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ABsTRACT. — We study the asymptotic behavior as ¢ = 0" of solutions
of the variational problems for the Van der Waals-Cahn-Hilliard theory
of phase transitions in a fluid. We assume that the internal free energy,
per unit volume, is given by €2|V p|*+ W (p) and the contact energy with
the container walls, per unit surface area, is given by go(p), where p is
the density. The result is that such solutions approximate a two-phases
configuration satisfying a variational principle related to the equilibrium
configuration of liquid drops.

Key words : Phase transitions, variational thermodynamic principles, variational conver-
gence.

Resumt. — Nous étudions ici le comportement asymptotique pour
¢ — 0" des solutions des problémes variationnels qui viennent de la théorie
de Van der Waals-Cahn-Hilliard sur les transitions de phase des fluides.
Nous faisons I'hypothése que I’énergie libre de Gibbs, pour unité de
volume, est donnée par azIVp|2+W(p) et que I’énergie de contact avec
la surface intérieure du containeur, pour unité de surface, est donnée par
e {p), ou p est la densité. Le résultat est que ces solutions approchent
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488 L. MODICA

une configuration a deux phases qui satisfait un principe variationnel 1ié
aux configurations a I’équilibre des gouttes.

INTRODUCTION

We continue in this paper the asymptotic analysis of the Van der
Waals-Cahn-Hilliard theory of phase transitions in a fluid, by taking also
into account, with respect to our earlier results [10], the contact energy
between the fluid and the container walls. Our results give a positive
answer to some conjectures by M. E. Gurtin [8].

Let us describe briefly the problem we are concerned with; we refer to
[10] for further information and bibliography. Consider a fluid, under
isothermal conditions and confined to a bounded container Q «R”, and
assume that the Gibbs free energy, per unit volume, W=W(u) and the
contact energy, per unit surface area, o =0 (1) between the fluid and the
container walls 0Q are prescribed functions of the density distribution (or
composition) u=0 of the fluid. According to the Van der Waals-Cahn-
Hilliard theory, and in particular to the Cahn’s approach [2], the stable
configurations of the fluid are determined by solving the variational
problem

(%) min{j [82|Du|2+W(u)]dx+J

002

eBw)dH#,_, },

where £>0 is a small parameter, and the minimum is taken among all
functions u =0 satisfying the constraint

J udx=m,
Q

m being the prescribed total mass of the fluid. The function W (r) is
supposed to vanish only at two points t=a and t=f (a¢<p), and to be
strictly positive everywhere else. Of course, #,_, denotes the Hausdorff
(n—1)-dimensional measure.

Our goal is to study the asymptotic behavior as ¢ > 0" of solutions u,
of (%) by looking for a variational problem solved by the limit point (or
points) of u, in L*(Q). As conjectured by Gurtin [8], this limit problem
does exist and agrees with the so-called liquid-drop problem.
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PHASE TRANSITIONS 489

Namely (cf. Theorem 2.1 for a precise statement), if the function u, is
the limit of u, in L' (Q) as € —» 0%, then u, takes only the values o and B
(i. e., u, corresponds to a two-phases configuration of the fluid), and the
portion E, of the container occupied by the phase u,=a minimizes the
geometric area-like quantity

#,_(BENQ) +y#,_,(0E N Q)

among all subsets E of Q having the same volume as E,. The number vy
depends only on W and o, and it can be explicitly calculated:

,_8@=5®)

2¢,

where
B
Co= J W12 (s)ds,

and & represents a modified contact energy between the fluid and the
container walls, whose definition involves the values of o (t) and W (¢) for
every t=0. One has |y|<1 in correspondence with the geometrical mean-
ing of y, which is the cosine of the contact angle between the fluid phase
a and the walls of the container.

The presence of such G instead of o disproves a part of the Gurtin’s
conjecture but, what is more interesting, it is perfectly in accord with
theory and experiments by J. W. Cahn and R. B. Heady ([2], [3]) about
critical point wetting. They discovered that, in a range of temperatures
below the critical one for a binary system, the phase a« does not wet the
container (i.e. y=1) and a layer of phase B, which is, on the contrary,
perfectly wetting, appears between the phase o and the container walls. A
theoretical explanation of such phenomenon was given by Cahn in the
case £>0.

We confirm in this paper, under very general assumptions and by a
fully mathematical proof, the existence of the critical point wetting pheno-
menon in the asymptotic case € — 0. Indeed, we show that y=1 and
(W) =c(p) + 0,5 (0,5 denotes the energy, per unit surface area, associated
to the interface between the phases o and B), for o and W having the
same global behavior exhibited in the semi-empirical figures of [2]. It now
suffices to remark that the balance of energy 8(a)=6'(B)+caB can be
interpreted as the contact energy on 0E, M dQ coming from an infinitely
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490 L. MODICA

thin layer of the phase B interposed between the phase o and the container
walls (cf. Section 3 for details).

