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ABSTRACT. - Let U E C2 (n), where D is a bounded set in IRN. Suppose
that U (x) tends to + oo as x tends to 00. Our main results concern the
existence of periodic solutions of - x = U’ (x) having a prescribed num-
ber T as minimal period. The results are also generalized to first order
Hamiltonian systems.

RESUME. - Soit U e C2 (0), ou. Q est un ouvert donne On

suppose que U (x) - +00 quand On montre l’existence de solu-
tions periodiques de x + U’ (x) =0, de periode minimale prescrite. On étend
ces resultats aux systemes hamiltoniens du premier ordre.
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276 A. AMBROSETTI AND V. COTI ZELATI

1. INTRODUCTION

Let Q be a bounded, convex domain in IRN with boundary r and let
U ~ C2 (03A9, R) be such that U(x) ~ + oo as x ~ 0393. Denote by VU the

gradient of U.
In this paper we study the existence of T-periodic solutions of

where x stands for the N-vector ..., E Q and the period T > 0 is

prescribed.
Our main result is that: if U is convex, then (1.1) has a solution

having T has minimal period. See Theorem 2. 1 for the precise statement.
Extensions to general first order Hamiltonian Systems are also given, see

paragraph 3.
The study of (1.1) for U constrained in a potential well was begun by

Benci in [5]; without assuming convexity, Benci proves an existence result

(with no minimality of period) for second order systems like ( 1. 1). On
the other hand, for systems where U is defined on all [RN (or even for

general Hamiltonian Systems of that kind), together with existence of

periodic solutions ( see, for example, the survey paper [16] and references

therein), many results concerning the minimality of the period are known,
see [8], [2], [1], [11], [12] and the survey [13]. Here we fill the gap for

systems constrained in a potential well.
The approach we use is completely different from the Benci’s one, based

on the study of critical points of a functional on an open subset of a
Hilbert space. On the contrary, we use here the Clarke’s Dual Action

Principle ([6], [8]). In contrast to [5] and in spite that U is defined in the
bounded well Q, such a device allows us to work with a functional ~

defined on all a Banach space and the critical points of 03A6 are found by a

straight application of the Mountain Pass theorem [3], [4]. The fact of

having now a "Mountain Pass" critical point, permits to show, by an

application of the theory developed by Ekeland and Hofer [11], that the

corresponding solution of ( 1.1) is of minimal period. By the same method

(with a suitable choice of the spaces) we can handle the case of first order
Hamiltonian Systems, too.
We point out that our approach works also if one greatly relaxes the

convexity assumptions (at the expense of the minimality of the period),
see theorem 2. 7, and indicates that the potential well is only a limiting
case of the "superquadratic" Hamiltonian Systems (see [15], [9]).
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277HAMILTONIAN SYSTEMS IN A POTENTIAL WELL

Actually, one of the purposes of this paper was just to show that the
usual critical point theory can be employed, in a very simple fashion, to
study these classes of problems.

Besides the introduction, the paper consists of 2 more sections and an

Appendix: in paragraph 2 we discuss second order systems; paragraph 3
contains extensions to some classes of Hamiltonian Systems. We point out
that for first order systems even the existence result is new. Lastly, in the
Appendix, we shortly indicate how some of the arguments of [11] can be
adapted to be used in our framework.

2. SECOND ORDER SYSTEMS

Let Q c (~N be a bounded, convex domain with OeQ. We denote by r
the boundary ofQ and, for E>O, by rE the set {xeQ : dist(x, r)  E ~.
Here dist (x, r) = min { ~ x - y ~ : y E r ~, ~ . ~ denoting the Euclidean norm
in f~N corresponding to the scalar product ( . , . ) .

