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R ESUME. - On considère des equations du type u" + g (u) = s ( 1 + E h (t)),
ou est une constante, E un petit parametre, h (t) une fonction 2 x-
periodique, et ou la f onction g verifie g’ ( - oo ) ~g’ (+~). Suivant les
valeurs de g’ ( + oo) et g’ ( - oo), on montre l’existence d’un grand nombre
de solutions 203C0-périodiques d’ amplitude voisine de s.

Mots Nonlinear oscillations, jumping nonlinearity, periodic solutions, Hamiltonian
systems.

ABSTRACT. - We consider equations u" + g (u) = s (1 + E h (t)), where ~ 7~ 0
is a constant, E a small parameter, h (t) a 2 ~-periodic function, and
g’ ( - oo ) ~ g’ ( + oo ). According to the values of g’ ( + oo ) and g’ ( - oo ), we
show that there exist many 2 ~-periodic solutions, the amplitude of which
are close to s.
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1. INTRODUCTION

The purpose of this paper is to study periodic solutions of asymmetric
systems under an external force consisting of a large constant component
plus a small oscillatory component. The type of system satisfies the

equation

where in general F is a 2 ~-periodic function and g is asymptotically
asymmetric, that is, satisfies g’ ( - oo) ~g’ ( + oo).
The simplest of these equations is the piecewise linear homogeneous

problem.

A physical realization of this system is given by a particle of mass one
sandwiched between two springs, but attached to neither, and allowed to
move only along a straight line. If the spring constant of the first spring
is a and the second is b, then the restoring force due to the two spring
would be - bu + + au - . (Unilateral springs of this type are called "rest
stops" in the engineering literature.) This paper is concerned with the two
cases, a > o, b > 0 and a  o, b > o. The second situation is more difficult
to envisage, but can be pictured as follows. A particle of mass one is

allowed to move on a curve given by y=O for x>0 and the curve
x2 + (y + a)2 = a2 for x  0. Gravity acts in the negative y direction. A rest
stop acts to the right of the origin pushing the particle to the left with
force bx if x > 0 and not affecting the particle if x is negative. The force
due to gravity will be in the negative direction, proportional to Sin O,
where 8 is the angle subtended by the particle and the origin at (0, - a).
For small 8, this is approximately the distance s along the curve from
the origin. Thus, we expect the particle to satisfy, for small s, the equation

where F is the forcing term and b > o, a  o.
Thus equation ( 1. 2) has simple physical realizations in either of the two

situation (a > o, and (a  0, b>O).
We shall be considering the equations ( 1. 1) and ( 1. 2) under the inf-

luence of a forcing term of the form namely a large
constant term plus a small oscillatory term h (t) of period 2 x. We consider
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the existence of 2 x-periodic solutions and we give substance to the follo-
wing slightly vague principle: "the greater the asymmetry of the system, the

greater the number of large-amplitude oscillatory 2 x-periodic solutions".

As a measure of the asymmetry of the system, we use the interval (a, b)
for ( 1, 2) [or for (1,1) the interval (g’ ( - oo ), g’ ( + oo ))]. We show that the
number of periodic solutions is 2 n where n is the number of eigenvalues
j2, j > 1 in the interval (a, b). In the case (a  0, all solutions are for

s positive, although for (a > 0, b>O) some are for s positive and some for
s negative. This is made precise in the main theorem of section 3.

In section 4, we show that at least in one simple case, our theorem is
sharp.
We believe these results provide a new insight into "resonance". We

have three essential ingredients, (a) a sufficiently large asymmetry in the
system, (b) a large loading term and (c) a small oscillatory term. We show
that in the absence of damping these three ingredients give rise to large
oscillations which could not be predicted by the linear theory. Further-
more, the magnitude of the oscillation is that of the large load, not that
of the small oscillatory term. One cannot help but be struck by the analogy
to the problem of large oscillatory behaviour in suspension bridges, either
under the influence of high winds (large constant terms plus small oscilla-
tory periodic behaviour due to stall-flutter) or under the influence of

soldiers marching (large constant force due to the weight of soldiers plus
small periodic term due to their marching in step).

Indeed, consider the following idealization of. a suspension bridge. We
consider a beam of length L and a restoring force of the type bu + . This
latter force is to take account of the fact that a cable will tend to return

to equilibrium if stretched, but will exert no restoring force if compressed.

Consider a load which is of the form where S is a large

constant, h is periodic and s is small. (Thus the forcing term consists of a
large uni-directional load with small oscillations.) Such a bridge will have
obey the equation.

Vol. 4, n° 3-1987.
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If we look for solutions of the form y (t) sin 
" , we find that y must

. L

satisfy

which is exactly of the type ( 1. 2). Thus, large amplitude oscillations of
( 1. 2) predict large oscillations in suspension bridges.

In a later paper, we investigate the stability properties of these solutions.
In particular, we consider ( 1. 3) with small damping, when it can be
shown that large amplitude solutions exist. Preliminary computations have
revealed that these solutions can be extremely stable.

This work arises from the earlier work of the authors plus D. Hart, on
equation (1.1) with Dirichlet or Neumann conditions, where similar results
were obtained (see [3], [5], [7]).
We wish to thank Ivar Ekeland for his helpful suggestions, which

considerably shortened section 2.

2. PRELIMINARIES

In this section we make a geometric study of solutions of the differential
equation

near a nonconstant periodic solution uo (t) of the unperturbed differential
equation

where uo (t) has least period To> o. We assume that g is of class C 1 and
that h is continuous and periodic with period k To where k is a positive
integer. Here E is a small parameter.
The solution uo (t) is said to be nondegenerate, or uo (t) has property

(ND), if every To-periodic solution of the second-order linear differential
equation
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is of the form CMo (t) for some number c. If uo (t) has property (ND) and

Z(t) is a solution of ( 2 . 3) which is not a multiple of then since

Z ( t + To) is also a solution of ( 2 . 3), there exist constants C 1 and C2 such
that

Since the Wronskian of Mo and Z is constant, C2 =1, and since Z is not

To-periodic, 
Since it follows that every k To-periodic

solution of (2. 3) must be of the form cuo (t), a fact which will be used
below.

