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ABSTRACT. - Suppose Q is a bounded open subset of ~n with C2 boun-
dary ~SZ having nonnegative mean curvature. We examine the regularity
at the boundary of solutions u to the minimal surface equation having
boundary values qy. If 03C6 has modulus of continuity f3 we give a modulus
of continuity for u which depends on j3 and the behaviour of the mean
curvature of If qy is Lipschitz continuous then we show that u is Holder
continuous with some exponent a (explicitly obtained) that depends on
the Lipschitz constant for qy. Finally we give examples showing the above
results are best possible.

RESUME. - Supposons que Q soit un ouvert borne de L~n dont le bord aS2
est de classe C2 et a une courbure moyenne positive au mille. Nous exami-
nons la regularity sur le bord de toute solution u a 1’equation des surfaces
minimales avec qy donne au bord. Si 03C6 a un module de continuite /3, nous
derivons un module de continuite pour u qui depend de [3 et du comporte-
ment de la courbure moyenne de Si 03C6 est lipschitzienne, nous demon-
trons que u est holderienne d’exposant a (obtenu explicitement), dependant
de la constante de Lipschitz pour ~. Finalement, nous donnons des exemples
demontrant que les resultats obtenus sont rigoureux.
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0. INTRODUCTION

We consider the Dirichlet problem for the minimal surface equation.
Thus given Q, a bounded open subset of (~" and ~, a function defined
on we seek a function u E such that u on ~03A9 and

Jenkins and Serrin ( [JS ]) showed that if we wish to solve this problem
for every continuous function ~ then we must demand that ~SZ has non-
negative mean curvature everywhere. Furthermore with this condition
on aS2 they showed that the problem is solvable for every continuous ~.
Consequently throughout this paper we shall assume that a~2 has non-
negative mean curvature. For existence considerations when 3Q has negative
mean curvature the reader is referred to [JS ] and [W2].

If we know that ~ is more than just continuous then we should expect
that the solution u will also have greater regularity. This is indeed true.
Thus if aSZ and 03C6 are 2, 0  a  1 then the solution u is in 

(For example see [GT ].) The case k = 1 has also recently been studied
by Lieberman [LI] ] and Giaquinta and Giusti [GG] ] who have shown
that the corresponding result is true. That is if ~03A9 is C2 (and has nonnegative
mean curvature) and 03C6 is C1,03B1 then we have u in In this paper we

study the case k = 0. We shall assume that ~S2 is C2 and that (~ E 
for some (x, 0  a  1. Results for this problem have been proved by
Giusti [G2 ] who showed that if ~S2 has strictly positive mean curvature
then u E C°’x’ 2(~). (Lieberman [L2 ] has also proved similar types of results
for more general classes of equations.) Furthermore he gave an example
due to Weinberger (see also the example in [G3 ]) in which ~ E and

u for any a > 1 2. Thus the exponent a / 2 is, in general, best possible.
In the second section of the paper we generalize these results and show
that the same result holds in a local form. Thus Giusti demanded that ~S2
have strictly positive mean curvature everywhere and 03C6 E while
we show that if these things hold in a neighbourhood of x° E aS2 then the
solution u satisfies a Holder condition at Xo with the required exponent.
More generally we show that if ql has modulus of continuity at xo
and the mean curvature of cS~ grows like x - r, y >_ 0, then, u has

i

modulus of continuity C03B2(Ct2 +03B3) at x0 for some constant C. The reader
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should also see [S 1 ] where modulus of continuity estimates are proved
without any restrictions on the smoothness or the curvature of In

section 5, given a set Q, we show how to construct examples of boundary
values (~ so that the corresponding solution has exactly growth 
at some point. This shows that the previous results are best possible.

