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ABSTRACT. - Consider the diffusion equation (where

p > 1 + 2 and ( N - 2 )P  N + 2 ) on the space We prove that either
N

~ ~ u (t) ~ ~ ~ blows-up in finite time or I ( u (t) ~ I ~ goes to zero like t -1 ~~p -1 ~ as
t - + oo. We give also a new proof to the fact that when u (t) >_ 0 and

1   1 + 2 then blows-up in finite time. Sufficient conditions- 

N 
~~ ( ) ~~~ p

for global existence or blow-up are given, and the case where instead of
one has a cone like domain is also studied.

RESUIVtE. - Nous etudions le comportement en temps des solutions de

ut-0394u=|u|p-1u. Nous montrons que si p>1+2 N et (N-2) pN+2,
N

ou bien I I u ( t) ~ ~ ~ explose en temps fini, ou bien I u ( t) ( ~ ~ tend vers zero
comme t -1 ~~p -1 ~ lorsque On donne cgalement une nouvelle

demonstration du fait que si 1  -1 + 2 et u (t) >- 0, alors !! M ( t) ] ] , exploseq P- 
N 

( )- ~) ( ) ~~~ p

en temps fini. Des conditions suffisantes pour 1’existence globale (ou
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424 O. KAVIAN

l’explosion en temps fini) sont presentees, et le cas ou (RN est remplace
par un cone est également etudie.

Mots clés : Time behaviour, blow-up, global existence, diffusion equation.

1. INTRODUCTION AND MAIN RESULTS

Here we are interested in the time behaviour of solutions to:

By a result of H. Fujita [6] it is known that for 1 /? 1 + 2014, if 

then the solution blows-up in finite time. The same conclusion holds when

~==1+ 2014, and this has been proved by K. Hayakawa [9], K. Kobayashi,P N 
p Y

T. Sirao and H. Tanaka [10] and alternate proofs have been presented by
D. G. Aronson and F. H. Weinberger [1] and also by F. B. Weissler [13].

positive global solutions to (1.1) exist. For instance,
N

it has been observed by A. Haraux and F. B. Weissler [8], there are

self-similar solutions to ( 1. 1) i. e. solutions such as:

where f satisfies

and f > o. Then it is clear that for any io > 0, u (t + io) is a global solution
to ( 1. 1 ) . Actually as it has been observed later on by F. B. Weissler [14]
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425LARGE TIME BEHAVIOUR OF A DIFFUSION EQUATION

and M. Escobedo and 4. Kavian [3], for p> 1 and (N - 2) p  N + 2, ( 1. 2)
has infinitely many solutions which are dominated by a Gaussian, but

among these solutions there is a positive one if, and only if, 20142014  2014.

Note that N is the least eigenvalue of the self-adjoint operator L 2

below) defined by:

If we consider the evolution equation

then a change of variable transforms (1.1) into (1.3) and solutions to
( 1. 2) appear as stationary points of (1. 3). Indeed define for y e 

then if u satisfies (1.1), ~ satisfies (1.3) with Conversely if one

knows a solution v of (1. 3) with X = 20142014 ) then defining B 

one checks easily that u satisfies (1.1) with uo = vo.
The interest in this change of variable lies in the fact that the operator

L, defined above, has a compact inverse and therefore equation (1.3) can
be studied in the same manner as the heat-equation in
a bounded region Q c This observation has been exploited in M.
Escobedo and O. Kavian [4] where it is proved that solutions to

on jRN behave like a self-similar solution as 
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(see also M. Escobedo, O. Kavian and M. Matano [5] for a complete
description of the time behaviour of the positive solutions of this equation).

For example let us prove (rapidly) that, when 1  p  1 + ,anypositive
N

solution of ( 1. 1) or ( 1. 3) blows-up in finite time. One can check that:

then consider ~: = c (E) (~ i + £ ( for an E> 0 which is going to be fixed) such

that K dy = 1. Now N(1 2 +E) t~, and multiplying ( 1. 3) K, and

integrating by parts we get:

By Jensen’s inequality and the fact that N(1+~) 2)03C8 we

obtain:

Here we may choose E > 0 small enough in order to have

~ - N ( 1 + E) > ~ (this is possible because z?  1 + 2 > 2014 ).2 
- 

B 
p p 

N p -1 2

Then the above differential inequality proves that if 

cannot exist globally on s > o. (In section 3 we shall return to this discussion
in more details.)