It was shown in [6] that if g(03BE)03BE>0 for 03BE~0 and either g has hardening
characteristic (g’ (~) > g (~)/~ for ~ ~ 0) or softening characteristic

(g’ (~)  g (~)/~ for ~ ~ 0), then any nonconstant periodic solution of (2 . 2)
has property (ND). In the next section we shall show that a for a certain
class of asymmetric restoring terms g, similar to those considered in the

previous section, nonconstant periodic solutions of ( 2 . 2) have property
(ND). In [5] it was shown that if g (~) ~ ~ 0 has hardening or

softening characteristic, and uo (t) is a nonconstant To-periodic solutions
of (2. 2), then for any continuous To-periodic h (t), for E I sufficiently
small, there exist at least two To-periodic solutions of (2.1) near translates
of uo. In this section, under the more general assumption that uo (t) has

property (ND), we show that if h (t) is k To-periodic then for I E sufficiently
small there exist at least two k To-periodic solutions of (2.1) near translates
of uo. As in [6] we exploit the fact that for any t>O, the time t map of

R2 into R2 associated with the first-order system corresponding to (2.1)
is area preserving.

Regarding R2 as the set of 2 x 1 column matrices we define

and let

Since uo (t) is nonconstant, Y o ( t) #col (0,0) for all t. The vector Y o ( t) is

tangent to Co at the point corresponding to col ( uo (t), uo (t)) and N ( t) is
normal to Co at the same point.

Vol. 4, n° 3-1987.
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Using the inverse function theorem, one can show that if So> 0 is
sufficiently small, then the mapping

maps the strip

onto open annular neighborhood of Co, two points, (i’, s’) and (i", s")
in S have the same image under the mapping if and only if s’ = s" and

for some integer m, and the mapping restricted to a small
neighborhood of a point in S has a C~ inverse ( see [I], p. 350).

Let u (t, t, S, E) denote the solution of (2 .1) such that

and let

Since u (t, t, 0, 0) = uo (t + i), it follows that Y ( t, t, 0, 0) = Y o ( t + i).
From the fact that (2.4) defines a covering map (see [2]) and basic

results concerning smooth dependence of solutions of differential equations
on initial conditions and parameters we infer the existence of positive
numbers E 1 and s 1  so and unique C~ functions 8 ( t, t, S, E) and p (t, t, s, E)
defined for ( t ( s and lEI such that

and

LEMMA 2 . I. - Let uo (t) have property (ND). Then there exists Eo> 0
and s*, 0  s*  si, and a continuous function F(I, E) defined for - aJ  I  aJ

and ( E (  Eo, such that ( F(I, E) (  s*, is continuous, and
lI
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Conversely, if E I  Eo,  s*, and 8(kTo, i, s, s) = i + k To, then

s = s (i, E).
Moreover, s (i + To, E) = s (i, E) and s (i, 0) --_ o.

Remark. - Since Yo (i + k To) --_ Yo (i) and N (i + k To) = N (i), it follows
from ( 2 . 9) that

Refering to (2. 5) and (2.6) we see that geometrically this means that on
each sufficiently short normal to the curve Co there exists a unique point
such that the solution of the system

which starts at this point at time t = 0 returns to a point on the same normal

after time k To.

Proof of Lemma. - The proof is an application of compactness and
the implicit function theorem.

Setting E = 0 in (2. 9), then differentiating with respect to s, then setting
s = 0 and using ( 2 . 8), we find that for I t I _- 2 k To, - oo  i  o0

We assert that

To prove this, we suppose, on the contrary, that there exists io such

that To, To? 0, 0) =0. As functions of t, the components of Y (t, T, s, E)
ls

satisfy the system (2.11). Setting col (yi, y2) =Y (t, i, s, 0) in (2 .11), diffe-
rentiating with respect to T and s, then setting z = io, s = o, we find that
each of the vector functions

is a solution of the homogeneous linear differential system

Vol. 4, n° 3-1987.
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where

Since

so V (t) is a k To-periodic solution of (2.14). From (2. 5) and (2. 6) we see
that V(0) and W(0) = N (io). Since and N (io) are nonzero
and orthogonal, V (t) and W (t) are independent solutions of (2.14). ,

From the assumption that (2 . 13) is false at i = io and from (2 . 12), we
see that 

.

where b = To, 0, 0). Let X (t) be the 2 x 2 matrix whose first and
a~ 

o~ o~ ~ ) ( )

second columns are V ( t) and W ( t) respectively. Since the trace of A ( t) is
identically zero, it follows from Liouville’s theorem that the determinant
of X (t) is constant. Therefore, since V (k To) = V (o) and the determinant
of X (0) is equal to the determinant of X (k To), we must have b = 1. Since
this implies that W (t) is k To-periodic it follows that all solutions of

(2.14) are k To-periodic of equivalently all solutions of the second order
differential equation

are k To-periodic. But since every solution y (t) of (2. 3) is of the form

where Z is a solution of ( 2 . 15), this contradicts the assumption
that uo (t) has property (ND).

This contradiction proves the claim (2. 13).
Let Z be the Banach space consisting of bounded real-valved To-periodic

functions z (t) defined for - oo  i  oo with norm

and let U be the open subset of Z consisting of functions z such that

~ z Let Bj/: U x ( - E1, El) - Z be defined by
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We see that B)/ has a continuous Frechet derivative with respect to the first
variable given by 

-

If 0 E Z denotes the function which is identically zero, then

So, according to what has been shown above, Dl ~r (0, 0) has a continu-
ous inverse. Hence, by the implicit function theorem, there exist numbers

Eo > 0 and s* > 0 and a continuous mapping

such that E) = 0, z (0) = 0, and if E) = 0 with ( z I  S* and

lEI I  Eo, then z = z (E).
Setting E) = z (E) (i), we have that (2.10) holds for all T if ~ I  £o,

F(1, 0) ~ 0, and s (i + To, E) - s (i, E). Conversely, suppose that for some i3,
13, s3, where I  s* and  Eo. Setting

z* (i) = for i ~ i3 + m To, m = 0, + 1, ± 2, ..., and z* (i3) = s3, other-
wise, we see that z*eU* and ~r (Z*, S3)=0. Hence z* = z (E3) which means
S3 - S (23~ E3).
By taking Eo and s* smaller if necessary, we may assume that

for -ooioo, Is/ s* and |~| so.
Suppose that TZ is arbitrary and that |~2|  so. From the two conditions

and the classical implicit function theorem, we infer the existence of

intervals I and J containing i2 and E2 respectively, with J c ( - Eo, Eo), and
a function cp : I x J --~ ( - s*, s*) such that

Vol. 4, n° 3-1987.
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for and and a~ are continuous. By what we have shown~P 
~~ 

Y

above we must have E) = s (i, E) for (i, E) E I x J and this establishes

continuity of s and . This proves the lemma.y 
ai 

p

THEOREM 2. 1. - Let uo (t) be a nonconstant To-periodic solution of {2. 2)
which has property (ND). For a > 0 let A (a) denote the annular region
consisting of points of the form Yo (i) + s N (i) with I s  a, i E [0, To]. Given
oc > o, there exists E* > 0 such that for ( E  E* there exist at least two k To-
periodic solutions u~ (t), j =1, 2 of (2 . 2) such that E A (a)
for j =1, 2.

