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ABSTRACT. - We derive a normalization theory for the Navier-Stokes
equations with potential (gradient) body forces by means of a global asymp-
totic expansion of a solution as time goes to infinity. The normal form is
the linear Navier-Stokes system if the spectrum of the Stokes operator
has no resonances. In the general case, the normal form is an equation in
a suitable Frechet space, whose nonlinear terms correspond to resonances.
However, it can be solved by integrating successively an infinite sequence
of linear nonhomogeneous differential equations. The normalization

mapping is globally defined, analytic, one to one. We illustrate our theory
by two simple examples. In particular we relate our normalization for
the Burgers equation to the Hopf-Cole transform.

RESUME. - On construit une forme normale pour les equations de
Navier-Stokes soumises a des forces derivant d’un potentiel, a l’aide d’un
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2 C. FOIAS AND J. C. SAUT

developpement asymptotique global de la solution quand t -~ oo. La
forme normale correspond au système lineaire de Navier-Stokes si le

spectre de l’opérateur de Stokes n’a pas de resonance. Dans le cas general,
la forme normale est une equation dans un espace de Frechet convenable
dont les termes non lineaires correspondent aux resonances. Cependant,
on peut le resoudre en integrant successivement une suite infinie d’équations
dinerentielles lineaires non homogènes. L’opcrateur de normalisation est
défini globalement, de façon analytique et injective. Nous illustrons notre
theorie par deux exemples, en particulier dans le cas de 1’equation de
Burgers, en reliant notre theorie a la transformée de Hopf-Cole.

Mots-elés : Navier-Stokes equations, Nonlinear spectral manifolds, Frechet space,
Nonresonant spectrum, Parabolic nonlinear equations, Asymptotic expansion, Burgers
equations. Normal forms.

INTRODUCTION

Let us consider the Navier-Stokes equations

in Q x ]0, oo [, where Q is a smooth bounded open set in = 2, 3,
or the cube ]0, L [n.
We supplement (0.1) with the boundary condition

or with the spatial periodic condition

where (e~ ), 1  j  n is the canonical basis in [R".

In our previous works [7] ] [8 ] we investigated the asymptotic behavior
of regular (we shall give a precise meaning of this concept later on) solu-
tions u of (0.1), (0.2) (resp. (0.1), (0.3)) as t -~ + 00. Essentially, u(t) decays
exactly as where A(uo) A2, ... ~, the set of eigenvalues of
the Stokes operator. Moreover, it was shown that there exists in the space 1*
of initial data uo a flag of smooth analytic manifolds Mk, k = 1,2, ...
such that A(uo) = A~, the kth distinct eigenvalue of Stokes operator, if
and only if uo E where Mo = ~ ; the spectral manifolds Mk

Annales de l’Institut Henri Poincaré - Analyse non linéaire



3LINEARIZATION AND NORMAL FORM

have finite codimension tni 1 + m2 +... + mk (where mj = multiplicity
of A~), and in the periodic case (0.3) are « genuinely » nonlinear.

In the paper [7 ] we also gave the first steps of an asymptotic expansion
of u(t ) as t -~ +00 (See [7], Theorem 2).
The aim of the present paper, which develops our Note [9], is to achieve

this asymptotic expansion and to derive some consequences of its global
properties. In particular, if the spectrum of the Stokes operator is nonreso-
nant, we shall construct a nonlinear functional transformation which linea-

rizes the Navier-Stokes equations and the nonlinear spectral manifolds M~.
The precise sense of linearization will be given later on in this paper.

Roughly speaking, the value of the solution u at time t is obtained by applying
the linear semi-group associated to the Stokes operator (suitably extended)
to the nonlinear transform U(uo) of the initial data uo . The (analytic and
one to one) mapping U associates to uo the generating part of the asymp-
totic expansion of u. Of course U is not given in a closed form and there is
no serious hope that one could define it so, as for example the Cole-Hopf
transform [14 ] . [24 ] which reduces the viscous one dimensional Burgers
equation to the linear heat equation. However our linearization has its
own theoretical interest; moreover it is obtained in a totally different fashion
than previous theories of « linearization » of nonlinear differential ope-
rators : inverse scattering theory developed e. g. for one dimensional non-
linear equations such as KdV, Schrodinger [11 ] [19 ] ; the classical theory
of normal forms for ordinary nonlinear differential equations (cf. for instance
the description of the work of Poincare and Dulac in [1 ]); the very interesting
papers of Nikolenko [16 ] [17 ] [26 ] [27 ] and Zehnder [25 ] on the extension
of Siegel’s Theorem to a class of nonlinear-Schrodinger equation satisfying
a diophantine condition ; the work of M. S. Berger et al. on « diagonaliza-
tion » of nonlinear ordinary differential operators [2 ].

If the spectrum of the Stokes operator is resonant, we also give the
asymptotic expansion of the solution as t ~ oo ; the coefficients are now
polynomials in t. The equivalent of the linearization map U is a normaliza-
tion mapping W which reduces the Navier-Stokes equations to a normal
form where the nonlinear terms correspond to resonances. In the non-
resonant case the normal form is of course the linear Navier-Stokes equa-
tions ; although in general the normal equation is nonlinear, it can always
be solved by integrating successively an infinite sequence of linear non-
homogeneous differential equations. The normalization map is also built
from the generating part of the asymptotic expansion. As U, it has nice
properties: it is analytic, one to one, its derivative at 0 is the identity.
Moreover, our normalization mapping can be explicitely expressed from
any analytic mapping which admits the identity as derivative at 0 and
which linearizes the Navier-Stokes equations. In the nonresonant case,
any such mapping reduces to our normalization. To our know-
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ledge this kind of normalization of a nonlinear parabolic equation is new.
N. V. Nikolenko gives in [18] a derivation (along the lines of the Poin-
care-Dulac theory) of the truncated normal form for a class of perturbed
KdV-Burgers equations.
Our methods and results extend to general (eventually abstract) para-

bolic nonlinear equations of the Navier-Stokes type (e. g. to the class of
abstract parabolic equations studied by J. M. Ghidaglia in [12 ]). Also
it is likely that they can be extended to equations having general polynomial
nonlinearities, provided there exists a relationship between the linear
and the nonlinear part which insures that some non empty open set of
initial data leads to regular solutions decaying exponentially to zero when
t --~ oo .

