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ABSTRACT. - Critical points of convex perturbations of indefinite

quadratic forms are obtained from the dual least action principle. The
main result leads to necessary and sufficient conditions for the existence
of a critical point when the corresponding Euler equation is scalar or
when the perturbation is strictly convex. Applications are given to periodic
solution of hamiltonian systems and to systems of semi-linear beam equa-
tions. A global version of the averaging method is given.

Mots-clés : Dual least action principle, periodic solutions, hamiltonian systems, semi-
linear beam equations, averaging method.

RESUME. On prouve l’existence de points critiques de perturbations
convexes de formes quadratiques indefinies par le principe de moindre
action duale. Si l’équation d’Euler est scalaire ou si la perturbation est
strictement convexe, on obtient des conditions necessaires et suffisantes

pour l’existence d’un point critique. Des applications sont donnees aux
solutions periodiques de systemes hamiltoniens et a des systemes d’equa-
tions de poutre semi-lineaires. On obtient une version globale de la methode
de la moyenne.
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1. INTRODUCTION

The dual least action principle of Clarke-Ekeland [9] ] (see also [8 ] for
a general formulation and other applications) has been used by Mawhin,
Willem and Ward [13 ] [1 S ] [7~] ] [1 7] to obtain necessary and sufficient
conditions for the existence of solutions for the (scalar) Neumann problem

and the (scalar) Dirichlet problem

when f (x, . ) is nondecreasing and F(x, . ) = f (x, v)dv satisfies a suitable
asymptotic quadratic growth condition. 

°

The aim of this paper is to state and prove an existence result for semi-
linear equations, with non-invertible linear part and convex potential
F(x, ),

in a closed subspace V of L~(Q, [RN), where Q is a bounded domain of (~m.
The linear self-adjoint operator L : D(L) c V -~ V and the nonlinear
potential F : Q x [RN -~ [R must satisfy some regularity assumptions.
Moreover, F is subjected to some asymptotic conditions, namely F(x, u)
is strictly dominated at infinity by M 2/2, with Ai the first positive
eigenvalue of L, and the mapping

is coercive on ker L. This last condition is of the type introduced by Ahmad-
Lazer-Paul [2 ] in variational elliptic problems with bounded nonlinearity
and then used by Rabinowitz [79] ] and others. In contrast with those
results, we allow unbounded nonlinearities, and can express our assump-
tions on the nonlinearity in terms of F and not of VF, which makes the
verification of a Palais-Smale condition very unlikely. On the other hand,
we must restrict ourself to the case of a convex F.

Section 2 is devoted to some preliminary results on the positive-defini-
teness of some quadratic forms and, in Section 3, we first study like in [8 ]
the solvability of a perturbed problem and show how the existence of a
solution of the original one is ensured by the obtention of a posteriori
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433CONVEX PERTURBATIONS OF QUADRATIC FORMS

estimates on the solutions of the perturbed problem found in the first
step. Explicit conditions for having those a posteriori estimates are then
given in Section 4 and lead to our basic existence result (Theorem 1).
Notice that ker L needs not to be finite-dimensional and L needs not
to have a compact resolvant so that Theorem 1 covers not only systems
of ordinary or elliptic partial differential equations, but also some hyper-
bolic problems. This is shown in Section 5 where we give applications
to periodic solutions of Hamiltonian systems and to systems of semi-linear
beam equations, generalizing earlier results of Bahri and Sanchez [4 ].

In the case of scalar equations, we show in Section 5 how to deduce
from Theorem 1 a necessary and sufficient condition for the existence
of a solution (Theorem 2) which contains as special cases the results on
the Neumann and Dirichlet problems with resonance at the second eigen-
value given in [7~] ] [7~] ] [7J] ] [7~] ] [17 ]. Finally, when F(x, . ) is strictly
convex and dim ker L is finite, we obtain in Section 6 necessary and suffi-
cient conditions of existence in the line of those given by Berger and Schech-
ter [6 in a narrower setting and with unnecessary regularity assumptions.

Notice that parts of the results of the present paper have been anounced
in [14 ].