Proof - Let s*, Eo and be as in

Lemma 2 . 1 and for ‘E I  Eo let Ct be the simple closed curve with represen-
tation

If IIE : R 2 ~ R 2 denotes the time k To map defined by the system ( 2 . 11 )
and C: denotes the image of Cg under 03A0~ then, according to Lemma 2.1,
C: has the representation

Suppose that ( E  Eo and there exists a point q in C*. Then

Since

we have

Therefore, since (2. 4) is a covering map of the 
on A ( so) we must have for some integer m. Therefore, since
the functions Y (’t), N (’t), p (t, i, s, E), and s (i, E) are To-periodic in i, it

follows that
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Therefore, Y ( t, i 1, s (i I E), E) is a k To-periodic solution of (2.11).
To prove the theorem, it is therefore sufficient to show that given a > o,

CE and C: intersect in at least two points in A (a) if E is sufficiently small.
Since the divergence of the time dependent vector field

is identically equal to zero, the time k To map II£ associated with system
(2.11) is area preserving; that is, if D is a measurable subset of the plane,
then IIE (D) has the same measure as D provided IIE is defined on D

(see [4] for more details). If Do is the bounded region bounded by Co then
IIE will be defined on some open set U containing Do, for I E sufficiently
small. Since Ho (Co) = Co, both CE and C: are equal to Co when E = o. Let
qo be a point in Do and let D~ and D: be the bounded regions bounded
by the simple closed curves CE and C: respectively. Since CE and CE
depend continuously on E, it follows (for example, by use of winding
numbers) that qo E D: for E sufficiently small. Therefore, by connec-
tivity DE is in U and IIE (D£) = DE for I E I sufficiently small. Since D£ and
D: have the same area this implies that C~ (~ CE contains at least two
points for Since for given a > o, both CE and C: are in A (ex) for
( E sufficiently small, this proves the theorem.
A number to E [0, To] is said to be a bifurcation value [relative to uo (t)

and (2.1)] if there exists a sequence with for all and E" -~ ~
as n - oo and a corresponding sequence of k To-periodic functions

such that un(t) is a solution of (2.1) when and

un (0) - uo (to), u;, (0) --~ uo (To) as n -~ 00.
In addition to Theorem 2.1 we shall also need a result concerning

bifurcation values which is known, although perhaps not stated in the
following way:
THEOREM 2.2 (Loud). - Assume that uo (t) has property (ND) and let

If

then for ( E I sufficiently small there exists a k To-periodic solution u (t, E) of
(2.1) such that u (0, E) -~ uo (to), u’ (0, E) -~ uo (to) as E ~ 0 and there exists
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a neighborhood U of (uo (io), uo (io)), depending on E such that if u (t) is a
k To-periodic solution of (2 . 1) with (u (o), u’ (o)) E U then u (t) = u (t, E).

If io is a bifurcation value then F (io) = o.
In [6] Loud, using implicit function techniques, showed that if u* (t) is

a nonconstant To-periodic solution of (2. 2) which has property (ND) and

then for E small, there is a unique k To-periodic solution u (t, E) of (2 .1)
with (u (o, E), u’ (0, E)) close to (u* (0), u*(0)). If u* is the solution

uo (t + io), then, from (2. 16), we see that Loud’s conditions reduce to the
conditions (2. 17).

If To is a bifurcation value relative to uo and (2.1) and the sequences
~ En ~ i and { un (t) ~ i are as above then, by k To-periodicity of u", we have
for each n

where G is an antiderivative of g. Since un (t) -~ uo (t + io) uniformly on
[o, k To] as n - oo, letting n - oo in (2.18) yields F (io) =0. Therefore this
condition is necessary.
Theorem 2.2 can also be derived as a special case of multiparameter

bifurcation theory for second order periodic differential equations - see
for example [8], Chapt. 8.

Remark. - Although it does not seem possible to derive Theorem 2.1
from Theorem 2. 2, the generic case of Theorem 2. 1 does follow from
Theorem 2 . 2. In fact, the set of continuous, k To-periodic functions h (t),
for which the To-periodic C~ function F(t) in (2.16) has only simple
zeros, is open and dense, with respect to the uniform topology. Since, by
To-periodicity of uo (t) we have

there exist numbers tl and t2 with such that

F (il) = F (i2) = o. Therefore, if F has only simple zeros, Theorem 2 . 2
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implies that, for I E sufficiently small, there are at least two k To-periodic
solutions of (2. 1) which are close to translates of uo (t). We are grateful
to Ivar Ekeland for this observation.

Example. - Suppose that uo (t) is a nonconstant periodic solution of
(2 .1) with least period 2 x. We show that there are exactly two bifurcation
values 03C41 and i2 in [0, 2 x) relative to uo (t) and the differential equation

Here, of course, k = 1. Moreover, we show that F’ (i~) ~ 0, j =1, 2, where
F is as in the previous lemma.
Suppose Then Otherwise both uo (t)

and the constant C=u0 (tl) would be solutions of 2 . 2 which have the same
values and same derivatives at which contradicts the assumption that
uo (t) is nonconstant. Therefore the zeros of are isolated. Let t 1 and
t2 be consecutive zeros of u’ (t) with ti  t2. Since uo (t) and uo (2 t2 - t) are
both solutions of (2.1) which have the same values and the same deriva-
tives at t = t2, uo (t) --_ uo (2 t2 - t). Using this relation, it follows that if

then u 1 and

and hence uo (t) is periodic with period 2 ( t2 - t 1 ). Since uo (t2) ~ 0 and
uo (t) = uo (2 t2 - t) we see that has opposite signs on the intervals
(ti, t2) and ( t2, 2 t2 - t 1 ). Hence 2 (t2 - tl) is the least period of uo (t) so by
assumption 2 ~ = 2 (t2 - tl). It follows that for or

t E (1t, 2 ~) and that changes sign at t = ~. Hence

where

It follows that a2 + b2 ~ 0.
Let b be chosen so that if r = a + b , then We

have
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It follows that F(-r) has exactly two zeros on (0, 2 ~c], which are both
simple. By Theorem 2 . 2, for ~ I ~ 0 and small, (2 . 19) has exactly two
2 ~-periodic solutions near translates of uo (t).