As an illustration, we consider two simple examples. We prove that
the analogue of our normalization mapping for the Burgers equation can
be expressed in term of the Cole-Hopf transform, and is therefore defined
in a closed form. A similar result is stated for the Minea system.
The case of non zero, time independant, forces remain open. However

it is likely that part of our results are still valid in the situation where
the forces are small (then there exists a unique, stable, steady solution).

To conclude this introduction, we can say that we derived in this work
a normalization theory for the Navier-Stokes equations with potential
body forces by means of a global asymptotic expansion. In this situation,
the dynamics is trivial and hence the normal form is not necessary to under-
stand it ! However, we think that our theory gives some new insights
in the structure of the Navier-Stokes equations. Applications and the
connection to the Poincare-Dulac approach are presently investigated
and will be the object of a subsequent paper.

The content will be as follows:

1. Functional setting. Some previous results ........... 4

2. Asymptotic expansion (nonresonant case) ........... 7

3. Linearization of the Navier-Stokes equation (nonresonant case) .... 21

4. Asymptotic expansion: the general case............ 23

5. The extension of the linearization map to the resonant case...... 34

6. The normalization map and the normal form .......... 37

7. Some examples: the Burgers equation and the Minea system ..... 44

1 . FUNCTIONAL SETTING.
SOME PREVIOUS RESULTS

In this section we recall classical and useful facts on Navier-Stokes

equations and state some previous results we shall need in the sequel.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



5LINEARIZATION AND NORMAL FORM

Let Q be either a bounded regular open set in or the cube ]0, L [n,
where n = 2, 3. In the first case, we set

and in the second case, we set

(1.2) ~ _ ~ u = trigonometric polynomials with values in ~n, div u = 0,

In both cases, we introduce the classical spaces (cf. [21 ] [22 ])

where H1(Q) (l = 1, 2, ...) denotes the Sobolev spaces of u’s in 
such that E L2(SZ), ~ [  l.

Also we set Em(S2) = H n E"(Q) = n Em(S2), m > 0. We shall
use the notations : 

(u E H, v E V) for norms in H (resp. V). The corresponding scalar products
will be denoted by ( . , . ), (resp. ((.,. ))). The norm in Hm(SZ) is indicated as
II . 11m.

Let P be the orthogonal projection on H in L2(S2)n, and let

defined for u, v, w E n V = D(A) and H-valued. We also set

b(u, v, w) = (B(u, v), w), and recall that b(u, v, w) _ - b(u, w, v).
The operators A and B can be extended by continuity to linear (resp.

bilinear) operators from V (resp. V x V) into the dual V’ ~ H =) V of V.
We shall use the classical estimates (cf. [21 ] [22 ])

in particular (1.8) implies that c (Here and in
the sequel, Ci, C2, ... will design positive constants with respect to the
explicit variables of the formulas.)
Vol. 4, n° 1-1987.



6 C. FOIAS AND J. C. SAUT

The equations (0.1) completed with (0.2) or (0.3) are equivalent to

Let us recall also that, by definition, a solution u of (1 . 8) is regular on
some interval I c [0, oo) if E C(I ; V).

If a solution u is regular on I = [to, tl ], then u ~I is uniquely determined
by u(to).

Let R be the set of initial data uo in V leading to regular solutions on [R + .
It is well known ( [21 ]) that ~ = V if n = 2, and is an open set of V containing 0
if n = 3. For the nonlinear equations (0.1), we shall only consider non zero
initial data in R (then by the backward uniqueness property, u(t) ~ 0
for all positive t ).

In this case, one has in fact the smoothness property (cf. [21 ]).

Finally, let us recall that A is in fact the Stokes operator : the equations

completed with the boundary conditions (0.2) or (0.3), are equivalent to

We shall denote by 0  ~ 1  ~,2, ... , the increasing sequence of the
eigenvalues of A, and by 0  Ai  A2  ... the sequence of distinct

eigenvalues of A, Ak having multiplicity mk.
Let also 1 be the orthonormal (in H or V) basis of the associated

eigenvectors :

The orthogonal projection in H on the linear span of w 1, ..., w~ will
be denoted by Pm ; R j will stand for the orthogonal projection on the eigen-
space of A~:

Then, we have of course

We shall also consider the Frechet space containing H:

equipped with the topology of convergence of components. The Stokes
operator A and the semi-group e-At generated by A extend in the obvious
way to ~A.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



7LINEARIZATION AND NORMAL FORM

We now summarize the results of [7] [8 ] we shall need in the following
(See also Guillope [13 ], Ghidaglia [12] for related results.)

THEOREM 1. - ([7] ] [8]). Let and u the corresponding
regular solution of (1.9).

1) The limit lim ~u(t)~2 |u(t)|2 
= A(uo) exists and is one of the eigenvalues

of the Stokes operator.
2) lim exists in V and H (in particular) and is not zero.

3) There exist smooth connected analytic manifolds Mk, k = 1, 2, ...
in ~ (the nonlinear spectral manifolds) such that

i) 
ii) CodimH Mk = Codimv Mk = m1 + ... + mk.
iii ) Mk is invariant by the nonlinear semi-group (S(t ))t > o on ~ generated

by the Navier-Stokes equations, i. e. c Mk Vt > 0.
iv) => A(uo) = Ak+ 1, k = 0, 1, 2, ...
v) In the periodic case (0. 3), the Mk’s are « genuinely » nonlinear (that

is to say they are not linear manifolds) but they contain an unbounded,
infinite dimensional linear manifold.

2. ASYMPTOTIC EXPANSION

(NONRESONANT CASE)

Before stating our results, we need to introduce a technical notion on
the spectrum of A.

DEFINITION 1. - We call resonance in the spectrum of A, a relation of
the type

(2.1) alA1 ~-a2~2-~- ... +akAk=Ak+ 1, where ai E N, 1  i  k .

If no resonance occurs in the spectrum of A, A will be called nonresonant.
For abstract operators of the type of A, the nonresonant case is generic

for a natural topology (See [10 ]). On the other hand, the periodic boundary
condition (0.3) always leads to resonance, since in this case, one has for
instance A2 = 2Ai (cf. [22 ]).

For the Dirichlet boundary condition (0.2) we think that the nonreso-
nant case is generic with respect to the domain Q. Indeed this is true for
self-adjoint scalar second order elliptic operators with Dirichlet boundary
conditions (See [10 ~).