Let U : SZ -~ ~ be given. We say that U satisfies assumption (A) if:
1 ° UeC2(Q, !R);
2° U(0)=0=minU;

n

3° U is such that:

4° there exist E > 0 and 9 E 0 -[ such that:
2

Let us point out that (A 4°) is the usual assumption of "superquadratic-
ity" (near r). Moreover, if U is radial and convex, then 4° follows from 3°.
Our main result is:
THEOREM 2. 1. - Suppose U satisfies (A) and:

Vol. 4, n° 3-1987.



278 A. AMBROSETTI AND V. COTI ZELATI

Let be the greatest eigenvalue of U" 1’0), and T0 : = /2 Then, V T,

0  T  To, ( 1.1) has at least a T-periodic solution having T as minimal
period.

The proof will be carried out in several steps.

Step 1. - Use of the Dual Action Principle ([6], [8]) to transform ( 1.1)
in a critical point problem for a functional 03A6 in a Banach space E.

Step 2. - Application of the Mountain Pass theorem to 0.

Step 3. - Use Ekeland-Hofer’s argument (see [11]) to show that the
Mountain Pass solution has minimal period.

Step 1 (Dual Action Principle) . - We begin introducing the Legendre
transform U* of U setting

The properties of U* are collected in the following lemma:
LEMMA 2. 2. - U* E C2 I~) and is strictly convex. Moreover there

are constants c 1, c2, c 3 > 0 such that ‘d y E I y large, one has:

Proof - the function fy (x) : _ (x, y) - U (x), is strictly
concave. Moreover from (A 3°) it follows that fy (x) - - oo as x - r.

Hence, U* is well defined Further, taking also into account
assumption (i), it is a well known fact in convex analysis that U* is C2,
strictly convex and that, letting 03BE ~ 03A9 be the (unique) solution = y,
one has:

as well as
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279HAMILTONIAN SYSTEMS IN A POTENTIAL WELL

From ( 2 . 4) and (A 4°) it follows, 

Inequality ( 2 . 6) and ( 2 . 5) imply ( 2 . 3).
Let 03B4>0 be such and let c = max U.

Bs

Then U* (y) >_ =03B4|y|-c and the left hand side inequality
xeB§

in (2.1) follows. Next, by (2. 4) and since U (~) >_ 0 and Q is bounded, one
has:

Lastly, (2. 2) follows from (2. 5) because Q is bounded..

Remark 2. 3. - Clearly, from (2. 3) it follows:

for some constant c..
We are now ready to state the Dual Action Principle for ( 1.1).
Let

with norm

For uEE we can define a linear selfadjoint operator L from E into E by
setting:

moreover, since L(E) c W2~ 1 (0, T; (~N), L is compact. It is easy to see
that :

Vol. 4, n° 3-1987.
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Define the functional ~ : E - R setting:

Remark that U * ( u) makes sense because ~ u ~ E because
o

of (2.1). Moreover, since then ~ is Gateaux differentable on E

(but, possibly, not C~.
If u ~ E and 03A6’(u)=0, then ~ 03BE~RN : -L u + ~U*(u) = 03BE Setting

x = O U * ( u) one has: in particular Now, if 
it is always the case, see arguments of Lemma 2.4 below) then

c c Q a. e., and, x being continuous, x. (t) E SZ, V t. Finally,
-x=u= [by (2. 5)]=~U(x). N

Step 2 (Mountain Pass solution). - We shall apply the Mountain Pass
theorem, as stated in [4], thm. 5, p. 272, because 0 is not C~.
LEMMA 2 . 4. - ~ satisfies (P. S.), namely : if ~ u" ~ c E is such 

is bounded and 0’ -~ 0 then, up to a subsequence, un -~ u and ~’ (M) =0.