In this paper we study the large time behaviour of solutions to ( 1.1)
through the evolution equation ( 1. 3). In the sequel we use the following
notations:
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427LARGE TIME BEHAVIOUR OF A DIFFUSION EQUATION

[analogously H 2 ( K) _ ~ f E H 1 ( K); ]

For v~H1 (K) and 03BB fixed in R define the energy:

(1. 10) THEOREM. 2014 Let Xi (:= N 2) be the least eigenvalue of L on

H~ (K) .
Assume that X  03BB1, vo e Lp+1 (K) Q H1 (K), and consider

Solution of the equation ( 1. 3) ~.

(i) If (vo) _ 0, then T * is finite [i. e. v (s) blows-up in finite time].

Vol. 4, n° 5-1987.
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If

and:

then T* = 00 [i. e. the solution v (s) is global in time].
Next, concerning the blow-up we have

1. 11 THEOREM. - 03BB1 ( : = N and v0~0, vo >_ 0, then the maximal

solution of (1. 3) blows-up in finite time.
[By the "maximal solution" we mean a solution v satisfying ( 1. 3) and

such that v E C1 ([0, T* [, L2 (K)) (~ C ([0, T*[, H1 (K) n Lp+ 1 (K)), where

T* is defined in theorem (1.10)].
Going back to the diffusion equation (1.1) we obtain as a corollary of

the above theorems:

( 1.12) COROLLARY. - Let uo E HI (K) (~ Lp+ 1 (K), and consider the maxi-
mal solution

q/’(l.l), and put 03BB:=1 (p>1).
~-1

(i) If p>1+2 N and E03BB (u0) ~ 0 then T*~ [i.e. M(t) blows-up in finite

and
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429LARGE TIME BEHAVIOUR OF A DIFFUSION EQUATION

Then T* = ~, f. e. the solution u (t) of ( 1. global.

(iii) 1 1  - 1 + 2 and u >- 0 0 then u t blows-up in anite time.

[Here we do not need uo e H~ ( K) U Lp + 1 (K).] ]

We would emphasize that the "critical" exponent 1 + 2 N is closel y

related to the least eigenvalue of L on H1 (K). In section 4 we give
examples of positive solutions of ( 1.1) when is replaced by some cone

like domain such as ( I~ +) N ( or I~N -1 x (~ +) or
N N B

1 + 2  _ 1 + 2 . The large time behaviour of global solutions of
N+ 1 

P- 
N/ 

g

( 1. 1) is given by:

(1.13) THEOREM. - ~~~~~>l+~,(N-2)~N+2,MoeH~(K),
N

and consider a global classical solution u (t) of the equation ( 1. 1 ). Then
More precisely define

v(s,y):=es/(p-1)u(es-1,es/2y) [ hence v satisfies (1.3) with 03BB:=1  and
L 

v (0, y) = uo (y) . Then for any a > 0, sup (s) ~~~2 ~~N~ is finite and the m-lim itJ 
set of v (s) as s ~ ~ is contained in the set of solution to the equation ( 1. 2).
[Here ( ( Du ~ I ~, 

This means that when t -~ oo there is a subsequence and an

(K) satisfying ( 1. 2) such that

i. e. u (t", . ) is close to the self-similar solution .

The remainder of this paper is organized as follows:
2. Preliminary results and Proofs of theorems ( 1. 10), ( 1. 11).
3. Proof of theorem (1.13).
4. Some observations about the case of cone-like domains.
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5. Appendix.
The author wishes to thank Thierry Cazenave for some helpful conversa-

tions about this work.

2. PRELIMINARY RESULTS
and Proofs of theorems (1.10), (1.11)

We recall here some results about the weighted Sobolev space HI (K)
and the operator L.

(2.1) LEMMA. - (i) There exists C > 0 such that for any uEH1 (K):

(ii) The embedding H1 (K) ~ L2 (K) is compact.

(iv) u e H ~ (K) « K ~ /~ u e H ~ 
( v) For any there is a unique such that Lu=f

( vi) 03C61: = exp ( -|y |2 4) is an eigenfunction of L corresponding to

Xi =N 2 = the least eigenvalue of L L 03C6i = N 203C61) .

(vii) Lis a positive self-adjoint operator on H2 (K) = D(L), with compact
inverse.

