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Asymptotic behaviour
of minimal graphs over exterior domains

by

L. SIMON

ABSTRACT. — It is proved that if u is a C*(R" ~ Q) solution of the
minimal surface equation, if Q is bounded, and if n < 7, then Du(x) has a
limit (in R")as [ x| — oo. This extends a result of L. Bers for the case n = 2.
The result here is actually obtained as a special application of a more
general result valid for all n.
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REésuME. — On démontre que si u est une solution C3(R" ~ Q) de
I’équation de la surface minimale, si Q est borné n < 7, alors Du(x) a une
limite (dans R") telle que | x| — o0. Ceci étend un résultat de L. Bers
dans le cas n = 2. Notre résultat est en fait un corollaire d’un résultat
plus général, valable quel que soit n.

A well known result of L. Bers [BL] says that if u is a C? solution of the
minimal surface equation over R? ~ Q, where Q is a bounded open subset
of R?, then Du(x) has a limit ae R? as | x| — 0. A more geometric proof,
valid for a solution u of any equation of minimal surface type, was given
in [SL5]. ’

Here we want to show that Bers’ original result is also valid in dimen-
sion n, 3 < n < 7, specifically, we shall prove

THEOREM 1. — If u is a C? solution of the minimal surface equation over
R" ~ Q, Q bounded open in R", 3 < n < 7, then Du(x) is bounded and has
alimit as | x| - oo.
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232 L. SIMON

(Since n > 3 it in fact follows from this that there is a constant b such that

llm Iu - llCZ(R""‘Bp) = 0,
ptoo

where (x) =a.x + b,a = ]I{im Du(x),and B, = {xeR": | x| < p})

Of course in case Q = ¢, the fact that Du is bounded implies that it is
constant (so that u is linear + constant), because each partial derivative D,u
satisfies a uniformly elliptic divergence-form equation. (Cf. [MJ] [BDM].)
Thus Theorem 1 may be viewed as an extension of this « Bernstein » result
(for Q = ¢, 3 < n < 7), which was due originally to Bernstein, Fleming,
De Giorgi, Almgren, and J. Simons (see [ST]).

We actually here derive Theorem 1 as a special consequence of a more
general result, valid in all dimensions n > 3. Specifically we shall prove
(in §2, 3 below):

THEOREM 2. — If u is a C? solution of the minimal surface equation on
R* ~ Q, Q bounded, then either Du(x) is bounded and has a limit as | x| — oo
or else all tangent cones of graph u at oo are cylinders of the form C x R,
where C is an (n — 1)-dimensional minimizing cone in R" with 6C = 0 and
with O e sing C. (In particular spt C is not a hyperplane in this latter case.)

For the meaning of « tangent cone at co », we refer to §1 below. Of
course here spt C is the support of C and sing C (the singular set of C) is
the set of points & € spt C such that spt C n B, (&) fails to be an embedded C?
submanifold for each ¢ > 0. It will also be shown in § 2, 3 that C has the
form C = ¢[V], with V an open conical domain in R™ (That is, V is open
inR*and V= {Ay: yeV} for each 1 > 0.

Notice that Theorem 1 follows immediately from Theorem 2 because
there are no (n — 1)-dimensional minimizing cones C in R* with 6C =0
and Oesing C for 3 < n < 7. (Indeed the regularity theory for minimizing
currents guarantees that sing T = ¢ whenever T is an (n — 1)-dimensional
mass minimizing current with 6T =0 and n < 7; see e. g. [FH, 5.3.18]
or [SL1, §37])

§ 1. PRELIMINARIES, TANGENT CONES AT o

In this section n > 3 is arbitrary and throughout we assume that u is
a C}R" ~ Q) solution of the minimal surface equation

™ Z (5,-; ~ (1 + | grad u lz)‘l(Diu)(Dju)>DiDju -0,

with @ a bounded open subset of R".
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MINIMAL GRAPHS OVER EXTERIOR DOMAINS 233

As a preliminary result, we establish the following lemma.

1.1. LEMMA. — Either | Du| is bounded on R” ~ Q or else

lim (p; ! supgy ~qlul) = o

or each sequence { p;} T co.
J
( Here, and subsequently, B}, is the open ball of radius p and centre 0 in R".)