2. SOME LEMMAS FOR QUADRATIC FORMS

Let Q c [Rm be a bounded domain, V a closed subspace of [RN)
with the usual inner product 

-

(( . I . ) denotes the inner product in [RN) and the corresponding norm
II u II = (u, U)1/2. Let L : D(L) c V ~ V be a linear self-adjoint operator
with closed range, so that V = ker L Q+ R(L) (orthogonal direct sum).
We make the following assumptions upon the spectrum a(L) of L:

(Si) 
(S~) a(L) n ]0, + oQ [ and consists of isolated eigenvalues having

finite multiplicity.
Let us denote by ~.1 the smallest positive eigenvalue of L and by

K : R(L) -~ R(L) the right inverse of - L defined by

Thus by the closed graph theorem K is a bounded linear operator on
R(L) and J1 E r(K)B { 0 } if and only if - 1 /~c E 6(L). Let { P;~ : i~~ E (~ ~ be the
spectral resolution of
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434 J. MAWHIN AND M. WILLEM

Then, P - and P + are orthogonal projectors, R(L) = H - 0 H+ (ortho-
gonal direct sum), KH + c H +, KP+ is semi-positive definite on R(L)
and, by assumption (S~), KP- is compact on R(L). K being self-adjoint,
it follows also from (S2) that

for all u E R( L) and hence the quadratic form defined by

will be strongly positive definite whenever

This simple result is generalized in the following

LEMMA 1. Let a E be such that inf ess a > 0 and the quadratic
form rw defined by 

is positive definite on R(L). Then there exists 6 > 0 such that

~,~ E R(L).

- If it is not the case, it follows from assumptions on K that
we can find a sequence in R(L), with = 1 (k E (~ *), and some
Fo E R(L) such that

f . We can write

and, by (4),
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435CONVEX PERTURBATIONS OF QUADRATIC FORMS

as k - x. Now, y2 and y3, convex and continuous, are weakly lower
semi-continuous and hence the same is true for f2 + 73. Consequently,
by (5),

i. e.

which, by the positive-detiniteness of .. implies that

and hence, by (5) and the non-negativeness of y2 and y3,

As, for all we have

we obtain a contradiction.
We now prove a sufficient condition for y to be positive definite on R(L).

LEMMA 2. - Let with ess inf a > 0 be such that

for a. e. x E Q and

.lcm 0 ~ v1 ~ ker (K + 03BB-11I) = (L - i.ll). Then the quadratic form 03B3

defined by (3) is positive definite on R(L).

Proof It follows from (2) and (6) that

for all v E R(L). Therefore, if y(u) = 0, then

Let u + v2, with z,l E ker (K + and v2 1 ker (K + i ~ lI). Then
(8) implies

Let r~2 > i~~ be the next element of 6(L) n ]0, Jo [ (with f2 = + DC if

]0, x [ _ ~ i~ 1 }). Then,
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for all + i ~ 1)~1 and hence, by (9),

so that V2 = 0. Thus v = VI E ker (K + ~ 1 lI~ and

Thus, if "i = 03BB1 ess sup 03B1, c2 = 03BB1 ess inf 03B1, we get
n Q

which by (7) implies that V1 = 0 and completes the proof.

REMARK 1. If nontrivial elements of ker (L - have the unique
continuation property (i. e. if they vanish at most a subset of measure
zero of Q) then, when (6) holds, (7) is obviously equivalent to a(x)  i~~ ~
on a subset of Q with positive measure.

3. A POSTERIORI ESTIMATES ON SOLUTIONS
OF A PERTURBED PROBLEM AND THEIR LINK

WITH THE SOLVABILITY OF (1)

Let now F : Q x (~N ~ ~, (x, u) f--~ F(x, u) be such that F(x, . ) is
continuous and convex for a. e. x E D and F(., u) is measurable for each
u E [RN. Assume moreover that there exist f3 E L2(S2 ; ~ + ) and l E ~N)
such that

for a. e. x~03A9 and all u E Finally, let us assume that VF = ..., 

exists for a. e. x E Q and all u E [RN, and is such that VF(., u( . )) E V whenever
u E D(L).
For E > 0, we define FE by

and the Legendre (or Fenchel) transform FE (x, . ) of by

The condition (10) easily implies that
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so that F* takes values in R and classical results on the Legendre transform
imply that exists and is continuous for a. e. x E Q. We define

on R(L) the functional by

We can now state and prove the following important lemma.

LEMMA 3. Assume that there exists a E L~°(~) as in Lemma 1 such that,
for each ri > 0, one can find E L2(S2 ; ~ + ) such that

for a. e. x E Q and all u E (1~N. Then there exists So > 0 such that, for each
E E ] 0, eo], the equation

has a solution u£ such that uE = minimizes on R(L).

