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ABSTRACT. - It is proved that if u is a Q) solution of the
minimal surface equation, if Q is bounded, and if n _ 7, then Du(x) has a
limit (in as x ~ ] - oo . This extends a result of L. Bers for the case n = 2.

The result here is actually obtained as a special application of a more
general result valid for all n.
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RESUME. - On demontre que si u est une solution Q) de
1’equation de la surface minimale, si Q est borné n ~ 7, alors Du(x) a une
limite (dans tR") telle que I x I -> 00. Ceci etend un resultat de L. Bers
dans le cas n = 2. Notre resultat est en fait un corollaire d’un resultat

plus general, valable quel que soit n.

A well known result of L. Bers [BL ] says that if u is a C2 solution of the
minimal surface equation over (~2 ~ Q, where Q is a bounded open subset
of 1R2, then Du(x) has a limit a E 1R2 as x ~ ~ oo. A more geometric proof,
valid for a solution u of any equation of minimal surface type, was given
in [SLS ]. 

’

Here we want to show that Bers’ original result is also valid in dimen-
sion n, 3  n _ 7; specifically, we shall prove

THEOREM 1. - If u is a C2 solution of the minimal surface equation over
I~n ~ Q, Q bounded open in 3  n  7, then Du(x) is bounded and has
a limit as ~ x ~ ] - 00.

Annales de l’Institut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 4/87/03/231/12 /$ 3,20/© Gauthier-Villars

© 1987 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



232 L. SIMON

(Since n >_ 3 it in fact follows from this that there is a constant b such that

where = a . x + b, a = lim Du(x), and Bp = ~ x E x (  p }.)
Of course in case Q = ~, the fact that Du is bounded implies that it is

constant (so that u is linear + constant), because each partial derivative Diu
satisfies a uniformly elliptic divergence-form equation. (Cf. [MJ ] [BDM ].)
Thus Theorem 1 may be viewed as an extension of this « Bernstein » result

(for Q = ~, 3 - n _ 7), which was due originally to Bernstein, Fleming,
De Giorgi, Almgren, and J. Simons (see [SJ ]).
We actually here derive Theorem 1 as a special consequence of a more

general result, valid in all dimensions n >- 3. Specifically we shall prove
(in § 2, 3 below) : .

THEOREM 2. - If u is a C2 solution of the minimal surface equation on
Q, Q bounded, then either Du(x) is bounded and has a limit as x ~ ] -~ o0

or else all tangent cones of graph u at oo are cylinders of the form C x (~,
where C is an (n - I)-dimensional minimizing cone in with aC = 0 and
with 0 E sing C. (In particular spt C is not a hyperplane in this latter case.)
For the meaning of « tangent cone at oo », we refer to § 1 below. Of

course here spt C is the support of C and sing C (the singular set of C) is
the set of points ~ E spt C such that spt C n fails to be an embedded C2
submanifold for each J > 0. It will also be shown in § 2, 3 that C has the
form C = a[V], with V an open conical domain in f~". (That is, V is open
in ~n and V = ~ ~,y : for each h > 0.)

Notice that Theorem 1 follows immediately from Theorem 2 because
there are no (n - I)-dimensional minimizing cones C in tR" with 3C = 0
and 0 E sing C for 3 _ n - 7. (Indeed the regularity theory for minimizing
currents guarantees that sing T == (~ whenever T is an (n - I)-dimensional
mass minimizing current with aT = 0 and n  7 ; see e. g. [FH, 5.3.18] ]
or 37 ].)

§1 PRELIMINARIES, TANGENT CONES AT o0

In this section n >_ 3 is arbitrary and throughout we assume that u is
a Q) solution of the minimal surface equation

with Q a bounded open subset of I~".
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As a preliminary result, we establish the following lemma.

1.1. LEMMA. - Either I Du I is bounded on Q or else

for each sequence ~ i oo .

(Here, and subsequently, Bp is the open ball of radius p and centre 0 in (l~n.)

