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ABSTRACT. - We study the asymptotic behavior as E ~ 0+ of solutions
of the variational problems for the Van der Waals-Cahn-Hilliard theory
of phase transitions in a fluid. We assume that the internal free energy,
per unit volume, is given by E2 V p I 2 + W ( p) and the contact energy with
the container walls, per unit surface area, is given by Ecr ( p), where p is
the density. The result is that such solutions approximate a two-phases
configuration satisfying a variational principle related to the equilibrium
configuration of liquid drops.

Key words : Phase transitions, variational thermodynamic principles, variational conver-
gence.

RESUME. - Nous etudions ici le comportement asymptotique pour
E -~ 0 + des solutions des problemes variationnels qui viennent de la theorie
de Van der Waals-Cahn-Hilliard sur les transitions de phase des fluides.
Nous faisons Fhypothesc que l’énergie libre de Gibbs, pour unite de
volume, est donnee par et que l’énergie de contact avec
la surface interieure du containeur, pour unite de surface, est donnee par

ou p est la densite. Le resultat est que ces solutions approchent
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une configuration a deux phases qui satisfait un principe variationnel lie
aux configurations a l’équilibre des gouttes.

INTRODUCTION

We continue in this paper the asymptotic analysis of the Van der
Waals-Cahn-Hilliard theory of phase transitions in a fluid, by taking also
into account, with respect to our earlier results [10], the contact energy
between the fluid and the container walls. Our results give a positive
answer to some conjectures by M. E. Gurtin [8].

Let us describe briefly the problem we are concerned with; we refer to
[10] for further information and bibliography. Consider a fluid, under
isothermal conditions and confined to a bounded container Q c and
assume that the Gibbs free energy, per unit volume, W = W(u) and the
contact energy, per unit surface area, o = o (u) between the fluid and the
container walls aQ are prescribed functions of the density distribution (or
composition) of the fluid. According to the Van der Waals-Cahn-
Hilliard theory, and in particular to the Cahn’s approach [2], the stable
configurations of the fluid are determined by solving the variational

problem

where E > 0 is a small parameter, and the minimum is taken among all
functions u >_ 0 satisfying the constraint

m being the prescribed total mass of the fluid. The function W (t) is

supposed to vanish only at two points t = a and t = [3 ( a  [i), and to be
strictly positive everywhere else. Of course, denotes the Hausdorff

( n -1 )-dimensional measure.
Our goal is to study the asymptotic behavior as E ~ 0 + of solutions ut

of (*) by looking for a variational problem solved by the limit point (or
points) of Ut in L 1 ( S2) . As conjectured by Gurtin [8], this limit problem
does exist and agrees with the so-called liquid-drop problem.
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Namely (cf Theorem 2.1 for a precise statement), if the function uo is
the limit of uE in L 1 (Q) as E -~ 0+, then uo takes only the values a and P
(i. e., uo corresponds to a two-phases configuration of the fluid), and the
portion Eo of the container occupied by the phase uo = a minimizes the
geometric area-like quantity

among all subsets E of Q having the same volume as Eo. The number y
depends only on W and o, and it can be explicitly calculated:

where

and 6 represents a modified contact energy between the fluid and the
container walls, whose definition involves the values of o (t) and W (t) for
every t >_ 0. One has Y _ 1 in correspondence with the geometrical mean-
ing of y, which is the cosine of the contact angle between the fluid phase
a and the walls of the container.

The presence of such â instead of o disproves a part of the Gurtin’s
conjecture but, what is more interesting, it is perfectly in accord with
theory and experiments by J. W. Cahn and R. B. Heady ([2], [3]) about
critical point wetting. They discovered that, in a range of temperatures
below the critical one for a binary system, the phase a does not wet the
container (i. e. y = 1) and a layer of phase p, which is, on the contrary,
perfectly wetting, appears between the phase a and the container walls. A
theoretical explanation of such phenomenon was given by Cahn in the
case E > 0.