Proo.f: Let us choose ~o > 0 such that

where 6 > 0 is given by Lemma 1. For each e E ]0,8oL a. e. x E s2 and
each u E [RN we have

and hence

imply also that

Thus R(L) -~ ~ is well defined and of class ~1 for each e E ] 0, ~o ]
and, by Lemma 1 and (14),

r

for all v E R(L). On the other hand,

with cp1 sequentially weakly continuous (as KP - is compact), cp2 and cp3
w.1. s. c. (as continuous and convex). Thus is w. 1. s. c. and coercive

and hence has a minimum vE for each e E ] o, ~o ]. Consequently,
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for all h E R(L), i. e.

Letting uE = KvE E D(L), we deduce from the above equality, by
duality,

and the proof is complete.

REMARK 2. - Condition (12) will be abreviated by saying that

uniformly a. e. in Q.
The following result shows that we can get a solution to the problem (1)

from the found solutions uF of the modified problem (13) if we have a poste-
riori estimates on uE independent of e E ] o, eo ].

LEMMA 4. - Under the assumptions of Lemma 3, if there exists cons-
tants C 1, C2 such that

then problem (1 ~ has at least one solution.

Proof By (16) there exists u E V, u ~ V and a sequence in 

converging to 0 such that

as k - :~c . By the weak closedness of the graph of L, it follows that u E D(L)
and

F(x, . ) being convex, VF(x, .) is monotone and hence, for all w e D(L)
we shall have

and hence, by (13),

or

and hence
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if k - Consequently, as (18) implies

we obtain, by (17) and (19)

But, from the obvious relation

we obtain

and hence

Thus, by (20),

We use now the Minty’s trick by taking

which gives

hence if t ~ ~ +,

so that, as D(L) is dense in V,

and the proof is complete.

4. THE BASIC EXISTENCE THEOREM

Condition (12) limits the asymptotic interaction between 2F(x, u)/ ~ u ( z
and the first positive eigenvalue of L. The following lemma show that
some a posteriori estimates on u£ can be obtained if we add a condition on
the interaction of F with the kernel of L, i. e. with the eigenspace of the
preceding eigenvalue 0 of L.

Vol. 3, n° 6-1986.
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LEMMA 5. - Under the assumptions of Lemma 3, if the functional

has a critical point, then there exist positive numbers Ci (i = 1, 2, 3) such that

Proof. - By assumption, the function l’ defined by

belongs to (ker L)- - R(L). Therefore, by duality

for a. u. Notice that from the ohB ious inequality
.

we deduce the inequality

where the left hand member can be + J .

As Ve minimizes on R(L) and v E R(L), we have, using (15), (21) and (22),

and hence, for all 0  ~:  ~:o.

Consequently.
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Now, by the convexity of F(x, . .), we obtain

Hence, as (Lu£, u£) _ (LuE, I Lu~ ~ ~ ~~, we get

We can now state and prove a rather general existence theorem for ( 1 ).

THEOREM 1. Let S2 c ~m be a bounded domain, a closed

subspace with the induced inner product ( . , . ), L : D(L) c V -.~ V a linear
self-adjoint operator with closed range and F : Q x I~N ~ L~, (x, u) H F(x, u)
a function such that F(x, .) is convex and differentiable for a. e. x E S~,
satisfies the regularity assumptions listed at the beginning of the section
and is such that VF( . , u{ . )) E V whenever u E D(L). Assume moreover that
the following conditions are satisfied :

(S 1 ) 0 E 

(S2) n ] 0, + oa [ ~ ~ and consists in isolated eigenvalues with

finite multiplicity.
(S3) If i~~ 1 > 0 is the smallest positive eigenvalue of Land

K : R(L) -~ D(L) n R(L) is the right-inverse ( - L 1 of - L
there exists a E with inf ess a > 0 such that

a) the quadratic form on R(L)

is positive definite

V ol. 3, n° 6-1986.
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for a. e. xeQ and all u ~ I~N.