It should be noted that, at this stage, a small change in the regularity
of 03C6 from C1,~ (e > 0) to produces a large change in the known regula-
rity of u from to at best C°~2. In section 3 we show that this gap can
be filled by taking into account the value of the Lipschitz constant of the
boundary data. We give a function K(a) defined on (0, 1) such that if the
Lipschitz constant of qb is less than K(a) then u E C°~~‘(SZ). Furthermore
in section 4 we show that this is best possible in that, for any K > K(a)
there is boundary data ~ with Lipschitz constant K but such that u ~ 
The function K(a) is obtained by looking at the zeros of certain ordinary
differential equations and various properties are obtained. It is shown

that as x ~ 1, K(oc) ~ 0, as oc ~ 0, K(03B1) ~ oo and K - = 1 n-1
It is worth noting that the critical value 

2014==== 
occurred in the existence

work [W2 ] where ~03A9 has possibly negative mean curvature.) For the case
n = 2 a particularly simple expression is obtained for K(a), namely,

K(a) = cotangent ( 2014 ).
All our results are local ones so that we only require the conditions

to hold in a neighbourhood of a point jco and so they apply to generalized
solutions (see [Gl] ] or [G3 ]). Additionally they may also be applied to
the equation of constant mean curvature

except that conditions about the mean curvature of ~~ must be replaced
n

by conditions about the mean curvature minus n - 1 g H I.

All of our proofs involve the construction of appropriate barriers and
in some cases we make use of an idea of Simon [S2 ] which involves writing
the barrier as a function over the tangent plane to the boundary cylinder
cS~ x [R instead of over Q. This means that barriers, which become vertical
over Q at in the new setting have gradients tending to zero, greatly
simplifying the calculations involved. This same idea was also used in
[W 1 ] and [W2].

Vol. 3. n° 6-1986.
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1 . NOTATION

In this section we introduce some notation to be used in later sections.
Similar ideas and notation were used in [W1 ] and [W2] and the original
idea of using a different coordinate system (the y-coordinate system below)
to help in the construction of barriers was given by Simon in [S2].
We shall always suppose that Q is a bounded open subset of [Rn with

locally Lipschitz boundary oSZ and 03C6 is a given function in 

DEFINITION 1.1. 2014 ( [Gl ], [G3 ]) ; A function u e BV(Q) is said to be
a generalized solution of the Dirichlet problem for the minimal surface
equation in Q with boundary data ~ if

for every v E BV(Q).
We note that with the given conditions on Q and 03C6 a generalized solution

will always exist.
In most of the theorems in this paper we will be given a point xo E ~S~

and a neighbourhood ~~ of xo such that is C2 in ft. It will then be
convenient to introduce special coordinate systems to simplify calculations.

DEFINITION 1. 2. - Suppose xo, and Q are as above. An x-coordinate

system for cS~ at xo is a Cartesian coordinate system having xo as origin
and such that the positive xn-axis has the same direction as the inner normal
to C~ at xo. We denote x’ - (xl, ..., xn-1) and x = (x’, xn). Since aS2 is C2
near jco there is ~o > 0 and a function w : 1 

-~ f~ such that

Furthermore w is C2, w(0) = 0 and Dw(0) = 0.

DEFINITION 1.3. - Given the x-coordinate system of Definition 1.2
for L~" we define the y-coordinate system for 1 by setting yi = xi,
i = l, ... , n - 1, yn = Jxn + and 1 

= xn. We denote y’ - (Yb" ...,yn-i)
and y = ( ~~’, so that x’ - ~~’. In the same manner that we used the graph
of w to describe cSZ near Xo we can also describe cS2 x (~. Thus

where ~t~ is the same function as in Definition 1. ~.

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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Finally we note that the minimal surface equation can be written as
Mu = 0 or equivalently as Mou = 0 where

and

2. CONTINUOUS BOUNDARY DATA

In this section we show how to find a modulus of continuity, r~(t), for
the solution u on Q, in terms of the modulus of continuity, for the

boundary data § and the growth of the mean curvature of aQ.