Finally, we shall denote

Vol. 4, n° 1-1987.



8 . C. FOIAS AND J. C. SAUT

the elements of the additive semi-group G generated by A j, j = 1, 2,...
In the present paragraph we shall deal only with the nonresonant case

and we shall suppose that no resonance occurs in the spectrum of A.
Then we get the following asymptotic expansion for a regular solution

of (1. 8):

THEOREM 2. - For each N E the solution u of (1. 9) admits the expan-
sion in H :

(2.2) ... + VN(t), V t > 0,

where W~~ = E n V, j = 1,..., N and

vN E C( [o, oo); V) n oo ; D(A)) n C~( [to, oo); E-(Q) n V), dto > 0.

This expansion satisfies the following properties:
i ) ~ ~ VN(t) == for some ~N > 0, m = 0, 1, 2, ...
ii ) = W~~ for Aj  ,uN
iii) For = 03B111 + ... + 03B1j-1j- 1, with al + ... + 03B1j- 1 > 2, is

a function of 
..., 1 

which is homogeneous of degree  al 1 in
of degree ~ 03B12 in WA2, ..., of degree ~ 03B1j-1 in 

More precisely, one has in this case :

REMARK 1. - The first W j ~ 0 in (2.2) corresponds to j = A(uo).
Proof of Theorem 2. - We shall proceed by induction on N. Let us start

with the first term in (2 . 2). Applying the projection Ri 1 to (1. 9) we get:

and

where

The integral in (2 . 5) converges since (cf. (1.7)):

On the other hand, we have :

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



9LINEARIZATION AND NORMAL FORM

and, taking the scalar product with u,

Using the obvious inequality

(2. 8) yields :

Hence,

i. e. :

Finally we obtain :

with some convenient 81 > 0 ( 1 ) :
Let us now estimate

by using (1.7) and the fact that all norms in R 1 H are equivalent.
We have just proven that

where and = Moreover, R1W 1 = 
The decay estimate of v 1 is in fact valid in stronger norms, as shows the

LEMMA 1. - One has

(~) The numbers E;, i = 1, 2,... will denote various positive quantities, independent of
t which appear in the exponential terms. The index will refer to the step of the expansion.

Vol. 4, n° 1-1987.
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Proof By (2.13) it suffices to show the corresponding assertion for
(I - 
One easily obtains from (1.8)

for t large enough. Hence, one gets (see the derivation of (2.9)~:

and finally :

The assertion concerning the higher norms is slightly more involved.
d’u

For this purpose, we set u~ = ~ . Then u~ is governed by the equation :dt

It is easily seen that for every j, and every m

More precisely, (2.16) for j = 0 and m = 0, 1, 2 is a classical fact ([7]).
The case m = 0, 1, j arbitrary, is derived for instance in [13 ]. The general
case follows by induction, using the standard regularity results for the
Stokes operator [4 ] [20 ] [24 ].
We then deduce from (2.15) :

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



11LINEARIZATION AND NORMAL FORM

Finally it comes (cf. derivation of (2.11)) that

From (2.17) it is now easy to obtain (2.14) recursively, using (2.15), (2.16),
the estimates (1.3), (1.8) and the regularity results for the Stokes operator.

This closes the first step in the expansion. 
~

Before proceeding to the general induction argument, it is instructive

to look for the next term of the expansion.
Let us first write the equation for vi .

where we set Wi = Wul.
We shall distinguish two cases
i ) We suppose first of all that ,u2 = 2Ai, i. e. 2Ai  A2 . From (2.18)

and Lemma 1, above, we deduce

where h(t ) is smooth on [c), + x) ‘dO > 0 and satisfies

Consequently,

Hence,

On the other hand, applying the projection Rk to (2. 1 9) yields:

and

Vol. 4, n° 1-1987.
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This shows that, as t -~ + oo,

In fact, one has

The treatment of the contribution of the first and third terms in (2.23")
is straightforward, while for the second term we have to use the fact that
the Rk’s are mutually orthogonal. Now, we set 2Ai 1 = 112 and

This series converges in H and in D(A). We then define WIl2 E D(A) as

and set

Let us now check point iii ) in Theorem 2. W~,2 is clearly quadratic in 
Moreover,

This proves in particular that WIl2 E 
For the remainder term v2 in (2.26) one has the decay estimate

We omit the proof since it is a particular case of Lemma 3 below
ii) We now assume that ,u2 = A2, i. e. 2A1 > A2.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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From (2.19), one obtains, taking first the projection R2 and multiplying
by evA2t:

which proves that lim exists. We shall call it In fact,

using (2.18) it is easily seen that

Thus from (2. 27) we finally infer:

and

It can be shown that ( I v2~t ~ = O(e - v~~‘2 + E2>tdm~ but we omit the

proof since it is a particular case of Lemma 2 below.
After having given the first two steps of the expansion, we now proceed

to the general induction argument.
Let us assume that we have the expansion

where = 1, ..., N and vN satisfy the properties i ), ii), iii ) of Theo-
rem 1 (The case N = 1 has been proved above).

Inserting the expansion (2.30) into (1.9), we obtain the following equa-
tion for vN

Let AkN + 1 be the first eigenvalue of A which is strictly greater than ,uN.
We shall distinguish two cases :

Vol. 4, n° 1-1987.
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Then, obviously, = AkN + 1. By property iii ), (2 . 3) of Theorem 2,
(2. 31) can be simplified as follows:

We apply the projection RkN + 1 on (2. 33) to get

where { ... } denotes the remaining terms in (2.33). Finally, one obtains

which proves that

Let us notice at this stage (this will be useful in the proof of the ana-
lyticity of our linearizing transformation that from (2.33) it follows at
once an explicit expression for 

We have finally proved :

and

where W AkN + 1 E RkN + 1 Hand vN+i is as smooth as u. In particular,

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



15LINEARIZATION AND NORMAL FORM

The asymptotic behavior of is precised by the

LEMMA 2. - For every m > 0, one has

Proof - We first establish that

We recall that there ,uN + 1 - 1 ~

Since vN = - it’ one gets

and by (2. 35), we have

which proves that

On the other hand, for any A~, 1  j  kN, it follows from (2 . 33) :

and

This equality yields, since - 

__ i. e.

and (2.40) is proved. 
-

Let now Q = I - (Ri + ... + RkN+ 1), so that QVN+ 1 - QvN. By (2 . 33)
one has

where !! bN(t) ~m = for every m  0. Therefore for any
8 > 0 small enough we have :