Proof. - One has:

Hence, by (2. 7) and Holder’s inequality, we obtain:

and the preceding inequality it follows:

Since 1- ~ > 0 and using 2 . 1 ) one finds c" elll>O such that:
2

Using the fact that ~’ (u") --~ 0 in L°°, (2. 9) implies II un I ( 1 _ const. Then
one has in C°, up to a subsequence. On the other hand,
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281HAMILTONIAN SYSTEMS IN A POTENTIAL WELL

" . is bounded by (2.2); passing to a subsequence again,
T o

we have that ~" -~ ç. Setting z~ = L Un + ~n + ~~ (u"), it follows that

z" ~ z - v + ~ in L°°, with z continuous function. Since

zn (t) = V U* (un (t)) E Q a. e. (remark that u" eLl implies (t)  + oo a. e.)
we have that z(t)eQ, V t e [0, T].
We now claim that, in fact,

Suppose, first of all, that z (t) E aI-’, V t E [0, T]. Then V E > 0, 3 n s. t.

implies d (z" (t), r)  E a. e. Since z" (t) = V U* (t)), we have that
Un (t) = V U (zn (t)) and hence from (A 3°-4°) it follows that un (t) >_ KE a. e.

with as ~ ~ 0. We deduce that IT (t) I >_ in

contradiction with the boundedness of 

Thus there exists t E [o, T] s. t. z (t) E SZ. Since z(t) is continuous, ~ t1, t2
s. t. VtE[tl’ t2]. Since z" (t) -> z (t) in L°°, then cc Q a. e.

for te[ti, t2] for n large (S~ cc Q means that S~ is a compact subset

ofQ), and hence Moreover, since V U is
Lipschitz continuous in fi, then: 

.

Setting then, weakly, and

It follows that, weakly:

From the usual regularity theorem, we then deduce that z (t) is a classical
solution of -x.=VU(x), t2[. In particular the conservation of

Vol. 4, n° 3-1987.
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energy holds, i. e.:

Suppose now that z (t) E Q, ’It e [tl, t3[, t2  t3 T and that z (t3) E r. Since,
repeating the preceeding argument, one has that U (z (t))  c, V t e ]tl, t3 - E[,
‘d E > 0 small, it follows that contradiction which proves (*).
By the claim it follows that z (t) is a continuous function with z (t) E Q,

T]. This and Zn -+ z in L °° imply, by the same arguments used in
proving the claim, that un --~ in L°° (0, T), and in particular in
L1(0, T); since ~’ ( u) - - L M+VU* (u) - ~ _ - v + z = o, then (P. S. )
holds. Moreover it follows that every critical point of C is in L°°, as

claimed at the end of Step 1..
The behaviour at u = 0 and infinity is described in the following

lemma.

LEMMA 2. 5. - 

Proof - Let E > 0 be such that T  2/(03C9N+~) and let 03B4>0 be such
that U x ~1 2(03C9N + E x 2 ‘d x - b. We define : 0 b ~ R + 

to be a

continuous, convex function such that:

Then one has U (x) ~ p ( I x I ), V) x I  8. By duality, it follows:

where p* is the Legendre Transform of p. From (2.10) and ( 2 . 8) we
obtain

Remark that p* ( I u ~ ) ELl (0, T), V u E E because the properties of p imply
that p* (0’) grows linearly at infinity (see similar properties valid for U*).
Using Jensen’s integral inequality [14], p. 133, it follows:
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Now, for and small enough, p* (cr) =1 1 a2 hence:P ( ) 

provided is sufficiently small. Since T  ~/ 1 ° follows.
To prove 2°, we take for any fixed uEE, Using

(2.1) one has:

taking X large enough, 2° follows..
In view of lemmas 2. 4 and 2. 5 ans since c~’ is strong-to-weak* continu-

ous, we can apply the Mountain Pass theorem [4], thm.5, p. 272 finding a
critical point u E E of C. Such an u gives rise to a T-periodic solution of
( 1. 1), V T  To, according to the Dual Action Principle.

S tep 3 (Minimality of the period). - To show that the solution of
Mountain Pass found before has minimal period T, we follow the argu-
ments of [11]. We report below the main steps in the proof, indicating the
differences.