THEOREM 1. - Suppose Q is a bounded open subset of f~n with locally
Lipschitz boundary Suppose ~ E and u is a generalized solution
of the Dirichlet problem. Suppose Xo E aQ and there is a neighbourhood %
of xo, a function [0, oo ) ~ [0, x) and constants y >_- 0, a > 0, and A
such that

i) cSZ is C~ in ~,~^ and, if H(x) is the mean curvature of aSZ at x, then

H(x) >_ a [ x - x0y for x E ao n /,
ii)  A, x E aSZ,
iii) 03B2 is an increasing subadditive function with lim = 0,

iv) + 03B2(|x - x0| ), ~03A9.

Then there is a constant C depending on 03C6 and Q such that

Proof - Introduce x- and y-coordinate systems at xo and let w be the
function describing aS~ as in section 1. We may suppose = 0. We

may also assume that for I x’ ]  ~o _ 1 we have

For f3 as in iii) we can take the concave envelope and obtain an equivalent
modulus of continuity which is concave (see [LO]). Then setting

Vol. 3. n° 6-1986.



416 G. H. WILLIAMS

/*1

= 2 gives an equivalent C~ concave modulus. Repeating
~o

this process we may assume and 03B2 concave in
addition to the properties of iii).

Suppose and that ~ is the inverse of the func-
tion /3. Now defi ne

on the set

Note that v( y) >__ w( y’) in D and furthermore v( y) = w( y’) if and only
if r~(K -1 yn) = 2 ~ y’ ~, that is, when yn = K/3(2 ~ y’ ~ ). Also note that

Dnv( y) = xD" f ( y) = + 2)r~y+ > 0. These two facts imply that
the graph of v can be written as the graph of a function v defined in the
x-coordinates. Moreover there will be a neighbourhood ~~ of xo (depending
on the choice K and ~S) such that r is defined on 11 n Q and

We shall choose x, K and 03B4 so that in addition to (? .1 )-(2 . 4) we have

(Note that (2.6) holds if in D.) The comparison principle will
then imply that

for some constant C and the result is proved. To check (2 . 6) we use Lemma 1
of [S2] J and (2.1) to obtain that, provided

w e have

t-e

Also

l’Institut Henri Poincare - Analyse non lineaire
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and so

Now since 1](0) = 0 and 1]" > 0 we have r~(t) _ t1]’(t) and so

Hence provided

we may absorb the last term into the previous one. Now choosing 6 suffi-
ciently small, then K so that (2.5) and (2. 8) hold and finally a sufficiently
small we may conclude that (2. 7), (2. 5) and (2. 6) all hold. Q
An important choice for the function f3 is = Kt03B1 where K > 0 and

0  a  1. The condition on 03C6 is then Holder continuity. The case y = 0,
that is strictly positive mean curvature, was treated by Giusti [G2 ].

COROLLARY 1. - Suppose Q is a bounded open subset of f~" with C2
boundary ~S2 and let H(x) be the mean curvature of aQ at x. Suppose that
~ E 0  a  1, and that there exist constants y > 0 and a > 0
such that for each Xo E aQ we have H(x) > a x - neighbourhood
of x°. Then there is a function u E C~(Q) n such that Mu = 0 in Q
and u = ~ on aQ. Furthermore u is Holder continuous with exponent

(X -

on Q.
y+2

There are of course many other possibilities for fl. One example would

be fl = - log at in which case u has modulus of continuity - log a’t for
some constants a’ and K’.

Remarks. i) It should be noted that the subadditivity condition on ~3
could be relaxed. However if fl is the modulus of continuity for a continuous
function on an open set it is necessarily subadditive and so there is little
to be gained by relaxing this assumption.

ii) The condition H(x) > a x - j~o F is a fairly strong one, in particular
in the case y = 1 it would imply that H is not differentiable at x°. This
condition has been relaxed even to the extent of allowing H to be negative
at some places near j~o (See [S2] ] and [W 1 ].) The Holder exponent for
the solution u depends in the same manner on the growth of H.

iii) The reader should note that Simon [SI ] has shown that if the boundary
values of u have a modulus of continuity f3 then the solution u has some

Vol. 3, n° 6-1986.
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modulus of continuity ~ on Q. The modulus ~ is in general much worse
than the ones we have obtained above, however Simon’s results hold
without any restrictions on the smoothness of eSZ or the behaviour of

its mean curvature.

