
A priori interior gradient bounds
for solutions

to elliptic Weingarten equations

Nicholas J. KOREVAAR

Department of Mathematics, University of Kentucky,
Lexington, KY 40506 U.S.A.

Ann. Inst. Henri Poincaré,

Vol. 4, n° 5, 1987, p. 405-421. Analyse non linéaire

ABSTRACT. - In this paper a maximum principle approach is used to
derive a priori interior gradient bounds for smooth solutions to the Wein-
garten equations

Here ~, = ..., is the vector of principal curvatures of the graph of
u at a point (x, u (x)) on the graph, with downward normal v. One requires
a one-sided height bound ( u  o), natural structure conditions on the

prescribed function and the restriction that all A lie in a certain cone
of eigenvalues for which f is elliptic. The result generalizes what is known
to be true for the prescribed mean curvature equation ( k =1 ).
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RESmvtE. - Dans cet article une méthode de principe du maximum est
employee pour deriver une majoration a priori des gradients interieurs
pour les solutions C3 d’equations elliptiques de Weingarten :
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ici ~,=(~,1, ..., Àn) est le vecteur des courbatures du graphe de u au point
(x, u (x)) de ce graphe avec un normal (vers le bas) v. Il faut avoir une

majoration (u  o), des conditions naturelles sur la fonction et la

contrainte que tous les À se situent dans un certain cone de valeurs propres

pour lesquelles f est elliptique. Ce résultat généralise ce qui est connu dans
le cas de l’équation de la courbature moyenne (k = 1).

In this paper we extend a method (described in an earlier note [11])
that was used for the prescribed mean curvature equation to derive a

priori interior gradient bounds for bounded solutions to the prescribed
Weingarten equation

In equation (1), ... , ~,n) is the vector of principal curvatures
of the graph Su = {z = u (3c)} c (~n + 1, having downward normal

..., We often write ~, _ ~, ( Su, P), v = v ( Su, P) for PESu. The

integer k satisfies 1 _ k  n. The prescribed function u, v) is assumed
to be C 1, satisfying for some positive constants 

and if k ~ 1, the additional inequality for constant 0,

[In (2) one acutally only needs the one-sided bounds ~ru >_ o, 1 _ 0 for

those two partials.] There are also natural restrictions on the admissible
values of ~,, related to the ellipticity of ( 1). They are the requirements that

..., ~ i (distinct), that are principal curvature vectors of S~ [This
requirement that all derivatives be nonnegative is discussed below.]
The result of this paper is
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Because a dilatation of (~" + 1 preserves the structure of statements ( 1)-(4),
the main theorem yields a priori interior gradient bounds for balls of

arbitrary radius. From the proof it will also be clear that one can derive
local estimates near the boundary of a domain if one has local estimates
on the boundary.

Weingarten and related nonlinear elliptic equations have generated much
interest recently because they are a natural generalization of the prescribed
mean cruvature and prescribed Gauss curvature equations. As of this

writing, the question of existence and regularity for solutions to the

Weingarten-Dirichlet problem does not seem to be completely solved, but
the solution appears near. Some of the works in this progression are listed
in the references [1], [2], [4] to [7], [10], [12], [13], [14] and [16]. In particular,
L. Caffarelli, L. Nirenberg and J. Spruck (C.N.S.) have solved the problem
for surfaces parameterized as graphs above a sphere (no Dirichlet data)
[7], and for the Dirichlet problem in !R", when the vector A of principal
curvatures in ( 1) is replaced by the vector of eigenvalues of the Hessian [6].
The value of an a priori interior gradient estimate, aside from its natural

geometric significance, is that in the presence of a complete theory, it

yields interior compactness results for sequences of smooth solutions. One
can then often extend existence and partial regularity theorems to domains
for which they cannot at first be shown. Many papers have been written
about the a priori interior gradient bounds for the prescribed mean curva-
ture equation ([3], [8], [ 11 ], [15], [17]).

In the main theorem, the case k = n is not included. This is because for
the Gauss curvature equation ellipticity forces one to consider only convex
functions, for which the interior gradient bounds of the form considered
are trivial.