We think that other very interesting experimental evidences, discussed
by Cahn in [2], would deserve a similar careful mathematical treatment.
Finally, we would like to thank Morton Gurtin for stimulating and friendly
discussions.

1. SOME PRELIMINARY RESULTS

Throughout this paper Q will be an open, bounded subset of R" (n=2)
with smooth boundary dQ; W and ¢ will be two non-negative continuous
functions defined on [0, + oo[. The function W (t) is supposed to have
exactly two zeros at the points t=a and t=p, with 0<a<f.

For every €>0 and for every non-negative function u in the Sobolev
space H! (Q), we define

éae(u)=J[82lDu(x)[2+W(u(x))]dx+aj c(ux)Nd#,_,(x) (1)
Q o0Q

where D u denotes the gradient of u, u denotes the trace of u on Q, and
# ,_, denotes the (n— 1)-dimensional Hausdorff measure.

1.1. ProprosiTioN. — For every £>0 and for every m =0 the minimization
problem
(P) min{é”t(u):ueHl(Q),ugO,J u(x)dx=m}

Q

admits (at least) one solution.

Proof. — The proof is standard. Let
U={ueH1 (€Q):u=0, é”e(u)gc,J u(x)dx=m},
Q

with ce R large enough so that U # (¥. It suffices to prove that &, is lower
semicontinuous on U and U is compact with respect to the topology of
L2(Q).
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PHASE TRANSITIONS 491

Let u_eU and (u,) be a sequence in U converging to u,, in L?(Q): we
have to prove that

€. (u,) <liminf &, (u,). )

h— +

Without loss of generality we can assume that there exists the limit of
&.(u,) as h— + oo and it is finite. Since W=0 and o =0, we have that

j |Dul*dx<c/e?, Vuel; (3)
Q

hence, modulo replacing (u,) by a subsequence, (u,) and (u,) converge
pointwise to u,, and u,, respectively almost everywhere on Q and #,_ -
almost everywhere on 0Q [recall that the trace operator is compact between
H!(Q) and L?(8Q, #,_,)). Then (2) follows from lower semicontinuity of
the Dirichlet integral and from continuity of W and o, by applying Fatou’s
Lemma.

Lower semicontinuity of &, implies now that U is closed in L?(Q); on
the other hand, by (3) and by Poincaré Inequality, U is bounded in H! (Q).
Then Rellich’s Theorem gives that U is compact in L2(Q) and the proof
is complete. W

The aim of the present paper is to study the asymptotic behavior as
e —> 0" of (P,). We shall prove in Section 2 that such asymptotic behavior
is related with the following geometric minimization problem:

(Py) min{ Py (E) +vy#,_, (0*ENOQ):E = Q,|E|=m, }.

Here ye[—1,1], m, €[0,|Q][] are fixed real constants; |E|, Py(E), *E
denote respectively the Lebesgue measure of E, the perimeter of E in Q,
and the reduced boundary of E. We refer to the book by E. Giusti [6] for
these concepts, which go back to the De Giorgi’s approach to the minimal
surfaces theory. Anyhow, for reader’s convenience, we recall that
Po(E)=s5¢,_,((EN Q) and 0* E=JE, provided that the boundary of E
is locally Lipschitz continuous; hence (P,) consists in finding a subset E
of Q, with prescribed volume m,, which minimizes a quantity related with
the (n—1)-dimensional measure of its boundary.

The problem (P,) is known as the liquid-drop problem (¢f. E. Giusti [5]).
Since Q is bounded and |y|<1, it always admits (at least) one solution.
Such existence result could also be obtained by the following proposition,
which we need later.

Vol. 4, n° 5-1987.



492 L. MODICA

1.2. PrOPOSITION. — Let 1: dQ x R — R be a Borel JSunction and define, for
ueBV(Q),

F(u)=f IDu|+J T u () d#,_(x) (Y,
Q o0

where u denotes the trace of u on Q. If

@) IT(x8)—1(x,5)| < 51—, ),
VxeﬁQ, Vsl,SZER

then the functional F is lower semicontinuous on BV (Q) with respect to the
topology of L (Q).