For the proof of this lemma see section 5 below. As a consequence we
have :

( 2 . 2) COROLLARY. - The operator L is the generator of an analytic
semi-group S* (s) on L2 (K). More precisely if
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and

then v (s, y) = u ( eS -1 y) = S * (s) vo, so that dv + L v = 0. Furthermore we
ds

have the following properties: 
‘

The proof of this corollary will be given in section 5 below. In order to
prove theorems ( 1. 10), ( 1.11) we need some preliminary results.

(2. 3) LEMMA. - Let À E R be given and assume that for some T*  oo,one has a solution v E C1 ([0, T*[, LZ (K)) n C ([0, T*[, D (L)) satisfying:

Then

Proof - The argument is almost the same as in L. E. Payne and D.
H. Sattinger; we repeat it for the reader’s convenience. Multiply (2.4) by
vs and v [in the sense of L~ (K)] to get:

It is clear that (2. 5) implies (i). Now if we had, (so) (I = 0, then v (so)
would satisfy: L v (so) = I v (so) Ip - 1 v (so) + ~ v (so) and (v (so)) _ o. But

multiplying this equation by v (so) we get
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[because X  X i and ( L v (so) ] v (so) ) > Xi ] ] v (so) ~2] and this would imply
v (so) = 0. Hence we may assume s0 = 0 and  0. Now define

f(t) : = - 2 i ~o t ] ] v (s) ] ] ~ ds. By (2 . 5), (2 . 6) we have

First observe that as E~ (v (t)) _ E~ (v (o))  o:

and if we had then this inequality would yield
lim f ’ (t) = lim f (t) _ + oo. Now using ( 2 . 7) in ( 2 . 8) we get:

t - oo t -~ 00

and multiplying by f (t) we obtain:

But by Cauchy-Schwarz’ inequality:

Therefore

and as t - oo we have for some a > 0 and 
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Hence is concave on [to, + oo ], and lim 
f --~ 00

This contradiction proves that T*  oo. N
We recall here that due to the compactness of the embedding

H 1 (K) ~ Lq (K) for 2  q and (N - 2) q  N + 2, one can easily check that
a (p) [defined in theorem (1.10) (ii)] is achieved (N - 2) p  N + 2.

When (N - 2) p = N + 2 and Max 03BB03BB1, a ) is achieved but hte

proof is somewhat more difficult. All these have been proved in [3]. If
moreover it is easily seen than a (p) > 0, for any p> 1,
(N - 2) p  N + 2. The following lemma is contained in D. H. Sattinger
[12]:

(2 . 9) LEMMA. - Under the hypotheses of theorem ( 1.10) (ii), the solution
v (s) is global in time.

Proof - By lemma (2 . 3) (i) and the definition of a (p):

(here for convvenience we put

which makes sense because 

and

then as long as v (s) exists we know that z (s)  z*. This proves that

1- y (L v (s) I v (s))  z* and v (s) exists globally in time..
Vol. 4, n° 5-1987.
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(2. 10) Proof of corollary (1. 12). - It is clear that lemmas (2.3) and
(2. 9) prove theorem ( 1. 10) which, in turn, implies corollary ( 1. 12) (i),
(ii). Now we prove theorem ( 1. 11) [and corollary ( 1. 12) (iii)]. As it was
mentioned in the introduction we consider the first eigenfunction of L,
namely:

(with co such that II cpl II = 1)

Then define for an E>O (which will be fixed below):

One checks and:

hence L ~r _ ( 1 + E) ~,1 ~r.
Multiplying in L2 (K) the equation

by Bj/ we get [note that as 0, we have v (s) ~ 0 for all s]:

(we use here Jensen’s inequality for the probability measure B(/K dy, and
also the choice of If E > 0 is fixed in such a way that ~, >_ ( 1 then

the function g (s) : = (v (s) I t~) satisfies:
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and this differential inequality proves that v (s) cannot exist on [0, oo [. So
theorem ( 1. 11) is proved.
To conclude the proof of corollary (1.12) (iii) we suppose that in (1.3)

= 1 and 1  _ 1 + 2 . If u0~0 we have G (t) is defined in

lemma (2. 2)].