Proof Suppose there is a sequence ( p~ ~ i oo with

By the standard gradient estimates for solutions of the minimal surface
equation (the version of [SL6 ; Theorem 1 ] is particularly convenient here,
because |Du|  oo by the assumption that u is C2 on Q), we have

that is, sup ) Du  oo as required. /
Next we note that (since (*) asserts exactly that G = graph u has zero

mean curvature) we have the formula (see [SL2 ] or [MS ] or [AW] for
discussion)

where V=gradient operator on [R).
Notice that if v is the upward unit normal for G and if f is C~ in some
neighbourhood of G, then

where D jf = are the usual partial derivatives of f taken in (~n + 1.
We also have the standard fact (see e. g. [SL2, § 3 ]) that

in the sense that if we equip G with a smooth orientation, so that it becomes
a multiplicity 1 current, then

for any open W c c ~"+1 ~ (Q x R) and for any integer multiplicity locally
rectifiable current T in with (aT) L W = 0 and spt (T - G) c c W.
Next we recall that (from 1 .2-see e. g. [GT, Ch. 16] ] and note
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that the arguments easily modify to take account of the fact that we need
spt ~1 n (Q x R) = o in 1.2) there are the volume bounds.

for suitable constant c, where Bp(Y) is the ball of radius p and centre y
in ( p, y arbitrary).

Recall also that one of the versions of the monotonicity formula can
be written

where Ro is large enough to ensure èa ( = graph (u c BRo (all balls
have centre 0 unless explicitly indicated otherwise), and where

with r( x) --_ ~ (The last equality follows from the co-area formula.)
The identity 1.7 follows from 1.2 simply by substituting ~i(x) _ 
in 1.2, and then letting approach the characteristic function of the
interval (6, p). Notice that 1.7 (with 6 = Ro) can be written (since
I ~r (2 - 1 - (x . 

(in the sense of distributions) for p > Ro, so that by integration we have,
forp>R>_Ro,

where

c independent of p, R. (Cf. the standard monotonicity identities of [AW ],
[MS ], [SLl ].)
Now for ~, > 0 we let u~, be the scaled function u).(x) = ~,u(~,-lx), x e 
= { ~,y : and let G~, be the graph of so that viewing G~,

(equipped with an appropriate orientation) as a current, we may write

where U~, _ ~ (x, y): y > x E ~, and where denotes

the current obtained by integration of (n + I)-forms 03C9 ~ Dn+1(Rn+1) over U03BB.
By virtue of 1.5, 1.6 we can conclude from standard compactness
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results (see e. g. [FH] ] or [SL1, Ch. 7]) that for any sequence ~ ~,~ } ,~ 0
there is a subsequence { ~~, } and a current T = such that

in the weak sense of currents, and in the sense that converges to U

in the sense,

in the sense of Radon measures on f~" 
+ 1, where

locally in the Hausdorff distance sense in ({ p ~ x (~),
1.12 T is minimizing in (~n + 1 ,,~, ( { p ~ x R) ,
1.13 M(T L B~(y))  cpn, p > 0, y E ~n+ 

1

(notice that this includes Y E ~ 0 ~ x (~).
Since n > 3 it is easy to check that 1.12 and 1.13 imply

1 . 14 T is minimizing in (~"+ 1.

It is also standard that then (since T = implies that T has multi-
plicity 1 e. in S (S as in 1.10), and since the density function
of a minimizing current is upper semi-continuous-see e. g. [FH] or
[SL1, Ch. 7 ]) lim inf L _> 1 at each point of spt T,
and hence 

~

and we can (and shall) take U to be open with

From the De Giorgi regularity theorem (see e. g. 24] or [G]) we have
furthermore that for each y E spt T with lim L = 1 there
is 03C3 > 0 such that 03C1~0 "

1.17 spt T n B~.( y) ( _ ~U n an embedded C °° submanifold of 
This guarantees in particular that the points of sing T (i. e. the points ye spt T
such that 1.17 fails for each (7 > 0) form a closed set of Hn-measure zero.