This example will be used to establish sharpness of a result given below.

3. PERIODIC SOLUTIONS
OF DIFFERENTIAL EQUATIONS

WITH ASYMMETRIC NONLINEARITIES

In this section we study the differential equation

We assume that f is a Cl-function, the limits

exist and are finite, and a  b. The function h (t) is continuous and 2 x-

periodic and s and E are constants with I s large and small. Our goal
is to give lower and upper bounds for the number of 2 ~-periodic solutions
of (3.1) for suitably restricted s and E in terms of the number of squares
of integers in the interval ( a, b). We consider in detail the case where a> o.
We study (3.1) under the following assumptions.

There exist integers p and q with p >_ 0 such that

A2: The piece-wise linear homogeneous differential equation

has no nonconstant 203C0-periodic solutions. (This is easily seen to be equiva-
lent to the assumption that 2/N for N =1, 2, ... )

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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We first study the autonomous differential equation

in which we make the substitution y (t) = su (t) where 5’ > 0. According to
the assumptions ( 3 . 2) we may write

where lim fo (~)/~ = o. Since both § + are positively homogeneous

of degree one, u (t) satisfies the differential equation

For large s > 0, the function b ~ + - a ~ - + fo (s ~)/s -1= 0 has a unique zero
CS and CS -~ I/b as s - 00. Since b ~ + - a ~ - +. f ’o (s ~)/~ tends to + oo and
- oo as § tends to + oo and - oo respectively, for s large and positive all
solutions of (3.4) are periodic. Moreover, the trajectories of the corre-
sponding system

coincide with the level curves of the function

where

and

For s > 0 and s large, CS is the unique constant solution of ( 3 . 4).
LEMMA 3 .1. - Let s* > 0 be so large that for s >_ s* (3. 4) has the unique

constant solution CS and all solutions of ( 3 . 4) are periodic. Let
be the minimal period of the nonconstant solutions of

(3. 3). Given any number b > 0 there exists a number r = r (~) such that if
s _> s* and u (t) is a solution of (3 . 4) with u ~ ~ >- r, then the minimal period
of u is greater than T - ~.

Proof - In the contrary case there exists a sequence of numbers
~ with S* for all m, and a corresponding sequence of functions

Vol. 4, n° 3-1987..



258 A. C. LAZER AND P. J. MCKENNA

such that is a solution of (3.3) when S = Sm, is periodic
with least period Tm which satisfies 0  Tm _ T - b, and as

m - oo . If we set Zm (t) = um (t)/ ( um ~ ~ then

and ( Zm ~ ~ =1. For all m >-_ 1. From the differential equation, we see that
~ Zm ~ ~ is bounded independently of m and hence is bounded inde-
pendently of m. By Ascoli’s lemma we may assume, without loss of

generality, that lim Zm (t) = Z ( t) and lim Zm (t) = Z’ ( t) uniformly with
~K -~ o~ m - 00

respect to te [ - T, T], where Z E C1 [ - T, T] and Z ~ ~ = 1. From the differ-
ential equation satisfied by Zm (t) and the fact that lim fo (~)/~ = 0, it

follows that the converges uniformly on [- T, T].
Hence ZEC2 [- T, T] and

Since 0  Tm _ T - b we may assume without loss of generality that
lim Tm = ToE [0, T - ~]. If To = 0 then, since Zm (0) = Zm (T m) and

~t -~ 00 .

= it follows by uniform convergence and the mean value
theorem that Z’ (0) = Z" (0) = 0. But this is impossible since Z I ~ = l, the
zeros of a nontrivial solution of ( 3 . 3) are all simple, and Z" ( t) ~ 0 if

Z ( t) ~ 0. Hence 0  To _ T - S. From the conditions Zm (0) = Zm (T m) and
and uniform convergence it follows Z(0) = Z (To) and

Z’(O)=Z’(To). Since t is the minimum period of Z (t), this is a contradic-
tion and the lemma is proved.
LEMMA 3. 2. - Given b > o, there exists S(8) such that i, f ’ s ? S ( ~), then

(3.4) has a nonconstant periodic solution with minimal period less than

+ b.

Proof - For brevity we write

For large s, p(03BE, s) = 0 has the unique solution 03BE=Cs where Cs -+ as

s -+ + 00. Since
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as s -~ +00, (CS, 0) is a stable equilibrium point of the conservative system

Therefore, if col (u (t), v (t)) is a solution of the system with I
and I small, then I u (t) - Cs I and I v (t) I will remain small for all t.

Let col (u (t), v (t)) be such a solution and let We have
that w (t) is periodic and satisfies

where

From this it follows that the maximum of I for -~t~
can be made arbitrarily small if w (0) I and I w’ (0) I are sufficiently small
and s is sufficiently large. If w (t) is a nontrivial solution of (3. 5), then
the Sturm comparison theorem implies that the distance between two
consecutive zeros of w (t) is between and 7t/ min Q (t).
Therefore, the minimal period of w(t) is between and

Therefore for any 8 > 0, (3. 4) has a nonconstant solution
with minimal period less than 2 ~/~ + b. This proves the lemma.
LEMMA 3 . 3. - Let uo (t) be a periodic solution of

with least period T > 2 ~t/~ such that uo (0) =1/b, uo (0) > o. Let x (uo)
denote the characteristic function of the set where uo is positive and x ( - uo)
denote the characteristic function of the set where uo is negative. If v (t) is
the solution of the differential equation

such that v (0) = 0 and v’ (0) = 1, then v (T)  0.

Proof. - Setting C =1 /b and uo (t) = w (t) + C we see that

Vol. 4, n° 3-1987.