Proof. — Fix u,,eBV(Q) and let (u,) be a sequence in BV (Q) converging
to u,, in L' (Q). We want to prove that

lim sup [F (u,) —F (4,)] 0. (4)

h— +o

By (i) we deduce that
F(uw)—F(uh)éf |Duw|—f |Du,,(+f i, — i, d#, .
Q Q Q

Let >0 and define vy;=(1—7x;) (1, —u,), where Xs is the usual cut-off
function, i.e. x;€ Cg(Q), 0= 3, <1, x5 (x)=1if dist (x,00) 26, [D As | <2/8.
The trace inequality for BV functions (c¢f. G. Anzellotti and M. Giaquinta
[1]), applied to v;, gives that

f |5 =it | 4o,
0N

§c1f Dt —uy)| +(2c1/8)j ' Iuw—uh]dx—kczj o — 1] dx,

(*) For ueBV(Q) and E measurable subset of Q, we denote by J [Du| the value of the
E
measure [Du] at the set E. Of course, if Du is a Lebesgue integrable vector function, then

J IDu] agrees with the ordinary integral J |Du (x)[dx.
E E
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PHASE TRANSITIONS 493

where Qy={xeQ:dist(x,0Q)>8} and Q;=Q\Q,. Let us remark that
¢y =1 because dQ is smooth (see [1]), and that

J|D(uw_u,,)|§f IDuw|+j |Du,,|+J ID (s, — )|,
Q5 Qp Q5 a0

Since u,, —u,e BV(Q), we have that
J‘ ID(u,—u)| =0, VheN
N

for a set of >0 of full measure; hence

Fug) —F(u)

§L[Duw| +Jﬂé[Duw| —fQGIDuhl ; <§+c2)fné|uw—uh]dx

and, by lower semicontinuity in L* (Q,) of the functional

uHLalDu[,

we conclude that

limsup [F (u,) —F (u,)] éZJ lDuaO ]

h-> +

for almost all >0. By taking 8 — 0*, the mequality (4) is proved. W

1.3. Remark. — The previous proposition fails to be true if 9Q is not
smooth, or if the function t has in (i) a Lipschitz constant L>1. For
example, in the case Q=]0,1[ x]0,1[ and t(x,s)= —A s with A> 2/2, the
corresponding functional F is not lower semicontinuous at the point
u,=0; it is enough to check lower semicontinuity on the sequence (u,)
given by u,(x,y)=0 for x+y21/h, u,(x,y)=h for x+y<1l/h. Anal-
ogously, in the case Q={xeR?:|x|<1} and t(x, s)=A|s| with A>1, the
corresponding functional F is not lower semicontinuous at the point
U, (x)=|x|: one can choose u, (x)=min {|xl,(r—1)(1~]x] }.

However, it is worth noticing that, in the particular case
T(x,8)=|s— Y (x)| with yeL'(dQ, #,_,), the functional F defined in
Proposition 1.2 is lower semicontinuous on L'(Q) even for Lipschitz
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494 L. MODICA

continuous #Q. Indeed, by choosing an open, bounded set Q' 2Q and a
function {e BV (Q’) whose trace on JQ is ¥, we have that

B

F(u)=j |Du| +J [fl(x)—\l/(x)]d.}f,,_l=J |[Duv,| —J |DV
Q aQ Q Q Q

where the function v, is defined by v,(x)=u(x) for xeQ, v, (%)= (x),
for xeQ\Q. Since the first addendum of the right-hand side is lower
semicontinuous with respect to u in L*(Q), F also is lower semicontinuous
in L1(Q).

From now on, we let, for t20,

cp(r)=j'w”2 (5)ds, ®)
0
&()=inf {o(s)+2]0()~p®)|:520}, ©)
and, for ue BV(Q),
é”o(“)=2[ ID((PW)HJ o(ux)d#,_,, (7
Q 0N

where, as above, u denotes the trace of u on Q.

1.4. ProprosITION. — Let (u,) be a sequence of functions of class C* on Q.
If (u,) converges in L' (Q) to a function u,, and there exists a real constant
¢ such that

J |D(@ou,)|dx<c
Q

for every heN, then ¢pou, ecBV(Q) and

&o(u,) Sliminf &4 (u).

h- +o©
Proof. — Let us denote v, (x) =@ (1, (x)) and fix an open subset Q" of Q

such that Q" = Q. If we consider the smooth function v, (x)=0v,(x)—39,,
where

9,= J v, dx,
o
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PHASE TRANSITIONS 495

Poincaré Inequality gives
fla,,]dxgcl(n)j |Do,|dx<c,(Q)c
Q (o3

for every he N and for a real constant ¢, (Q) depending on Q but indepen-
dent of Q' = Q. It follows that the sequence (v,) is bounded in BV (Q);
hence, by Rellich’s Theorem, there exists a subsequence (v, ®) Which
converges in L' (Q) to a function v_,.