Before proving the main theorem, we explain the requirement (4). We
show that À satisfies (4) with strict inequalities and f(À) > 0, if and only if

the admissible cone of eigenvalues considered by C.N.S. in [6] :

r = !R" s. t. À is in the component of 

containing all positive ~, ( ~,i > 0, 
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C. N. S. are led to this cone naturally by the two requirements that some
function of f be a concave function of A and that bounds |03BB| ~ M, f >_ 0

imply uniform ellipticity: f~i >_ b > o, d i. These two requirements allow the
method of continuity to work in the existence and regularity theorems
that are proven in [6] and [7].

In Section 1 of [6], it is shown that is concave on the convex set r
and that as a consequence 0, d ~, E r. (Results from [9] are used.) This
is the first inequality (strict) of (4). If k >__ 2, then f~i is itself a Weingarten
curvature equation

defined for vectors ~, = ..., ..., ~,"). The component 
containing all positive X contains because

f~l > 0 on rand r n is a convex set (hence component) of 
containing positive X. Thus since now ( f~i)~~ > 0 on it follows that

on x This is the second inequality (strict) of (4). If

k ? 3, the remaining inequalities follow inductively.
Conversely, let r’ be the set of vectors À for which f (~,) > 0 and

for which (4) holds strictly. We show r’ c r. If ~, > o, we are
done. Otherwise, assume ~,1  o. Consider the path
~ (t) _ (~,1 + t (1- ~,1), ~,2, ..., Àn) in M". We show that all increase

as t goes from 0 to 1 ( i 1  i 2  ... Indeed

Since any kth partial of f with respect to k distinct À/s is 1, the derivative
formula implies that all (k - 1 )st partials are nondecreasing, hence positive.
Inductively all are nondecreasing (l = k, k - l, ..., 0). Thus

~, = ..., ~,n) is connected in r’ to ( 1, ~,2, ..., ~,n). Repeating this cons-
truction several times connects ~, to a positive vector. Since r’ contains all
positive vectors and is connected, r’ c r. Thus r = r’.
To prove the main theorem, we use the same test function and technique

as in [11]. For simplicity of calculation, the computations are described
via normal perturbations.
The idea is to construct an "interior barrier" surface Su from Su by

perturbing it a small amount along its downward normal and then lifting
this perturbed surface high enough. Let 11 (x, z) be a continuous non-
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negative function, smooth (with uniform C2 bound) where it is positive.
Let ~ (x, u (x)) have compact support on Su. Perturb Su by displacing the
point P=(x, u (x)) along the downward normal v=v(Su, P) an amount

The resulting point P=(x, u) is

For small E, the inverse function theorem implies that x is a smooth

function of x when r~ > o. Thus for r~ > 0 (and s small), the points (x, u)
describe the graph Su of a smooth function u. (u depends on s but we
suppress the dependence.) Subsequent calculations are only assumed to

make sense for E sufficiently small.
The two properties of Su that enable it to be used as a barrier are that

P)), v (Su, P) can be estimated from P)), v (Su, P) and that
the height difference between Su and Su at x (or x) is

Ell (P)./! + + O (E2). The second property follows because the
difference in height (above x) between P and the tangent plane 1t (Su’ P) is
exactly Ell (P) )1 + I Du (x) f. [Here and later, 0 (E2) terms are allowed to
depend on C3 norms of The first property is a consequence of
Lemmas 1 and 2 below.

Let the letter w represent a function w (x) whose graph in a fixed (x, z)
coordinate system is Sw. If A = (xo, w (xo)) E Sw, then use the capital letter
W to represent the function that (locally) parameterizes Sw above its

tangent A). That is, pick orthonormal coordinate vectors
fi, ... , fn for x and let fn+ 1 be the upward normal to x. Let A be the
origin. Then for y=(y1, ..., y"), Iy ( small, require to

parameterize Sw near A. (In this paper, repeated indices other than n are
summed from 1 to n. ) We write W (y) for 

LEMMA 1. - Let ei, ..., en, en+ 1 be orthonormal coordinates of 1,
with e" + 1 pointing in the positive z direction and el, ..., en chosen so that
el, ..., en- i are perpendicular to Dw (xo), which is a nonnegative multiple
of en. Let fi, ..., fn be corresponding coordinates in x A),
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Then, letting subscripts refer to differentiation with respect to corresponding
coordinates,