Now assume that the solution u (t) is global. Then there exists s > 0 I in
(’ 

fact = (8 03C0)-N/2 v0 (z) exp C 14 I )dz] such that~ ~ / J

Hence if we consider

we know that [by theorem ( I . l l)] if X  Xi I. e. I  p  1 + 2 N), w(s)

blows-up in finite time; if p = 1 + 2 N (i. e. X = Xi) we observe that
N

is  0 and by lemma (2. 3) (ii), w (s) blows-up in finite time.
Next consider

Vol. 4, n° 5-1987.
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5(t) blows-up in finite time and satisfies:

But by the parabolic maximum principle:

and therefore u (t) blows-up in finite time: this contradiction concludes the
proof. D

3. PROOF OF THEOREM ( 1.13)

When Q is a bounded domain, p > 1 and (N - 2) p  N + 2, Th. Cazenave
and P. L. Lions [2] prove that global solutions of the equation

[here least eigenvalue of - A
on H2 n H5 (0)] ] are uniformly bounded in C2 (S2), i. e.

Sup ~ u (t) ~C2 (03A9)  oo. (See also Y. Giga [7] for an alternate proof and a

more precise result. Giga’s proof uses the boundedness of the domain Q,
while the proof in [2] works also in the case Q = unbounded domain and
~,  0 or in the case S~ = bounded domain and without the above

limitation ~,  ~,1.)
To prove theorem (1.13) we apply the method used by Th. Cazenave

and P. L. Lions [2] (cf. lemma 1 and proposition 6 of [2]); however as we
work on the equation ( 1. 3) - which is not studied in [2] nor in [7] -, we
give below the detailed proof of:

( 3 . 1 ) PROPOSITION. - Let

given. Consider a solution v E C 1 ( 0 00 [,
p-1 2

L2 (K)) (~ C ([0, oo[, H1 (K)) of the equation ( 1. 3) i. e.
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Then for any i > 0, v E C2 ( [i, oo x and the following hold:

Proof - u (t) defined as in (1. 5) satisfies u, and by the
classical parabolic regularity u~C2 ([i, oo[ x Hence v [given also by
(1.4)] is regular i. e. v E C2 ([i, oo[ x IRN) for any 1 > 0.

(i) By lemma (2. 3) if there is an so ? 0 such that E~ (v (so)) _ 0 then v (s)
cannot exist globally on [so, + oo [.

(ii) With the notations used in the proof of lemma (2. 3) we have by
( 2 . 8), ( 2 . 7) and the fact that ( L u~) ~ ~ ~: v

Now if there exists such that:

Hence

Vol. 4, n° 5-1987.



438 O. KAVIAN

and by the proof of lemma (2. 3) (ii) this leads to a contradiction with the
global existence of v (s).

Therefore we have

(iii) By (2. 7) we know that:

then ~T>0:

and (iii) follows.

Therefore by (ii) we have for some C > 0:

and

On the other hand by (i):

and (iv) follows..
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(v) Let A : = II > 1}; by (iii), lim meas (A n [T, + ~[) = 0.

First by (3.2) there exist Co, C 1 > 0 such that (assuming N~3)

Denoting by S (t) the semi-group of the operator L - ~, Id [in fact
with S* defined in corollary (2 . 2)], we have by (2 . 2) (i),

(11):

Moreover for N >_ 3 and t  1:

hence by interpolation we get:

(note that 9 E ]o, 1[). Now for 0  ~  1 and s > 0 we have

and by (3.4)

So if we put

Vol. 4, n° 5-1987.
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we have

and if there is ao such that

then ~o >__ [C ( 9) f (ao)~p -1 ~] -1 ~ 1- e - ~ * and this means that b’ ~ __ a*, we
have

(we use here the fact that f is continuous and non-decreasing).
Now we conclude that there is s* > 0 and such that [cf. (3. 3)]

hence we may fix T > 0 large enough to have meas (A n [T, + oo  1 s*
2

in such a way that:

Therefore for any r>0, and is uni-
s~03C4

formly bounded in LP ( K) for 
Next, to obtain a uniform estimate on ~u(~)~, we may use the argu-

ments of [2]; nevertheless we prefer the following bootstrap argument. Let
qo : =2*; by corollary (2.2) we have:

Choosing r: = ro: = qo/p, and such a way that

2014(--2014 )1, we get by (3.5) [note that this choice of ~ is possible2 r ?i/
because (N - 2) p  N + 2]:
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and using the uniform estimate for we obtain (by
putting a : = i in the above inequality):

Now, repeating the above argument with ri-1: = R~ - ~ /P~ such

we get -after a finite number of steps-,

and in (3.6) we may choose : q =00, r : N; then using this

in (3. 5) as above, we obtain easily a uniform estimate on II v (s) 
When N = 1 or N = 2, one oughts to modify slightly the preceding proof

(in a classical fashion) in order to obtain the corresponding uniform
estimate.