Proof. — Suppose there is a sequence { p; } T co with
sup;.1 (py ' SUPs; ~0 lul) < oo.

By the standard gradient estimates for solutions of the minimal surface
equation (the version of [SL6; Theorem 1] is particularly convenient here,
because sup,q | Du| < oo by the assumption that uis C2 on R* ~ Q), we have

Sup;. 4 SuPng,2~n]Dul < 0]

that is, sup | Du| < oo as required. [ |
Next we note that (since (*) asserts exactly that G = graph u has zero
mean curvature) we have the formula (see [SL2] or [MS] or [AW] for

discussion)
n+1

1.2 J ZVi(l)id%":O,
G

i=1

where V;=e¢;.V, V=gradient operator on G,¢*, .. ., 9" 1eC! (R" ! ~Qx R).
Notice that if v is the upward unit normal for G and if f is C! in some
neighbourhood of G, then

n+1

1.3 Vif(x)= Z (615 — vilx)vi(x)D;f (x), xeG,

where D;f = df /0x’ are the usual partial derivatives of f taken in R"*!.
We also have the standard fact (see e.g. [SL2, §3]) that

1.4 G is mass minimizing in R**! ~ (Q x R),

in the sense that if we equip G with a smooth orientation, so that it becomes
a multiplicity 1 current, then

1.5 MGLW)<MTLW)

for any open W = = R™! ~ (Q x R)and for any integer multiplicity locally

rectifiable current T in R"*! with (6T)L W=0 and spt (T—-G) = = W,
Next we recall that (from 1.2—see e. g. [GT, Ch. 16] and note
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234 L. SIMON

that the arguments easily modify to take account of the fact that we need
spt ' N (Q x R) = @ in 1.2) there are the volume bounds.

1.6 # MG Byy) < cp”, l1<p<ow,

for suitable constant ¢, where B,(y) is the ball of radius p and centre y
in R**! (p, y arbitrary).

Recall also that one of the versions of the monotonicity formula can
be written

1.7 nA#NGnB,~B,)=pb, —0b,, Ro<o<p<oco,

where R, is large enough to ensure dG (= graph (u | dQ)) < By, (all balls
have centre 0 unless explicitly indicated otherwise), and where

by =L | VrPd A" = |V n1
o= = rldA#"" ",
dp GnB, GndB,

with r{x) = | x]. (The last equality follows from the co-area formula.)
The identity 1.7 follows from 1.2 simply by substituting ¢(x) = y(r)x’
in 1.2, and then letting ¥ approach the characteristic function of the
interval (o, p). Notice that 1.7 (with ¢ = Ry) can be written (since
[Vri2 =1 — (x.v)}/r})

_ d (x.v)? —
—(p "H G B, ~Bg)) = — ——+-7d,}f"—p "~ Robg,
dp GnB, "

(in the sense of distributions) for p > Ry, so that by integration we have,
for p > R = Ry,

1.8 p "#"G B, ~ Bg)— R"#%G By ~ Bg,)

n+2

2
- J &V 4 B, R),
GAB,~Br T

where
| E(p. R} < R ™

¢ independent of p, R. (Cf. the standard monotonicity identities of [AW],
[(MS], [SL1])

Now for 2> 0 we let u, be the scaled function u,(x) = Au(A x), xe R"~ Q,,
Q,={Ay:yeQ}, and let G, be the graph of u;, so that viewing G;
(equipped with an appropriate orientation) as a current, we may write

G, =°7"U;7L (R"*! ~ (Q; x R)).

where U; = {(x,y):y > u;(x), xe R" ~ Q; }, and where [U,;] denotes
the current obtained by integration of (n+ 1)-forms we 2"* {(R"* ') over U,.
By virtue of 1.5, 1.6 we can conclude from standard compactness
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MINIMAL GRAPHS OVER EXTERIOR DOMAINS 235
results (see e.g. [FH] or [SL1, Ch.7]) that for any sequence {1;}]0
there is a subsequence { 4; } and a current T = J[U] such that
1.9 T = lim G,

in the weak sense of currents, and in the sense that U, , converges to U
in the L} _(R""!) sense,