260 A. C. LAZER AND P. J. MCKENNA

Since T > 2 ~/~, w cannot satisfy w" + bw = 0 and hence X ( - uo) ~ 0. It

is easy to see that (3.6) cannot have a negative solution. If 0  t 1  t2, and
t 1 and t2 are the first and second zeros of w (t) after t = 0, then since

it follows that u’ (t2) = u’ (0) and hence t2 =T.
We prove the assertion of the lemma by use of the Sturm comparison

theorem. From (3.8) we see that

where

On the interval [0, 

Therefore v (t) and w (t) are solutions of the same differential equation on
this interval, and since v (o) = w (o) = o, v (t) is a multiple of w (t) on [0, t 1].
Thus v (tl) = w (tl) = 0. On the interval (tl, t2),

If ua (t)  0, then

Since uo (t) must be negative somewhere on (tl, t2), we see that

and

on (tl, t2). Hence, by the Sturm comparison theorem, it follows that v (t)
cannot vanish for tl  t - t2. Since v (t 1) = 0 and v’ (tl)  0, v (t2) = v (T)  o.

This proves the lemma.

LEMMA 3 . 4. - Let 03B4>0 be chosen so that 203C0/b+03B4  T - b where T is
as in Lemma 3 . 4. There exists a number S* = S* { ) > o, independent of T E

[2 ~/~ + S, T - S], such that for S >_ S * ( ~), ( 3 . 4) has a unique constant
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solution Cs, all other solutions are periodic and if u (t) is a solution with

u (0) = CS, u’ (0) > 0, and u (t) has minimal period T, then the solution v (t) of
the linear differential equation

such that v (0) = 0, v’ (0) =1, satisfies v (T)  o.

Remark. - Since (3.4) can be written in the form

and the assertion of the lemma implies that not all solutions of ( 3 . 9) can
be T-periodic, the lemma implies that such a solution u (t) satisfying these
conditions has property (ND).

Proof of Lemma 3.4. - Assuming that the statement of the lemma is
false, there exists a sequence of numbers {Sm}~1 such that Sm ~ oo as

m - oo and a corresponding sequence of numbers {Tm}~1 such that Tm E
[2 ~/~ + ~, T - ~] and when s = Sm, ( 3 . 4) has a periodic solution um (t)
with minimal period Tm satisfying um (0) = CS, > 0, such that when

s = Sm and u (t) = um (t), the solution vm (t) of ( 3 . 9) which satisfies the initial
conditions vm (o) = o, vm (0) =1, must satisfy vm (Tm) >_ o.

According to Lemma 3 .1, there exists a number r > 0 such that _ r
for all m. From the relation

we see that is bounded independently of m. Therefore by the same
type of argument that was used in Lemma 3.1, we may assume that
um (t) - uo (t), um (t) -~ uo (t) as m - oo uniformly with respect to t [ - T, T].
Since fo (s é,)/s - 0 as § - oo uniformly with respect to § in bounded sets,
it follows from the differnetial equation that the sequence (t) ~ 1 conver-
ges uniformly on [ - T, T]. Hence uo E C2, uo (0) = 0, and

We may also assume that lim Tm=TO’ where 

Since um(Tm)=um(0), u’m(Tm)=u’m(0) it follows that 
and hence, uo (t) is To-periodic.

We assert that uo (t) is nonconstant and To is the minimal period of
uo (t). Assuming first, on the contrary, that uo (t) is constant, we must
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have that uo (t) -1 /b. If Cm is the unique zero of f(Sm ~)/Sm -1 for m large,
then Cm -+ 1 /b as m - 00. Writing it follows that since
um (t) - 1 /b uniformly with respect to t E [ - T, T], w~ (t) - 0 uniformly with
respect to t E [ - T, T] as m - 00. Using the same argument given in the
proof of Lemma 3 . 2, we find that w~ (t) + Qm (t) wm (t) = 0 where Q~ ( t) ~ b
uniformly as m - oo . Hence, by the argument given in the proof of Lemma
3. 2, the minimal period of approaches as m --~ oo, contra-

dicting the fact that for all the minimal period of is
Therefore uo (t) is nonconstant.

Next we assume, contrary to the claim, that the minimal period of uo (t)
is L, where 0  L  To. Since the distance between two consecutive zeros
of Mo(t) is one-half the period (see the example at end of the previous
section), there exist numbers to and t 1 in (- T, T) with to  t 1 and

such that Let a > 0 be chosen so that

L + 4 a  To. Since uo ( t) is nonconstant, uo (tk) ~ 0, k =1,2. Therefore, since
um (t) - uo (t) and um (t) - uo (t) as m - oo uniformly on [ - T, T], it follows
that for m sufficiently large, has a zero in (to - a, to + a) and a zero
in (to - rt, to + a) and these two zeros are distinct from each other. Since
the distance between these zeros is at most t 1- to + 2 a = L/2 + 2 a, it
follows that for m sufficiently large the minimal period of um (t) is at most
L + 4 a. Since the minimal period of um (t) tends to To as m - oo this gives
a contradiction. Therefore To is the minimal period of uo (t).

According to the assumptions ( 3 . 2), if uo (t) ~ 0, then

and the convegence is uniform on any closed interval which does not
contain a zero of uo (t).

For each m >_ 1, let vm be the solution of

which satisfies the initial conditions vm (0) = 0, vm (0) =1. Since f ’ um (t))
is bounded independently of m, it is not difficult to show (for example,
by considering the corresponding system and applying Gronwall’s lemma)
that the sequences {vm(t)}~1 are uniformly bounded on
[ - T, T]. Therefore, from the differential equation satisfied by vm, we see
that the is also uniformly bounded on [ - T, T]. Apply-
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ing A scoli’s lemma, we may assume that

Hence, by the form of the differential equations satisfied by vm and what
was shown in the previous paragraph, it follows that v (t) has a piecewise
continuous second derivative whose discontinuities can only occur at the
zeros of uo (t). Moreover

According to what was assumed at the beginning of the proof,
and hence by uniform convergence, v (To) = lim vm (T"~ >- o.

m - w

But 2 ~/b + b, so we have a contradiction to Lemma 3. 3. This proves
the assertion of Lemma 3. 4.

LEMMA 3. 5. - Let b > 0 and S* (~) be as in Lemma 3. 4. Assume that
S* (b) is also so large that s >- S* (b) implies that (3 . 4) has nonconstant
solutions with periods less than + ~ (see Lemma 3 . 2). Let s >_ S* (b)
and let u (t, r) denote the solution of (3.4) such that u(0, and

u’ (0, r) = r where CS is the unique constant solution of (3 . 4). If T (r) denotes
the minimal period of u (t, r), then T (r) is of class C1 in r for Or o0
and there exist numbers rl and r2 with such that

2 ~/~ + ~ - T (r) _ T - b if and only Moreover, T’(r»O for
ri rr2.