(i) Ekeland and Hofer deal with a functional like

defined on u = 0 , 1  oc  2, where, roughly, H* behaves
like and L is a compact, linear, self-adjoint operator in E, correspond-
ing to the inverse of v - - J I, J symplectic matrix (in fact they deal with
first order Hamiltonian Systems, as we do in paragraph 3 below). Our
functional C shares the properties of such a C, our space being L~.

(ii) In [11], the Mountain Pass theorem is applied to get a critical point
of "Mountain Pass type", as we do.

(iii) Under some smoothness condition, such a critical point possesses
a specific topological property. Unfortunaley, neither C in [11], nor our C

Vol. 4, n° 3-1987.
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are C2; to overcome this point Ekeland and Hofer use a finite-dimensional
reduction. Here the fact that we are working in L 1 requires some technical
modification: in the Appendix we esplicitely indicate how the major of
these changes can be handled.

(iv) The preceding topological properties are expressed in terms of the
Morse index, which has to be defined in an appropriate way [11], § II (still
for the lack of smoothness). This leads to require, in [11], H" (z) > 0,

In our setting we can repeat the same procedure, provided we
assume U" (x) > 0, V x [see (i) of theorem 2 .1]. Actually, considering the

hamiltonian H (p, x ) =1 2 ( p ( 2 + U (q), assumption (i) is nothing else but the
hypothesis of positive defineteness of H" (p, x) in [11]. We point out that
this has as a consequence the fact that we find a solution with minimal

period T, only for T > 0 small enough. See also Remark 2. 6 (i) below.
(v) Lastly, using the properties of the solution of "Mountain Pass type",

jointly with the index theory for periodic solutions [10], Ekeland and Hofer
show that such a critical point gives rise to a solution of minimal period
T. This last step can be carried out in our setting without any modification.
This completes the proof..

Remark 2. 6. - (i) It is possible to obtain other results on the existence
of solutions with minimal period for (1.1) using the method developed in
[2] and [I], which requires a strenghtening of the convexity of U, but
not U" (0) > 0. This leads to conjecture that also in theorem 2. .1 the

hypothesis U" (x) > 0, Vx could be relaxed to U" (x) > 0, 
(ii) U E C2 (Q, R) is not used in steps 1 and 2, but only in proving the

minimality of the period..
We end this section showing how our approach, based on the Dual

Action Principle, if employed to prove existence results only, permits to
handle a wide class of non-convex potentials. Moreover, according to
remark 2. 6, we will drop hypothesis (i) and assume U E C1 (0, R) only.
THEOREM 2. 7. - Suppose U satisfies assumption (A) [with U ~ C1 in

(A 1°)] and:

(iii) such that is convex.
2

Then, VT>0, (1.1) has at least a nontrivial T -periodic solution.

l’Institut Henri Poincaré - Analyse non linéaire
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Proof - First of all we remark that V satisfies (A). In fact, 1°-2°-3°

[with V ~ C1 in ( A 1 °) are trivial. As for (A 4° , taking 03B8  03B8   one finds
2

(for all x E r~:

Since (x, ~U(x))~1 03B8U(x) ~ + ~ as x - r, Q is bounded and 8-60, it
follows that V(x)~9(x, VV(x)), V X E rE" for some 0~e.

Next, we write (1.1) in the equivalent form:

Let X = L 1 (o, T: and set with E as in theorem 2 .1. For

T>O small enough -+m is invertible in X, with inverse Lm, i. e.
dt

Lm u = v iff - v + mv = u. It is easy to check that Lm is compact and:

As in theorem 2 . 1, we will find a solution of (2.12) [hence of (1.1)], by
the Dual Action Principle, which now leads to look for critical points on
X of:

Let us point out that V Eel and strictly convex (which we can assume
without loss of generality taking m possibly larger) suffices to have (V* E C~

and) C Gateaux differentiable. By (ii) one has V(x)~-(~+A) x 2
b’ ~ x,  ~, and using (2 .13) one readily verifies, as for (2 . 11), that:

so ~ (u) >_ a, b’ u E E, ( ( u ( I 1= r, provided T > 0 is small
enough. Next, V ç E IRN one has