We call the matrix ~2 W the tangential Hessian of Sw of A. It is
one way of expressing the second fundamental form of Sw at A. (See Lemma
1. 1 of [7]. )
The proof of Lemma 1 is straightforward. Points A near A on Sw can

be expressed in both coordinate systems:

Using (6), (7) yields

Thus

so that

Using (8), (9) one calculates
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Using these formulas in ( 10) and the identity yields Lemma 1:

LEMMA 2. - Let Su and Su be the solution surface and perturbed surface
described earlier. Let, P, P), U correspond to P, v ( Su, P), U under
the perturbation by sqv. Then

and given coordinates in x (Su, P), there are correpsonding coordinates in
~c ( Su, P) so that

[Again, O (E2) terms depend at most on C3 bounds for u and C2 bounds
The term ~T ~ in ( 11 ) is the tangential gradient,

DT r~ = V r~ -(D ~ . v P)) v P). The term ~~ = D ~ . v P).]

Proof. - Using the chain rule and (5), one can directly calculate first
and second derivatives of u with respect to x. This is done in [11). From

(26) there we have, in the case Du (x) = 0, (so that at P and P

In these cnnrdinates

so ( 11) holds.
Apply Lemma 1 to the function w = u. Because 

S =1 + O (c2). If the coordinates P) P) are chosen as
in the lemma, formula ( 12) follows from ( 13) (and If any other

coordinate system is used P), it differs from the first by an
orhtogonal transformation. Pick a corresponding system in P) diffe-
ring from the one in Lemma 1 by an orthogonal transformation with the
same matrix. In computing the matrices of ~2 U and ~2 U with respect
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to these new coordinates, the original tangential Hessians will be conjuga-
ted by the same orthogonal matrix. So will be the three O ( E) terms in
( 12). Thus (12) is true in the new coordinates also, and Lemma 2 is proven.
We wish to study f(À) where the height difference between Su and Su is

maximized, using ( 1)-(4), ( 11), (12). In calculating, we will not be able to
assume that the Hessians under consideration are diagonal. Thus it is

important to write the function in terms of the tangential Hessian:

This formula is true because F (~2 U) is a coefficient of the characteristic
equation of the matrix [U~~] and is invariant with respect to conjugation.
Choosing coordinates in which [U~~] is diagonal with entries À1, ..., Àn,
F (~2 U) equals f (~,).
From ( 14) the following important fact follows:

This is because under changes of coordinates is conjugated by orthogo-
nal matrices so its positiveness is invariant. If coordinates are chosen so

that ~2 U is diagonal, then from ( 14) one can see that is a diagonal
matrix with diagonal entries In fact, the same reasoning shows that
the other inequalities in (4) can also be stated in terms of derivatives of
F, and we will need them.

LEMMA 3. - We have the following equivalence:

To prove Lemma 3, we first show that the second condition is invariant
under rotation of coordinates. Let 8 be an orthogonal matrix and
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Then

so that

for

Therefore it suffices to check ( 16) in the case ~2 U is diagonal,
Uij=03BBi03B4ij. In these coordinates, f03BBi1 ...03BBil = FUi1 il ... Uilil. The implication =
is then immediate if f or fixed ( i 1, ... , il) we pick 03BE by

We show + as follows. Realizing that FU~1 li ~ ~ ~ U~l l1 is the sum of all terms
in (14) that contain the product Uil J1 ~ ~ ~ divided by this product,
yields for Ui_; = ~i S‘’
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, 
Therefore

Thus => holds and Lemma 3 is shown.
Since the perturbation function 11 (x, u (x)) has compact support on Su,

~ y where is maximized. Then y = x for
some x. Continue to write P= (x, u (x)), P= (x, u (ac)) and call (x, u (ac)) = P.
We almost have a maximum principle for f above x:

LEMMA 4. - Let P, P, P be as above. Then because u - u attains its
maximum at x,

Proof - Since u - u is maximized at x, calculus implies

From Lemma 1 this implies that in corresponding coordinates

We also have

This is because (R) - (x) and (x) - (x) are both O (E), so their
sum is, and by Lemma 1 so is the left-hand side of (20).
To prove the lemma we use (4), ( 15), ( 19), (20) and compute
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Both sides of ( 17) can be estimated in terms of P)) and derivati-
ves of ~ at P. For appropriate ~, we will show that (17) cannot hold if