The uniform estimate in C2-norm can be derived by using again the
equation satisfied by v (s) and the relation (3 . 5)..

(iv) This is the classical invariance principle of La Salle (see for example
C. Dafermos [15])..
Proof of theorem ( 1. 13) concluded. - With the notations used in the

previous sections we have

and by Proposition (3. 1) (v), for any to > 0, there is C (to) such that:

V t>to,

(3. 6) Remark. - When N =1 one can prove that the positive solution
of :
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is unique (this has been proved by F. B. Weissler; personal communica-
tion). Hence if one knows that lim t1/(p-1) u(t, x) > 0 for some then

the o-limit set of ( v (s))S >_ o is precisely f ( = solution of the above equation).
Therefore in this case:

where w (t, x) : = t -1 ~~p -1 ~ f x is the positive self-similar solution of
( 1.1). .

( 3 . 7) Remark. - A s an application of theorem ( 1.13) one may give the
following sufficient condition for the blowing-up of positive solutions to
( 1.1). Consider a smooth bounded domain S2 c f~N and uo > 0 such that

then the solution of with u (0) = Uo (uo: =Mo on Q, uo : = 0 on

OC) blows-up in finite time. Indeed if u (t) E Ho (SZ), we have
u (t, x) >_ ù (t, x). (x) = 0 [if u (t) were a global solution then

lim II u (t)~~ = + 00 in contradiction with theorem (1.13)].
t ~ 00

The same holds if uo E Ho (Q) ~ C2 (Q): the solution of { 1.1)
with u (0) = uo . In blows up in finite time..

4. SOME OBSERVATIONS ABOUT THE CASE

OF CONE-LIKE DOMAINS

Consider a domain Q satisfying:

Then if one considers the evolution equation:

where E = ± l, we can study existence or non-existence of self-similar

solutions to (4.1), in the same way as the case of the whole space IRN.
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Indeed we can define

in a such a way that

Then stationary solutions of (4.2)E yield self-similar solutions of (4.1)E.
To find such solutions we may consider the problems

Now solutions of (4. 3) can be found as critical points of

Using the compactness of

[which can be proved easily by lemma (2.1) (i)], one can check that

inf {Fi (v); v E H5 (K, Q) n Lp + 1 ( K, SZ) ~ is achieved and that, if

Q) = the least eigenvalue of L on H5(K, 0), this minimum
is equal to zero and F 1 is strictly convex: therefore equation (4. 3) does
not have any solution. For ~, > ~,1 (SZ) (4. 3) has a unique positive solution
and if ~, > ~,k (SZ), (4. 3) has at least 2 k solutions. (For more details see [3]
where the case of SZ = is treated but the same arguments hold in the

case 
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Solutions of (4. 4) can be sought as critical points of

on the set

[we assume here (N-2) p  N + 2, p > 1 ].
By classical variational methods one can prove that J has a sequence of

critical values Ck  oo as k - oo and to each Ck> 0 corresponds a solution
of (4 . 4). If (Q) then (4 . 4) has a positive solution (which corresponds
to Min {J (v); v E S~ > o).
As an example we shall treat only two cases by computing the least

eigenvalue of L (with Dirichlet boundary condition) on the two following
domains:

and

For Qi we have

[This is because one can easily check that

and by the Krein-Rutman theorem (pi ill corresponds to the least eigenva-
lue of L on 