Since it is not restrictive to assume that (vo @) and (v, ) both converge
almost everywhere in Q, we infer that (95 @) converges in R to 9, and
finally that (v,) converges in L!(Q) to Vo +9,. We have of course
Vo +9,=¢o°u,, so we conclude that the whole (vy) converges in L1(Q)
to v, =¢ °u, and, by semicontinuity, that

f |D v, |<liminf |Dv,|Sc< + 0.
Q

h— +w Jg

We now consider the inverse function ¢! of ¢; note that ¢! exists
because ¢’ (t)=W (£)>0 except for t=a, B. Denoting t(s)=0 (0~ (s)), we
have that

17(31)_7(32) |§2|sl_sz'

for every s,, s, in the domain of @~ %; then Proposition 1.2 yields that
gO(uw)=2J 'Dvoo I+J‘ T("ﬂ;‘ca) d‘#n—l
Q o

gliminf[Zf |Dv,,|dx+f () d.}f,,_l] =liminf &, (u,)
Q o

h> +o h— +o

and Proposition 1.4 is proved. W
We now turn to the liquid-drop problem (Po) by proving that the class
of competing sets can be restricted to smooth sets,

1.5. PROPOSITION. — Suppose 0<m, <|Q| and |y|<1. If \ is a fixed real
number such that

A=Po(A)+v 5,1 (3(ANQ) N Q)
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496 L. MODICA

for every open, bounded subset A of R" which has smooth boundary and
satisfies #,_; (0A N 3Q) =0, |A N Q|=m, then

<min{Po(E)+y#, ,(0*EN8Q):E < Q,|E|=m, }.

Proof. — We omit the details because we closely follow the proof of
the analogous result proved for the case y=0 in Lemmas 1 and 2 of [10].

Let E, be the set which realizes the minimum of (P,). By a theorem of
E. Gonzalez, U. Massari and 1. Tamanini ([7], Th. 1), which was stated
for y=0 but holds also in our situation because of its local character, we
have that both E, and Q\E, contain a non-empty open ball. Then,
arguing as in Lemma 1 of [10], one can construct a sequence (E,) of
open, bounded, smooth subsets of R" such that |E,NQ|=m,;, #
(0B, M 8Q)=0 for every he N, and

n—1

lim |(E,NQ)AE|=0, (®)
h— +o
lim Pg(E,)=Py(E,), (9
h— +w
lim #,_, (3(E,NQ) N oY)=#, ,(0*E, N Q). (10)

h> +to

The last assertion is not actually contained in Lemma 1 of [10] but it
easily follows from (8) and from

‘#n~1(a(Eth)maQ)=Jv iE;,r\ﬂd‘#n—b
oQ

‘#n— 1 (6* EO m 69) z‘f iEo d‘#n— 1>

Q2

where % denotes the trace on dQ of the characteristic function of T for
T=E,NQ and T=E,.

The proof of the proposition is now a straightforward consequence of
(9) and (10). W

The next result, stated here without proof, was proved in [10] (Lemma 4).

1.6. ProposiTioN. — Let A be an open subset of R" with smooth,
non-empty, compact boundary OA such that 3#,_,(0A M dQ)=0. Define
the function h: R" - R by h(x)=dist(x, dA) for xe A, h(x)= —dist(x, JA)
for x¢ A. Then h is Lipschitz continuous, |Dh(x)|=1 for almost all xeR",
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and

lim #,_,(S,NQ)=#, ,(0A NQ)

t—=0

where S,={xeR": h(x)=t}.

2. THE MAIN RESULT

We recall that Q denotes an open, bounded subset of R* (n = 2) with
smooth boundary, and W, c: [0, + o[ — R denote two non-negative con-
tinuous functions. We assume also that W (£)=0 only for t=a or t=p
with 0 < a < B.

2.1. TueoreM. — Fix me[x|Q|, B|Q|] and, for every € >0, let u, be a
solution of the minimization problem (P,). If each u, is of class C* and there
exists a sequence (g,) of positive numbers, converging to zero, such that '
(u,,) converges in L' (Q) to a function u,, then

() W(uy(x))=0[i.e. uy(x)=0o or uy(x)=p] for almost all xeQ;

(i) the set Eq={xeQ: uy(x)=o} is a solution of the minimization
problem (P,) with

,8E@=3® _plol-m
2¢, B—o

:ng}

where [see (5) and (6)]

a(t)=inf{c(s)+2USWI/Z(y)dy

for t=a, B, and

B
co=j W2 () dy;

(iii) lim 5 Le, (u,)

=2¢0 Po(Eo) +6(2) Hy—1(0*E; M 0Q)
+G(B) #,-; (BQANG*E,).
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For some comments about this statement we refer to Remarks 2. 5. The
proof of Theorem 2.1 is similar to that one of the result with =0 given
in [10]. Neverthless the extension is not trivial, because in the asymptotic
(e=0) boundary behavior, given by &, both the boundary and the interior
behavior for € > 0, given by W and o, are involved.