Finally we note that T is a cone; that is, if 11 is any homothety x ~ 03BBx
(~, > 0 fixed), then = T. Indeed using 1. 8, 1.10, 1.15 it is easy to
see that
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where J1 = yen L spt T, and then (since T is minimizing) that an identity
like 1.8 holds for T with Ro = 0 and E = 0, thus giving

where v is the unit normal of ~U (which is well defined on reg T --_ spt T
~ sing T). The fact that = T for any homothety ~ now readily follows
from this and the homotopy formula for currents. (See for example [SL1,
Ch. 7 ] or [G ] for similar arguments.)

Subsequently, any T obtained as described above will be called a tangent
cone for graph u at infinity. In case ) Du| is bounded we can prove that
there is a unique such T and it is a hyperplane. In fact we have the following
result : 

’

1.18. LEMMA. - If Du is bounded (see Lemma l.l) then it has a limit
at infinity.

Proof - Since |Du| is bounded, every tangent cone T of graph u at 00
(obtained as above) is the graph of a Lipschitz weak solution of the mini-
mal surface equation. From standard elliptic regularity theory, such solu-
tions are smooth (see e. g. [GT, Ch. 13 ]). Hence since the graphs of these
solutions are cones, they must all be linear functions.

It follows that for any given B > 0 there is R(B) > 1 such that if R >_ R(s)
then there is a linear function I (possibly depending on R) such that

Combining this with the Schauder theory [(GT, Ch. 6 ]), applied to u - I
(which we may do since u - satisfies a linear elliptic equation with coeffi-
cients having finite C1 norm this follows from the fact that the C~ norm
of II is finite). we deduce

Hence, by integration along paths in we have

On the other hand each component § = D jU of Du satisfies an equation
of the form

where
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(as we see by differentiating the divergence form version

of the minimal surface equation). In particular D jU satisfies a maximum/
minimum principle on bounded domains in f~" ~ Q; then in view of
the arbitrariness of s in (1), it follows that lim D jU exists

j-+ 00

§ 2. TANGENT CYLINDERS AT o0

In this section we show that, unless Du is bounded as I x ] - oo, every
tangent cone T of graph u at oo (obtained as described in § 1) is a vertical
cylinder:

where C = V open in (~" with OV = spt C, and where C is minimizing
in IRn.

In case Q = 0 this was already known (a proof appears in [MM ] for
example). The extension here to case 0 is given mainly for the reader’s
convenience, since no really new ideas are involved. Note however that
the fact (observed by Fleming in case Q = 0) that sing C ~ ~ is not so
easy to prove in case S2 ~ ~ ; this will be done in § 3.
We first note that (in the notation of § 1) by 1. 9 and 1.15

for each fixed § = ( ~ 1, , ..., ~n + 1 ) E C °° ( (~n + 1 ~ ~n + 1 )~ where Vj is the upward
pointing unit normal for and where v is the outward pointing normal
of OU at regular points of OU = spt T. (U as in 1.16.) Thus in particular
(since > 0 on G~,~ ) we have

We already remarked in § 1 that ~’" (sing T) = 0. We also need to recall
the further regularity theory for minimizing currents T = 
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(See e. g. [G] ] or [SL1, Ch. 7]), so that, since T is a cone, in particular

Notice that in case n = 7 we then also trivially have that reg T is connected;
otherwise reg T n Sn would contain smooth compact disjoint embedded
minimal surfaces E1, E2, and we could rotate ~1 until it touched E2,
thus contradicting the Hopf maximum principle. (Actually reg T is connected
for all n, by a result Bombieri and Giusti [BG ].)
Next we claim, under the present assumption that |Du| (is not bounded,

that

where L is a vertical ray from 0: either L= j~ /.>0 } or /.0 }.
To see this we note that if we let Uj= u~,~., then for each fixed 6 > 0,

because otherwise Lemma 1.1 tells us that |Du| ( is bounded on 
contrary to hypothesis. Thus 2.7 is established, and 2.6 clearly follows
from this due to 1.11 and the fact that lim inf|x| >j|u|  oo by a standard

barrier argument involving the catenoid.
Now we use the standard fact that Ov . en + 1 + =0 on

reg T, where A is the second fundamental form of reg T, so that by 2. 3

In case n  7 we can use connectedness of reg T, 2. 3, 2. 5, 2.8 and 2. 6
(which guarantees that v . en + 1 =0 at some points of reg T) to deduce
by the Hopf maximum principle that v. en+ 1 - 0 on reg T. Hence, again
using 2. 5, we have 2.1 as required.