Vol. 4, n° 1-1987.
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and

Finally one gets :

if we chose a priori ~ > 0 small enough in order that AkN + 2( 1 - E) > 
It remains to deal with the higher Sobolev norms. To do that we set

03BD(j)N = dj03BDN dtj. 
This function obeys the equation:

By induction on j we obtain from (2.37) (2.42) (1. 8) and the decay esti-
mate on vN(t) that

We now apply the projection Q to equation (2.42) and we get (using
(2 . 43) and ( 1. 7))

and we deduce from (2.44) that

From (2.45) and (2.42) one obtains inductively, using (2.31) (2.43),

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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the estimates (1.3) (1.8), and the regularity results on the Stokes operator,
that

This together with (2.40) yields (2.39). D

CASE II. - There exists ,uN, ,u~ _ ,uN such that

We then set

From (2 . 31) and Property iii ) of Theorem 2, we obtain

One gets by the induction hypothesis:

where hN is smooth and satisfies

(Note that necessarily /IN + + EN > = 1, ... , N).
Proceeding as in the second step of the expansion (case (i )), we deduce

from (2 . 49) that :

Vol. 4, n° 1-1987.



18 C. FOIAS AND J. C. SAUT

On the other hand, applying the Rk projection on (2 . 48) for k > AkN + 1leads to "

whence to

This shows that, as t ~ + oo,

where

The justification of (2.52)’ is similar to that of (2. 23)’.
We set now

(Obviously this series converges in H and D(A)). Finally, we define by

i. e.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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It is now trivial to check (2. 3) in Theorem 2. In fact, by (2. 54) one gets

It follows at once from (2.55) (and the induction hypothesis) that W~~
belongs to n V and satisfies iii ) in Theorem 2.
We now set

Obviously vN+ i is as smooth as u. The following Lemma precises the
decay of vN+1 as t ~ + oo .

LEMMA 3. - For every m ~ 0 one has

Proof - We start with a finite dimensional part of 1. Since
UN = 1 + vN+ 1, one has (recall that kN   1  nkN + 1) :
R 1 + ... + RkN)VN+ 1 U ) - ~R 1 + ... + RkN)VN(t)

and by (2. 50) we obtain

Let now Q= I- (Rl + + + + RkN ). Obviously, QvN+1= QvN=e-03BD N+1tS N+ 1

and we get with (2.51)

Since, in particular, [ - + 1 + EN + (2. 59) yields

Vol. 4, n° 1-1987.



20 C. FOIAS AND J. C. SAUT

Let us now write the equation for VN+ 1 :

We introduce the time derivatives 1 = djvN+1 dtj, j = 1, 2, 3, ... which
satisfy the equation (similar to (2.42))

From this point on we proceed as in the proof of Lemma 1 and Lemma 2.
Thus by induction on j, one obtains (2.61), (2.62) and the decay estimates
(consequence of the induction hypothesis) that

first for m = 0, then by a repetitive use of the Cattabriga-Yudovitch-Solon-
nikov theorem and (1.8) for m = 1,2, ... We get after taking the scalar
product of (2. 62) with 1,

Using (2.61), (2 . 62), (2 . 64), the estimates (1.3), (1.8) and again the
regularity results for the Stokes operator, one deduces

and Lemma 3 is proved. m

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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3. LINEARIZATION
OF THE NAVIER-STOKES EQUATIONS

(NONRESONANT CASE)

In this paragraph we construct a nonlinear functional mapping which
linearizes the Navier-Stokes equation, and we give some of its properties.
We recall that EXA denotes the Frechet space R 1 H ~+ R2H Q+ ... equipped

with the topology of convergence of components.

THEOREM 3. - The mapping U: f!II  ~A defined by

is analytic and one to one.

Proof - Let us prove first the second part of the Theorem.
Let such that U(uo) = U(vo). Then, Theorem 2 shows that

u(t ) = S(t )uo and v(t ) = S(t )vo have the same asymptotic expansion (2 . 2).
Let w(t ) = u(t ) - v(t ). It follows at once that:

We notice that, for some constant C, u and v satisfy the estimates

Thus, equation (3.1) is exactly of the type discussed in [8 ] § 2, and from [8]
we deduce that, unless wo = uo - vo = 0, w(t) decays exactly as 
where A(wo) is some element in the spectrum of A. But, since u and v have
the same expansions, w(t) must decay faster than e-kt, Vk > 0, so wo = 0.
This proves that U is one to one.
To prove the analyticity of the mapping U, we shall use the following

smoothness property due to Foias [6 ].

LEMMA 4. - The mapping:

is analytic from (0, oo ) x Øi into D(A). /
It suffices to prove that each component WAk of U is analytic in uo .

We proceed by induction on k.
By (2. 5), one has 

(8 

and Lemma 4 implies that uo - WA1(UO) is analytic.
Vol. 4, n° 1-1987.



22 C. FOIAS AND J. C. SAUT

Assume now that WAj is analytic for j _ kN.
We recall (cf. (2 . 37)) that has the form :

On the other hand, and

By (2. 3) and the induction hypothesis, W/lj is analytic in uo for 1 ~ j _ N.
Therefore by (3 . 3) and Lemma 4, the mapping (t, uo) - VN(t) is analytic
from (0, oo) to D(A), and the analyticity of 1 results from (3 . 2).

N

COROLLARY 1. - The mapping U linearizes the Navier-Stokes equa-
tions in the following sense :

Proof - Taking u(t ) as initial value, one has by Theorem 2

where

for all 1. Of course,

On the other hand,

where

for all N, m >__ 1. Also,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



23LINEARIZATION AND NORMAL FORM

But the obvious uniqueness of the asymptotic expansion (2.2) implies

which proves Corollary 1. )t! _

The mapping U linearizes the nonlinear spectral manifolds Mk in the
following sense :

COROLLARY 2. - u E Mk if and only if the k first components of U(uo)
vanish.