Proof - Let s >- S ( b) be fixed, and let r > o. If t = T (r) is the second
solution of u (t, r) = CS after t = 0, then, since ( 3 . 4) is conservative, T (r) is
the period of u (t, r). Since

it follows from the implicit function theorem that T (r) is a C1 function of
r for r>O. If
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then

Therefore, by Lemma 3. 4, if 2 ~/~ + b _ T (r)  T - b, then v (T (r), r)  o.

Assuming that r> 0, T (r) E [2 7t//b + S, t - b], and differentiating the iden-
tity u (T (r), r) = 0 we have

and hence

Since for r > 0, either T ( r) = 2 x/ / +8 or T (r) = T - ~ implies that

T’ (r) > 0, it is clear that either of these equations has at most one solution
for 

According to the way S* (6) was chosen, if r is sufficiently small and

positive, then T (r)  2 ~/~ + b. If U (~, s) is the function that was defined
before Lemma 3 .1, then since

and since

Therefore, since

it follows that

Therefore, by Lemma 3 . 1, T (r) > T - ~, for r sufficiently large and positive.
Combining this with what has already been established above, we infer
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the existence of numbers r 1 > 0 and r 2 > r 1 such that

and

This proves the lemma.

We can now prove the first half of the main result of this section.

3. 1 A THEOREMAssume (3 . 2) holds with 0  a  b and that assumptions
(A 1) and (A2) are satisfied. Let m be the number of integers k such that

For s > 0 sufficiently large there are exactly m orbits of the autonomous
system

which correspond to periodic solutions having 2 x as a pariod. The minimal

periods of these solutions are fo the form where k is an integer

satisfying (3 . 10). If h (t) is continuous and 203C0-periodic, then for s > 0

sufficiently large and I sufficiently small, (3. 1) has at least 2 m + 1 203C0-

periodic solutions.

Proof. - For s > 0 we have y" +,f (y) = s if and only if u = y/s is a solution

of (3. 4). Thus, we may consider the autonomous system corresponding to

(3 . 4) in the proof of the first part of the theorem. Let 6 > 0 be chosen so

that if k is an integer which satisfies ( 3 . 10), then

Assuming there is an integer k satisfying these inequalities, we fix it in

the following paragraph.
Let S*(5) be as in Lemma 3 . 5 and let s >_ S * ( S) . Since (3.4) has the

unique constant solution Cs, and all other solutions are periodic, each of

the orbits of the corresponding first order system, aside from the equili-
brium point (C,,0), must contain a point of the form where r>O.

That is, using the notation of Lemma 3. 5, each such orbit can be repre-
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sented by col (u (t, r), u’ (t, r)) where r > 0 and 0 - t  T (r). According to
Lemma 3. 5, the equation T (r) = 2 x/k has exactly one solution for r > 0.
Thus we have shown that for s >- S * ( ~), there is exactly one orbit of the

system ( 3 . 11 ) corresponding to a periodic solution with minimal period
2 x/k if the integer k satisfies (3 . 10). To complete the proof of the first
part we need only show that there are no other orbits corresponding to a
2x-periodic solution for s > 0 sufficiently large. Because of assumptions
(A 1) and (A 2), there exists a number oc > 0 such that if r > 0 is an interger
which does not satisfy the inequalities (3.10), then either

2 ~c/r  2 ~/~ - a or 2 ~/r > T + a. To complete the proof of the first part,
it is only necessary to show that for s > 0 and sufficiently large, (3 . 4)
cannot have a nonconstant solution with period less than 2 x/ or

greater than t+a. Assuming the contrary, there exists a sequence of

numbers { with lim Sn = oo and a corresponding sequence of functions

~ un (t) ~~° 1 such that un (t) is a nonconstant solution of (3 . 4) when s = Sn.
and periodic with minimal period not in [2 a~/~ - a, T + a].
Suppose first, that some subsequence of the numerical sequence

~ I un ~ ~ } i is bounded. The argument of the proof of Lemma 3. 4 shows
that we may then assume that un (t) - uo (t) and un (r) - uo (t) as n - 00
uniformly on any compact interval where uo (t) is a solution of (3. 6). If

uo (t) is a constant, the proof of Lemma 3 . 4 shows that the period of
tends to 2 x/ / which is a contradiction. If yo (t) is nonconstant but

does not change sign then uo (t) is nonnegative and it is easy to see that
its period is In this case, the period of un (t) tends to 2 ~/ b
which is again a contradiction.

Therefore, uo (t) must assume both positive and negative values. Writing
uo (t) = C + w (t), where C =1/b, and referring to the proof Lemma 3. 3, we
see that w" (t) + p (t) w (t) = 0 where p (t) is as before. If to  t 1  t2 are three
consecutive zeros of w such that on (to, ti), and on (tl, t2),
then since p (t) = b on (to, ti) and a  p (t) _- b on t2) and each inequality
is strict somewhere on the interval, by the Sturm comparison theorem we
have and Hence, the period of uo (t)
is between and Since the period of un (t)
approaches that of uo (t) as n - oo we agian have a contradiction.
We are left with the case where ( un I ~ - oo oo. In this case, the

proof of Lemma 3 . 1 shows that if then it may be
assumed that Zn (t) -~ Z (t), Zn ( t) -~ Z’ ( t) uniformly as n - oo, where Z" + b
Z + - a Z - = 0. Since ( Z I ~ = 1, the period of Z is t. Since the period of un
approaches that of Z as n - oo we again have a contradiction. Therefore
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(3.4) has no 2 x-periodic solutions, other than those with minimal period
2 ~/k for some k satisfying (3. 10)b for s sufficiently large.
To prove the second part of the theorem we fix s >_ S * ( ~) . A gain, ~ > 0

is chosen so that any integer k satisfying (3.10) also -satisfies (3.12).
According to Lemma 3.5, if k is such an integer, then there exists a
unique number rk > 0 that T (rk) = 2 ~/k. By the remark following the
statement of Lemma 3. 4, the 2 x/k-periodic solution u (t, rk) of the differen-
tial equation u" +,f (su)/s -1= 0 defined in Lemma 3. 5, has property (ND).
Therefore, by Theorem 2.1 and 2 ~-periodicity of h (t), if Ak is an arbitrary
open neighborhood of the curve