In case n  8, the argument is only slightly more complicated : by [BG]
and 2. 8 we have 

,

for any p > ~ and n E spt T. However we showed above that spt T contains
~ 

1 
~ ~ ~ 

a vertical 2-line, and evidently 1. v 
= 0 for any y in this

1

--line and any p > 0, thus by (*) en+ 1. v --_ 0.

Thus we have established v. en+ 1 --_ 0 on reg T. Since aT = 0 it then

easily follows (e. g. by using the homotopy formula for currents), that T
is invariant under translations parallel to 1. Thus (with U as in 1.16)
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a ~V~ with V open in f ~n + 1, V invariant under
homotheties. Of course C is minimizing in because T is minimizing
in 1. This completes the proof of 2 1.

§ 3 . PROOF OF THEOREM 2

In view of Lemmas 1.1, 1.17 and the fact 2.1, Theorem 2 of the intro-
duction will be proved if we can establish that

for any C as in 2.1.

Suppose for contradiction that C x R, as in 2 .1, is indeed a hyperplane H
in 1. We first claim that in this case H is the unique tangent cone for
graph u at oo and that in fact, if ~ is a unit normal for H, there exist R2 > Ri
such that

with hE C2(H  BR1 ) satisfying

for some constant a > 0. This is actually a special case of the general
unique tangent cone result of [AA]. For a somewhat simpler proof, see
[SL3, II, § 6 ].
Now suppose without loss of generality that en = (0,0, ... , 0,1, 0) is

normal to H (so that we can take 11 in 3 . 2), and introduce new coordi-
nates ..., yn + 1 ) for according to the transformation Q given by

Then for suitable compact K and suitable R we have

so that we have a diffeomorphism I~n ~ K --~ (~n .~.r BR,

defined by y’ = x’, yn = u(x’, where K = 7r(G - K), n the pro-
jection taking onto its first n-coordinates. The inverse is given

by x’ = so in particular we have = 1 for K,
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y = ~(x). Assuming without loss of generality that u(ten) -~ oo (rather
than - oo) as t - oo, we thus deduce

Similarly if G - - graph ( - u), then we have, for suitable compact Ki
and R > 0, that

Notice that, for suitably large p > R and any c 

coincide with { x: (x’, c) ( > p, u(x) = c ~ and { x : ~ (x’, c) > p, u(x) = - c }
respectively, so that

Writing

we see that (using 3. 3, 3 . 6 and the fact that h, h - satisfy the minimal sur-
face equation)

where the matrix A is smooth and

Also by 3.4, 3.6 we have

and

Now let { i oo be arbitrary, and define

Since w( y) > 0 for y" > 0 (by 3 . 9, 3.10), in view of 3 . 7, 3 . 8, 3 . 9, 3 .10
we can use Harnack’s inequality and Schauder estimates in order to deduce
that there is a subsequence { t~. ~ such that

where is harmonic on (~" ~ i 0 ~~, 0, and y") == 2014 
0. Thus w* is bounded on B1(o) ~ ~ 0 }, and hence the singularity at 0

is removeable; that is, w* extends to a harmonic function on But then
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extends to be a non-negative harmonic function on all of (~n
and hence must be constant by Liouville’s theorem. Thus w*( y’, yn) = cyn
for some constant c. Since w*(en) = 1 (by construction) we then have

- l.n.

In view of the arbitrariness of the sequence {tj} in the above argument,
it follows that for each given s > 0 there is a T = T(s) > p such that

for each t >_ T. Taking t = for E small, and iterating, we then deduce
that for any given f~ E (o, 1 ) there is c = such that

However, taking P  a (a as in 3.3), this contradicts 3.3. This completes
the proof of Theorem 2.
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