Proof - This is obvious from (2.2) and the following characterization
of A(uo) (see [7 ])

and

Let us point out again that the first non zero term in (2. 2) is 

4. ASYMPTOTIC EXPANSION:
THE GENERAL CASE

Throughout this chapter we shall assume that resonances can occur
in the spectrum of the Stokes operator A. In particular this will cover the
space periodic boundary condition (0. 3) or the case of the flow on a sphere
of (~3 (cf. [12 ]). Let us just recall that an eigenvalue Ak of A is said to be
resonant if

Ak = 03B111 + ... + for some a 1, ... , 

The following elementary lemma will be useful in the sequel. Let us also
recall that ~ denotes the additive semi-group generated by Ai, A2, A3, ...

LEMMA 5. - For E ~, we define inductively di = by di = 0
if J1i is a nonresonant eigenvalue of A di = 1 + Max (d~ + dk) if is

a resonant eigenvalue and di = Max (d~ + dk) if E Then di
satisfies : 

Proof - Let us first notice that for every ,u~ in ~ we have pi > 

(observe that at least i + j elements in ~ are  ,uj + We prove (4 . 0)
by induction on i, the inequality being trivial for i = 1. If Jli is a nonreso-
nant eigenvalue, there is nothing to prove. If k > 1, is such
that di == dj + dk or di = 1 + dj + dk, one has by the preceding observa-
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tion j -~- k  i, and on the other hand, d~ + dk _ j - 1 + k - 1 = j + k - 2;
this proves that, in each case, di - j + k - 2 + 1  i - 1. The equality
is achieved in the « purely resonant case » where Ak = k1, k =1, 2, 3, ....

N
The main result of this paragraph is the following result which is a counter-

part of Theorem 2 in § 2.

THEOREM 4. - For each N E N, the solution u of ( 1. 8) admits the expan-
sion in H :

where (1 _ j  N) is a n V-valued polynomial in t and
vN E C( [0, oo) ; V) n C~( [to, oo) ; n V), to > 0.

This expansion satisfies the following properties:
i ) ~ ~ = for some EN > 0, and all m = 0, 1, 2, ...
ii) d~ def deg W~.i ~ J - 1~ J = 1~ ..., N.
iii ) If A  f1N is a nonresonant eigenvalue, is a constant in t and

= 

iv) If f1 j  ,uN is not a nonresonant eigenvalue, satisfies the equa-
tion

If A~ is a resonant eigenvalue, one has

Moreover, for and the coefficients of order >__ 1 in 

are obtained from ..., 1 (o), after the successive inte-

grations of some explicit elementary functions (2).
6(A), can be obtained from Rl W~ 1 (o), R2W~2(o), ... , 

after the successive integrations of some explicit elementary functions (2),
where

One has also deg

REMARK 2. - The first coefficient which is not identically zero
in (4 .1) corresponds to = A(uo). In this case, it is constant in t and belongs
to RA(uo)H.

(2) See the proof below as well as Lemma 7 in § 6.
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Proof of Theorem 4. We shall proceed by induction on N. The construc-
tion of the first coefficient in (4 .1) was given in the proof of Theorem 2 in § 2.

Before going to the general induction argument, we shall construct the
second coefficient in the case where, for instance, ,u2 = 2Ai == A2 .
We start with

where

In fact, cf. (2 .19), v 1 satisfies the equation

where ~~ h(t) ~~m = +E2)t) 0.
From (4.4) we proceed as in the nonresonant case (cf. derivation of

(2.20)), to get

We multiply the equation (4.4) by evA2t and apply the projection R2
to obtain

which proves that

Finally,

Continuing, we apply the projection Rk (for k > 3) to (4.4) obtaining

and

At this point the proof is similar to the derivation of (2 . 23) in § 2. We find
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the 0 term in (4.8) being similar to that in the formulas (2.23), (2.52).
We then define W~2(t ) E H by

Let us notice that the « new part » in WIl2(t) is given by = W2,0,
It is simple to check (4.2) in Theorem 4. In fact,

This shows in particular that is smooth for t > 0. We have finally
shown that

where [ = O(e - ~~~2 + E2~t) for some suitable E2 > 0. It can be shown

(cf. Lemma 6 below) that = O(e - v~~2 + E2>t ), 0.

The general induction argument

Let us suppose that we have obtained the expansion

where the coefficient Wllj and the remainder vN satisfy the properties of
Theorem 4.

Let us set AkN + 1 == Min { A E a(A) ; A > 
We shall distinguish 2 cases

CASE I. - For j, k = 1, ..., N, one has either

i. e. 1 
= nkN + 1. This eigenvalue may or may not be resonant.

From (4.10) and the induction hypothesis on the coefficients 
we deduce the equation satisfied by 
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Let us assume first of all that AkN + 1 is nonresonant. Then (4 .11) reduces to

where

At this stage the proof is similar to the proof of the corresponding step
in the purely nonresonant case (cf. § 2). In particular, we define

This coefficient belongs obviously to E~°(S2) and satisfies iii) in Theo-
rem 4. We set

and postpone until Lemma 6 below the proof that vN+ 1(t) satisfies the
property i ) in Theorem 4.

Let us now assume that AkN + 1 is resonant. In this case, (4 11) reduces to

where hN satisfies (4.13). We obtain from (4.16) :

which yields, for Ak  AkN + , ,

By the induction hypothesis, is a polynomial in t, of degree d° _- j-1.
Therefore, is a polynomial in t of degree _ d? + d°.
By integration, we obtain from (4.17) :

where is a polynomial in t of degree _ d° + d°.
By the induction hypothesis, the coefficients can be expli-

citely expressed from 1 _ j  kN.
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On the other hand, one gets from (4.16)

But are polynomials in t of the form

where are elements in n V, which by the induction hypo-
thesis are determined by kN. Consequently,

and (4.19) can be rewritten as follows

This equation shows that

exists.