Then the problem

has at least one solution u such that

minimizes the dual action R(L) -~ ~ ~ ~ + defined by

Proof - G, ker L -~ ~, u H F(x, v(x))dx is convex, continuous

and coercive, and hence it has a minimum, say at w. Then, by Lemmas 5
with w = w and condition (S4), all conditions of Lemma 4 are satisfied
and (23) has a solution u = lim uk where uk = Luk minimizes on R(L) the
functional 1 

k-~ x

for some sequence (ek) of positive numbers tending to zero. Therefore,
if heR(L), we have

From the properties of (Vk) we can assume, without loss of generality, that

as k - Therefore,

and

Thus,
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Now, for a. e. x E Q,

so that

and hence, as uk ~ V,

Now, by (23), (24) and duality, we have

and hence

a. e. on Q, so that

Introduced in (26), (27) implies that

for all h E R(L), and the proof is complete.

5. APPLICATION TO THE PERIODIC SOLUTIONS
OF HAMILTONIAN SYSTEMS

AND HYPERBOLIC SEMILINEAR EQUATIONS

Let us first consider the periodic problem

for Hamiltonian systems, where H : [0,7r] ] x Q~2M --~ [R satisfies the regu-
larity and convexity conditions listed for F at the beginning of section 3,
A is a measurable mapping from [o, 2~c ] into the space of real 2M x 2M
symmetric matrices which is dominated a. e. on [0,27r] ] by a L1-function

and J = 
M 

is symplectic matrix. Taking V = L2(0, 203C0 ; [R2M),

D(L) = { u : [0, 203C0] ~ R2M| u is absolutely continuous, u(0) = u(27r),

Vol. 3, n° 6-1986. j7
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u’ E L2(o, 203C0 ; R2M) }, Lu = Ju - A(. )u( . ), it is well known that L is self-

adjoint, has closed range and a discrete  i~o  i 1  ... ~
unbounded from below and from above and made of eigenvalues having
finite multiplicity. Let us assume that i o = 0 E a(L), so that is the smallest

positive eigenvalue of L. We deduce immediately from Theorem 1 the

following existence result.

COROLLARY 1. - Assume that there exists a E Lx(o, 2~c) with inf ess a > 0
such that 

~o’2n~

on a subset of [0, 2~ ] with positive measure and such that

uniformly a. e. l)l [0, 203C0]. Then, if

when ~ ~ ~ ~o and u is solution of

problem (28) has at least one solution u such that v = Ju - A( . )u minimizes
on R(L) the corresponding dual action.
An interesting special case is the one where

for some integer k E ~. Then, it is easy to check that

so that (32) becomes

In particular, when k = 0, (33) reduces to

if ( c ~ I -~ oc. This special case can be taken as a starting point to prove

Annales de tlnstitut Henri Poincaré - Analyse non linéaire



445CONVEX PERTURBATIONS OF QUADRATIC FORMS

a number of results on the existence of subharmonics for non-autonomous
Hamiltonian systems and on the existence of periodic solutions with fixed
period of fixed energy in the autonomous case (see e. g. [J] ] [16]).
Now let us consider the existence of weak solutions Q= ] o, ~ [ x ] o, 2~ [

for the problems

where H : Q x [RN --~ R measurable in (x, t) and continuous in u is such
that for each R > 0, H(x, t, u) 5 yR(x, t) for some yR E and a. e.

(x, t) E SZ (L °°-Caratheodory condition). If L ± denotes the abstract realiza-
tion in L2(S~ ; of ± (D; + Dx) with the above boundary conditions,
it is well known (see e. g. [4 ]) that L+ is self-adjoint, has closed range and
a discrete spectrum

Thus, 0 is the only eigenvalue with infinite multiplicity. On the other hand

and the following result is proved in [4 ] :

LEMMA 6. 2014 The L1 and L 4 -norms are equivalent on ker L.

Now, if ~(L ± ) _ ~ ~,k : we see that i i - 1 and ~. ~ = 3. Thus,
we shall assume that

uniformly a. e. in Q, with, according to the considered case,

a. e. on Q with strict inequality on a subset of positive measure of Q. Let
us finally assume that

as |u I ~ ~, uniformly a. e, in Q. Then, by convexity and the L ’ -Cara-
theodory conditions mentioned above, there will exist 3 > 0 and y e 
such that
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for a. e. (x, t) E Q and all u E Consequently, for M E ker L,

and, as the L 1 and L 2-norms are equivalent on ker L by Lemma 6, we
see that condition (S4) of Theorem 1 is satisfied. We have therefore proved
the following

COROLLARY Z. - Assume that H : Q x [RN ~ R satisfies the L°°-Cara-
theodory condition, that

as ~ u ~ I -~ oo uniformly a. e. in Q and that

uniformly a. e. in ~ for some a E L ~(~) such that

a. e. on Q, witlt strict inequality oji a subset SZ with positive measure. Then
problem (34 + ~ (resp. (34 _ ~ ~ has at least one weak solution.