Vol. 4, n° 3-1987.
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This fact and a slight modification of the arguments employed in lemma
2 . 5-2° leads to: 3 R > r such that ~ (v) _ 0, b’ v E v ( I 1 >_ R, E being
any finite dimensional subspace of E.
Then we can apply the linking theorem 6, p. 274 of [4], finding a

nontrivial critical point of 0 on X, provided T > 0 is small enough, say
T  T. This critical point gives rise to a T-periodic solution of (1.1),
b’ O  T  T. If T >- T it suffices to take an integer k such that T /k  T and
apply the above result..

Remark 2. 8. - If U is defined on all IRN and behaves like [i > 2

for x large, then U* : IRN - R is like for y large, with -+-=1, > hence

1  a  2. Then the case discussed in theorem 2. 7 can be regarded as a
limiting case of the above one..

3. HAMILTONIAN SYSTEMS

In this section we discuss first order Hamiltonian Systems. Let:

Q being, as in paragraph 2, a bounded, convex domain in IRN. We still set
r = a~.

We say that H : C - R satisfies Assumption B if:
1 ° H E C2 (C; R);
2° H (o, 0) = o = min H;

c

3° There exist U . : SZ -~ (~ i =1 ~ 2 )> s>0, and 8 E 0 > 2 1 such that:
(i) Ui, U2 are convex and satisfy (A 1 °-2°-3°);

such that H (p, q) _ 8 [(p, H p) + (q, Hq)], V (p, q) E C - K.
Here Hp, Hq denote the partial derivatives aH/ap, aH/aq.

First of all, we deduce from (B) the following lemma concerning the
behaviour of Hp, Hq.
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LEMMA 3 .1. - Suppose H satisfies ( B) and is convex. Then ~c1, c2 > 0
s. t.

Moreover, for all compact subset S21 c Q, 3 c3, c4 > 0 s. t.

Proof - Since H is convex, Vx, p E d q E SZ

and, using [B 3 ° ( iii) -( iv) ], one has.:

Taking the supremum for I x-p it follows:

Then (3.1) follows directly.
Let 03A91~~03A9 and set ~=d(Qi, r) . As before, 

Since U 1 (q) >_ o, and taking the supremum for I y - q ~ = s/2, it follows

one has:

and ( 3 . 2) holds..
We look for T-periodic solutions of:

We will show:

THEOREM 3 . 2. - Suppose H satisfies assumption (B) and let H" (p, q) > 0,
, , _ , , _ , ,

Vol. 4, n° 3-1987.
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(a) if U2 (0) is positive definite, then 3 To > 0 such that V 0  T  To (3 .1)
has a T-periodic solution with minimal period T;

(b) if U2 (0) = o, then d T > 0 (3 .1) has a periodic solution with minimal
period T.

The argument is similar to that of theorem 2.1, but requires some
modifications because now H has a different behaviour in p and q.
We set

The properties of H* are collected in the following lemma:
LEMMA 3 . 3. - (i) H* ~ C1 (R2N; R) n C2 (R2N-{0}; R) and strictly von-

vex ;

(3 = is the conjugate exponent of 1 /8, a* > 0 and U* are the Legendre
1-9

transforms of U~ (i = l, 2), hence satisfy the properties listed in lemma 2 . 2:

. , , , _

(here and in the following c6, c~, ... denote positive constants).

Proof - H* is defined in all because H is convex, [B 3° (iv)] holds
and U1 satisfies (A).