Moreover,
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Thus, we have shown that

where

is a polynomial of degree 1 + Max (d? + d°~ and such that

wkN + 1, 2(~) - o. . 
1

In order to achieve the construction of the (N + 1)th coefficient in our
first case, it remains to deal with the behavior of the projection of vN on

[I - (R 1 + ... + RkN + y ]H.
Let Ak >_ We obtain from (4 .16) :

integrating this differential system yields

Let us now express more precisely the product Pk(t) by the
last integral in (4. 26), i. e. the expression :

One has (cf. (4 . 20)) :
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Hence, by elementary computations, we get

This expression shows that Pk(t) can be written as

where is an n V-valued polynomial in t, of degree
 Max (d? + dJ), whose coefficients are uniquely determined by

1

= l, ..., kN .
It follows that

where the 0 term behaves as in (4. 8), i. e. it is similar to that in (2 . 23), (2. 52).
Now we define E H by

Let us notice that, due to the expression of Pk(t), the series in (4 . 29) do
converge in H and D(A). We insist on the fact that in (4. 29), only the term
WkN+ 1,1 (E RkN+ 1 H) is « new », since the coefficients of the other poly-
nomials involved are determined from ..., 

It remains togheck the properties i )-iv) in Theorem 4. Property it)
follows from Lemma 5; property iii ) follows from the fact
that if AkN+l 1 is nonresonant, then WIlN+l 1 --_ Let us verify iv) :
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first it is easily seen from (4. 29), (4.17), (4. 38), (4. 23), (4. 24), (4. 25), (4. 28),
(4.19), (4.26) that

On the other hand,

Thus equation (4.2) follows immediately from (4.30), (4.30’). It proves
in particular that 1(t ) has smooth coefficients. The other assertions
in iv) have already been proved. We postpone until Lemma 6 the fact
that satisfies also property i ).

CASE II. - There exist j, k  N such that

In this case, we set

The construction is the same as that in the reso-
nant case. The remainder VN(t) satisfies (4.16) with AkN + 1 replaced by

and hN(t ) satisfies (4.13) with AkN + 1 replaced by ,uN + 1. For k _ kN
where AkN = Max { A E a(A); A  ,uN + 1 ~ , we obtain as in Case I, for-
mulas for RkvN(t) which are exactly (4.17), (4.18), with AkN+ 1 replaced
Vol. 4, n° 1-1987. 2
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by The coefficients of the polynomial are again deter-
mined by kN.

For k ~ kN + 1, we obtain formulas similar to (4.26), (4.27), always
with AkN + 1 replaced by ,uN + 1. Finally one set

The coefficients of WN+ WN+ 1~3(t) are determined from 
1  j  kN. By Lemma 5, one has 1 

= degree of

(there is no shift of the degree by one since is not a resonant eigenvalue).
The verification of (4. 2) is as in Case I.

It remains in both cases to check property i ) in Theorem 4. This will
be the aim of the following lemma.

LEMMA 6. - One has

Proof - We shall give the proof in the case where 1 
= 

since the case ,uN + 1 ~ 6(A) is similar to the resonant eigenvalue case.
Let us first assume that AkN + 1 is nonresonant. As in the purely nonreso-

nant case, one proves (cf. the derivation of (2 . 40) in § 2 that

In a similar manner one deduces from (4.11) (see the derivation of (2.41)
in § 2 that

- (R 1 + ... 1 ). On the other hand, setting v(j)N= djvN dtj,
one easily checks that this function satisfies an equation similar to (2.42).
The only difference lies in the appearance of polynomials in t which do

not affect the exponential rates of decay. The analysis is now identical to
that in the purely nonresonant case; one obtains the estimates :

and then

and (4.33) follows from these estimates.
Let us now assume that AkN + 1 is resonant. The proof is modelled on
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the proof of Lemma 3 in § 2. From (4.17) and the definition of 1,

it comes immediately :

Similarly, from (4.24), one obtains

Let us now consider the « infinite dimensional » part of vN + 1. We set

Obviously,

and we get from (4. 26), (4 . 28) :

which proves that - 
Now the differential equation for is :

Denoting as in the proof of Lemma 3, 1 
= d’vN ~ + ~ , j = 1, 2, 3,... and

d; dt

similarly W(j) i =  dtjW i, one obtains the following equation for vN + 1:
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At this level, one can proceed as in Lemmas 2 and 3 above, since the
appearance of polynomials in t in (4.40) does not affect the exponential
rates of decay. One obtains :

Then, taking the scalar product of (4 . 40) with one gets

(cf. the proof of Lemmas 2 and 3 above). The proof is completed along the
same lines of those of Lemmas 2 and 3. D

5. THE EXTENSION OF THE LINEARIZATION MAP
TO THE GENERAL CASE

In this paragraph, we construct, in the general case, a nonlinear map
which is the counterpart of the linearizing map U.
To begin with, it will be convenient to denote by v) the ith coeffi-

cient of the asymptotic expansion at time t of the solution with initial data v.
The following theorem defines the nonlinear transformation and states
some of its basic properties.

(5 .1) W(uo) = uo) e R2Wn2(~ ; uo) O+ uo) O+ ...

is analytic and one to one.

Proof - The proof is analogous to the one of Theorem 3. Let us prove
the second part of theorem. Let uo, be such that W(uo) = W(vo).
Then the construction of the coefficients uo), vo) (see property
iv) in Theorem 4) shows that u(t ) = S(t )uo and v(t ) = S(t )vo have the same
asymptotic expansion (4.1). The same argument used in Theorem 3 proves
that u(t ) = v(t ), 0.

Let us now show the analyticity of W.
It suffices to prove that every component uo) of W is analytic

in uo. We proceed by induction on k. The fact that W1Bl is analytic in uo
was already proven in [7]. Assume now that is analytic for
j _ kN. We have uo) = ,1, where WkN+ 1,1 is given
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by the limit (4 . 22). It is easily seen that can be expressed in a
somewhat complicated but explicit expression as :

We recall also that

By Theorem 4, the coefficients _ are polynomials in t, the

coefficients of which are continuous multilinear functions of uo),
1 __ j _ N. This observation, used together with (5.2), (5 . 3), the induction
assumption of Lemma 5 in § 3, show that WkN + 1,1 is analytic in uo and the
proof is complete.

REMARK 3. - Of course, W reduces to U in the nonresonant case.

Because of the dependence of in t, the nonlinear transform W
does not (as it was the case in the nonresonant situation) linearize equa-

tion (1.9) into the linear Navier-Stokes equation du dt 
+ vAu = 0.

In order to give a weaker but similar property we start with an analog
of Corollary 1 in § 3.