Therefore if ~,  ~,1 (SZ1) =N, equation (4. 4) has a positive solution f.
Then the equation has a positive self-similar solution w (t, x)
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( N - 2 ) p  N + 2 i. e. such that 7~ : = 1 > ~, 1 ( S2 1) = N and this proves
L p-1 J

that if 1 + 1  p- -1 + 2 the equation on 01 
N N

ani = 0 possesses global positive solutions. Using exactly the same
arguments as in the proof of theorems ( 1. 10), ( 1.11) and corollary ( 1.12)
we may prove that the latter equation does not have global positive

solutions if 1   1 + 1 .p 
N

Concerning equation

the above observations prove that for p > 1 + 1 N there is no self-similar

solution belonging to H§ (K, Qi) and for 1  2 1 + 1 N there are such
N

solutions; using the equation

and the methods used in the previous sections and in [4] one can prove
that for this range of /?’s, as t ~ ~, t1/(p-1)~u(t)-w(t)~~~0 for

somesetf-simiiar solution w(t, x)=t-1[1/(p-1)]f(xt) } (/ satisfying

L/+!/~v=~~=-~-B~-1/
For the domain Q~ = !R~’~ x tR+ we can check that

Vol. 4, n° 5-1987.
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and therefore, for instance if 1 p  1 + 2 
1 

there is no global positive

solution of = o.

Summing-up these observations and combining the proofs of the prece-
ding sections and those of [3], [4], we are led to the following :

(4 . 5) THEOREM. - Let ~2 c be a convex cone with 0 E aSZ and SZ - 0
convex.

and

For p > l, (N - 2) p  N + 2 consider a maximal solution of

(Dirichlet boundary condition) (resp. u (0) e H1 (K, Q) , ~u ~n 
(t) = on lQ,

In

Neumann boundary condition . Let Xi denote the least eigenvalue of

on H§ (Q) (resp. on H1 (K, Q)), then 03BB1 ~ N 2 and the2 ~ 2

following holds:

(I) if p  1 + 1 03BB1 and u (0) > 0 then u (t) blows-up in finite time;
(ii) i f

and
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then u (t) blows-up in finite time;

then u (t) is global in time;

(iv) if p > 1 + 1 N and u (t) is a global solution, then
Xi

Using self-similar solutions to prove non-uniqueness of solutions to
one has

(4 . 6) PROPOSITION. - For (N - 2) p  N + 2 and

03BB1 defined in theorem (4 . 5) there are infinitely many solutions (wk (t, x))k > 1

such that i 1  N 1 
then lim w t q = 0 and or t > 0

[resp. wk (t) E H1 (K, Q)].
Indeed consider

[resp. H1 (K, Q) and = 0] as 1 p-103BB1 then this equation has infini-ln ,n p - I

tely many solutions (and at least one of them is positive); now

W t, x> : # t ~ /~ ~ > f ( J ), Satisfies the evolution equation
Vol. 4, n° 5-1917.
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and: o

one can prove that if f E Ho (K, SZ) or H1 (K, SZ) satisfies

L - f I f I p -1 s + 1 f~ then there is C > o, a > 0 such that
p-1

~f(J’)~~C 

(4.7) THEOREM. - With the notations of the theorem (4.5) consider a
solution of

5. APPENDIX

For convenience we present the proof of some of properties described
Lemma ( 2 .1 ) and corollary ( 2 . 2) .
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Proof of lemma (2. 1). - In [3] one can find some general results about
this kind of inequalities. But we present here an alternative proof based
on an observation of P. L. Lions (personal communication). Indeed let

then we and therefore
4

(integrating by parts the third term), and

it is clear that: hence (iv).
Then (i) and the classical Rellich’s theorem imply (ii) (for more details

see [3]). (iii) and (vi) follow by observing that (ii) implies the compactness
of L 2 ( K) . The remainder of this lemma - unless (vii) and (v) is
in [3].
We prove now (v) and (vii): for fE L2 (K) given, define [on H1 (K)]:

by (iii) we see that Min F ( v) is achieved for a unique uEH1 (K) and

that u satisfies:

as f E L2 (K) and H 1 by classical regularity results we
conclude that u E Now define v : = K1~2 u; one checks easily that
v satisfies:
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Let [0, 1]) be a non increasing function such that

and denote (p~):=(po(~) for ~~1, ~e~. Multiplying (5.1) byB ~ /

Hence, using the fact that K 1/2 f E L2 E L2 we obtain:

But

As n i oo, 03C6n ~ 1 and we obtain:

But
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By the above inequality we know that 0394v~L2 and by (5.1) 
Therefore and i. c. 

Proof of corollary (2.2). - The first part is a classical result:

S~(s)=~*~ is well defined on L~(K) and as the least eigenvalue of L is

2014, we have (i).
(ii) follows from the fact that ~G(t)*v0~~~(4 03C0t)-N/2 ~v0~L1.
(iii) Multiplying have

and (iii) follows.
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