then for I E sufficiently small there exist two distinct 2 x-periodic solutions
of the perturbed differential

with starting points col (u (0), u’ (0)) contained in Ak. By choosing the Ak,
as k ranges over all integers satisfying ( 3 . 10), to be disjoint, we see that for
I E sufficiently small there exist at least 2 m distinct 2 x-periodic solutions of
(3 .13).
The existence of another 2 x-periodic solution can be obtained by a

more standard perturbation argument. If C~ is the unique constant solution
of (3.4), then since CS -~ 1 /b as s --~ oo, f ’ (s CJ --~ b as s --~ 00. By assump-
tion (A1), we may choose so large that f ’ (s CS) is positive and
not the square of an integer. Let X be the Banach space of C~ 2 x-periodic
functions with norm I u == ~ u ~ ~ +, u’ I ~ + and Y the Banach space of
continuous 2 x-periodic functions with norm h ~ ~. Let F be the C~ map-
ping from X to Y defined by

Let xo be the constant function where s is chosen so s _> S* (b)
n = o, 1, 2, ... We have that F(xo)=0 and that F’ (xo)

is the continuous linear mapping given by

Because of the condition on f " (s the linear mapping F’ (xo) : X --~ Y is
one-to-one and onto. Therefore, by the inverse function theorem, for I E (
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sufficiently small, there exists u£ in X such that F(u)=Eh and as

The neighborhoods A~ f or k satisfying ( 3 .10) are disjoint from C~ as
well from each other. Hence for I E sufficiently small, (3.13) has at least
2 m + 1 distinct 2 x-periodic solutions, since y (t) is a solution of (3 .1) if

and only u (t) = y (t)/s is a solution of (3.4). This proves the Theorem.
The second part of the main theorem is proved using a series of lemmas

concerning periodic solutions of the autonomous differential equation

where T > 0 is a large parameter. The proofs of Lemmas 3. 6, 3. 7, 3. 8,
3.9, and 3. 10 stated below parallel those of Lemma 3.1, 3. 2, 3. 3, 3. 4,
and 3 . 5 respectively and are therefore omitted except for part of the proof
of lemma 3. 8.

LEMMA 3. 6. - There exists a number i* > 0 such that for i >_ i*, ( 3 14)
has a unique constant solution d~ such that d~ as i -~ oo and all

other solutions are periodic. Given any number 6 > 0 there exists rl = rl (~)
such that if and u (t) is a solution of (3 .14) with then the

minimal period of u is less than T + b.
LEMMA 3 . 7. - Given 6 > 0, there exists S 1 (i) such that if s ? S 1 (T), then

(3.14) has a nonconstant periodic solution with minimal period greater than

f - s.
LEMMA 3. 8. - Let uo (t) be a periodic solution of

with least period T  such that uo (0) _ - I/a and uo (0)  0. If v (t)
is the solution of the differential equation

such that v (0) =0, v’ (0) = - 1 , then v (T)  o.

Sketch of proof. - If we set uo (t) _ -1 /a + w (t) and let t 1 and t 2 be

the first and second zeros of w(t)=0, then and w (t) and v (t)
are multiples of one another on this interval. Using the Sturm comparison
theorem as in the proof of Lemma 3. 3, we can show that v (t) must have
a zero on the open interval (ti, t2). To show that v (t) cannot have two
zeros on the half-open interval (ti, t2] we note that Z ( t) = w’ (t) = u’ (t) is a
solution of ( 3 .16) such that Z’ (0)  0. Moreover, Z has exactly two zeros
on (0, t2) since t2 = T is the period of u (t). If v (t) had two zeros on (ti,
t2] it would have at least four zeros on [0, t2], so, by the Sturm separation
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theorem, u’ (t) = w’ (t) would have at least three zeros on (0, t2) which is a
contradiction. Hence v (t)  o.

LEMMA 3. 9. - Let 6 > 0 be chosen so that T + s  2 ~/~ - s.
There exists a number S i = S 1 ( i) independent of T E [T + S, 203C0/a-03B4] such
that for i >_ Sf (~), (3 .14) has a unique constant solution ds, all other solutions
are periodic and if u (t) is a solution with  0 and u (t) has
minimal period T, then the solution v (t) of the linear differential equation

such that v (0), u’(0)= -1, satisfies u(T)0.
Remark. - The lemma shows that such a solution u (t) o/(3.14) satisfies

condition (ND).
LEMMA 3.10. 2014 Let 8>0 and S~(8) be as in Lemma 3.9. Assume that

S~(8) is also so large that (3.14) has nonconstant solutions with periods
greater than 27r//a-8 for r~S~(S). Let T~S~(8) and let u i (t, r) denote
the solution ~(3.14) such that Mi(0,r)=~ and 7/’Ti(r)
denotes the minimal period of Mi (t, r), then T~ (r) is of class r for
2014oor0 and there exists numbers r~ and r~ w~ 2014oor3~0 such
that t+8~Ti(r)~27t//a-8 if and only Moreover 

on this interval.

Sketch of proof - If Ti (r) is between t+8 and then the

solution v (t) of (3.16) which satisfies v (0) = 0, v’ (0) = -1 is - ~ (t, r),
~r

assuming M(t)=Mi(t, r). According to Lemma 3.9, u(T)0, so if r  0,

r»O. Assuming that r  0 and +03B4~T(r)~203C0/a-03B4, we

obtain after differentiating the identity

Therefore T i ( r) > o.
We can now give the second half of the main result of this section.
THEOREM 3. I B. - Let the conditions of Theorem 3. 1 A be satisfied.

Let m 1 be the number of integers k such that

For s sufficiently large and negative the autonomous system (3.11) has
exactly m 1 orbits which correspond to periodic solutions having 2 ~ as a
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period. The minimal periods of these solutions are of the form 2 x/k where
k is an integer satisfying (3. 17).

If h (t) is continuous and 2 x-periodic, then for s  0 and I s ( sufficiently
large and E ~ I sufficiently small, (3. 1 ) has at least (2 m 1 + 1 ) 2 x-periodic
solutions.