3. LIPSCHITZ CONTINUOUS BOUNDARY

If we consider the particular case of Corollary 1 when we have Lipschitz
continuous data and strictly positive mean curvature we see that the solu-
tion u E C°° i(S2). Furthermore examples in [G2 ] and [G3 ] show that, in
general, this is best possible (The results of sections 4 and 5 show how
to construct numerous examples where the solutions grow like [ x [ ~ .)
If the assumption that oS~ has strictly positive mean curvature is relaxed
then the regularity for u given by Theorem 1 is correspondingly less. Again
examples (see section 4) show this is best possible. If we only assume non-
negative mean curvature then Giusti [Gl ] has shown that the solution is
Holder continuous with some exponent which will in general be much

less than -. 2 Techniques like those used in Theorem 1 can also be used

to prove a local version of this result. In this section we show that it is possible
to improve all these regularity results by taking into account bounds
for the Lipschitz constant of the boundary data. More particularly we
show that given a, 0  a  1, then there is a number K(a) such that if
the Lipschitz constant of the boundary data is less than K(a) then the
solution is in The constant K(a) is obtained explicitly (at least
in terms of the zeros of certain solution of well known ordinary differential
equations) and it should be noted that it depends only on n and a and not
on cS2 at all (although we must assume oS2 has nonnegative mean curvature).
In the next section we show that, in general, the number K(a) is best possible
(See, however, the more general result in Theorem 3.)

In order to define the numbers K(a) and construct the appropriate
barriers it is necessary to consider solutions for Laplace’s equation on
conical domains in In particular we shall look for positive solutions
of the form u = r’ f (8), ( 8 [  80 and r > 0 where r is the distance from
the origin and 8 is the angle with the xn-axis. Since

we are led to looking at the following problem:

?I

We shall be concerned only with the cases n ~ 2, /. > 1 and 0 ~ 03B8 ~ 2.
Annales de l’Institut Henri Poincaré - Analyse non linéaire



419MINIMAL SURFACE EQUATION

For the most part the results are classical and so proofs are omitted. Similar
considerations but for more general operators than the Laplacian are
made by Miller in [M ].

n

DEFINITION 3.1. - Suppose i~ > l, n > 2, 0  0  2. 
Then

i ) is the solution of (3 .1 ),

ii) ~rn(i~~) is the first value of o in 0, - such that fn,~,(o) = 0.

Note that and exist. For example, using the method of
Frobenius we may easily find a representation for as a power series
in S = 1 - cos 0 or see the more general results in [M ].

Properties.
TT

DEFINITION 3. 2. - For n _>_ 2 and a E (o, 1 ) we define

Properties.

With the aid of these definitions we can now state the main result of

this section.

THEOREM 2. - Suppose Q is a bounded open subset of [Rn with locally
Lipschitz boundary Suppose 03C6~L1(~03A9) and u is the generalized
solution of the Dirichlet problem. Suppose there is a neighbourhood =. I.."
of xo E ~S2 and numbers A, K and x, 0  a  1, such that

i ) cSZ is C2 and has nonnegative mean curvature in . f,

Vol. 3, n° 6-1986.
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then there is a constant C such that

Proof Since increasing ~ will increase the corresponding solution u
it is sufficient to prove the result in the case where = xo L
x E N n ~03A9. Introduce x- and y-coordinate systems at xo and let w be
a function whose graph gives aSZ near xo. We may assume that the neigh-
bourhood % has the form, for some 5o > 0, N = {x:|x’   03B40},
that aS2 n N } (x’, w(x’)) : I x’ I  03B40} and that K |x| ~ 1 4 (3K + Kn(a)) [
for x E ~t~’ n ~