1.10 H"LG,, - #"LS

in the sense of Radon measures on R**!, where
S = {xeR"!:limsup p”"M(TL B,(x)) >0},
plO -

1.11 G, — sptT

locally in the HausdorfT distance sense in R"*! ~ ({0} x R),
1.12 T is minimizing in R"*! ~ ({0} x R),

1.13 M(TL B,(») < cp”, p >0, ye R*H!

(notice that this includes ye {0} x R).
Since n > 3 it is easy to check that 1.12 and 1.13 imply

1.14 T is minimizing in R"*1,

It is also standard that then (since T = ¢[U] implies that T has multi-
plicity 1 s#"—a.e. in S (S as in 1.10), and since the density function
of a minimizing current is upper semi-continuous—see e.g. [FH] or
[SL1, Ch. 7]) lim 1nfa)‘1p_"M(T|_ B,(y) =1 at each point of sptT,
and hence P10

1.15 S=sptT (Sasinl.10)

and we can (and shall) take U to be open with

1.16 spt T =¢U.

From the De Giorgiregularity theorem (seee. g. [SL1, § 24] or [G]) we have
furthermore that for each y e spt T with hm a)’lp"'M(T L B,(y)) = 1 there
is ¢ > 0 such that

1.17  spt T B,(y)(=0U N B,(y)) is an embedded C* submanifold of R**1 .

This guarantees in particular that the points of sing T (i. e. the points yespt T
such that 1.17 fails for each ¢ > 0) form a closed set of s#"-measure zero.
Finally we note that T is a cone; that is, if # is any homothety x +— Ax
(4 > 0 fixed), then 54T = T. Indeed using 1.8, 1.10, 1.15 it is easy to
see that
pT"uB,)=0""uB,), 0<o<p<oo,
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236 L. SIMON

where u = #"L sptT, and then (since T is minimizing) that an identity
like 1.8 holds for T with Ry = 0 and E = 0, thus giving

J (v.x)*du(x) = 0.

where v is the unit normal of dU (which is well defined on reg T = spt T
~ sing T). The fact that n,T = T for any homothety # now readily follows
from this and the homotopy formula for currents. (See for example [SL1,
Ch. 7] or [G] for similar arguments.)

Subsequently, any T obtained as described above will be called a tangent
cone for graph u at infinity. In case [ Duj is bounded we can prove that
there is a unique such T and it is a hyperplane. In fact we have the following
result: '

1.18. LEMMA. — If Du is bounded (see Lemma 1.1) then it has a limit
at infinity.

Proof. — Since | Du| is bounded, every tangent cone T of graph u at o
{(obtained as above) is the graph of a Lipschitz weak solution of the mini-
mal surface equation. From standard elliptic regularity theory, such solu-
tions are smooth (see €. g [GT, Ch. 13]). Hence since the graphs of these
solutions are cones, they must all be linear functions.

It follows that for any given ¢ > 0 there is R(¢) > 1 such that if R > R(e)
then there is a linear function ! (possibly depending on R) such that

SUPpgy, ~my , 11— [] < €R.

Combining this with the Schauder theory [(GT, Ch.6)), applied to u — [
(which we may do since u — [ satisfies a linear elliptic equation with coeffi-
cients having finite C! norm—this follows from the fact that the C? norm
of u is finite). we deduce

SUPgy - By, . | D3“1 = SUDgy -~ By | | Dz(u - l)l < CE/R.

Hence. by integration along paths in B ~ Bg . we have

(1’ ! Du(-Y) - Dl((_\')l < ¢ AW YE BE ~ n

R 2

On the other hand each component ¢ = D;u of Du satisfies an equation
of the form

2 Dj(auDy¢) = 0,

where
ag = (1 + | Dul?) " *Su — (1 + | Du[*)” {(Du)(Dyu)
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(as we see by differentiating the divergence form version

2 DyDu/./1 + |Dul?) = 0

i=1
of the minimal surface equation). In particular D;u satisfies a maximum/

minimum principle on bounded domains in R* ~ Q; then in view of
the arbitrariness of ¢ in (1), it follows that lim Dju exists. [ ]

jo o

§2. TANGENT CYLINDERS AT o

In this section we show that, unless Du is bounded as [x] - o0, every
tangent cone T of graph u at oo (obtained as described in § 1) is a vertical
cylinder:

2.1 T=CxR,

where C = 0| V], V open in R” with 8V = spt C, and where C is minimizing
in R,

In case Q=@ this was already known (a proof appears in [MM] for
example). The extension here to case Q # @ is given mainly for the reader’s
convenience, since no really new ideas are involved. Note however that
the fact (observed by Fleming in case Q = Q) that sing C# @ is not so
easy to prove in case Q # &J; this will be done in § 3.