In the language of I'-convergence theory, the proof of Theorem 2.1
consists in verifying that (e~ &,+1,) converges as € » 0%, in the sense of
[ (L (©))-convergence, to the functional &,+1,, at the points ue L! (Q)
such that W (u(x))=0 for almost all xeQ (cf. Section 3 in [10]). The
functional &, was defined in (7); I,, denotes here the 0/+ oo characteristic

function of the constraint J u(x)dx=m.
Q

The main steps in the proof of Theorem 2.1 are the following proposi-
tions.

2.2. PROPOSITION. — Suppose that (v,), » o is a family in {ue C* (Q): u Z 0}
which converges in L' (Q) as € - 07 to a function v,. If

liminfe™ 1 &, (v,) < + o0,

e-0"

then v, BV (Q), W (vo (x))=0 for almost all xeQ, and

&o(vo) £ liminfe™ ! &, (v). (11)

e—»07

2.3. ProposITION. — Let A be an open, bounded subset of R" with smooth
boundary such that #,_, (0A N 0Q)=0. Define the function v,: Q - R by
Vo (X)=0 for xe AN Q, vy (x)=P for xeQ\A. For every r > 0 denote

U,={veH1(Q): v20,||v—vo (2@ <7 J vdx=j vodx}.
Q Q

Then, for every r > 0, we have that

lim sup inf €1 &,(v) £ &y (vy). (12)

e»o0t vel,
2.4. Remark. — For the connection between (12) and the corresponding
inequality in the usual definition of I'-convergence, see Proposition 1. 14

of [4].
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Proof of Proposition 2.2. — By the continuity of W and by Fatou’s
Lemma we have that

W(vy)dx < liminf | W(v)dx < liminf &, (v)=0;

Q e-0" Ja es>0"

since W = 0, we have at once proved that W (v,(x))=0 for almost all
xeQ.
Now

[ ID@-0al= [ [0/ . [Do.
Q Q
=[ W (v, (x)) | Do, (x) | dx
Q
gj [e| Do, |>+&~* W(v)]ldx < 71 &, (v,),
Q

so Proposition 1.4 and 6 < o apply for obtaining

& (vo) < liminf &, (v,)

g0

gliminfU [e| Do, |>+&™* W (v)]dx
Q

e-0"

+ J & (v,) dx,_,} <liminfe~! &, (0,).
8Q

e-o0t

It remains to prove that v,e BV(Q). This is obvious because v, takes
only the values a and B, and ¢@ov,eBV(Q); hence the proof of
Proposition 2.2 is complete. W

Proof of Proposition 2.3. — Let us fix r >0 and also, for further
convenience, L =0, M = 0 and & > 0. We shall not often indicate in the
following the dependence on r, L, M, & as well as on the other data n, Q,
W, o, B, o, A; in particular we shall denote by c,, c,, ... real positive
constants depending on all such data.

The following lemma contains a purely technical part of the proof.

2.5. LeMMA. — Consider, for every € > 0, the first-order ordinary differen-
tial equation

|y |=e"1 3+ W ()2 (13)

Vol. 4, n°® 5-1987.



500 L. MODICA

Then there exist three constants c,, c,, C3, independent of €, and a Lipschitz
continuous function ¥, (s, t), defined on the upper half-plane Rx [0, + oo,
satisfying the following properties:

X (s, =0 for s=c g t2cs,

2 (8 =P for s20, tZcE

(14)
% (s, )=L for s£0,
Y (s, =M for s=c; s
O§XE§02’ lDXEl __<_C3/8; (15)

on the strip {s <0, t <c &} the function X, (s, t) depends only on t

and fulfils the equation (13) in the set {x.(t) # B}, on the strip

{s = c & t Sc &} the function ¥ (s, t) depends only on t and fulfils 16)
(13) in the set {x.(t) # o}; on the strip {0 Ss=<cy¢ t 2 c, &} the
function 7y (s, t) depends only on s and fulfils (13) in the set
{Xe(9) # .

Proof. — We have to determine c;, ¢,, ¢; and to complete the definition
of y, on the strips

S,={s<0,t<c,e}, S,={s52c¢;&t=<cg}
S;={0<s<ce t=cEf,
and on the square Q=[0, ¢, [ x[0, ¢, €[.
Let us begin by S,, where we have the prescribed boundary values

% (s, ¢, €)=, % (s, 0)=L. If B=L, we define y, ()=B; if p > L, we solve
the Cauchy problem

y®=¢@+WuroN,  yO=L,

and we define y, (f)=min {B, y()}; if B <L, we solve the same Cauchy
problem with —y” instead of y’ and we define ¥, () =max {B, y(t)}. Since