1 1
Now set J = - (K + 03BB = - and 03B81 = arcotangent (J) > 03C8n(03BB). We

consider ~ ~

where r = 9 = = - fn,~,(81 ) > 0 and 1 > 0 is to
be chosen. Suppose 0  ~  ~o and let

Then on D, c Cr’ -1 ~ ~ ~ f = ~,(~. + n - 2)r’‘ - 2 b, 
f(y)=O if and only ( and Dn, f ’= r~-1 [~. Cos e fn,~,(e)- Sin e fn;~,(6) ]> o.
Consequently as in the proof of Theorem 1 there is a function v(x) and a
neighbourhood % of xo (depending on the choice of 03B4 and fJ) such that
graph iF = graph v, w(x’)) : ~  ~ ~, ? ] if
x n oS2 and = J(5 if x E n Q. We need to show that for some
choice of fl and 03B4 we have 0 in D (and hence and

u __ J5 on a~. In this case we will have u _ r on a(~ n Q) and the compa-
rison principle will then give that u _ v in ~ n Q.
As in Theorem 1 we use Lemma 1 of [S2] ] to obtain that, provided

we have

where

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Now since aS2 has nonnegative mean curvature in ~ we have 0

and so Mov >_ + n - 2)b - C( yn -1 + y,~)~. Since i~ > 1 we can
choose 6, 0  5  5o, such that Mov ? 0 on D. Furthermore with this
choice of 5, ~ ! -- ~3C~" -1 and so by a suitable choice of j3 we can
ensure that (3.2) holds.
To check that u _ J6 on a~ n Q we first note that, provided ~ f  ~o

on D, 
-

a~ n Q = ~ x : xn = w{x’) + ~3. f (x’, J~), ~ x’ ~  ~ ~
so that if w(x’)  Now since = [
for x E aSZ we may apply the result of Giusti [G2 ] mentioned at
the start of this section to conclude that u is Holder continuous with some

exponent, r~, up to aS2 n ~. Thus there is a constant a such that in % n Q

Hence on 3~ n Q we have

and so, by possibly decreasing ~8, we can ensure that u(x) _ L5 = v(x)
on 3~ n Q.
We now have that u _ v in % and so if we can show that v (x)  

the proof is complete. In the construction of v we have = 

Xi = Y~~ i = 1, ... , n - 1 and = w( Y’) + ~~ I y’ [ 2 + + b).
If yn > 2J [ y’ [ then fn,~,(8) + b >-- C > 0 and so yn + 1 - ~’( Y’) ~ 

or, recalling that £ = -, ~ v ( x )- - C(xn - w(x’))". On the other hand, if
a

2J [ y’ [ then we have v (x)  2J x’ [. Consequently

COROLLARY 2. - Suppose Q is a bounded open subset of [R" with C2
boundary aS2 having nonnegative mean curvature everywhere. Suppose
03C6 E and |03C6(x) - 03C6(y)  K x - y for all x, y E ~03A9. Then there
is a function u E C~(Q) n such that Mu = 0 in Q, u on aS~ and
u E for every a such that > K.

It should be noted that in some cases a better exponent than that given
in Theorem 2 may be obtained from Theorem 1. For example in the case
of strictly positive mean curvature we obtain

COROLLARY 3. - Suppose Sz, ~ and u are as in Corollary 2 and that

~03A9 has strictly positive mean curvature. If K > 20142014== then u E 
otherwise u E for every a such that Kn(a) > K.

Vol. 3, n° 6-1986.
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We now show that the Lipschitz constant of the boundary data is not
really the crucial quantity determining the regularity of the solution u.

For example if the boundary data is differentiable at each point then
u E for every a, 0  a  1, even though the derivatives of ql and
hence its Lipschitz constant may be arbitrarily large. Rather it is the size
of the angle of any corners that there may be in the graph of the boundary
data that determine the Holder exponent for the solution u. Thus we replace
the condition  + K x - x0] by a condition that the graph
of qb near the point (xo, lies below a cone having slope K and vertex
at (j~o, ~(.Yo)). This cone need no longer have vertical axis which would
be equivalent to the case already considered). However since is assumed
Lipschitz continuous at xo we may assume that the cone contains the posi-
tive xn + 1-axis.