We confirm in this paper, under very general assumptions and by a
fully mathematical proof, the existence of the critical point wetting pheno-
menon in the asymptotic case E --~ 0. Indeed, we show that y =1 and

denotes the energy, per unit surface area, associated
to the interface between the phases a and J3), for o and W having the
same global behavior exhibited in the semi-empirical figures of [2]. It now
suffices to remark that the balance of can be

interpreted as the contact energy on aEo n oQ coming from an infinitely
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thin layer of the phase [3 interposed between the phase a and the container
walls (cf Section 3 for details).
We think that other very interesting experimental evidences, discussed

by Cahn in [2], would deserve a similar careful mathematical treatment.
Finally, we would like to thank Morton Gurtin for stimulating and friendly
discussions.

1. SOME PRELIMINARY RESULTS

Throughout this paper Q will be an open, bounded subset of ( n >__ 2)
with smooth boundary aQ; W and a will be two non-negative continuous
functions defined on [0, + oo [. The function W (t) is supposed to have
exactly two zeros at the points t = a and t = P, with 0  a  P.
For every E > 0 and for every non-negative function u in the Sobolev

space H1 (Q), we define

where D u denotes the gradient of u, u denotes the trace of u on aQ, and

Hn-1 denotes the (n-1)-dimensional Hausdorff measure.

1.1. PROPOSITION. - For every E > 0 and for every m >_ 0 the minimization
problem

admits (at least) one solution.

Proof - The proof is standard. Let

with ce R large enough so that It suffices to prove that ~E is lower
semicontinuous on U and U is compact with respect to the topology of

L 2 (Q).
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Let and be a sequence in U converging to u ~ in L2(Q): we
have to prove that

Without loss of generality we can assume that there exists the limit of
as h ~ + ~ and it is finite. Since and we have that

hence, modulo replacing (uh) by a subsequence, (uh) and converge

pointwise to u~ and uoo, respectively almost everywhere on Q and 
almost everywhere on aSZ [recall that the trace operator is compact between
H1 (Q) and L2 (aQ, ~n _ 1)]. Then (2) follows from lower semicontinuity of
the Dirichlet integral and from continuity of W and o, by applying Fatou’s
Lemma.

Lower semicontinuity of ~£ implies now that U is closed in L2 (SZ); on
the other hand, by ( 3) and by Poincaré Inequality, U is bounded in H~ (Q).
Then Rellich’s Theorem gives that U is compact in L2(Q) and the proof
is complete..
The aim of the present paper is to study the asymptotic behavior as

E -~ 0 + of We shall prove in Section 2 that such asymptotic behavior
is related with the following geometric minimization problem:

Here ye [ -1,1], are fixed real constants; P n (E), a* E
denote respectively the Lebesgue measure of E, the perimeter of E in D,
and the reduced boundary of E. We refer to the book by E. Giusti [6] for
these concepts, which go back to the De Giorgi’s approach to the minimal
surfaces theory. Anyhow, for reader’s convenience, we recall that

Pn (E) _ ~n _ 1 (aE (~ SZ) and a* E = aE, provided that the boundary of E
is locally Lipschitz continuous; hence (Po) consists in finding a subset E
of Q, with prescribed volume m1, which minimizes a quantity related with
the (n-1)-dimensional measure of its boundary.
The problem (Po) is known as the liquid-drop problem (cf E. Giusti [5]).

Since Q is bounded 1, it always admits (at least) one solution.
Such existence result could also be obtained by the following proposition,
which we need later.

Vol. 4, n° 5-1987.
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1. 2. PROPOSITION. - Let i : as2 x R be a Borel function and define, for
uEBV(Q),

where u denotes the trace of u on aQ. If

then the functional F is lower semicontinuous on BV (S~) with respect to the
topology of L1 (S2).

Proof. - Fix u~ E BV (Q) and let be a sequence in BV (Q) converging
to u~ in L1 (Q). We want to prove that

By (i) we deduce that

Let 03B4>0 and define vs = ( 1- xs) where ~03B4 is the usual cut-off
function, i. e. xs E Co (Q), 0 _ xs ~ 1, xs (x) = 1 if dist (x, 0, ( D 2/~.
The trace inequality for BV functions (cf G. Anzellotti and M. Giaquinta
[1]), applied to vs, gives that