In the special case where N = 1,

the conditions in [4 ] are that /(.B,~ .) is nondecreasing,

for a. e. (x, and all with y  1 for (37+) and y  3 for (37-),
and that there exist qJ E R(L) n L°°(SZ), M > 0 and 03B4 > 0 such that

a. e. on Q. Denoting by ù the unique solution in R(L) n D(L) of

so that (see e. g. [4]) and letting

we obtain the equivalent problem

where
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It follows easily from (38) that (35) and (36) are satisfied with (x(;c, t) = y
and (39) together with the monotonicity of .f (.ul, t.. ) imp!y that

when w  - M, so that

with ~ E for a. e. (x, t) E Q and all u E R. This shows that the Bahri-
Sanchez theorem is a special case of Corollary 2.

REMARK 3. - Conditions (38) and (39) were motivated by a result of
Bahri and Brezis [3 ] relative to the semi-linear wave equation

with the Dirichlet-periodic boundary conditions on Q. In the absence
of a result like Lemma 6 for the wave operator, it is not clear that the
Bahri-Brezis result is a special case of Theorem 1, although it is a conse-
quence of Lemma 4 as shown by the proof given in [8 J.

6. THE CASE OF A SCALAR EQUATION

When N = 1, the results of the preceding sections can be sharpened
and Theorem 1 leads to a necessary and sufficient condition already con-
sidered in particular situations in [l3 ] [7~] J [I S ] [7~] ] [17 ].
We first have the following generalizations of Lemmas 1 and 2 whose

proof, very similar to the ones of Section 2, are left to the reader. We assume
that L satisfies the conditions (S1) and (S2) and use the notations of Section 2.
For a real function u on Q, we write u ~ - max (u, 0), u - = max ( - u, 0),
so that u = u + - u - .

_ 

LEMMA 1’. - Let oc+, x- in L 00(0) be such that inf Q ess a+ > 0, inf Q ess oc_ > 0
such that the quadratic form y defined by

Vol. 3, n° 6-1986.



448 J. MAWHIN AND M. WILLEM

is positive definite on R(L). Then there exists 6 > 0 such that

wherever r,, E R(L).

LEMMA 2’. - Let a +, a - in be like in Lemma 1 and such that

for a. e. x ~ S2 and

for all L’ 1 E 03BB1I) { U j . Then the quadratic form 03B3 defined by (40)
is positive definite on R(L).
An immediate consequence of those Lemmas is that when N = 1, T heo-

rem 1 holds with assumptions (a) and (b) replaced by the following one:
There exist a+, a _ E with infess a+ > 0, inf ess oc _ > 0 such that
a’) the quadratic form (40) is positive definite on R(L)
b’ ) for each ri > 0 there is a E L2(S2, (~ + ) (resp. fl~ + )) such

that

for a. e. x ~ 03A9 and u  0 (resp. u > 0).
We can therefore prove the following necessary and sufficient condition

for the solvability of the equation

in D(L) c= V (= by combining Theorem 1 to some ideas of the

proof of Theorem 2 of [17 ].

THEOREM 2. - Assume that N = 1 and that the regularity conditions as
w~ell as assumptions (S1)-(S2)-(S3) of Theorem 1 and the conditions (a’)-(b’)
above hold. Assume moreover that

~.~here cp > 0 a. e. on S2 and that for each possible solution u of the problem
Lu = z(x)) with L, E D(L), there exist constants a, b such that

for a. e. x E S~. Then (43~ has at least one solution if and only if the real

function F : c H has a critical point.
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Proo, f.’ Necessity. If (43) has a solution ~ then f( . , u(. (ker L)1
and hence

so that, using (45), the monotonicity of DuF(x, .) and the positivity of cp,
we obtain

The conclusion then follows from the intermediate value theorem.