DEFINITION 3.1. - Suppose K > 0 and satisfy |03BD| = 1

1 > K2 + 1. . Then we define

Remark. is a cone of slope K over the hyperplane through the

origin which has normal v. The condition vn + 1 > K 2 +1 ensures
that ~K,,, contains { z E [Rn + 1 : zn + 1 ? 0 }. It also ensures that the boundary
of can be written as the graph of some function defined over ~n.

DEFINITION 3.2. - Suppose is as in Definition 3.1. Then is
the unique function such that

THEOREM 3. - The results of Theorem 2 and Corollaries 2 and 3 remain

true if condition iii) is replaced by

iii) there exists v E Rn+ 1 = 1 and > K2 + 1 such that

 + FK,v(x - xo), 

Proof - Since, after introducing x-coordinates, the tangent plane
to cS~ at .Yo is {x: xn = 0 J we may as well assume that vn = 0. If this
were not the case we could tilt ~K,,. until vn = 0 and so obtain a better
value for K. Thus by disregarding the nth coordinate of v we obtain a
vector (still called v) in the y-coordinate system. Now construct f as in
Theorem 2 but then rotate so that the yn-axis coincides with v and so obtain

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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a function f,,. Calculations can be made similarly to those before (see [w2 ]
for the modifications) to show that there is a function tB. and a neighbour-
hood % of xo such that M U~, _ 0 in % m SZ, L,, >_ u on ~(~ n SZ) and u,,
has the right growth. The only difficulty is to check that L’v really has graph
which can be written as the graph of u,.. That is we must check that Dn/, > 0,
or since f03BD is obtained by rotation of g that D,/ > 0 in D. Using the

/~2
condition > K2 + 1 and v ~  1 it is seen to be sufficient to show

n- 1

/B~ i /
that ( ~ (Di /)~ j / Dn f __ K. Or rather since we have a strict inequality

i= 1

in the condition on v it will be sufficient to prove this inequality under
the assumption that J = K = and b = 0. Hence we may assume

that f ( y) = r03BBfn,03BB(03B8) and 0. We set v( y) _ / Dn fand an easy calculation shows that j =1 ~ ~

and so is independent of r. Furthermore v = 0 if 8 = 0 and v = K if e = 81.
n

On the other hand it is not hard to show that Ov + 03A3 biDiv > 0 for some
functions bi so that v cannot have an interior maximum point. Hence
0 _ v -_ K in D and so Dnfv > 0 in D. D

COROLLARY 4. - The results of Theorem 2 and Corollaries 2 and 3
remain true if condition iii) is replaced by

iii)" + 03C62(x) for where 03C61 is differentiable
at xo and 03C62(x)  + K I x - x0I for x E oS2 n 

COROLLARY 5. - Suppose Q is a bounded open subset of IRn with locally
Lipschitz boundary ~03A9 which is C2 near Xo E aQ. Suppose that § E 
is differentiable at xo and u is the generalized solution of the Dirichlet
problem. Then for every ae(0,1) there is a constant C such that

Remark. This result appears in [L3] where it is shown to be best

possible. That is, in general the Corollary is not true with a = 1.

Vol. 3, n° 6-1986.
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4. GROWTH WITH LIPSCHITZ DATA

In this section we show that the bound Kn(a) on the Lipschitz constant
of the boundary data (given in the last section) cannot be increased if
we wish to ensure Holder continuity of the solution u with exponent a.
We also show that without restricting the Lipschitz contant in any way

then the best Holder exponent is that given by Theorem 1 namely y+2 .
The method is to take boundary data which has a particular form near a
fixed point xo E aS2 and then introduce the y-coordinate system of section 1.
In this situation a result of Simon [S3] ] allows us to write the graph of
the solution u as a C~ graph in the y-coordinates, at least near xo. We then
use techniques like those in the last section to construct a lower barrier
having the required growth at xo.