( 1) For u E BV (S2) and E measurable subset of Q, we denote by the value of the

measure |Du| at the set E. Of course, if Du is a Lebesgue integrable vector function, then
I Du| agrees with the ordinary integral I Du (x) I dx.
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where and SZs = Let us remark that
ci = 1 because aQ is smooth (see [1]), and that

Since we have that

for a set of ~ > 0 of full measure; hence

and, by lower semicontinuity in L1 (Qg) of the functional

we conclude that

for almost all 03B4>0. By taking 6 - 0 +, the inequality (4) is proved..
1. 3. Remark. - The previous proposition fails to be true if aSZ is not
smooth, or if the function i has in (i) a Lipschitz constant L > 1. For
example, in the case n=]0,l[x]0,l[ [ and i (x, s) _ - ~, s with ~, > 2/2, the
corresponding functional F is not lower semicontinuous at the point

it is enough to check lower semicontinuity on the sequence (uh)
given by for uh(x,y)=h for Anal-
ogously, in the case ( x I  1 ~ and i (x, s) _ ~, I s with ~, > 1, the
corresponding functional F is not lower semicontinuous at the point

one can choose 

However, it is worth noticing that, in the particular case

T(x,~)=~-~(~ ( the functional F defined in
Proposition 1. 2 is lower semicontinuous on L1 (S2) even for Lipschitz
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continuous aQ. Indeed, by choosing an open, bounded set Q’ and a

function whose trace on aSZ is ~, we have that

where the function vu is defined by vu (x) = u (x) for xeQ, vu (x) _ ~ (x),
for Since the first addendum of the right-hand side is lower

semicontinuous with respect to u in L~ (Q), F also is lower semicontinuous
in L 1 (Q).

From now on, we let, for 

and, for uE BV (Q),

where, as above, u denotes the trace of u on aQ.

1. 4. PROPOSITION. - Let be a sequence of functions of class C 1 on Q.

If converges in L1 (Q) to a function u~ and there exists a real constant
c such that

for every then and

Proof. - Let us denote vh (x) = cp (uh (x)) and fix an open subset Q’ of Q
such that Q’ c Q. If we consider the smooth function vh (x) = vh (x) - ~h,
where
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Poincaré Inequality gives

for every and for a real constant c 1 (Q) depending on Q but indepen-
dent of Q’ c Q. It follows that the sequence (vh) is bounded in BV(Q);
hence, by Rellich’s Theorem, there exists a subsequence (va ~h~) which
converges in to a function voo.

Since it is not restrictive to assume that (va ~h~) and (v~ ~h~) both converge
almost everywhere in Q, we infer that (~Q ~h~) converges in It~ to 9~~, and
finally that (vQ ~h~) converges in L1 (Q) to v~ + 9~~. We have of course

so we conclude that the whole converges in L1(Q)
to v~ = u~ and, by semicontinuity, that

We now consider the inverse function cp -1 of cp; note that cp -1 exists
because cp’ (t) = W (t) > 0 except for t=a,P. Denoting i(s) = a (cp -1 (s)), we
have that

for every sl, s2 in the domain of cp -1; then Proposition ’1 . 2 yields that

and Proposition 1. 4 is proved..
We now turn to the liquid-drop problem (Po) by proving that the class

of competing sets can be restricted to smooth sets.
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for every open, bounded subset A of which has smooth boundary and
satisfies ( aA n aQ) = 0, I A n SZ ( = m 1, then

Proof. - We omit the details because we closely follow the proof of
the analogous result proved for the case y==0 in Lemmas 1 and 2 of [10].

Let Eo be the set which realizes the minimum of (Po). By a theorem of
E. Gonzalez, U. Massari and I. Tamanini ([7], Th. 1), which was stated
for y = 0 but holds also in our situation because of its local character, we
have that both Eo and 0BEo contain a non-empty open ball. Then,
arguing as in Lemma 1 of [10], one can construct a sequence ( Eh) of

open, bounded, smooth subsets of [R" such that 

n aS2) = 0 for every h E N , and

The last assertion is not actually contained in Lemma 1 of [10] but it

easily follows from (8) and from

where xT denotes the trace on a~ of the characteristic function of T for

The proof of the proposition is now a straightforward consequence of
(9) and ( 10)..
The next result, stated here without proof, was proved in [10] (Lemma 4).