I Du (x) I is too large. This will lead to the desired a priori bound. (In other
words, if Su is lifted a large enough multiple of s in the z-direction, this
argument will show that the lifting lies above Su, motivating the earlier
use of the words "interior barrier".)
From calculus and ( 1),

where v = v (Su, P). From (12), (14),

[We write FUi~ (~2 U (P)).J Combining (17), (21), (22) along with
(2) yields the estimate

for s sufficiently small. Because and because 0, (23)
implies 

~ 

As in [ 11 ], pick where

and

Because u  0, 11 (x, u (x)) is continuous and has compact
support on Su, inside B1 x ( - oo, 0). From (25),
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From (24), (25), (27)

We show

LEMMA 5. - If P, P, P, cp are as above 3 M4 s. t. I Du (x) I > M4 implies

Here, as elsewhere, all constants depend only on n, k, M, uo. We
are finished after proving the lemma, since we then pick K in (26) large
enough so that (28) is violated. Therefore I Du (x) (  M4 and for x E B 1,

from which the desired bound follows:

For the case of mean curvature, k =1, Lemma 5 is contained in the
calculations of [11], so we restrict to 2 _ k _ n-1. We isolate the direction
of steepest ascent P)-the nth direction. Pick the first n -1 direc-
tions (along which x is horizontal) so that the submatrix [Vij], 1 

~ i, j  n,is diagonal with decreasing eigenvalues ~.2 >_ ... ~ ~-i. That is,
with respect to these coordinates, ~2 U (P) has the form

Since Uii = we will often write F i for 
The first order contact (18) yields information about Uni, 1 ~ i _ n:

Calculating in the coordinates of x, using (13) and calculus, yields
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This is because to within 0 (E2), one must travel an amount Ell |Du (x) (
along x in the nth-direction to get to the projection of P onto x. From

In particular, sipce ~Z 1 > 0, it follows ( see [11]) that for
2 uo

Thus (for s sufficiently small)

We need the following inequalities to prove Lemma 5.

The symbols   in (34), (35) mean that i 1  ... and j1  ... jr.
To prove (34) then (35), note (4), ( 16) and that

for

Thus F~ ~ ~0. Using (31), compute this derivative in the case that
some ~=~(34), and then if no (35).

Vol.4,n°5-1987. ’" . ,
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Remark. - There is an alternate proof of (34), (35). One can show that
if 03BB = ..., 03BBn) E r and if =( 1, ..., is defined by

then also ~0393. (If 2 U is the conjugate of [03BBi03B4ij] by 03B8, then k = 03B82ki X;.)
The characterization (4) of r then r >__ 0, (34), (35).
Use (34), (35) to prove (36) as follows. From ( 14), (31),

Since F > 0, there must be some terms in the sum of (37), and the largest
is ~.2 ... J-lk (since J-ln  0). There are at most ( n -1 ) ( n - 2) ... ( n - k )
terms possible. Thus (37) implies (36).

Returning to the lemma, note that

The third term in the sum is nonnegative since ~ 0. The condition

(32) kindly makes the second term nonnegative to within O (s), for
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we have

Thus for |Du (x) >__ M4, it suffices to show (29) by finding b > 0 so
that

Since ?~ ~ 2014j it suffices to find §1 > 0 with10u0

Using (34), (35) 0 yields

Now use the apparently crucial hypothesis that B)/ is strictly positive. From
(36), (3), (40),
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so that

Because is positive semidefinite, sup |FUll| dominates II (I. But
r

f or any l ~ n, ( 3 5) implies

As in the proof of (36), equations (34), (35) imply after a chain of

inequalities that

so that by (40)

Combining (42), (41), one can pick ~1 to make (39) true. Thus Lemma 5
and the main theorem are proven.

Isolating the dependence of the gradient bound (30) on uo and chasing

constants, one can see that K ~ 1 03B4 ~ u20 so that our gradient bound has

the form

Since the best estimate for the prescribed mean curvature equation grows
only like C1 e~2 u~, it is possible that the bound (43) is not optimal.
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