THEOREM 4. - Suppose Q is a bounded open subset of [Rn with locally
Lipschitz boundary Suppose ~ E and u is the generalized
solution of the Dirichlet problem. Suppose xo e aSZ and there is a neigh-

bourhood L~ of xo and numbers y >_ 0, a >-- 0, a e 2, 1 and K > Kn(a)such that 1~’ +

i) ~S2 is C2 in ~ and, if H(x) is the mean curvature of aS2 at x, then
H(x) ~ 03B1|x - x0|03B3 for x ~ ~03A9

ii) > xo L n aS2,
iii) x E aQ.

Then there are constants C > 0 and to > 0 such that, if v is the inward
unit normal to aS2 at xo, then

Proof - We may assume = 0 and introduce x- and y-coordinate
systems at xo. Furthermore we may assume, perhaps after decreasing 
and K slightly (but so that we still have K > that = K ]
for x E .~~~r n Now by a result of Simon [S3], close to the

graph of u can be represented as the graph of a function v( y) in the y-coor-
dinates. Thus for some 03B4, 0  b  1, we have Mv = 0 in D and v( y) = w( y’)
if ly = K y’ ~, where D = ~ y E I~" : K~ > K ~. The function w
is the one which describes cS2 near Xo as in section 1, and so w(0) = 0,
I ~~’( ~’’) I c L I v’ I’~ I Dw(.~’’) I ~ L I and D2w(y’) I  L for some cons-
tant L. Furthermore the results of [S3] ] give that v is C~ 1 in D and so

where 4t) -~ 0 as t 2014~ 0.
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Now let /. == - (X (so that 1  /. ~ y + 2), J == + K) arid

~i = arcotangent (1) (so that 61  ~(~)). We consider

where r = ( y ~, 0 = arcos (ynr-1), is defined in Definition 3 .1 and

b = fn,~,(81) > 0. Then there are constants (30 > 0 and C such that on D,

Now we set

where 03B2 is yet to be chosen. Provided 03B2|Df| ~ 1 or in other words,
provided

we have by Lemma

where

Thus on D,

Consequently if

we will have that
Now by (4.1)

where 1](t) = e(t) + Lt -~ 0 as t ~ 0, and so > I y I ~?( I v’ I ) when
yn = K5 and y E D we will have that h >_ v on oD. Hence we require,
(using (4.2) and the definition of D), that

where C depends on K.
It is easily seen that by the correct choice of (J and 5, (4.3)-(4.6) may be

satisfied. For example assume f3 = B max { 1, ~ 1-’‘r~(C~) ~ for some B > 0,
Vol. 3, n° 6-1986.
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Then (4.5) and (4.6) are satisfied for any choice of 6 by taking B large
enough. Fixing this B (4.3) and (4.4) can be satisfied if 6 is sufficiently
small. Thus we have that Moh _ 0 on D, and h >__ v on aD and so by the
comparison principle.

Now recall that the graph of v over D is the same as the graph of u over
~ n Q for some neighbourhood % of xo. Consequently if x n Q,

Then with the special choice x’ = 0 and so x = xnen and w(x’) = 0 we have
by (4. 7)

and the result is proved. D

COROLLARY 6. 2014 Suppose Q is a bounded open subset of [R" with

boundary CSZ having zero mean curvature in a neighbourhood of Xo E aSZ.
Then for any a E (0, 1) there are functions in arbitrarily small
in norm, such that the corresponding solutions of the Dirichlet problem
are not Holder continuous at x° for any exponent.

5. GROWTH WITH CONTINUOUS DATA

In this final section we aim to show that the modulus of continuity
in Theorem 1 cannot, in general, be improved. We note, however, that
for the case of Lipschitz data the results of section 3 showed that it could
be improved. Thus we cannot expect to construct examples showing that
we have obtained the best modulus of continuity for all functions ~3 satis-
fying the hypotheses of Theorem 1. The extra conditions we impose will
still allow most examples of interest such as Holder and logarithmic
growth.