%= G+W (g @) 257 5"

provided that y,(t) # B, we have ¥, ®)=P for t = 8| B—L l/S; then, in
order that v, takes the prescribed boundary values X, (s, ¢, €)=P, we need
¢, 2 |B—L|/8. The same holds on S, and S, so we are led to define

¢ =max {| B~L{/3, |a—B|/3,

a—M|/8}.
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Define also ¢, =max {a, B, L, M}, so that

0§XE§C2

and
Dy, | <& 1 (8+max{W(s): 0 < s < c,})¥?

on (R x[0, + o)\ Q. Finally, as we know y, on three sides of the square
Q, we can extend x, on Q in such a way that x, becomes Lipschitz
continuous on the whole upper half-plane and (15) is satisfied with

c3=3¢; (8+max{W(s): 0 Ss < ¢, )2

The proof of Lemma 2.5 is now complete. W

Let us return to the proof of Proposition 2.3. The first part of the
proof consists in constructing a family (v,) in U, such that v, converges to
v as€— 0%, and

inf &, (v)

veU,

is approximatively equal to &, (v,).
Define

FiG. 1.
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502 L. MODICA
dg (x) =dist (x, 0Q), d,(x)=dist(x, dA) for xeA,
d, (x)= —dist(x, 0A) for x¢A,
and let x, be the function constructed in Lemma 2. 5. Let, for xeQ,
v (¥) =% (d4 (%), dg (x)).

Look at Figure 1 for understanding the meaning of our construction.
Denoting

S,;={xeANQ:d,(x)=s},
T={xeQNA: do(x)=1},
P={xeO\A: dy(x)=1},

Federer’s coarea formula and |Ddg|=|Dd,|=1 (see Proposition 1. 6)
yield

f[v;—voidx
Q

Scyf|[{xeQ:do(x) Sy el |+ {xeANQ: dy (x) < ¢y e} ]

€1 ¢
=C4J [0t GFUED)+ 5, (S)]dt;

0

hence, as A and 0Q are smooth, Proposition 1.6 implies
J ]v;—voldx Scs€
Q

for & small enough. It follows that v, converges to v, in L*(Q) as e »07

and, defining
n5=J v;dx——J vy dX,
Q Q

M. < cse (17

we have that

for € small enough.
Let us choose a point x,€ Q\ JA and, for fixing the ideas, assume that
Xo€QM A. In the case QN A= or x,e Q\ A the changes in the proof
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are trivial. Note that the closed ball B,=B(x,, €!/") is contained, for ¢
small enough, in the set {v=a}; then the function v, defined on Q by

v, =v, for x¢B,, and by
0, () =a+h, (1 -] x—x, ),

for xeB,, is Lipschitz continuous whenever h.eR.
We now choose
h.=—no, ! nel mMm

€

with ®,_; equal to the volume of the unit ball in R"~!, so that
j (v.— ) dx=f h(1—g™ 1" | X—Xg I) dx=—n,
B Be

and, by the definition of n, and v,,

f vedx=f Do dx
B, B,

for € small enough. Since, by (17),

|| < ceelm,
we have, for € small enough,

0=v,Zc,

and

lim f [v,~ v |>dx=0;
Q

e—-ot

hence

lim inf €' &, (v) < limsupe ! &, (v).

e~»0t vel, e~>07"

(18)

(19)

(20)

(21

(22)

The second part of the proof consists in a sharp estimate of the

right-hand side of such inequality. For the sake of simplicity, let

e 8 (0)=8(v; D+ (v)
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with
& (v C)=J [e|Do P+ " W(p)ldx  (CcQ),
C

and
& (v) =j o(@)dH,_ .
80

By (20) and (21), and by the continuity of ¢ and of the trace operator,
we at once obtain

limsupgé’(Ve)éj G (Do) A,
0

e-o0"
=0 (L) #,-1 (0Q\A)+c (M) #,_, (02N A). (23)
The evaluation of &.(v,; Q) is more complicated. Let us divide Q in

seven parts, corresponding to the construction of y, in Lemma 2.5 and
of v, (see Fig. 1):

B,=B(x,, &'/,
Q={xeQ:d, (x)>c ¢ dg(x)>c & x¢B,},
Q={xeQ:d, (0)=0; dy(x)>c, €},
O ={xeQ:0<d, () Sc, & dg(X)>cie),
0, ={xeQ:d, (Y0, dy(x)=c, e},
Qu={xeQ:d,(x)>c & do(x)Sc €},
Q={xeQ:0<d,(x)Sc & do(x)Sc, e}
On B, we have, by (19),

&.(v; By

=e|h5[28‘2/"|BEl+8‘1J W(a+h,(1—e " x—x,])) dx

§c7[82+rW(oz+hg(1—r))r"_1dr];

0o
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hence

lim sup &7 (v,; B)=0. (24)

e—>07"