Sufficiency. Let c E f~ be a critical point of F and let us assume first
that

for all c ~ c. Then, by the monotonicity of ), this implies that

for a. e. x E Q and all c ~ c. Let now ù be a solution of the linear problem

and a, b be such that

a. e. on Q. Then, if we take ‘c ~ c - u and

we have

a. e. on Q and hence

i. e. u is a solution of (43). Similarly if (46) holds for all c  c. It remains
therefore to consider the case where there exist ci 1  c  c2 such that

But then, for c ~ c2, by convexity,
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so that F(c) --~ + x if c -> + oo. Similarly, F(c) 2014~ + oo if c ~ - oo
and condition (S4) of Theorem 1 holds, which completes the proof.

REMARK 4. - Condition (45) is obviously a regularity assumption
concerning D~F and the solutions of the linear problem Lu = h.

REMARK 5. - The condition for F to have a critical point is obviously
equivalent to the existence of 7 e R such that

The assumptions of Theorem 2 suggest applications to the problems

where ~,1  i~~2 ~ ~~3  ... denote the eigenvalues of - A with the Neu-
mann or Dirichlet condition according to the considered problem (~.1 = 0
and qJ = 1 in the Neumann case). Assuming f a Caratheodory function
on Q x R such that

with b E Q smooth enough, q > m/2 if m  4 and q = 2 for m = 1,2, 3
in the Neumann case and q > m in the Dirichlet case, one can check that
the regularity conditions on L, the abstract realization in 

(with the boundary conditions included in the sense of traces in D(L))

and on F(x, . ) = f’(x, v)dv as well as conditions (S1)-(S2)-(S3), (44) and (45)
are satisfied. Consequently, if we assume that F satisfies (b’) with a - and a +
verifying (41) and (42), we obtain the necessary and sufficient conditions
for the solvability of (47) or (48) given in [13] ] [14] and [17] and which
give a sharp answer to a question raised in [10 (p. 574) about some pio-
neering results of Klingelhofer [ll ].

In the case of the periodic problem for a second order scalar equation

with g(t, . ) nondecreasing, Theorem 2 answers positively (and even under
weaker conditions) an open question stated in [12] ] about a possible
improvement of a result of Ahmad-Lazer [1 ]. The case of a non-monotone g
is still open.
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7. THE CASE OF A STRICTLY CONVEX POTENTIAL

In the case of a strictly convex F(x, . ), one can deduce from Theorem 1
a necessary and sufficient condition for the solvability of (26).

THEOREM 3. Assume that the conditions of Theorem 1 are satisfied
with (S4) replaced by (S4) dim ker L  oo and F(x, . ) is strictly convex
for a. e. x E S~.

Then the following statements are equivalent:
a) problem (23~ has a solution.
b) there exists w E ker L such that

for every u E ker L.

Proof 2014 ~ ==> b. If (23) has a solution u, then

for all v E ker L as V = ker L @ R(L). Let us write u = f + u with u E ker L
and u E R(L) and let us define on ker L the strictly convex continuous
functions G and G respectively by

Since, by (49), VG(u) = 0, the strict convexity of G and the fact that

dim ker L  oo imply that

By the convexity of F(x, .), we have

and hence, by (50)

Vol. 3, n° 6-1986.



452 J. MAWHIN AND M. WILLEM

Consequently, there will exist W E ker L such that = 0, i. e. such that

for all L, E ker L.
b => c. By assumption, G has a critical point and then in the same way

as for G above G(i,) -~ + x~ I -~ ~~ in ker L.
c ==~> a. This follows immediately from Theorem 1.

This result generalizes in several ways earlier theorems of Berger and
Schechter [6 ] who, under more restrictive conditions upon L and F, have
shown the equivalence between condition (a) of Theorem 3 and the following
condition.

h’) there exists u E D(L) .s!/c/? that

for every v E ker L.
The interest of the equivalent condition (b) is to make clear its relation

with the coercivity on ker L of the averaged potential F(x, . )dx. It is

well known that for periodic problems for systems of differential equations
with a small parameter

(and in particular for the corresponding Hamiltonian systems

with sufficiently smooth right-hand members, the averaging method (see
e. g. [7]) relates the existence of solutions of (50) to that of zeros of the
averaged equation

Thus, Theorem 3 can be considered, for abstract variational semi-linear
equations, with a strictly convex nonlinear potential and a finite dimen-
sional kernel, as a global version of this averaging method. In another
direction, it exactly extends to nonlinear perturbations deriving from a
strictly convex potential the usual Fredholm alternative for non-homoge-
neous linear equations.

REMARK 6. - One can notice that under (84.) only, the condition a)
implies b) and c).
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