1.6. PROPOSITION. - Let A be an open subset of f~" with smooth,
non-empty, compact boundary aA such that 1 ( aA (~ aS2) = o. Define
the function h : (~ by h (x) = dist (x, aA) for x E A, h (x) = - dist (x, aA)
for x ft A. Then h is Lipschitz continuous, ( D h (x) ( =1 for almost all x E f~n,
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and

where St = ~x E h (x) = t~.

2. THE MAIN RESULT

We recall that Q denotes an open, bounded subset of ~" (n >_ 2) with
smooth boundary, and [0, + oo - R denote two non-negative con-
tinuous functions. We assume also that W(t)=O only for t=Ct or t = [i
with0a[i.

2 .1. THEOREM. - Fix m E [a I Q I, [3 I S2 (] and, for every E > 0, let uE be a
solution of the minimization problem (PE). If each uE is of class C1 and there
exists a sequence (Eh) of positive numbers, converging to zero, such that ’
(u£h) converges in L 1 (Q) to a function uo, then

(i) W (uo (x)) = 0 [i. e. uo (x) = a or uo (x) = (3] for almost all x E Q;
(it) the set is a solution of the minimization

problem (Po) with

where [see (5) and (6)]

for t = a, P, and
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For some comments about this statement we refer to Remarks 2. 5. The

proof of Theorem 2 .1 is similar to that one of the result with « = 0 given
in [10]. Neverthless the extension is not trivial, because in the asymptotic
(E = 0) boundary behavior, given by â, both the boundary and the interior
behavior for E > 0, given by W and a, are involved.

In the language of r-convergence theory, the proof of Theorem 2.1
consists in verifying that converges as E ~ 0 +, in the sense of
r(L1(Q))-convergence, to the functional 8o+Im, at the points uEL1 (Q)
such that W(u(x))=O for almost all x~03A9 (cf Section 3 in [10]). The
functional So was defined in (7); 1m denotes here the 0/ + oo characteristic

function of the constraint 

The main steps in the proof of Theorem 2.1 are the following proposi-
tions.

2. 2. PROPOSITION. - Suppose that o is a family in 
which converges in L1 (Q) as E -~ 0+ to a function vo. If

then vo E BV (SZ), W (vo (x)) = 0 for almost all x E SZ, and

2. 3. PROPOSITION. - Let A be an open, bounded subset of ~" with smooth
boundary such that 1 (aA n aQ) = 0. Define the function vo : SZ -~ l~ by
vo (x) = a for xEA For every r > 0 denote

Then, for every r > 0, we have that

2 . 4. Remark. - For the connection between ( 12) and the corresponding
inequality in the usual definition of r-convergence, see Proposition 1.14
of [4].
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Proof of Proposition 2.2. - By the continuity of Wand by Fatou’s
Lemma we have that

since W >_ 0, we have at once proved that W(vo(x))=O for almost all

x~03A9.

Now

so Proposition 1.4 and apply f or obtaining

It remains to prove that vo E BV (SZ). This is obvious because vo takes
only the values a and P, and hence the proof of

Proposition 2. 2 is complete..

Proof of Proposition 2.3. - Let us fix r > 0 and also, for further

convenience, L ~ 0, M ~ 0 and 0 > 0. We shall not often indicate in the
following the dependence on r, L, M, 8 as well as on the other data n, Q,
W, a, P, o, A; in particular we shall denote by ci, c2, ... real positive
constants depending on all such data.
The following lemma contains a purely technical part of the proof.

2. 5. LEMMA. - Consider, for every E > 0, the first-order ordinary differen-
tial equation

Vol. 4, n° 5-1987.
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Then there exist three constants cl, c2, c3, independent of E, and a Lipschitz
continuous function xE (s, t), defined on the upper half-plane f~ x [0, + oo [,

satisfying the following properties:

on the strip ~s __ 0, t __ cl E~ the function x£ (s, t) depends only on t

and fulfils the equation (13) in the set ~ ~3~; on the strip

~s >_ cl E, t _ cl s~ the function x£ (s, t) depends only on t and fulfils 16
( 13) - in the set ~x£ (t) ~ , 

on the strip ~0 - s - c 1 E, t >_ c 1 £~ the
function t) depends only on s and fulfils (13) in the set

(S) ~ a~ .