THEOREM 5. - Suppose Q is a bounded open subset of (~n and
u E n satisfies Mu = 0 in Q. Suppose there is a neighbour-
hood . of Xo E ~03A9, a function f3 : [0, ~) ~ [0, oo) and a number e > 0
such that

i ) cS2 is C2 in __ ~ ~,
ii ) ~~( x) ? + (~( ( r - Xo !). -Y E cS2 n r

> u(xo) + E, x E 

is an increasing subadditive function with lim f3(t) = 0 and

Annales de l’Institut Henri Poincaré - Analyse non linéaire



427MINIMAL SURFACE EQUATION

Then there is a constant C > 0 such that if v is the normal to aQ at xo,

Proof - Since aS2 is C2 near xo, there exists Ro > 0 such that if R  Ro
there is a ball BR of radius R such that BR n Q = ~ xo }. We may assume
u(xo) = 0, the centre of BR is 0 and xo = Ren. Now consider the function

which gives the distance from x to ~Bp if x is outside Bp. As in Theorem 1
we can assume jS e C~(0, oo) r~ C~ [0, oo) and is concave. The additional

assumption, 20142014 -~ oo, means that ~ oo as r ~ 0. We set ~(~)=~8(~/~)
and ~ 

. _... ,,

where a is a constant chosen so that

where d is the diameter of Q. If xn = R we have

and so u(x) _ r~ a ~ x’ ~ 2 when xn = R. But the plane = R is the
B~ /

tangent plane to ~S2 at xo and aS~ is C2 near xo and so by possibly decreasing a
and the neighbourhood .J~V’ we have

Then by (5.1) and (5 . 3) we have that v(x) _ u(x) if x ~ ~03A9 and so, if we
can show that 0 in Q we will have that u >_ v in Q. But

for some constant C depending on R, Ro and d. Consequently we will
have u(x) >_ r~(C ~ xn - R I) in Q and the theorem is proved.

It only remains to check that given a we can choose R Ro such that 
in Q Now D;v= (1R I x x (~1;+ J x 
Ar = + xR J x J-1(j2 - 1)r~’, 1 + J Du J~ - 1 + x2R2(r~’)’- and (using
the summation convention) x‘~R~(j~’)’r~". Thus

where we have put t =  Now by hypothesis iii) of the theorem
both these terms are positive for t sufficiently small and so by taking R
sufficiently small we can ensure 0 in Q. D
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Examples. - i) = Ktx, 0  a  1.

Remark. The theorem shows that, in the mentioned examples, the
strongest regularity given by Theorem 1 (that is when y = 0 or we have
strictly positive mean curvature) cannot be improved. In particular we
have :

COROLLARY 5. - Suppose Q is a bounded open subset of f~n with C2
boundary Then for any a, 0  a  1, there exist functions ~ such
that 03C6 E but if u satisfies Mu = 0 in Q and u on lQ then

u ~ C0,03B3(03A9) for any y > -. If aS2 has strictly positive mean curvature then

u~C0,03B1 2(03A9).
Remark. - We note that by taking y = 0 and K > Kn - - 

1

2 ~- 1
in Theorem 4 this Corollary also holds for the case a = 1. However the
examples in Corollary 4 can be arbitrarily small in norm whereas

1
in the Lipschitz case we need the Lipschitz constant at least 

2014- 
In

fact this last result about Lipschitz data can also be proved using the
same technique as in Theorem 5. Indeed if we take v(x) = where

a is to be chosen (that is we take 1J(t) = ~A) then the same calculation shows
that

2
Hence if a > we have 0. Also as in (5 . 3) we have that when

xn = R

so that if ~03A9 is C2 near xo we may ensure v(x) _ for x ~ ~03A9 ~ N

provided K > 2014.
n - 1
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