We first note that (in the notation of § 1) by 1.9 and 1.15

2.2 limj Vf"¢’d‘#"=j v.pd A"
G,»,,, spt T

Fiad-d

for each fixed ¢ = (¢', ..., ¢"* e Co(R"*!; R"* '), where v; is the upward
pointing unit normal for G;, and where v is the outward pointing normal
of U at regular points of U = spt T. (U as in 1.16.) Thus in particular
(since v;.e,; > 0 on G;,) we have

2.3 v.e,41 20 on regT.

We already remarked in § 1 that # " (sing T) = 0. We also need to recall
the further regularity theory for minimizing currents T = au]:

sing T = ¢, 3<n<b6
2.4 sing T is discrete, n=7
A" 7 (singT)=0 Va>0 in casen > 8
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238 L. SIMON

(See e.g. [G] or [SL1, Ch.7]), so that, since T is a cone, in particular

55 T is a hyperplane, n<6
’ singT< {0]. n=7.

Notice that in case n = 7 we then also trivially have that reg T is connected;
otherwise reg T N S§” would contain smooth compact disjoint embedded
minimal surfaces X;,%,, and we could rotate X, until it touched X,,
thus contradicting the Hopf maximum principle. (Actually reg T is connected
for all n, by a result Bombieri and Giusti [BG].)

Next we claim, under the present assumption that | Du | is not bounded,
that

2.6 LcsptT,
where L is a vertical ray from O: either L=1{ Ze,,: £>0 } or { 4e,,,: 2<0 }.
To see this we note that if we let u;=u, ., then for each fixed o > 0,

2.7 ’ lim sup|-,|u;| = o0,
j=w

because otherwise Lemma 1.1 tells us that | Du| is bounded on R* ~ Q,

contrary to hypothesis. Thus 2.7 is established, and 2.6 clearly follows

from this due to 1.11 and the fact that lim infj,> ;| u| < co by a standard
j= o

barrier argument involving the catenoid.
Now we use the standard fact that Av.e,,; + |A|*v.e,+y =0 on
reg T, where A is the second fundamental form of reg T, so that by 2.3

2.8 Av.e,,y <0 on regT.
In case n < 7 we can use connectedness of reg T, 2.3, 2.5, 2.8 and 2.6
(which guarantees that v.e,., = 0 at some points of reg T) to deduce

by the Hopf maximum principle that v.e,,; = 0 on reg T. Hence, again
using 2.5, we have 2.1 as required.

In case n > 8, the argument is only slightly more complicated: by [BG]
and 2.8 we have

* H —
( ) lnfrengBp/z(y)e'l+ 1-v=2p " J €n+1- vd A"
I

eg T ~B,(v)
forany p > O and yespt T. However we showed above that spt T contains

o1 . . . .
a vertical E-hne, and evidently inf, e, 7, €s+1.v = 0 for any y in this

1
E-line and any p > 0, thus by (*) ¢,4+,.v=0.

Thus we have established v.e,,; =0 on regT. Since dT = 0 it then
easily follows (e. g. by using the homotopy formula for currents), that T
is invariant under translations parallel to e, ;. Thus (with U as in 1.16)
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MINIMAL GRAPHS OVER EXTERIOR DOMAINS 239

U=V xRT=C x R,C=9[V]with Vopen in R**!, V invariant under
homotheties. Of course C is minimizing in R", because T is minimizing
in R"*!, This completes the proof of 2.1.

§3. PROOF OF THEOREM 2

In view of Lemmas 1.1, 1.17 and the fact 2.1, Theorem 2 of the intro-
duction will be proved if we can establish that

3.1 singC# @ (i.e. Cis not a hyperplane)

for any Casin 2.1.