PROPOSITION 1. - One has for s >_ 0, t >_ 0, uo 

Proof By Theorem 4 we have for all N ~ 0

where has the « right » exponential decay. The formula (5 . 4) is now
a consequence of the uniqueness of the asymptotic expansion (4. 2).
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Let us now define [0, oo) by

in such a way that

Proposition 1 leads immediately to the « linearization » process

to be compared with formula (3.4).
We recall once again that the polynomials uo) 0 = 1, 2, ... ) are

determined by elementary integration from W(uo).
In fact the nonlinear transform ~ reduces the nonlinear Navier-Stokes

equation to a linear Navier-Stokes equation with an extra-time parameter,
as shows the

COROLLARY 3. - For every uo E 0, t >__ 0, the function ~h(s; u(t ))
satisfies

Proof. - From (5.4) one gets

and by derivation :

which is exactly (5.7). )~
Concerning the linearization of the nonlinear spectral manifolds M~,

Corollary 2 extends to the general case:

COROLLARY 4. - uo E Mk if and only if the k first components of W(uo)
vanish.
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Proof - Is if similar to the corresponding proof of Corollary 2
and lies on the same characterization of M~. It suffices to observe

that if R 1 W~ 1 (o ; uo), ..., uo) vanish, then, by the properties
of the coefficients of our expansion, one has

and therefore A(uo) > 

REMARK 4. - In the case of the spatial periodic boundary condition
(0.3), it has been noticed in [7 ], Remark 7, that each spectral manifold M~
contains an unbounded, infinite dimensional linear submanifold Lk.
It is easily seen from the definition of Lk that W reduces to the identity
operator on Lk.

6. THE NORMALIZATION MAP
AND THE NORMAL FORM

In this chapter we shall prove that the mapping W reduces the Navier-
Stokes equation to an autonomous normal form and can therefore be called
the normalization map. This can be thought as a global, non formal (3),
extension of the Poincare-Dulac theory to the Navier-Stokes equations
with potential forces.
To begin with, we state a proposition which makes more precise the

behavior of W at the origin.

PROPOSITION 2. - The derivative of W at 0 is I, where I denotes the
canonical embedding V -~ ~.

Proof It suffices to prove that, for every N, the derivative of the map
(cf. (5. 2)) :

at Mo = 0 is the projection v 2014~ First, we notice that the derivative
at 0 of the integral term in (5.2) vanishes. On the other hand, one has,
for i ~ kN,

In this last case, if ,u~ E 6(A), then by using Theorem 4 and (4 . 26) (4 . 27)
(4 . 28), we obtain easily that the derivative of 1 Wk + 113(0) at uo = 0

(3) By this we mean that our transformation is well defined on In the classical Poincare-
Dulac theory, the normalization is defined by a formal series.
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is zero. The same argument holds also if a(A). Now the conclusion
follows readily from (5.2). D

REMARK 5. - One infers from Proposition 2 that for N = 1, 2, ...,
the range of nN W contains a ball centered at 0, where ~cN denotes the cano-
nical projection ~cN = ~A --~ R1H +O ... (B RNH.
Our next goal is to look for the equation satisfied by W(u(t)). This will

lead to a normal form of the Navier-Stokes equation, which of course
is the linear Navier-Stokes equation in the nonresonant case.

First we will clarify the dependence uo) in ..., 

LEMMA 7. - For every j = 1, 2, 3, ..., there exists a n V-valued
multilinear function P~, defined on R 1 H (B ... +Q depending on
a(A), B, v, such that

where uo) (lth component of the mapping W evaluated
at uo). If ..., Xkj) is a monomial in Pj(X1, ..., Xkj) of degree
mi , ..., mkj in X 1, ... , Xk~ respectively, then mlA1 +... 
If moreover j = Ak, then PiX 1, ..., X k) = X k + higher order terms.

Proof 2014 f) = Akj is a nonresonant eigenvalue. Then

= Ak~ is a resonant eigenvalue. Then, by (4.29), one has

Here we used the fact that Wk~,2(O) = 0. But

Moreover the other terms in (6.1) are multilinear functions of

(use induction and formulas (4.18), (4.27), (4.28), (4.29)). An obvious
analog of this argument proves also the remaining case :

iii) a(A).
Let us prove the last assertion in Lemma 7. By (5.4) and the beginning

of the present proof, one has for Jl j E ~
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where Wl(S(t, uo)) = S(t, uo)). Again by (5.4) we have

and finally

So if M is any monomial of Pj of degree ml in Xl, 1 ~ l _ one must

have j = m11 + ... + mkjAkr This proves moreover that

If ,u~ = Akj is a resonant eigenvalue, formulas (6.1) and (4.29), together
with a simple induction argument, show that Pj(X1, ..., = Xk~ + higher
order terms depending only on Xi, ... , X k~ _ 1. D
The following theorem gives the normal form of the Navier-Stokes

equations in the resonant case. Let v(t ) = S(t )uo, uo 

THEOREM 6. - The (GA-valued) function v(t ) = W(u(t )) satisfies the

equation

where

and

REMARK 6. - It must be noticed that equation (6.2), although non-
linear in QA, can be solved by integrating successively an infinite sequence
of linear nonhomogeneous differential equations in RkH, k = 1, 2, ...,
each of which having already known nonhomogeneous part. D

Proof It is based on the following trivial observation : if one has a

dynamical system where

S(t; v) = v(t ).
Thus if v(t ) = W(u(t )) = W(S(t )uo) (Vuo E is a solution of such an

autonomous differential equation in then ~V’ must be defined by

For the k-coordinate JV’k of ~, we have
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hence by (5.4) and (4.2)

Obviously, if Ak is not a resonant eigenvalue, the nonlinear term in (6.4)
is zero. The theorem follows now from Lemma 7. 0

COROLLARY 5. - A necessary and sufficient condition that our normal
form (6.2) be linear, i. e. ~ = 0 is that

Proo,f. If (6. 5) holds, for any k, choose j such that k~ = k. Then, applying
Rk to (6. 5) for this j, we obtain ~k ~ 0.
On the other hand, from (4.2) (with an obvious interpretation if ~u~

is a nonresonant eigenvalue) and from (6.1’) we obtain :

where Di denotes the f-h partial derivative and the dot the time derivative.
Taking in (4 . 2) ,u~ = Ai, and applying the projection Ri we deduce

So if ~ _--_ 0, the first sum in (6.6) vanishes. (6.5) follows now from (6.6)
and Remark 5 with N = kj. D
We now turn to the problem of the uniqueness of our normalizing

mapping W.
We shall start with a very simple observation.