Proof. - We have to determine cl, c2, c3 and to complete the definition

of xE on the strips

and on the square Q=[0, c 1 E[ x [0, c 1 E[.
Let us begin by Si, where we have the prescribed boundary values

0) = L. we define xE (t) _ [i; if P > L, we solve
the Cauchy problem

and we define x£ (t) = y (t)}; if 03B2  L, we solve the same Cauchy

problem with - y’ instead of y’ and we define y (t)?. Since

provided that xE (t) ~ ~i, we have for t >_ E ~ (3 - L ~/~; then, in

order that "if. takes the prescribed boundary values Xf. (s, we need

~3 - L ~/b. The same holds on S2 and S3, so we are led to define
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Define also C2 =max (a, ~3, L, M}, so that

and

on ( R x [0, + Finally, as we know xE on three sides of the square
Q, we can extend ~~ on Q in such a way that xE becomes Lipschitz
continuous on the whole upper half-plane and ( 15) is satisfied with

The proof of Lemma 2.5 is now complete..
Let us return to the proof of Proposition 2. 3. The first part of the

proof consists in constructing a family in U~ such that v£ converges to
vo as E -> 0 +, and

is approximatively equal to ~°E (vJ.
Define

Vol. 4, n° 5-1987.
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and let be the function constructed in Lemma 2. 5. Let, for x E SZ,

Look at Figure 1 for understanding the meaning of our construction.
Denoting

Federer’s coarea formula and (see Proposition 1. 6)
yield

hence, as aA and aS2 are smooth, Proposition 1. 6 implies

for E small enough. It follows that converges to vo in L 1 (Q) as E - 0+
and, defining

we have that

for E small enough.
Let us choose a point xo e and, for fixing the ideas, assume that

xo E A. In the case Q (~ A = 0 or xo E QBA the changes in the proof
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are trivial. Note that the closed ball BE = B (xo, E1~") is contained, for E
small enough, in the set ~vE = a~; then the function defined on Q by
VE for x ft BE, and by

for x E Be, is Lipschitz continuous whenever 
We now choose

with (On - 1 equal to the volume of the unit ball in so that

and, by the definition of r~E and v~,

for E small enough. Since, by ( 17),

we have, for E small enough,

and

hence

The second part of the proof consists in a sharp estimate of the
right-hand side of such inequality. For the sake of simplicity, let

Vol. 4, n° 5-1987.
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with

and

By (20) and (21), and by the continuity of a and of the trace operator,
we at once obtain

The evaluation of ~E (v£; Q) is more complicated. Let us divide Q in
seven parts, corresponding to the construction of ~~ in Lemma 2. 5 and
of v£ ( see Fig. 1 ) :

On BE we have, by ( 19),

Annales de /’Institut Henri Poincaré - Analyse non linéaire
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hence

On 03A9~03B1 and Qp the function v~ equals respectively a and fi, so that

On we have moreover, by (16),
t) = x~ (s) depends only on the first variable and satisfies the equation

on an interval ]0, ij, with 0  i£  c 1 E, while x£ (s) = a for s >_ Then,
applying Federer’s coarea formula we obtain that

and therefore, by Proposition 1. 6,

The same argument leads to

and to

Finally, on SZo we have, by (15),

Vol. 4, n° 5-1987.
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Note that, again by coarea formula,

where Qp denotes here the Since we have

oQp) = 0 for almost all p > 0, Proposition 1. 6 gives

for almost all p>O; by taking the infimum for p>O, we conclude that

Now, by collecting (22) to (29), we have that

The left-hand side does not depend on 0, L, and M, so, by taking first
the infimum for b > o, and then the infima for and for of the

right-hand side, we obtain, by the definition of 6 and co, that
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Remarking that the Fleming-Rishel formula yields

the right-hand side of (30) agrees with So (vo) and the proof of Proposition
2. 3 is complete..
Now, we can prove Theorem 2.1. ,