Suppose for contradiction that C x R, asin 2.1, isindeed a hyperplane H
in R"*1. We first claim that in this case H is the unique tangent cone for
graph u at oo and that in fact, if  is a unit normal for H, there exist R, > R,
such that

3.2 G ~ Bg, = {x + h(x)n:xe H ~ Bg, } ~ By,

with he C(H ~ Bg,) satisfying
3.3 [h(x)| + | x| |Dh(x)| < c|x|*7° xeH ~ Bg,,

for some constant « > 0. This is actually a special case of the general
unique tangent cone result of [AA]. For a somewhat simpler proof, see
{SL3, 1L, §6].

Now suppose without loss of generality that e, = (0,0, ...,0,1,0) is
normal to H (so that we can take # = ¢, in 3.2), and introduce new coordi-

nates (y', ..., y"*1) for R**! according to the transformation Q given by
y'=x, (y,=(y17""y"_1)’ x'=(x1,""xn_l))
yn n+1
yn+1 = x".

Then for suitable compact K and suitable R we have
G ~ K =Q (graph h|R" ~ Bg),
so that we have a diffeomorphism ¥: R~ K — R" ~ Bz,
x=KxL. . X > y=0L. ..,

defined by )" = x’, y" = u(x’, x"), where K = R" ~ 7(G ~ K), n the pro-
jection taking ze R""' onto its first n-coordinates. The inverse is given
Ou(x) Oh(y)
ox" oy

by x"=y’, x"=h(y’, y"), so in particular we have =1for xeR"~K,
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240 L. SIMON
y = Y(x). Assuming without loss of generality that u(te,) — oo (rather

than — o0) as t — oo, we thus deduce

oh
3.4 ()
"

> 0, yeR" ~ Bg.

Similarly if G™ = graph (— ), then we have, for suitable compact K,
and R > 0, that
3.5, G ~K;=Q(graph h”)  where h~ eC*H ~ By).
Notice that, for suitably large p > R and any ce R,

{1, 91>p  and  {(V,h(Y, ): (V.9 > p}

coincide with { x:[{(x’, ¢} | > p, u(x) = ¢ } and { x: | (x’, ¢) | > p, U(x)=— ¢}
respectively, so that
3.6 Wy, yy=h"(y, =y  lyl>p.

Writing

wy)=hy)—h7(y), |yl>p,

we see that (using 3.3, 3.6 and the fact that h, h™ satisfy the minimal sur-
face equation)

3.7 Aw = div (A.Dw), lv|>p,

where the matrix A is smooth and

3.8 [Al+ DA} |yl <clyl™, lyl>p.
Also by 3.4, 3.6 we have
3.9 ow(y)oy">0, |yl>p
and
3.10 wiy', ¥y = —wly, —y").
Now let {t;} 1 oo be arbitrary, and define
wi() = ;Z(fe }:

Since w(y) > 0 for y" > 0 (by 3.9, 3.10), in view of 3.7, 3.8, 3.9, 3.10
we can use Harnack’s inequality and Schauder estimates in order to deduce

that there is a subsequence { t; } such that
wy > w, locallyin ClonR"~ [0,

where w, is harmonicon R" ~ {0}, fw,/¢y" > 0,and w( )", y")= —w (¥, — V"),
y # 0. Thus w, is bounded on B,(0) ~ {0}, and hence the singularity at 0
is removeable; that is, w, extends to a harmonic function on R". But then
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MINIMAL GRAPHS OVER EXTERIOR DOMAINS 241

Oow,/0y" extends to be a non-negative harmonic function on all of R"
and hence must be constant by Liouville’s theorem. Thus w,(y’, y*) = cy”
for some constant c¢. Since w,(e,) = 1 (by construction) we then have
we (v, v ="

In view of the arbitrariness of the sequence { ¢; } in the above argument,
it follows that for each given ¢ > O thereisa T = T(g) > p such that

w(2te,) = 21 — s)wl(te,)

for each t > T. Taking t = 2/T(¢) for ¢ small, and iterating, we then deduce
that for any given Be(0, 1) there is ¢ = ¢(8) such that

wite,) > ct! ¥, r>T.

However, taking f < a (a as in 3.3), this contradicts 3.3. This completes
the proof of Theorem 2.
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