
As an example consider the Barenblatt solution

where re(t) = K(l + t ) 1 oE + 2 ~ and K a positive constant. As B --~ 0 we have

while for the interfaces we get

5. THE CASE m  1

We can also consider a limit process for the solutions of porous medium

equation as m - 1 with m  1. As noted in the Introduction, if we look
at the density (i. e., if the initial data uEo converge as m ~ 1) the solutions
of ut = converge to a solution of the heat equation.
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If we look at the variable v defined as before by

we see first that u  0 implies v  0 and also that u - 0 implies v - - ~
while u - oo implies v --~ 0. Moreover if we put

then v formally satisfies the equation

Now if the initial datum v(x, 0) is kept fixed as s --~ 0 we want to prove
that the solutions of (5 . 2) converge again to a solution of equation (0.4).
Following the outline of the proof of Theorem 1 we obtain a solution Ve
of (PJ, obtain estimates for v~ and Vex and finally pass to the limit B ~ 0.

To begin with, it is proved in [AB ] that for every 0  m  1 and non-

negative there exists a unique function MeC[0, oo ; 
such that

Moreover u is positive everywhere in Q (so that there is no interface) and
the following estimates hold ( [AB ], [BC ])

and

where v is given by (5.1). Of course v satisfies equation (5.2) in Q. Using
(5.4) and (5.5) we obtain directly from (5.2) the following interesting
pointwise bound for : 

-..

It is worth noting that, as compared with (1. 2 a) and (1.6), the estimate
for Vt is bilateral and the bound for vx(x, t ) depends only on the value of v
at (x, t ).

Solutions with general initial data uo E are constructed by [HP].
Moreover they prove that uniqueness in the appropriate class holds and
that when 0 the estimates noted above are valid for all the solutions.
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Using these estimates and arguing as in Section 2 we can prove the following
result. Consider a family of initial functions vEo E C(R) that satisfy

for some N > 0 and every x and let Ve denote the solution of the problem

We have

THEOREM 6. - Assume that as E ~ 0, ~ vEo ~ converges uniformly on
compact subsets of R to a function vo. Then vE converges uniformly on compact
subsets of Q to the solution v of the problem

satisfying the condition 1/(2t) in ~’(Q). Moreover v~x ~ vx in

for every p E [1, oo).
Note also that (5.4) implies in the limit the following estimate for nega-

tive solutions of (Po) 
..

Together with (5.7) this implies that solutions of vr = (vx)2 approach the
maximum value (here v = 0) as t - oo and x is fixed with a rate at most
0(1/t). This is exactly the rate for the self-similar solutions (0.20).

Let us finally remark that the estimates (5.4)-(5.6) are true with suitable
constants for the solutions of the corresponding d-dimensional problem

if u0  0 and d(l - m)  2. In particular the crucial estimate (5 . 6) becomes

and the proof of Theorem 6 applies essentially unchanged in several dimen-
sions.

Regarding the connection between (0.1) and (0.4), the transformation
(0.17) is still valid if 0  m  1 and transforms positive solutions of (0.1)
into negative supersolutions of (0.4). In particular the Barenblatt solution

Annales de l’Institut Henri Poincaré - Analyse non linéaire



229THE POROUS MEDIUM EQUATION AS A FINITE-SPEED APPROXIMATION

transforms into the solution

with K = m) > 0. The case K = 0 in (5 . 8) corresponds to the
special solution of (0.1) given by

As in the case m > 1, these particular solutions represent the asymptotic
behaviour of a large class of solutions, cf. [V2].
For m = 1 the transformations (0.5), (0.17) should be replaced by

v(x, t ) = log (u(x, t )), i = t, and V(x, i) = log (u (x, t )t 1 ~2) . (5 .10)
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