(i) It follows from the usual regularity of the Legendre transform.
(ii) It follows by duality from (B 4°).
(iii) It follows by duality from [B 3° (iv)].
(iv) We recall that

Since qEQ and Q is bounded, (iv) follows.
(v) As in lemma 3. 1 (replacing H with H*), one uses (iii) above to

find:

It is easy to check that [B 3° (iii)] implies

Hence, from ( 3 . 4) :
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Taking the supremum (v) follows as in lemma 3.1..
According to lemma 3. 3 (iii) and (2. 1), the behaviour at infinity of H*

is linear in y and like I x p in x. This fact suggests the following choice of
the space to work with: let X =Ep x E1, where

and define d u E =1 ~ F’ u = z iff 
dz 
= u. We remark that:

dt

while

For (v, W)EX, we set

Let us remark that f is well defined because: H* (v, w) by lemma 3. 3
(iii) and (2.1); in view of (3 . 5) and (3 . 6). More-
over from lemma 3. 3 (iv)-(v) we infer that f is Gateaux differentiable on
X and

and

If (v, w) is a critical point of f on X, 3 (~, r~) E (~N x f~N such that

Setting p = ~ - ~ w and one deduces w) = p and

Hy (v, w) = q, namely, by duality:

Vol. 4, n° 3-1987.
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Moreover, from p = ~ - ~ w, and the definition of ~, one
has:

Actually w E L°° (see arguments of lemma 3. 4 below) and we deduce,
as for the Dual Action Principle in paragraph 2, that (p (t), q (t)) E C for
all t and, from ( 3 . 8), ( 3 . 9), that is a T-periodic solution of ( 3 . 3).

According to the preeceding discussion, we will look for non-trivial
critical points of f on X. For this we begin proving:
LEMMA 3 . 4. - (P. S. ) holds for f on X.

Proo f - Letf(vn, w~) be bounded andf(vn, Wn)’ with

and

By the same arguments used in lemma 2. 4, one finds:

From lemma 3. 3 (iii) and (2. 1), if follows:

and also here we find is bounded. From (3.5)-(3.6) it
follows (without relabeling)

Also:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



291HAMILTONIAN SYSTEMS IN A POTENTIAL WELL

by lemma 3.3 (iv) and

because II Vn const. and lemma 3.3 (v) holds. Therefore

and

From (3.10), (3.11) we deduce:

Assuming b’t E [o, T], it is easy to complete the
proof. In fact (3.1) [resp. (3.2)] and (3.12) [resp. (3.13)] enables to use the
generalized Lebesgue Dominated Convergence Theorem (as stated for

example, in [17], Theorem 3.9) and get

respectively

Lastly, to show that cc n one argues as in lemma 2.4,
proving first of all that or r so that q (t) + rl E SZ for

te[ti, t2] c [0, T]. Then, by the same limiting procedures used above, one
shows again that ( -p + ~, q+1i) is a solution of (3.3) in t2], and hence
cannot reach r because H ( - p (t) + ~, q (t) + 1i) = const. This completes the
proof..

Proof of theorem 3.2. - In order to apply the Mountain Pass theorem
to f on X, it remains to study the behaviour of fat For this we
use lemma 3.3 (iii) and find:

Vol. 4, n° 3-1987.
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Consider first case (a). Arguing as in lemma 2.5 we conclude that (0, 0) is
a strict local minimum for f on X, provided T > 0 is small enough. In

case (b) U 2 (q) _ _ 1 2 a ~ q ~ 2 near q=O with a > 0 arbitrary, and (0, 0) is a

strict local minimum for every T > 0.

Applying the Mountain Pass Theorem we find a critical point
(v, w) 5~ (0, 0) of f which corresponds to a T-periodic solution of (3.3).
Lastly, the minimality of the period T follows as in step 3 of the proof of
theorem 2.1. This time our setting is even closer to that of [11], because
we are dealing now with first order systems and, thanks to the hypothesis
H" (p, q) > 0, d (p, q) ~ (0, 0), step 3 (iv) in the proof of theorem 2.1 is

just the same as in [1 1]..
We end the paper with some remarks.