On € and Qf the function v, equals respectively a and B, so that
vy Q)+ (v Q5)=0. 25

On Qi we have v,(x)=%,(d\(x), do(x)); moreover, by (16),
% (8, t)=1%.(s) depends only on the first variable and satisfies the equation

— X (&)= B+ W(x (M

on an interval 10, t[, with O<rt,<c €&, while y, (s)=a for s=1,. Then,
applying Federer’s coarea formula and ,(0) =B, we obtain that

& (v Qp) =JTS [exe () +&™ ! W (D] # -1 (S) ds

<( sup f..-l(Ss)]JTCZ(—XQ(5+W(XJ)”2dS

0sssT, 0

=( sup fn—l(Ss))(Zr(5+W(t))”2dt>,

0<s<t, o

and therefore, by Proposition 1.6,

(B

limsup &{(v,; Q5p)<25#, , GANQ) | B+W () Y*dt.  (26)
e->0" va
The same argument leads to
L
limsup &, (v,; Q) S25#, ((0QNA) B+W@)2de|, (@27
e-0" vB
and to
M
limsup &, (v; QL) <25¢,_, (6Q N A) f (8+W @)V dr). (28)
e->0t o

Finally, on Qf we have, by (15),
€y Qp)Scge™ Q.
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Note that, again by coarea formula,

lﬂz|=f”%’,-1({er:dA(x)=s, da ()¢, })ds
0

écl ( Sllp ‘#n— 1 (Ss\ch e))’

0=s=cye

where Q, denotes here the set {xeQ:dy(x)>p}. Since we have
Hn-1 (0A M 0Q)=0 for almost all p>0, Proposition 1.6 gives

limsup( sup o, ,(S\,,.)

e>0F O0SssScrs

Slimsup( sup o, , (S\Q,)

e>07 OSssScre
=3#,-1(0A N O(Q\Q2p))
for almost all p>0; by taking the infimum for p>0, we conclude that

lim sup &, (v,; Q%) =0. (29)

e-0t

Now, by collecting (22) to (29), we have that

B
limsup inf 8_1£E(U)§2‘#"_1(6A(\Q)j B+W (D)2 dt

e>0t vel,

+H#,_, QN A) (2

M
j (S+W (@) 2de

[

+o (M))

+Jf,,_1(6QmA)<2

jL(8+W(t))1/2 dt
B

+c(L)).

The left-hand side does not depend on 8, L, and M, so, by taking first
the infimum for 8>0, and then the infima for M=0 and for L=0 of the
right-hand side, we obtain, by the definition of 6 and c,, that

. . -1
limsup inf €71 &, (v)
es07 vel,

S2¢oH,_,CANQ) +0(a) #,_,(0QNA)
+0(B) #,_; (GQ\A)

=2co#,_,(6A N Q)+J o(Bo)d#,_,. (30)

80
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Remarking that the Fleming-Rishel formula yields
ZJ |D((povo)|=2j Po({xeQ:¢(vy(x)>t})dt
Q R

®
=2r Po(A NQ)dt=2c,#,_, (GANQ), (1)

9 ()

the right-hand side of (30) agrees with &, (v,) and the proof of Proposition
2.3 is complete. W
Now, we can prove Theorem 2. 1. )

Proof of Theorem 2.1. — Assume for simplicity that all (u,) converges,
as € > 07, to u,. By constructing, as in the proof of Theorem I of [10], a
suitable family of comparison piecewise affine functions, we first obtain
that

liminfe ! &, (u) < + o; (32)

e-o07

hence Proposition 2.2 gives W (u, (x))=0 and

& (ug)<liminfe™! &, (u,).
e—»0"

Now, let o be the class of all open, bounded subsets A of R”, with smooth
boundary, such that #,_, (JA NQ)=0 and |A NQ|=|Ey|=m,. For
every Aeo/, we define v§(x)=a for xe AN Q, vh(x)=P for xeQ\A;
applying Proposition 2. 3 with r=1, we infer that

limsup inf e &, (V) <&, (v5),
e-0t velU

where
Uz{veHl(Q):ng,J. lv—v5 |2dx<]1, f vdxzj védx}
Q o o
Since
f vhdx=m,
o
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we have, by the minimality of u,, that
€. (u)s&,(v), Vvel,
and we conclude that

Eo(ug)<liminfe ! &, (u) <limsupe ! &, (u)S & (vd)  (33).

e coot
for every A e /. Arguing as for (30) and (31), we obtain
&o(tg)=2¢ Py (Eo) + 6 (o) #,_, (*Ey N Q)
+G(B) A, (QNG*Ey) (34)

and

8o (18)=2¢oPo(A)+5(0) #,_, (RN A)+G(B) #,_, (0Q\A),
so that

Po(Bo) +vH#,_1 (0*Eq N Q) <Po(A) +y#,_, (0(ANQ) N Q)

for every A e.of. Then the required minimality property (ii) of E, follows
from Proposition 1.5. Finally, by employing again (33) and
Proposition 1.5, with