The theorem is proved from Lemmas 3. 6-3.10 in a way similar to the
way that Theorem 3 .1 A is proved from Lemmas 3 . 1-3 . 5. The important
thing to note is that if s  0 and we let i = - s, then y" + f (y) = s, and only
if u =y/i satisfies

Combining Theorems 3 .1 A and 3 .1 B we obtain
THEOREM 3. 2. - If (3. 2) holds and assumptions (A 1) and hold then

there exists an integer r with 1  r _ 2 (q -p) + 1 such that for s large and
positive and I E I small, (3. 1 ) has at least r solutions, and for s sufficiently
large and negative and ‘E small, (3 . .1 ) has at least 2 (q - p) + 2 - r solutions.

4. A CASE WHERE THEOREM 3.2 IS SHARP

Let a and b be chosen so that Oa 1  b 4 and let f (~) be a C 1
function such that f ’ (~) --~ b as § - oo and f ’ (~) -a 
Let h (t) be continuous and 2 x-periodic. We claim that if

1/2 ( 1 /~ + 1 /~)  1, then for s sufficiently large and positive and £ ~ ~ 0
small,

has exactly one 2 ~-periodic solution while for s sufficiently large and

negative and small there are exactly three solutions which are 2 x-

periodic. If 1  1i2 ( 1/~ + 1/~) then (4 .1) has exactly three 2 x-periodic
solutions for s large and positive and E I ~ 0 and small and exactly one
2 x-priodic solution for s large and negative and I E ~ 0 small.

Suppose then that 1 /2 ( 1 / a + 1 /~) ~ 1. We claim that for s and E in
bounded intervals there exists a bound on u I ~ if u is a 2 ~-periodic
solution of (4. 1). Indeed, if this were not the case, the argument used in
the proof of Lemma 3 .1 would give the existence of a 2 x-periodic solution
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Z of

with I Z I °° =1. The minimal period of Z would have to be 2 ~/k for some
k >_ 1 and since the minimal period is ~/~+~/~> ~c, we have a contrad-
iction.

Suppose 1 /2 ( 1/~ + 1 /~) > 1. We suppose s > 0 and make the substitu-
tion y=su in (4. 1) obtaining

Since k = 1 is the unique integer such that

it follows from Theorem 3 .1 A that for s sufficiently large, there is a

unique 2 x-periodic solution uo of

with and uo (o) > o, where C~ is the unique solution of

f (su)/s -1= 0 and all solutions are periodic. Let us fix such an s. Let A
and U be disjoint neighborhoods of the curve

and the point col (C$, 0) respectively. Using Theorem 3 . 1 A and the

example given at the end of the second section, we infer that for 
and I E small, there are exactly two 2 x-periodic solutions of

with col (u (o), u’(0))eA and exactly one 2x-periodic solution with

sol (u (o), u’ (o)) E U. We claim that for and sufficiently small these
are the only 2 x-periodic solutions.
Suppose not. Then, there exists a sequence of numbers such that

~~ 5~ 0 for all n, lim En = 0, and when E = En (4 . 4) has a 2 x-periodic solution

un (t) such that
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Since is bounded independently of n, it follows from (4.4) that

I u"" I ~ is bounded independetly of n. Thus, we may suppose that

uniformly as n - oo, where Z is 2 ~-periodic, Z e C and

Since R2B(A U U) is closed, we have col(Z(0), Z’ (0)) E R2B(A U U) and
this means that the system

has a closed orbit other than Co which corresponds to a 2-periodic
solution. This is a contradiction, and establishes the claim.

and s is sufficiently large and negative, then
there are no orbits of the above system corresponding to nonconstant

2 x-priodic solutions by Theorem 3. IB. Therefore, the only 2 x-periodic
solution is the constant solution ds. The same type of argument given
above shows that for s large and negative and I E ] small the only 2 x-

periodic solution is one with col (u (0), u’ (0)) near 0).
The case 1 /2 ( 1 /~ + 1 /~)  1 is handled similarly.

5. THE CASE a  0

We discuss briefly the case where aO and there exists an integer 
such that

In this case assumption A 2 is always satisfied since ( 3 . 3) has no noncon-
stant periodic solutions.
We again substitute y = su in and consider the differential

equation

In [7] the phase portrait of the flow generated by the corresponding
autonomous system
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is analysed in detail and it is shown that, for s large and positive, the
phase portrait is like that of the limiting system

For s large and positive, there are exactly two equilibium, points (Ds, 0)
and 0) such that DS --~ and CS --~ 1 /b as s - oo . The point (Cs’ 0)
is a center and (Ds, 0) is a saddle point. There is a homoclinic orbit such
that solutions of (5.3) corresponding to the orbit tend to (Ds, 0) as

t - ± oo . The homoclinic orbit together with the saddle form a simple
closed curve which bounds a region which is the union of orbits corre-
sponding to nonconstant periodic solutions of (5.3) and the center (Cs’
0). As the orbits in this region approach the boundary of the region, the
periods of the corresponding solutions tend to 00 and, for s large and
positive, the periods of the orbits near 0) are close to 2 7t/ /. All
other orbits are unbounded..

Using obvious modifications of the arguments used in the third section,
one can show that for each integer k, with 0  k _ q, if s > 0 is sufficiently
large, then there exists exactly one orbit of (5. 3) corresponding to a
solution with least period 2 x/k. Moreover, the corresponding solution of
(5.2) has property (ND).

Let h (t) be continuous and 2 ~-periodic. For s large and positive let rk
denote the unique orbit of (5.3) which corresponds to periodic solutions
of (5. 2) with least period 2x/k. For k = l, ..., q. The results of the
second section imply that for and 1 E I sufficiently small, there
exist at least two 2 x-periodic solutions of

and u2 (t) such that the point u; (0)) tends to the orbit rk as
E-~0 for i = 1, 2.
The implicit function techniques used in the third section show that, for

I E ( small and for s large and positive there exist 2x-periodic solutions
ul (t) and of (5 . 4) with (Mi(0), ui (0)) close to 0) and (u2 (0)),
M,(0)) close to 0).
Summarizing the above discussion we have
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THEOREM 5. 1. - If a  0 and there exists an integer q >__ 0 such that
(5 . .1) holds, then for s sufficiently large and positive and I E I sufficiently
small, there exist at least 2 (q + 1) 2 x-periodic solutions of (3. 1).
As in the fourth section, it can be shown that the above result is sharp

if a  o, Ob l, and h (t) = cos t.
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