Remark 3.5. - By the same arguments, many situations as the preeced-
ing ones can easily be handled. For example, one could study second
order systems as (1.1) when U : (~, x2) E p~k x x 1 
Q c (~k bounded and convex, and U has a superquadratic behaviour in
x2 and U -~ + oo as r.

Remark 3.6. - We remark that also here, as in paragraph 2, it would
be possible to state existence results for (3.3) relaxing the convexity assump-
tion at the expenses of the minimality of the period.

Remark 3.7. - We are not able to handle the case of a Hamiltonian H
defined in a bounded convex domain D c p~2 N, with H -~ + oo as z ~ aD
(which, however, from the physical point of view, seems to be less signifi-
cant than the one studied in theorem 3.2). In fact, in such a case, we
should work in L 1 x L 1 and, due to a lack of compactness, we do not
know whether (P.S.) holds true.
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APPENDIX

First we indicate how the proof of lemma 7 in [11] can be carried out
in our setting.

Recall that such a lemma deals with a finite-dimensional reduction used

to overcome the lack of smoothness. We keep most of the notation of

[ 11 ], which is assumed familiar to the reader.
The argument is by contradiction: in our setting, we have to suppose:

0 and - 0 such that:

where [a, b] c [0, T], 0 (u) stands for

and r=ra,b is a C1 map from jRN to C ([a, b], jRN) defined in lemma 6 of
[11]. We have to show that vn -~ 0 uniformly in [a, b]. The difference with
[11] is that ) ) . 111 is subdifferentiable (it is convex), but is not differentiable
(not even Gateaux differentiable), so that the optimality condition will be
written, according to the Lagrange multiplier rule [7], Thm. 6.1.1, as

inclusions involving subdifferentials: 3 jRN 0 such that:

Recall that

Vol. 4, n° 3-1987.
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([4], 4.6.10). By the definition of r (~") one has also ~~ (r (~n)) _ ~n E (~N.
Hence: ,

From (A 1) it follows that 03BEn - g (up to subsequences). Then r(çn) - r(03BE)
in C([a, b]), and from ( A 1’) r (~") + vn -~ r ( ~) in L 1. Since ~ is C" one
has: ~’ (r (~n) + vn) - ~’ (r (~")) -~ 0 in L°°. Remark that (A 3) means that
~ ~7n E (~ ~ ~ . I ~ 1 (v") such that:

Multiplying by and integrating, this leads to:

then it follows: ~,n -~ 0 and ) ~ 0.

Since {J)’ (u) = V U* (u) - L u, (A 3) becames

Let

Remark is continuous and fn --~ V U* (r (~)) uniformly in [a, b],
because -~ 0, vn -~ 0 in L~ and L is continuous from L~ to W~’ ~ c C°,
03BEn ~ 03BE and r as well as VU* are continuous ( 1).

U,* is strictly convex in y because so is U* and one has:

( 1) In the case of theorem 3.2, the convergence of one of the components of f" would be
in L°°. However, V H* (r (~)) is still a continuous function, and the arguments can be carried
over with minor changes only.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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It is easy to verify that implies a. e. in

[a, b]. Hence from (A 4) it follows:

By the Legendre reciprocity formula ([4], p. 203) one has:

where x) = max {(x, y)-Ug (t, y)~ indicates the Fenchel transform
y ~ RN

of U*n.
For becames U * ( r (~n) (t) + y) and for its Fenchel

transform U~ (t, x) one has:

Moreover, since y) >_ U* (r (~n) (t) + y), it follows:

Next, U" (t, .) is C1 because U* is strictly convex. Then aUn is singleton
and (A 6) turns out to be:

From now on the proof proceeds as in [11] and leads to show that vn - 0
uniformly in [a, b] since fn converges uniformly to O U* (r (~)) - ~; and
obviously b]. This shows that lemma 7 of [11] holds.

All the remaining arguments of [11] concerning the finite dimensional
reduction are local in nature and work in our setting as well..
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