Proof of Theorem 2. 1. - Assume for simplicity that all (uE) converges,
as E -~ 0 +, to uo. By constructing, as in the proof of Theorem I of [10], a
suitable family of comparison piecewise affine functions, we first obtain
that

hence Proposition 2 . 2 gives W (uo (x)) = 0 and

Now, let j~ be the class of all open, bounded subsets A of with smooth

boundary, such that and For

every we define for vo (x) = ~i for x E 
applying Proposition 2 . 3 with r =1, we infer that

where

Since

Vol. 4, n° 5-1987.
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we have, by the minimality of uE, that

and we conclude that

for every Arguing as for (30) and (31), we obtain

and

so that

for every A Then the required minimality property (ii) of Eo follows
from Proposition 1.5. Finally, by employing again (33) and

Proposition 1. 5, with

we have that

hence the result (iii) follows from (34) and this concludes the proof of
Theorem 2 . 1 ..

2. 5. Remarks. - (a) The assumption that aSZ is smooth in Theorem 2.1
cannot be easily replaced by an Lipschitz continuous, except for 03C3=0
(cf [10]). In fact, as we already observed in Remark 1.3, the liquid-
drop problem ( Po) in bounded domains with angles requires a particular
treatment.

(b) Well-known growth conditions at infinity on W guarantee that the
minimizers u£ are of class Of course, if uE E L °° (Q), then u£ is smooth.
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(c) The (relative) compactness of in L1 (Q) may be studied as in
Proposition 4 of [10]. It is ensured either by equiboundedness of (uE)
(cf. [9]), or again by a growth condition at infinity on W.

3. A DISCUSSION
ABOUT CRITICAL POINT WETTING

We make here more precise some statements of Introduction, about the
connection between Theorem 2.1 and the critical point wetting theory by
J. W. Cahn [2].

According to this author, and looking in particular at page 3668 and
Figure 4 of [2], we assume that the contact energy « is a non-negative,
convex, decreasing function of class C1. Moreover we denote by WT the
Gibbs free energy at the temperature T (recall that we are concerned with
isothermal phenomena), by ocT and [iT the corresponding zeros, by MT the
maximum height of the hump between aqr and We assume that WT (t)
increases for t >_ By thermodynamic and experimental reasons (cf [2],
page 3669), we assume also that ~iT and MT are decreasing in T, aqr is
increasing in T and 0, MT  0 when T increases towards a
critical temperature To (critical point of a binary system). The cp and 6
corresponding to 03C3 and WT will be denoted by 03C6T and T.

Let us compute now aT (t) for Since o is decreasing and

we obtain that the minimum of is attained at
a point s = ~,t, T __> t. Moreover, either ~,r T = t, or

For To-T small enough, that is for a temperature T below and close to
the critical one, the hump in the graph of 2 WT~2 between aT and (3T does
not intersect the graph of - «’ in the same interval; on the other hand,
since « is convex, the decreasing function - o’ does intersect the increasing
function 2 Wi/2 at a single point ~,T _>_ (3T (see Fig. 2).
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It is easy to check that (independent of t) is actually the minimum
point of s - a (s) + 2 (t) - (s) I; hence we conclude that

hence

in correspondence with the phenomenon of the perfectly wetting phase P
quoted in Introduction. If one prefers not to consider the modified energy
aT, it could be alternatively thought that a very thin layer of a third phase
of the fluid, with density ~,T > Pv appears on the whole boundary of the
container.

When the temperature T is much more below To, a possible relative
behavior of - 6’ and 2 W l l2 is shown in Figure 3, with both T and 03BBT
relative minima of

for every t ~ aT.
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Note that

while the value of ~T ( aT) depends on the areas A and B. Indeed, if A _ B,
then

and yT =1 as above. On the contrary, if A > B, then

and ~yT  l; since we have analogously yT > - l, this means that both the
fluid phases wet the container walls. Or, alternatively, two thin layers of
fluid, with densities and ÀT, are interposed between the phases aqr and
Py and the container.

Finally, we want to remark that the equation 6 = a is equivalent to the
inequality

which gives in particular
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and analogously ~’ ( [i) >_ 0; hence (35) cannot be satisfied in the case a’  0.
It would be interesting to know whether the inequality (35), and then the
equality 6 = 6, are verified in some other thermodynamic situation,
different from the phenomenon studied in [2] by Cahn.
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