A=limsupe™! &, (u,),

e—07
we have that

8olug)= lim &' &, (u,);

e~of

hence the result (iii) follows from (34) and this concludes the proof of
Theorem 2.1. B

2.5. Remarks. — (a) The assumption that 4Q is smooth in Theorem 2.1
cannot be easily replaced by dQ Lipschitz continuous, except for 6=0
(cf [10]). In fact, as we already observed in Remark 1.3, the liquid-
drop problem (P) in bounded domains with angles requires a particular
treatment.

(b) Well-known growth conditions at infinity on W guarantee that the
minimizers u, are of class C'. Of course, if u,e L (Q), then u,_ is smooth.
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(c) The (relative) compactness of (u)) in L'(Q) may be studied as in
Proposition 4 of [10]. It is ensured either by equiboundedness of (u,)
(cf- [9]), or again by a growth condition at infinity on W.

3. A DISCUSSION
ABOUT CRITICAL POINT WETTING

We make here more precise some statements of Introduction, about the
connection between Theorem 2.1 and the critical point wetting theory by
J. W. Cahn [2].

According to this author, and looking in particular at page 3668 and
Figure 4 of [2], we assume that the contact energy o is a non-negative,
convex, decreasing function of class C'. Moreover we denote by W the
Gibbs free energy at the temperature T (recall that we are concerned with
isothermal phenomena), by a; and B the corresponding zeros, by M the
maximum height of the hump between o and B;. We assume that W ()
increases for t=p;. By thermodynamic and experimental reasons (cf. 2],
page 3669), we assume also that B; and M, are decreasing in T, oy is
increasing in T and (Br—a;) -0, My — 0 when T increases towards a
critical temperature T, (critical point of a binary system). The ¢ and &
corresponding to ¢ and Wy will be denoted by ¢ and o;.

Let us compute now 6y (t) for t2ay. Since o is decreasing and

lim or(t)=+ o,

t—= +w

we obtain that the minimum of s+— 0 (s)+ 2| @1 () — @ (s)] is attained at
a point s=A, 1 >t. Moreover, either A, r=t, or

-0’ (A7) =20’ (A, 1)=2 wiz (A, p)-

For To-T small enough, that is for a temperature T below and close to
the critical one, the hump in the graph of 2 W between a; and B, does
not intersect the graph of —o’ in the same interval; on the other hand,
since o is convex, the decreasing function — o’ does intersect the increasing
function 2 W3/? at a single point A; > B, (see Fig. 2).
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2w+t

B ——— e ———

ar Br

Fi16. 2

It is easy to check that A; (independent of t) is actually the minimum
point of s (s)+2| @ (t)— @y

O"r(t) o (A)+2(er(Ap) =01 (1), Vizop
hence

L= &T(aT)_aT(BT) _

21 (By) — @1 (o)

in correspondence with the phenomenon of the perfectly wetting phase
quoted in Introduction. If one prefers not to consider the modified energy
oy, it could be alternatively thought that a very thin layer of a third phase
of the fluid, with density A.> B, appears on the whole boundary of the
container.

When the temperature T is much more below T,, a possible relative
behavior of —o’” and 2W*? is shown in Figure 3, with both p; and A;
relative minima of

SHG(S)+2](PT(t)—(PT(S)l
for every t=a.
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1/2

~y

FiG. 3

Note that
61 (Br) =0 (Ap) +2(¢r (M) — ¢ (B)),

while the value of o1 (o) depends on the areas A and B. Indeed, if A<B,
then

6'T (o) =0 (Ar) +2 (@1 (Ap) — @1 (o))

and y;=1 as above. On the contrary, if A>B, then

6'T (o) =0 (by) +2(0r (k) — @1 (o)) <6 (Ap) +2 (01 (Ap) — @r (o))

and y <1; since we have analogously y;> —1, this means that both the
fluid phases wet the container walls. Or, alternatively, two thin layers of
fluid, with densities p; and A, are interposed between the phases o and

Br and the container.
Finally, we want to remark that the equation 6=o is equivalent to the

inequality

|0'(51)_0'(52)fézl(P(sl)_(P(sz)], VO<s <s,, (35)

which gives in particular

o' ()29 () =W () =0
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and analogously o’ (B) = 0; hence (35) cannot be satisfied in the case ¢’ <0.
It would be interesting to know whether the inequality (35), and then the
equality c=o, are verified in some other thermodynamic situation,
different from the phenomenon studied in [2] by Cahn.
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