REMARK 7. - Let 0 = (O k )k 1, 0 : ~ --~ ~A be a C 1 mapping such
that O’(0) = Id and which linearizes the Navier-Stokes equation, i. e.

such that 0(u(t)) = e-vtA0(uo) for every solution u of (1.9). Then, one
has 03981(v) = Wl(v), Vv E 
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Proof In fact, one has in particular for every regular solution u of ( 1. 9)

where and satisfies = o( ~ u(t ) ~ ). Thus,

But

Finally, 01(uo) = lim evAltR1u(t) = = W1(uo). D

A more complete picture is available when 6) is analytic. This will be
the aim of the next theorem.

THEOREM 7. - Let O : ~ -~ !fA be an analytic mapping satisfying
O’(0) = Id and linearizing the Navier-Stokes equation. Then

i ) If Ak is a nonresonant eigenvalue, one has 0k = Wk. In particular,
if A is nonresonant, 0 = W.

ii ) If Ak is a resonant eigenvalue, one has for all u0 ~ R

where the P6i = ..., were defined in Lemma 7.

REMARK 8. - 1) If 0 is known explicitely, Theorem 7 provides effective
formulas to compute W. This fact will be used in § 7 below in connection
with the Cole-Hopf transform for the Burgers equation and the Minea
system.

2) Taking 0 = W, formulas (6. 5) yield the relation (with a slight abuse
of notation) :

when Ak is a resonant eigenvalue (see also the proof of Theorem 7 for other
related properties of W in the resonant case).

(4) D’"Ok(0) denotes the mth derivative of Ok at 0. We refer to [3 ] for the elementary
theory of analytic mapping between functional spaces.
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3) As a by product of the proof of point i ) we shall obtain more infor-
mations on W; in particular it will be proven that, in the purely nonreso-
nant case :

Proof of Theorem 7. For every N >__ l, we have for every solution u
of (1.9)

where vN satisfies the right exponential decay (see Theorem 4 i )).
On the other hand, the assumptions made on 8 yield for k > 2

(this holds provided that t is large enough to make u(t ) so small that the
series converges).

Applying the projection Rk to (6. 6) we get :

Introducing (6 . 6) and (6 . 8) into (6 . 7), we obtain :

where we have set P~ = 2014(D~)(0) and we have define the integer f(~)k,m m ~ ~ k~~ ~ ge i(k)

by ,u~~k~ = Ak. Note that in the last two sums, the elements may not

be distinct ; also the corresponding m’s are such that m _ 
Ai
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Let us suppose first that Ak is not resonant. Then (6.9) implies

This equality can be written as

Letting t -~ + oo one sees that the polynomials in t, { ... } must vanish
identically (this gives in particular the point 3 of Remarks 8), and then

If Ak is a resonant eigenvalue we obtain

Letting t -~ oo, one sees again that the polynomials { ... } must vanish
identically, and that the polynomial

must be constant. One obtains finally (recalling that Wk(uo) = 
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Using Lemma 7 and its notation we infer from (6.14) that

and the proof of Theorem 7 is complete. 0

7. SOME EXAMPLES:
THE BURGERS EQUATION
AND THE MINEA SYSTEM

As we mentionned before, our methods apply to a large class of equa-
tions, including the Navier-Stokes equations. To illustrate Theorem 7
we shall emphasize first the case of the Burgers equation.

complemented with the periodic boundary conditions (for a > 0 fixed)

The previous analysis is still valid for equations (7 .1 ) (7 . 2) in the following
functional setting.

We define f = { u = trigonometric polynomials, a-a udx = 0, u satisfies
(7 . 2)}; R = V = closure off in H1( - a, a); H = closure of f in L2( - a, a).

d2
The operator A is self-adjoint unbounded in H and has the pure

f n~ 4n~ 2 2 

point spectrum 1 = 03A02 a2, 2 
= 

403A02 a2,..., k 
= k203A02 a2,...} (all the eigen-

’ 

values are resonant : Ak = k2A I ) .

Finally, by setting B(u, u) = u 2014, the space periodic Burgers equation
ax

is reduced to our abstract form (see ( 1. 9))

The classical Cole-Hopf transform (cf. [24] [14]) can be obviously extended
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to the space periodic case in the following way: for u E V, let 8(u) = v
be defined by 

. to 

It is easily seen that v is still periodic and that vdx = 0. Moreover

the mapping O - V ~ (V c) GA = R1H C R2H Q+ ... (5) is clearly
analytic. Also

i. e. 8’(0) = Id.
Also it is straightforward that this 8 linearizes the Burgers equation:

for every regular solution u(t ) of (7 . 3), one has

One can therefore apply Theorem 7, which shows that in this case, our
mapping W can be explicitely computed in terms of the Cole-Hopf
transform.
Another instructive example is the following Minea system [5 ] [15].

where u = 1 E H = 0  ~,1  ~,2  ... 
-~ oo .

This system enters in the class of equations of type (1.9) to which our
previous considerations can be applied. In this case A is the diagonal ope-
rator with diagonal entries (~,1, ~,2, ... ) and is the space of all
numerical sequences. In order to determine the normalization mapping
and the normal form of (7 . 5), we will study the map from H = to

defined by :

where S(t, . ) as usual denotes the nonlinear semigroup associated to (7 . 5).

(~) Here we still denote Ri the projection on the eigenspace of Ai,
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Then 0 is analytic from to its derivative at u = 0 being easily
seen to be the canonical imbedding from into Moreover

v(t) = O(S(t; u)) satisfies in the differential equation

Let us check that 8 is one-to-one. For this aim let 1, v = ( ~3~)~° 1
be such that 8(u) = 8(v). Then using (7.7)

from where we infer that

From (7.8) and (7. 5) we obtain

If there exists a j >__ 2 such that let jo be the first one with this
property. Multiplying (7 . 9) with and letting t go to +00 we obtain

’ 

the contradiction aJa == ~i~ . Hence a~ - /3 J , for all j >_ 2, and thus by (7 . 6),
(X~ == ~3~ for all j >_ 2. One can now apply Theorem 7 concluding that
in the case of the Minea system our normalization mapping W can be expli-
citely computed from the 0 defined by (7 . 6). Moreover we can also deduce
from Theorem 7 that if the spectrum (~,1  ~,2  ... ) of A is nonresonant,
then W = 0 and our normal from coincides with the linear system (7. 7).
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